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ABSTRACT Requirements of next-generation video applications are becoming a challenge for conventional

video coding systems, although they have evolved over decades to accommodate the most demanding of

current video applications. Semantic communications, built on the concept of transmitting just the semantics

of a message and allowing the receiver to reconstruct the message based on a shared context, is a non-

conventional approach being considered to overcome these challenges and improve performance of video

coding systems. In this paper, a first such semantic communication-based video coding system in hybrid

mode is proposed, which uses an autoencoder-based semantic encoder for inter coding, augmented by the

intra coding capabilities of Versatile Video Coding (VVC) to encode key frames that form the context

for the semantic communication and the residuals for improving the fidelity of the output frames. For a

range of videos with differing levels of complexity, the proposed system consistently outperforms High

Efficiency Video Coding (HEVC) and Advanced Video Coding (AVC) in terms of rate distortion metrics

quantified by Bjontegaard Delta Rates. It also outperforms Versatile Video Coding with videos with low

or high complexity, but slightly falls behind with videos with medium complexity, which can be improved

by addressing the open research areas that stem from this work. The proposed system demonstrates the

potential of semantic communication based video coding systems to consistently outperform state-of-the-art

conventional video coding systems over a wide range video applications.

INDEX TERMS Autoencoders, deep neural networks, semantic communication, video coding, video

communication.

I. INTRODUCTION

New media formats such as ultra high definition (UHD)

television, high dynamic range (HDR), extended reality (XR),

omnidirectional video, and interactive storytelling are now

widely supported by consumer devices. This has led to a

rapid growth in the volume of video content distributed

over the Internet and other access media, accounting for

more than 60% of the current mobile network traffic.

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Sharif .

This share is expected to increase to 80% by 2028 [1],

making it increasingly challenging to ensure a consistent

end-to-end quality of experience (QoE) of video during its

production, storage, and distribution, especially due to video

characteristics, such as bit depth, color rendition, frame rate,

and resolution, which also increase on top of the volume.

Raw video footage is large in size and would not be very

practical to use without video compression (video coding)

to make it small enough to store and transmit within the

resource limitations of storage and transmissionmedia. Video

coding standards define encoded bitstream and decoder
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specifications to enable widespread use of compressed video

with a wide range of device and software platforms.

The video coding landscape has been shaped by a series

of standards developed by the International Telecommu-

nications Union Telecommunication Standardization Sector

(ITU-T) and the Moving Picture Expert Group (MPEG) of

the International Standards Organization (ISO). The most

popular video coding standards from these organizations

are H.264 Advanced Video Coding (AVC)/MPEG-4 part-10

standardized in 2003, and H.265 High Efficiency Video Cod-

ing (HEVC)/MPEG-H part-2 standardized in 2013. H.266

Versatile Video Coding (VVC)/MPEG-I part-3 standardized

in 2020 is the latest standard in this family and represents

the state-of-the-art in video coding. However, there are other

popular video coding formats that include the Audio Video

Coding Standard (AVS), video codec 1 (VC-1), Windows

Media Video 9 (WMV-9), Theora, VP8, VP9, Daala and

AOMedia Video 1 (AV-1) [2].

These mainstream video coding standards are based on

statistical signal processing (SSP) techniques to exploit

statistical redundancies and quantization to exploit perceptual

redundancies. However, with increasing bit depth, frame rate,

and resolution of the video, the complexity and computational

workload of the coding algorithms inevitably increase in

part due to the linearity of the transformations used to

compress the data, resulting in an increase in the time taken

to encode and decode the video, as demonstrated by [3]

and [4]. Therefore, while still being well capable of providing

sufficient QoE for current video applications such as UHD

and HDR content, even state-of-the-art video coding stan-

dards will face significant challenges in delivering the next

generation of video applications where resolutions beyond

16K (15,360×8,640 resolution) and frame rates beyond

300 frames per second are being considered. In response,

the use of deep neural networks (DNNs) that allow the

use of nonlinear transformations to achieve compression

in video has been explored as an alternative with some

positive results [5]. Moreover, there are inherent challenges

associated with them, such as transmission of the DNN from

the transmitter to the receiver and training of the DNN,

which have hindered their development towards becoming

mainstream coding standards.

Inspiration for a novel approach to video communication

that can circumvent the channel capacity challenge faced

by conventional video coding systems can be found in one

of the first concepts of information theory. Shannon and

Weaver [6] suggest that the desired effect of communication

can be achieved by successful extraction and transmission of

just the semantics of a message, which can be text, images

or videos. When the context of semantic extraction is shared

between the transmitter and the receiver, the semantic can

even be used to reconstruct the original in the receiver. This

is analogous to a human using written word to describe an

event, and a reader who is sufficiently fluent in the language

used for writing being able to visualize the event based on the

description, where the written text constitutes the semantics

of the event, and the vocabulary and grammar of language

constitute the shared context.

