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The 3D folding of a mammalian gene can be studied by a polymer model, where the chromatin fiber is
represented by a semiflexible polymer which interacts with multivalent proteins, representing complexes of
DNA-binding transcription factors and RNA polymerases. This physical model leads to the natural
emergence of clusters of proteins and binding sites, accompanied by the folding of chromatin into a set of
topologies, each associated with a different network of loops. Here, we combine numerics and analytics to
first classify these networks and then find their relative importance or statistical weight, when the properties
of the underlying polymer are those relevant to chromatin. Unlike polymer networks previously studied,
our chromatin networks have finite average distances between successive binding sites, and this leads to
giant differences between the weights of topologies with the same number of edges and nodes but different
wiring. These weights strongly favor rosettelike structures with a local cloud of loops with respect to more
complicated nonlocal topologies. Our results suggest that genes should overwhelmingly fold into a
small fraction of all possible 3D topologies, which can be robustly characterized by the framework we
propose here.
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Within mammalian cells, DNA interacts with proteins
called histones to form a composite polymeric material
known as chromatin, which is the building block of chro-
mosomes and provides the genomic substrate for cellular
processes, such as transcription—the copying of DNA into
RNA [1,2]. Understanding the mechanisms underlying and
regulating chromatin transcription is important, as these
determine the pattern of active and inactive genes in a cell
[3]. An important factor linked to transcription is 3D
chromatin structure, as DNA elements such as promoters
and enhancers often need to come together forming a loop to
trigger transcription [2–5]. Within this context, polymer
models have provided key insights into chromatin structure
and loop formation, and into their link to transcription,
concomitantly showing that physical principles may have
far-reaching consequences in biology [6–15].
As an example, a simple model for chromatin organi-

zation is shown in Fig. 1(a). Here, chromatin is viewed as
a semiflexible polymer which interacts with chromatin-
binding proteins associated with transcription—such as

RNA polymerases and transcription factors. There is a set
of binding sites on the chromatin fiber, which have a high
affinity for proteins, or protein complexes; the rest of the
fiber has a weaker attraction for them, for instance, due to
nonspecific or electrostatic interactions. When proteins can
bind multivalently, which is generally the case for protein
complexes, microphase separation of proteins and binding
sites spontaneously emerges through a thermodynamic
positive feedback loop, known as the “bridging-induced
attraction” [7,8], which works as follows [Fig. 1(a)(ii)].
First, possibly through a fluctuation, the local density of
binding sites in 3D may locally increase. This recruits
chromatin-binding proteins which, if multivalent, further
enhances the concentration of binding sites, in turn increas-
ing protein concentration, and ultimately triggering a
positive feedback resulting in the self-assembly of clusters
of protein complexes and binding sites. Such clusters are
accompanied by the formation of chromatin loops, which
incurs an entropic cost growing nonlinearly with the
number of loops [16] so that clusters do not coarsen past
a typical size, given by the competition between gain in
binding energy and loss in entropy. This type of clustering
leads to structures very much like the transcription factories
—clusters of RNA polymerases and gene promoters or
enhancers—observed experimentally in living cells [3,17].
Transcription factories lead to the spontaneous emer-

gence of a network of chromatin loops joining the binding
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sites in 3D (Fig. 1). These networks are important as they
determine the 3D structure of genes, which as anticipated
underlie the transcriptional state of a given cell [15,18].
Networks such as these depicted in Fig. 1(b) were pre-
viously considered in polymer physics, for instance, in
[19,20], where it was found that their entropy mainly
depends on the number of loops and the local number of
legs associated with each cluster (Fig. 1(b)(iii)). The
relevant thermodynamic ensemble is, however, fundamen-
tally different for the chromatin networks we consider here,
as in these cases the typical distance between binding sites l
cannot be taken to be arbitrarily large as implicitly done in
[19,20], but instead is a model parameter which remains
finite and corresponds to a typical ∼50–100 kilobase pair
(kbp) chromatin loop [21,22].
In this Letter, we show that the theory of partitions [23]