While the concept of semantic communication has been

around for decades, a technique to efficiently reduce a

message to its semantic form was not feasible due to

the inaccessibility of the appropriate techniques and com-

putational power required for implementation. However,

recent advances in artificial intelligence (AI) and machine

learning (ML) make it possible to implement semantic

extraction and semantic-based reconstruction using DNN,

such as autoencoders, which has generated renewed interest

in semantic communications [7].

A semantic communication system (Fig. 1) consists of a

semantic encoder and decoder that convert the message to

semantics at the transmitter and the conversion of semantics

back to the message at the receiver, both using the same

context (or common knowledge) to perform encoding and

decoding. In implementations, how the context is interpreted

by the encoder may not always be identical to how it is

done by the decoder, adding semantic noise to the end-to-end

communication process on top of the omnipresent electronic

noise. Although this may not affect the effectiveness of the

communication, it does reduce the fidelity of the output when

attempting to reconstruct the message based on semantics.

This is a challenge which semantic communication systems,

especially when used for media transmission, must address.

FIGURE 1. Typical semantic communication system.

In response, we propose a hybrid video coding system that

combines semantic communications and an SSP based video

coding system (VVC) to achieve rate distortion performances

on par with those of state-of-the-art conventional video

coding systems. An autoencoder (AE) [8] is chosen to

perform semantic encoding and decoding, and is trained for

each group of pictures (GOP) to minimize the mean square

error (MSE) between the input frames and the output frames,

effectively making the latent vector in the bottleneck layer a

semantic representation of each frame. A frame decoder at

the receiver is then trained using the AE decoder layers to

minimize MSE between the key frames (first frame of each

GOP) shared by the transmitter and the frame reconstructed

using the latent vector received from the transmitter. The AE

decoder layers on the transmitter (semantic encoder) and the

AE decoder layers on the receiver (semantic decoder) have

the same structure and are initialized with the same seeds to

further optimize the performance, while it becomes no longer

necessary to use the same trained decoder layers from the
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transmitter at the receiver. Therefore, the structure of the AE

layers, the seed used for initialization, and the key frames

represent the context of the semantic video compression

system, while the latent vector represents its semantics.

The key frames are encoded using the state-of-the-art intra

coding capabilities of VVC. In addition, to overcome the

challenge of reconstructing high-fidelity frames, a residual

is extracted by comparing the original frame with the

reconstructed frame (using a semantic decoder similar to

that used at the receiver at the transmitter). This residual

is encoded using VVC and sent to the receiver, which

is added to the reconstructed frames at the receiver to

produce a high-fidelity output image. The use of a SSP

based codec (VVC) to perform context encoding and residual

encoding along with the use of semantic communication

concepts to extract semantics of each frame makes the

proposed system a hybrid of semantic communications and

SSP.

Performance of the proposed system is benchmarked

against state-of-the-art video codecs based on VVC, HEVC,

and AVC by comparing the rate distortion performances

based on the peak signal-to-noise ratio (PSNR), structural

similarity index (SSIM) and video multi-method assessment

fusion (VMAF) metrics. The comparative performance of the

proposed system is further quantified using the Bjontegaard

Delta (BD) rates calculated for each metric.

The key novel contributions that we make to the field of

video coding through this paper are:
• pioneering in an end-to-end hybrid video compression

system based on the concept of semantic communica-

tions for inter coding and VVC for intra coding and

residual compression.

• demonstrating a novel mechanism for remote training

of a semantic communication based frame decoder,

allowing the proposed framework to function without

the necessity of transporting the decoder parameters

from the transmitter to the receiver, which is the first

such attempt to use a remotely trained DNN based

system for video encoding for transmission.

• demonstrating the performance of the proposed sys-

tem with a range of videos with differing structural

information (SI) and temporal information (TI) content

and benchmarking it against state-of-the-art codecs

(VVC, HEVC, and AVC) in terms of rate distortion

performance quantified using BD rates.

The remainder of this paper is organized into four sections.

Section II provides a brief overview of video coding using

conventional video coding and DNN-based video coding,

as well as the current state of research on semantic communi-

cations. Section III describes the proposed semantic andVVC

based hybrid video codec and the experiments carried out to

evaluate its rate distortion performance against VVC, HEVC,

and AVC. Section IV presents the results of the experiments

and a brief discussion on their impact on the future of video

coding, leading to Section V which summarizes the work

and a brief note on how to further develop the proposed

system to meet the emerging requirements of the media,

communications, and consumer electronics industries.

II. RELATED WORK

Conventional video coding has evolved over four decades

from the earliest digital video compression standard ratified

in 1984, H.120, to the state-of-the-art standard ratified

in 2020, VVC. However, the efficiency of conventional

video coding techniques are fast reaching their limits, and

alternative approaches for video coding such as DNN based

video coding have been explored in parallel as potential

candidates for the next generation of video coding. Semantic

communication, which has started to gain interest in recent

years, offers a novel paradigm which could be used for

video coding and transmission in multiple applications

where conventional video coding systems cannot achieve any

further significant coding gain.

A. CONVENTIONAL VIDEO CODING

Early video formats used in transmission and storage systems

were analog and aimed primarily at television broadcast.

Videoconferencing over public telephone networks was the

first application of digital video that required the creation

of standardized digital video formats [9]. The first digital

video standards ratified by ITU-T included H.120 (version

1) [10], and H.261 which was the first widely adapted

digital video coding standard [11]. ISO’s MPEG introduced

MPEG-1 video in 1993, following which it joined with the

Video Coding Experts Group (VCEG) of ITU-T to release

subsequent standards H.262 and H.263.

VCEG and MPEG established the Joint Video Team

(JVT) in 2001, which resulted in the publication of the

AVC or H.264 standard in 2004 (technically identical

to MPEG-4 part 10), which eventually became the most

widely adapted video coding standard. This was followed

by HEVC or H.265 (also ratified as MPEG-H part 2),

in 2013 [12] providing a coding gain of 50% over AVC [13],

[14]. The state-of-the-art video compression standard, VVC

or H.266 (also ratified as MPEG-I part 3), followed in

2020 and the development of VVC codecs is currently

gaining momentum with an expected coding gain of 50%

over HEVC along with support for a much wider range of

industry applications [12]. However, starting from AVC, the

H.26X family of video coding standards is distributed under

a royalty-based licensing scheme, which limits its appeal to

large-scale video distribution and streaming services.

Therefore, there are a multitude of alternative video coding

standards and formats published by entities ranging from

major industry players to industry consortiums that are

proprietary for specific applications or are royalty free for

industrial use. AVS [15], WMV [16], Theora [17], VP8 [18],

VP9 [19], and AV1 [20] are all such video compression

formats that have a significant market presence.

All these standards are based on SSP and therefore make

use of several key techniques that include block partitioning,
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motion compensation or interpicture prediction, intrapicture

prediction (intra coding), transformation (typically in the

frequency domain and commonly using the discrete cosine

transform), quantization, entropy coding, and in-loop filter-

ing [21]. HEVC added more flexibility and effectiveness

to these concepts introduced in AVC, by adding features

such as range extensions (RExt) to allow modification of the

video format, improvements in coding efficiency, precision,

and throughput optimizations, scalable HEVC extensions

(SHVC) to extend temporal scalability to spatial, quality, bit

depth, and color range scalability, multiview (MV-HEVC)

and 3-D extensions (3)-D-HEVC) combining multilayer

design with scalability features and screen content coding

(SCC) extensions [13]. VVC, again based on the coding tools

used in HEVC, includes a further improved and refined set

of techniques that make it even more flexible and adaptable

for future video applications, albeit at the cost of a general

increase in complexity [11].

However, considering the computational complexity and

optimizations that VVC entails, its successor is expected to

face significant challenges in realizing better rate distortion

performance using conventional techniques alone [12]. This

is leading to greater interest in alternative video compression

methods, such as AI-based systems, improved perceptual

quality measurement systems to optimize quality-based

compression, and video coding for machines, which does not

require full reconstruction of the videos to be effective in

communication.

B. DEEP NEURAL NETWORK BASED VIDEO CODING

DNNs work in a similar way to human perception, using

multiple layers of nodes that are interconnected with different

weights and activated based on a range of input-output

functions set on different biases. The strength of DNNs lies in

its ability to identify complex patterns in the input data which

are impossible to do using fixed rules, as done in conventional

signal processing algorithms.

Since late 1980s a range of DNNs has been explored for

image compression, which has formed the basis for using

them for video compression. The DNNs used for image

coding have evolved frommultilayer perceptron (MLP) based

image coding, random neural network based image coding,

convolutional neural network (CNN) based image coding,

recurrent neural network (RNN) based image coding, gen-

erative adversarial network (GAN) based image coding, and

more recently, vision transformer based image coding [22].

Extending these developments to video coding has been an

active area of research over the past decade, especially since

the introduction of HEVC, and DNN-based improvements

to modules within HEVC and other mainstream video

coding standards were one of the first adoptions of AI/

ML for video coding. DNNs were used to enhance and

enhance the tools used for intra prediction, inter prediction,

quantization, entropy coding, and loop filtering. New DNN-

based video coding frameworks have also been introduced,

using CNNs, Voxel CNNs, and long short-term memory

(LSTM) encoder-decoder frameworks. Key challenges in

using DNN-based video coding include semantic fidelity

oriented video compression, rate distortion optimization

guided training and adaptive switching, and efficient memory

and computation design [22].

One of the first end-to-end DNN-based video compression

models was deep video compression (DVC), which jointly

optimized the motion and residual information of a video by

implementing two AE style DNNs jointly trained on a single

loss function to carry out motion and residual compression.