provides a powerful framework to enumerate the topologies
of the emerging chromatin loop networks. By performing
numerical simulations of the folding of a typical gene locus
with the model sketched in Fig. 1, we find that different
topologies, with the same entropy in the limit of l → ∞,
appear with vastly different frequencies. A striking exam-
ple of this is provided by the “rosette” and “watermelon”
topologies in Fig. 1: despite having the same l → ∞
behavior for their entropic weight, we show that the former
is observed orders of magnitude more often than the latter.
We resolve this apparent paradox by computing the

amplitudes of the statistical weights associated with these
diagrams: the ratio between amplitudes of different dia-
grams follows simple patterns which reflect the biases seen
in simulations. We suggest that the topological weights we
compute—i.e., the statistical weights of a diagram corre-
sponding to a given topology—are important factors to
understand the principles of loop network formation in
chromatin, as well as in all polymer systems where binding
sites have a typical finite separation between them. Our
results can be applied in the future to describe actual 3D
chromatin loop topologies observed in experiments or
computer simulations.
Here, for concreteness, we focus on a stretch of chro-

matin with n ¼ 8 binding sites, or transcription units [TUs,
see Fig. 2(a)]. This case is relevant biologically, as when
looking at the genomewide distribution of gene loci with n
TUs, the most frequent cases are those with n ∼ 5–10 [15].
Note we also expect similar results for generic values of n.
To enumerate all possible configurations of a gene locus

with n ¼ 8, we start by observing that what is important is
the relative position of the TUs, which primarily determines
the transcriptional activity of the promoter and hence of the
gene [15,22]. Equivalently, we need to count all possible

(a)

(b)

(c)

FIG. 2. (a) Setup of our explicit numerical calculation. A gene
locus is modeled by a chromatin fiber with n ¼ 8 equispaced
TUs, with mutual distance l ¼ 30σ ¼ 90 kilobase pairs [24]. (b)
(i)–(b)(iii) Sketch of all possible emerging topologies. There are
20 inequivalent topologies, which are here grouped into three
classes (b)(i)–(b)(iii). Network topologies in each of the three
classes have the same node degree distributions [Fig. 1(b)(iii)],
and hence the same value of γG [20]. (c) Results of simulations.
(c)(i) Pie chart showing the relative frequencies with which the 20
topologies in B are observed. The top six are shown; note the
numbers labeling the topologies correspond to their combinato-
rial multiplicities given in Supplemental Material, Table S1. (c)
(ii) Normalized frequency of occurrence of topologies in Bi as a
function of nt. The frequency of the i-th topology is normalized
by its combinatorial multiplicity Ωi (see Table S1).

(a)

(b)

FIG. 1. (a)(i) Schematics of the problem. A chromatin fiber is
modeled by a polymer, on which transcription units (pink
spheres) are bound by multivalent proteins (red spheres), repre-
senting complexes of transcription factors and polymerases. (a)
(ii) Emerging states, with clusters arising through the bridging-
induced attraction. (b)(i) The chromatin loop network associated
with the state in (a)(ii). This is a chain of two rosettes, each
containing a cluster four binding sites in the fiber. (b)(ii) An
alternative chromatin loop network, known as the watermelon
topology. (b)(iii) The local polymer structure at the loop base is
the same in (b)(i) and (b)(ii): this is what determines the entropy
of the topology in the limit in which the distance between binding
sites goes to infinity. In the case of chromatin, though, this limit is
not relevant and the weights of the diagrams (b)(i) and (b)(ii) are
in practice very different.
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partitions of n (initially distinguishable, or labeled) binding
sites into different clusters, which equals the Bell numbers
Bn [31]. Bn is a large number: for n ¼ 8, B8 ¼ 4140,
whereas Bn ∼ nn for large n.
For simplicity, here we further focus on the possible gene

locus topologies where the TUs are grouped into k ¼ 2
clusters (each of size ≥ 1), without any singletons; different
cases (with k ¼ 3, 4) are discussed in the companion paper
[32] and lead to qualitatively similar results. We call the
number of possible configurations with n labeled (or
distinguishable) TUs and k clusters Nðn; kÞ. For k ¼ 2,
such a number can be found via the theory of partitions
[23], and is given by Nð8; 2Þ ¼ Sð8; 2Þ − 8 ¼ 119. Here,
Sð8; 2Þ denotes the Stirling number of the second kind [33],
which counts the number of ways in which eight points can
be partitioned into two nonempty clusters—the subtraction
of eight is needed to remove singletons. This reasoning and
formula can be generalized, so that the number of con-
figurations of a gene locus with n distinguishable TUs and
2 clusters with ≥ 2 TUs in each is given by