DVC was demonstrated to have better PSNR performance

compared to AVC and reached HEVC performance in terms

of the multiscale structural similarity index method (MS-

SSIM) [23]. Further improvements on DVC using a DNN

based motion prediction and refinement network that uses

intra-frames (I-frames) and predicted frames (P-frames)

built on a motion predictor-net for tracking motion using

differential motion vectors and a refinenet [24] demonstrated

competitive rate distortion performance over HEVC class B,

class D [13] and Ultra Video Group (UVG) [25] datasets

in terms of MSE and MS-SSIM. DVC adds additional

complexity to the framework due to the attempt to use

DNNs for residual coding and motion estimation, and the

performance was only benchmarked for AVC and HEVC.

It has not been designed targeting video transmission.

A new video compression architecture using feedback

recurrent AE for real-time video compression adopting

the approach taken by conventional video codecs such as

AVC and HEVC [26] demonstrates comparable SSIM and

compression rate performancewith AVC andHEVC for those

commonly used in streaming applications. But the system

faces challenges in temporal consistency and color shift,

especially when the size of the GOP is increased.

A three-dimensional AE featuring a discrete latent space

and an auto-regressive prior was evaluated against AVC and

HEVC, exhibiting some advantages in terms of adaptive com-

pression compared to conventional codecs [27]. However,

it is not benchmarked against VVC and the applications of

the proposed method are for domain-specific videos, such as

specific industrial applications, and it depends on the trained

decoder being available at the receiver, which requires the use

of a neural network compression and transmission method

essential for any practical implementations.

Although the performance of the PSNRwas not better than

the default HEVC settings [28] proposes a spatial-temporal

video compression network (STVC) using spatial-temporal

priors with an attention (STPA) module that is based on

AE architectures, which demonstrates better rate distortion

performance than AVC and DVC. However, STVC also

suffers from the added complexity and latency of using DNN

techniques to achieve residual coding.

A Video compression system that used a frame AE, flow

AE, and motion extension network (Flow-MotionNet) [29]

delivered improved performance compared to AVC and

HEVC in terms of PSNR and SSIM, but with a higher
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processing time per frame (TPF). An optical flow residual

coding method [30] specifically for videos that have a

strong interframe correlation, such as surveillance video or

teleconferencing video, demonstrated quality improvements

of 1.2 dB compared to DVC. However, the system is

not benchmarked against VVC, and furthermore it is not

investigated with general video applications, limiting its

effectiveness to a specific domain.

In general, the utilization of AEs for video compression

has shown encouraging rate distortion results compared to

conventional video codecs such as AVC and HEVC, but

with a trade-off of increased computational complexity,

as evidenced by longer processing times. However, their

performance still falls short of achieving the rate distortion

performance of HEVC codecs over a range of videos, and

there has not been any AE-based framework put forth

that can match the rate distortion performance of latest

VVC codecs, and as such no efforts have been made

yet.

C. SEMANTIC COMMUNICATIONS FOR VIDEO

TRANSMISSION

Semantic communications was first discussed in the intro-

duction of the mathematical theory of communication,

where communication is defined as a problem at three

levels: technical level, semantic level, and effectiveness

(or influence) level [6]. The accuracy of the transfer of

information (in the form of a bit stream) from the sender to

the receiver is the primary concern of the technical problem

and is inherent in all forms of communication. Going beyond

the accuracy of the communicated bit stream, the semantic

problem concerns itself with the meaning of the information

interpreted by the receiver in comparison to the meaning of

the information intended by the sender. The third problem of

effectiveness is itself concerned with the success of which the

meaning understood by the receiver leads to the action that the

sender expected [31].

The development of communications focused mainly

on solving the technical problem of communications and

exploring the limits of information capacity that can be

achieved with the two constraints of the signal-to-noise ratio

(SNR) and the channel bandwidth. However, with the advent

of DNNs, it has become possible to develop systems where

senders can extract the meaning of a message and transmit it

for a receiver to infer the meaning with high accuracy. Since

the information content of the meaning, or semantic, of a

message is significantly less than the information content of

a message encoded as a bit stream, this creates the possibility

of transmitting a larger amount of information within

a restricted bandwidth. Furthermore, with the increased

prevalence of Machine-to-Machine (M2M) communication

and the proliferation of the Internet of Things (IoT), accurate

communication of the meaning of a message even when

the receiver does not have a fully accurate bit stream has

become more relevant. If the sender and receiver share prior

knowledge or context of the communication, the resulting

semantic communication system is capable of significantly

improving the throughput of a channel [7]. Building on

these concepts, contemporary research shows that semantic

communications are a viable means to preserve semantic

information while compressing information to considerably

small sizes, even in the presence of intentional data loss at the

bit level compared to conventional encoding methods [32],

[33], [34], [35], [36].

The first discussions on semantic communication by [6]

were based on text transmission, which was more recently

explored in detail using a range of deep learning tech-

niques [7]. DeepSC is a semantic communication based

text transmission system that attempts to maximize capacity

and minimize semantic errors by accurately recovering

semantic instead of symbol level or technical problem, and

demonstrates high fidelity of the semantic communication

system in low signal-to-noise ratio (SNR) channels [37], [38].