Nðn; 2Þ ¼ Sðn; 2Þ − n ¼ 2n−1 − n − 1: ð1Þ

Additional properties of Nðn; kÞ are discussed in [32].
It is also useful to classify the distinct types of topologies

which can be created, where we omit the labeling of the
TUs, or equivalently consider them indistinguishable. We
call the number of such inequivalent “unlabeled” topol-
ogies with n TUs and k clusters Nuðn; kÞ. This classifica-
tion is relevant if we are interested in calculating the relative
importance, or statistical weights, of different loop network
topologies, without worrying about the detailed labeling.
For two-cluster networks, we find that there are 20
such inequivalent unlabeled topologies [Fig. 2(b) and
Supplemental Material, Table S1 [24] ]. In general,
Nuðn; 2Þ can be found analytically and is given by [32]

Nuðn; 2Þ ¼
nðn − 1Þ

2
− 2 −

bn−1
2
cbnþ1

2
c

2
; ð2Þ

where bxc denotes the largest integer which is smaller than
x (the floor function of x). Clearly,Nuðn; 1Þ ¼ 1, whereas it
is very challenging to find Nuðn; kÞ explicitly for k > 2.
Asymptotically, Nuðn; 2Þ ∼ n2, therefore the growth rate is
much smaller than that of the number of labeled networks,
Nðn; 2Þ, which grows as ∼2n [Eq. (1)].
Each inequivalent topology i is associated with a

combinatorial weight, or multiplicity, Ωi, which counts
the number of different labeled networks corresponding to
it (see Fig. 2 in [32] for an example of two different labeled
configurations corresponding to the same unlabeled top-
ology). These multiplicities are listed in Supplemental
Material Table S1 [24]; note that they satisfy the constraintPNuðn;2Þ

i¼1 Ωi ¼ Nðn; 2Þ. One way to characterize the differ-
ent topologies is by counting the number of legs that loop

directly back to their vertex (or cluster) of origin, and the
number of legs that begin at one vertex and end at a distinct
vertex (or cluster). We call these two quantities nl and nt,
for the number of loops and the number of ties, respec-
tively; we note that nt þ nl is an invariant (which equals
n − 1, or 7 in our chosen example).
To quantify the statistical weights, or relative impor-

tance, of the different topologies in Fig. 2(b), we simulate,
by using coarse-grained molecular dynamics run within the
LAMMPS package [34], the behavior of a chromatin fiber
with contour length L, monomer size σ and persistence
length 3σ [8,22,35], with eight equally separated TUs
whose mutual distance is l ¼ 30σ, interacting with ten
multivalent spherical complexes of TFs and polymerases
[see Supplemental Material [24] for more details].
Focussing on configurations with two clusters as in the
theoretical analysis above, we then compute the topological
spectrum of our model chromatin fiber, by computing the
frequency of each of these, which is an estimate of its
statistical weight. Note that for simplicity in these simu-
lations we do not include weak interactions between
proteins and non-TU beads, although we do not expect
this simplification to change the qualitative trends we
observe.
Our simulations show that, remarkably, only a handful of