Similar observations have also been made on higher com-

pression ratios and better resilience to noise from semantic

communication systems in speech transmission [39]. A key

challenge identified in these was the introduction of semantic

noise to the communication process, which was mainly

the result of mismatches in the context referred to by the

transmitter and receiver to decode the semantically encoded

message.

Extending the concept of semantic communication for

image transmission has been attempted using a variety of

DNN architectures. An image transmission system with joint

source and channel coding implemented using autoencoders

was shown to provide a high level of compression while

still maintaining semantic fidelity at low SNR compared to

conventional channel coding systems [40], and multiple other

domain-specific systems based on the same concept used

have been studied, such as [41]. GANs have also been used

to capitalize on their ability to derive semantic images at the

receiving end based on the encoded message, which resulted

in highly compressed and noise-resistant image transmission

systems [42], [43].

Semantic communication based video communication

systems for specific applications, such as video confer-

encing [44] and video surveillance [45], have also been

explored. However, the use of semantic communications

for implementing a video coding system that can replace

conventional video coding has not yet been attempted, and

this work is the first of its kind to explore how state-of-the-art

capabilities from semantic communications can be combined

with conventional video coding techniques to provide an

effective and robust hybrid video coding system.

D. CHALLENGES AND OPPORTUNITIES

To summarize, a key challenge faced by video coding

standards is the imminent explosion of system complexity

when dealing with the next generation of video applica-

tions. This could make obtaining a significant performance

improvement over the current generation of video coding
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standards by the next exceptionally challenging by continuing

to use SSP alone as the basis for video compression.

Semantic communications, driven by advances in DNN, may

present a solution to reduce the bit rates required for video

communication bymaking use of video semantics and context

for encoding. But in their current state, they alone cannot

produce decoded video that will always be acceptable for

human viewing, although they may be sufficient for most

machine vision-type applications. However, it should be

appreciated that conventional video coding standards have

evolved over three decades with an immense research effort

to become highly efficient in tracking and predicting frames

over the temporal dimensions, which cannot be expected to

be matched immediately by an emerging technique.

This opens up areas of research on how best to exploit

the temporal correlation between frames in semantic commu-

nication based video coding systems to match and improve

the capabilities currently available in SSP based video

coding systems. Meanwhile, there are opportunities to take

advantage of the proven features of both systems by exploring

hybrid approaches. Section III describes the first attempt to

develop and demonstrate a hybrid video coding system using

an AE-based semantic communication system augmented by

VVC.

III. PROPOSED SYSTEM

The proposed hybrid video coding system uses semantic

communication principles, with semantic encoding and

decoding performed using the AE encoder and decoder

layers, respectively, and context encoding and decoding per-

formed using VVC. The challenges discussed in Section II-D

related to the fidelity of the output frames are addressed by

extracting the residual between the original and semantically

predicted frames and encoding and decoding them using

VVC intra coding, and adding the residual back to the

semantically reconstructed frame to generate the output.

The proposed system, shown in Fig. 2, is composed of

four main components: a semantic encoder, a semantic

decoder (frame predictor), a context encoder/decoder and a

residual encoder/decoder. The efficient implementation of the

proposed system is enabled by a novel approach to remotely

train the receiver-side semantic decoder.

The proposed system is tested with 4:2:0 chroma sub-

sampling (YUV420) and on a GOP basis, with the same

configuration used for VVC, HEVC, and AVC used as

references to compare its performance. It also uses scene

transition detection to trigger newGOPswhen there is a scene

change in the video, making it usable across multiple video

applications without being restricted to a particular type of

video, such as surveillance video or conference video.

A. SEMANTIC ENCODER

Semantic encoding is the process of extracting the semantics

of a frame so that it can be used to reconstruct the frame using

a compatible semantic decoder. This is typically achieved

using a DNN, and in the proposed system, the encoder

layers of an AE, shown in Fig. 3, are used to perform

semantic encoding to reduce each frame to a latent vector with

dimensions 8 × 1.

The AE is designed to accept a frame with pixel widthW ,

pixel height H and color depth C (which equals 1.5 due

to the frame being converted to YUV420 prior to semantic

encoding). The tensor representing each frame is flattened

to a vector of dimensions (W × H × 1.5) × 1 to form an

input layer that is fully connected to a hidden layer with

dimensions 1024 × 1 using a Leaky Rectified Linear Unit

activation function (LeakyReLU). The hidden layer is fully

connected to a bottleneck layer of dimensions 8 × 1 again

using LeakyReLU, from which the latent vector is extracted.

To enable AE training using the input frames themselves, the

decoder layers are implemented by fully connecting a hidden

layer of dimensions 1024× 1 with the bottleneck layer using

LeakyReLU, which in turn is fully connected to an output

layer of dimensions ((W × H × 1.5) × 1 using a Sigmoid

activation function. The output layer is then reshaped

to reconstruct the frame with the original dimensions

W × H × 1.5. A learning rate or nonlinearity factor(α) of

0.01 used for training the model to minimize MSE between

the input and output frames.

Since the main objective of the proposed system is to

reconstruct the original frame using the latent vector on

the semantic decoder, it does not necessarily need to be

understood by humans. Therefore, the size of the latent

vector is optimized to have the minimum possible size after

observing the effects of varying the dimensions of the latent

vector between 1 × 1 (20 × 1) and 256 × 1 (28 × 1) with the

average PSNR of the output frames compared to the input

frames as shown in Fig. 4 using input frames with spatial

resolution 320 × 180. The latent vector size of 8 × 1 was

chosen as there is no significant gain in the average PSNR

if it is increased further. The semantic encoder training is

carried out on a GOP basis, with all frames of the GOP used

as training data. For each GOP, the AE is initialized using a

Glorot uniform initializer [46] with a preset seed value, which

will ensure that the ground state (initial random weights) of

the AE will remain the same for each GOP, which is critical

to the success of the remote decoder training required to

implement the semantic decoder (Section III-B).

The number of training epochs is set at 250 with the

intention of overfitting the model to a given GOP, as the

differences between frames are minimal for a given GOP, and

any scene changes are identified by scene transition detection

(Section III-E) to trigger a new GOP.

The model is optimized by varying the structure and depth

of the layers to achieve an optimum configuration of one

hidden layer of dimensions 1024 × 1 each for the encoder

layers and the decoder layers of the AE. Once the AE

training is completed for each GOP, each frame is again

fed to the semantic encoder, and the resulting latent vectors

are used as the semantics of each frame, which is decoded

by the semantic decoder (frame predictor) as described in

Section III-B.
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FIGURE 2. Proposed semantic communication and VVC based hybrid video codec.

FIGURE 3. AE based architecture used in the semantic encoder and decoder.

B. SEMANTIC DECODER (FRAME PREDICTOR)

The semantic decoder in the proposed system plays a similar

role to a frame predictor on a conventional SSP based

video coding system. It is implemented using the same

structure as the AE decoder layers in the semantic encoder

(Section III-A) shown in Fig. 3. However, rather than training

the semantic decoder together with the semantic encoder

and then moving the AE decoder layers to the receiver,

which is the approach taken by studies of other DNN

based video transmission systems that have been proposed,

as discussed in Sections II-B and II-C respectively. The

proposed system uses a novel approach to remotely train the

decoder using the context provided by the context encoder/

decoder (Section III-C). This enables the decoder at the

receiver to be trained for each GOP, as done in the semantic

decoder layers at the transmitter, without a significant

increase of the computational complexity of the system,while

avoiding the requirement of transmitting a large amount of

metadata which would be required if the hyperparameters of

the AE decoder layers were to be transmitted between the

transmitter and receiver for each GOP or scene change.

While the semantic encoder is trained by comparing the

input frame and the output frame of the AE, the remote

semantic decoder only has access to the key frames decoded

through the context decoder and the latent vectors received

from the semantic encoder. Therefore, the semantic decoder

is trained to optimize the MSE between the key frame and the

reconstructed frame from each latent vector. Since overfitting
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FIGURE 4. Effect of latent vector dimensions on the average PSNR of the
reconstructed frame.

the model will lead to higher MSE in this scenario, the

training is only carried out for 100 epochs at the semantic

decoder, in contrast to the 250 epochs at the semantic encoder.

The effectiveness of remote training of the AE decoder

layers can be mathematically verified, considering a video

clip with spatial dimensionsW ×H , whereW and H denote

the width and height of the frame in pixels, respectively. The

number of color channels is denoted by C , which will be

equivalent to 3 for the RGB color format, 1.5 for the YUV420

color format, and 1 for the grayscale color format. Therefore,

each frame of the video can be represented by a tensor of

dimensionsW×H×C , and can be flattened to be represented

by a vector x ∈ R
WHC×1.

When the latent vector of the AE is represented by h ∈

R
p×1 where p × 1 is the size of the latent vector and

p ≪ WHC , encoder weight vectors are denoted by Wenc ∈

R
WHC×p, encoder bias vector is denoted by benc ∈ R

WHC×1

and an encoder activation function is f (.) the relationship

between each frame and its latent vector can be represented

by (1).

h = f (Wencx + benc) (1)

The reconstructed output vector from the decoder network,

x̂ ∈ R
WHC×1, has the same dimensionality as the input (x),

and relates to the latent vector (h) through decoder weight

vectors denoted by Wdec ∈ R
WHC×p, an decoder bias vector

denoted by bdec ∈ R
WHC×1 and an activation function

denoted by f (.) as shown in (2).

x̂ = f (Wdech + bdec) (2)

The MSE loss function (L(.)) between the original input

vector and the reconstructed output vector can then be

represented by (3) where xk and x̂k denote the kth elements

of the input and reconstructed output vectors and N = WHC .