topologies contribute significantly to the population of
possible 3D structures of our model gene locus: accord-
ingly, the top three topologies account for over 40% of
the total structures, and the top six for just under 80%
[Fig. 2(c)(i)]. Overall, we find that nonlocal topologies with
a higher number of intercluster ties nt are much less likely
than rosettes, characterized by clouds of local loops and
nt ¼ 1. Figure 2(c)(ii) shows the frequency of the sym-
metric diagrams in Fig. 2(b)(i) as a function of nt,
normalized with respect to their respective combinatorial
multiplicities. These normalized frequencies give the top-
ology-specific weight of each configuration, which we refer
to as topological weights. Our numerical results show that
such weights drop sharply with nt, to the extent that the
weight of the rosette structure [Fig. 1(b)(i), nt ¼ 1] is over 2
orders of magnitude larger than that of the watermelon
configuration [Fig. 1(b)(i), nt ¼ 7].
The difference in topological weight between rosettes

and watermelon is at first sight surprising because the
entropic exponent of the two graphs is the same [20].
However, this is not the whole contribution to the topo-
logical weight of a graph, ZG, which is the partition
function of the graph and which, at least for σ ≪ l ≪ L,
can be generically written as follows [20]:

ZG ∼ AGμ
NG lγG−1: ð3Þ

In Eq. (3), μ is the connective constant of the chain [36],
which is the same for all networks, γG is a topology-
dependent universal entropic exponent, which is the same
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for each of the topologies in one of the three classes
highlighted by boxes in Figs. 2(b)(i)–2(b)(iii), whereas AG
is an amplitude, which is in general nonuniversal. In our
case, the distance between TU (or local loop size) l cannot
become arbitrarily large but is instead a model parameter
that is finite: for instance, for human chromosomes, it is
∼50–100 kbp [21,22]. Therefore, the entropic exponent
need not be more important than the amplitude to determine
the topological weight.
To get more insight into the amplitudes in Eq. (3) for

different topologies, we compute the topological weights
for the case of a network of phantom random walks,
without volume exclusion. This Gaussian network case can
be solved analytically (see Ref. [32]), and the weight of a
generic graph G with n TUs is given by

ZG ¼
Z

dx0…dxnþ1δðGÞ
Yn
i¼0

e−
3ðxiþ1−xiÞ2

2lσ : ð4Þ

The term δðGÞ is a product of Dirac δ functions which
specifies the network topology [32]. Performing the
Gaussian integrals in Eq. (4), we find the ratio of theweights
for the rosette to the watermelon topologies to be 73=2.
More generally, the weights of the topologies in Fig. 2(b)(i),
within the Gaussian approximation, are [24,32,37]

Znt ¼
ZR

n3=2t

; ð5Þ

with ZR the rosette weight. Therefore, the amplitudes decay
with nt in a power-law fashion inherited from the metric
exponent of the random walk.
Equation (5) shows that topologies with nonlocal loops

are statistically unlikely and that the rosette topology is
more dominant than the watermelon one, exactly as found
in our simulations, even though in the latter the difference
in magnitude between their respective frequencies is even
higher. Indeed, an inspection of the numerical frequencies
found in Fig. 2(c)(ii) suggests that the decay is faster than
the power-law fit predicted in Eq. (5). This behavior is
likely due to the fact that the Gaussian theory outlined
above neglects excluded volume. To see this, we note that
for a set of nt self-avoiding walks connecting the two
clusters in Fig. 2(b), with position 0 and x the propagator,
or probability distribution of having an end-to-end distance
x with a contour length l, becomes

pðx≡ jxj; lÞ ∼
�

x
RF

�
ntg
e−ntð

x
RF

Þδ
;

g ¼ γ − 1

ν
; δ ¼ 1

1 − ν
; ð6Þ

where RF (which depends on l) is the Flory radius of a self-
avoiding walk, and γ ≃ 7=6 and ν ≃ 3=5 are its entropic and
metric exponents [36]. In our case, therefore, g ≃ 5=18 and
δ ≃ 5=2. By repeating the calculation for the ratio between

the weights of the topologies in Fig. 2(b)(i), but now
including self-avoidance by using the propagator in Eq. (6),
after some algebra we obtain