L(x, x̂) =
1

N

N∑

i=1

(xki − x̂ki)
2 (3)

Conventionally, the encoder and decoder components of the

AE are trained simultaneously to minimize the common loss

function shown in (3), andwould applywhen there is no effect

of noise on the weights and biases of the decoder component

when compared with the encoder.

A situation where a noisy decoder has deviated weights

and biases can be represented by (4), where y ∈ RWHC×1

represents the reconstructed output, Wdec ∈ RWHC×p

is the weight matrix of the decoder at the receiver and,

bdec ∈ RWHC×1 is the bias vector of the decoder at the

receiver, h ∈ Rp×1 is the latent vector transmitted from the

transmitter.

y = f (Wdech + bdec) (4)

Assuming that the noise between the weights and biases of

the two sides can be approximated to normally distributed

additive white Gaussian noise (AWGN) with zero mean and

the variance between Wdec and Wdec is σw, and the variance

between bdec and bdec is σb, the relationships between each

of these pairs can be represented by (5) and (6).

Wdec = Wdec + N (0, σ 2
w) (5)

bdec = bdec + N (0, σ 2
b ) (6)

A MSE loss function similar to (3) can now be defined

between elements of x and y as shown in (7).

L(x, y) =
1

N

N∑

i=1

(xki − yki)
2 (7)

The accumulated error between x̂ and y, denoted by ϵ, can

then be derived as shown in (8) and (9).

ϵ = y − x̂ (8)

ϵ = f (Wdech + bdec) − f (Wdech + bdec) (9)

When decoder training is performed to minimize the loss

in ϵ, by combining the transmitter side encoder and the

receiver side decoder during training, the two activation

functions will converge as shown in (10) and (11).

lim
ϵ→0

f (Wdech + bdec) − f (Wdech + bdec)

= 0 (10)

∴ f (Wdech + bdec) ≈ f (Wdech + bdec) (11)

This approximation can be further improved by ensuring

that the transmitter AE encoder and decoder layers and the

receiver AE decoder layer are initialized using the Glorot uni-

form initialization (or the Xavier uniform initialization) [46]

with the same seed value used by the semantic encoder.

This ensures that the ground state of both AE networks is

equivalent and will further minimize ϵ derived in (9), leading

to a nearly identical reconstruction of the output frame from

the transmitter AE decoder layers at output from the receiver

AE decoder layers, as shown in Table 1 for a sample of

seven different video sequences of varying SI and TI content

between medium and high.

This can be further verified by considering the visual

reconstructions from an example video with high SI and high
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TABLE 1. Comparison of average PSNR of reconstructed videos at
transmitter and receiver side semantic decoders.

TI content, as shown in Fig. 5. The frames reconstructed

by the transmitter AE decoder layers (Fig. 5a) and by the

remotely trained receiver AE decoder layers (Fig. 5b) are not

visually discernible from each other. This process is a key

innovation of the proposed system and allows it to be adopted

in a range of videos without becoming restricted to a specific

application such as conferencing or surveillance.

FIGURE 5. Frames reconstructed at (a) transmitter AE decoding layers and
(b) receiver remotely trained AE decoding layers for an example video
with high SI and high TI.

The general applicability of remote training of AE decoder

layers is further verified when the effect of the GOP size

on the average PSNR and the average SSIM of the videos

is considered, as shown in Table 2. It demonstrates that

remote training of the AE decoder layers at the receiver is

consistently able to produce outputs which are equivalent to

the AE decoder layers at the transmitter, regardless of the

GOP size used. Therefore, the margin of error between the

predictions made by the semantic decoder at the receiver

using a remotely trained AE is very small and can be

neglected. Furthermore, since a GOP based training approach

is used, propagation of any impact of remote training is not

carried forward beyond a given GOP.

A key factor enabling remote training to be successful is

the precise sharing of the context between the transmitter

and receiver in the form of key frames which is described in

Section III-C.

TABLE 2. Comparison of average rate distortion performance of outputs
of transmitter side (TX) and receiver side (RX) AE for different GOP sizes.

C. CONTEXT ENCODER/DECODER

The context required for semantic encoding and decoding in

the proposed system is shared between the transmitter and the

receiver using the key frames of each GOP. Transmission

of key frames in their raw format is not feasible due

to the excessive bandwidth it will occupy, which offsets

the bandwidth saving achieved by semantic compression.

Therefore, VVC intra coding, which is the state-of-the-art

for compressing video frames, is employed to encode the key

frames.

VVC offers a range of intra coding options with different

quantization parameter (QP) values where lower values

correspond to higher reconstructed frame quality and higher

bit rates, and where higher values correspond to lower

reconstructed frame quality and lower bit rates. However,

unlike in the conventional use of VVC, the key frames of

the proposed system do not need to use very low QP, as the

semantic decoder primarily relies on the latent vector to

reconstruct the frames rather than just on the key frame.