ZSA
nt

ZSA
R

¼
Γ
�
ntgþ3

δ

�

n
ntgþ3

δ
t Γ

�
gþ3
δ

� ; ð7Þ

where Γ denotes the gamma function, and the label SA
stands for self-avoidance. Importantly, Eq. (7) predicts a
different functional dependence on nt with respect to that of
the Gaussian network, as ðZSA

nt =Z
SA
R Þ ∼ ðe−ðntg=δÞ= ffiffiffiffi

nt
p Þ for

large nt. By setting nt ¼ 7, we obtain that ZSA
R =ZSA

W ≃ 42.4,
as opposed to 73=2 ≃ 18.5 for the Gaussian network. In
other words, excluded volume interactions within the chro-
matin fiber sharpen the difference between the topological
weights, rendering predictions closer to values observed in
simulations. The remaining discrepancy may be due to the
fact that Eq. (7) still disregardsmutual avoidance between the
nt chains connecting the two clusters.
Do the trends found in the simple model in Fig. 2 transfer

to more realistic models for chromatin organization? To
address this question, we analyze HiP-HoP simulations
[24,38] of 3D structures of human chromatin in lympho-
blastoid cells (Fig. 3). The HiP-HoP model accounts for

(a)

(c) (d)

(b)

FIG. 3. (a),(b) Probability density of (a) the average number of
clusters nc and (b) rosette score R ¼ 1 − ½ðnt − nc þ 1Þ=ðnns −
ncÞ� observed for each TU in HiP-HoP simulations for human
chromosomes (HSA) 18 and 19. Here, nns is the number of
nonsingleton TUs, and the average is taken over 600 simulated
structures for each TU. A higher R indicates the topology is more
dominated by rosettes. (c),(d) Pie charts showing the relative
frequencies of observing different looping topologies with two
clusters for two gene loci, (c) VAPA and (d) MCOLN1. Both
genes have eight highly interacting TUs (i.e., those that interact
with the promoter in > 10% of all sampled structures, including
the promoter itself). Note that TUs can be singletons in some of
these topologies.
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loop extrusion [39], chromatin heteromorphicity [40] and
folding by inactive, as well as active, chromatin-binding
proteins, and it has been shown to recapitulate well Hi-C
contact maps [38]. Each TU—typically a promoter or
enhancer—is associated with a chromatin locus, which
contains other TUs contacting it frequently. These loci are
the analog of the chromatin segment considered in Fig. 2.
The 3D folding of loci genomewide shows that (i) typical
structures contain nc > 1 clusters of TUs [Fig. 3(a), note
the distribution peaks around nc ≃ 2 as in Fig. 2], and
(ii) rosettelike structures with local loops are dominant
genomewide [Figs. 3(b)–3(d), and Supplemental Material,
Figs. S1 and S2]. Interestingly, the predominance of
rosettes is more pronounced in gene-rich chromosomes
(HSA 19) than in gene-poor ones [HSA 18, Fig. 3(b)].
ATP-dependent loop extrusion subtly affects results, as the
rosette score in Fig. 3 slightly increases without it
(Supplemental Material, Fig. S1).
In conclusion, we have studied the topological spectrum

of chromatin loop networks emerging upon the 3D folding
of a gene in a simple polymer model. We have shown that
the theory of partitions provides a useful and general way to
enumerate the topologies of labeled chromatin fibers,
whereas counting unlabeled inequivalent topologies is much
more challenging. Our main finding is that, out of all such
possible topologies, only a small fraction is in practice
observed. Specifically, we predict that gene loci should be
overwhelmingly organized in rosettelike structures with a
predominant number of local loops between neighboring
transcription units [8]. Notably, the dominance of rosettes is
also found in more realistic models of human chromatin
organization, accounting for adenosine triphosphate (ATP)-
dependent processes such as loop extrusion, and for the
presence of inactive, as well as active, chromatin.
In the future, it would be of interest to combine our

framework with experimental methods, such as SPRITE

[41], to classify the networks of chromatin loops formed in
different types of cells. From a theoretical viewpoint, the
graphs associated with the loop networks we discuss can be
mapped into words [42], and it would be fascinating to
explore this mapping more fully, which would allow us to
view our 3D loop networks as a topological alphabet of
chromatin folding.
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