Therefore, the effect of varying QP values used to encode key

frames for high SI/TI and low SI/TI videos was investigated

to identify a suitable QP value that provides a reasonable

trade-off between the quality of the reconstructed frame

and the bitrate required by the key frames. Table 3 shows

the variation of the bitrate required when different QP

values are chosen to encode the key frames with VVC intra

coding, while maintaining the same QP (22) for encoding the

residuals (discussed in Section III-D) for videos with high SI

and high TI content.

TABLE 3. Effect of QP value used for encoding key frames for videos with
high SI/high TI.

Table 4 shows the variation of the bitrate under the same

conditions for videos with low SI and low TI content.

Based on these observations, using a higher QP value of

37 over a lower value such as 22 only leads to a reduction in

rate distortion performance, but provides a significant saving

in the bandwidth required in transmitting the key frames.

Since the proposed system has a residual coding scheme in

place to enable high fidelity reconstructions of the frames at

the receiver, a QP of 37 is selected for the VVC intra coding
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FIGURE 6. Frames from example videos and their corresponding residuals using only semantic and context encoding/decoding. Top row:
original frames (a) Video A: medium complexity, (b) Video B: high complexity, (c) Video C: low complexity. Bottom row: corresponding residuals
after reconstruction in receiver (d) Video A, (e) Video B, (f) Video C.

TABLE 4. Effect of QP value used for encoding key frames for videos with
low SI/low TI.

used to encode key frames such that the bandwidth it occupies

is minimized. Section III-D details the implementation of the

residual encoding and decoding system used in conjunction

with the semantic and context encoding/decoding systems to

improve the fidelity of the output video.

D. RESIDUAL ENCODER/DECODER

The semantic encoder/decoder and the context encoder/

decoder are capable of reconstructing the video at the receiver

with a rate distortion performance that is sufficient for most

machine vision applications, such as object identification

and classification. However, the fidelity of the reconstructed

video has a significant difference, or residual, compared to

the original input video, which becomes a major concern

for human perception. Fig. 6 shows the residuals of a frame

from three example videos with varying levels of complexity,

where Fig. 6b is a high complexity video (high SI and/or TI

content), Fig. 6a is a medium complexity video (medium SI

and medium TI content), and Fig. 6c is a low complexity

video (low SI and low TI content). The residuals from

difference between the original frames and reconstructed

frames of each (Fig. 6d - 6f) are significant, leading

to degradation of quality in human vision applications,

especially when the video complexity is high (Fig. 6e).

To overcome this challenge, the proposed system imple-

ments a residual encoding/decoding mechanism inspired by

residual encoding with VVC. As shown in Fig. 2, a semantic

decoder and a context decoder with the same structure and

configuration as in the receiver are implemented in the

transmitter. The semantic decoder is initialized using the

Glorot initializer and the same seed as the semantic encoder,

and trained using latent vectors and key frames decoded by

the context decoder following the same process described in

Section III-B. This enables the transmitter to reconstruct a

frame nearly identical to that reconstructed at the receiver.

Then the reconstructed frame is subtracted from the original

frame to obtain a residual with each pixel represented as a

signed binary value (9 bits). This is then encoded using VVC

with the configuration set to an input and internal bit depth

of 10 bits to accommodate the sign bit. A VVC decoder is

implemented at the receiver with the same configuration to

extract the residual, which is then added to the reconstructed

frame from the semantic decoder to produce a high fidelity

output.

A key difference between how the residual is encoded in

the proposed system and how it is done in conventional video

coding systems such as VVC is that the proposed system does

not implement any complex motion prediction and motion

compensation algorithms in the transmitter. The temporal

correlation between frames in a GOP is already exploited in

the semantic encoding process, and therefore it only requires

minimal prediction capabilities from VVC when encoding

the residuals.

However, compared to the bitrate required to transmit the

semantics and context of each frame, the bitrate taken up by

the residual is significantly high. Therefore, the GOP size and

QP values used for VVC are optimized tominimize the bitrate

of the encoded residual after analyzing the variation of the

average PSNR and the average SSIM for a range of videos,

as shown in Table 5. The observations do not show that a

significant gain to be achieved by decreasing the GOP size,

VOLUME 12, 2024 79211



P. Samarathunga et al.: Semantic Communication and VVC Based Hybrid Video Coding System

and therefore the highest GOP size of 32, which corresponds

to the lowest bit rate of the encoded residuals, is selected.

TABLE 5. Comparison of residual bitrates, PSNR, and SSIM under
different GOP sizes for residual encoding using VVC.

QP values set residual coding using VVC are not fixed and

are selected from the range between 8 and 37 depending on

the complexity of the video. Given that the latent vector of

each frame is constant in size (8×10 bits) and a considerably

small value for each frame, this provides the flexibility to

adjust the QP dynamically depending on the complexity

of the video. Selection of QP values was done manually

on a subjective basis for the experiment, but a rule-based

configuration can be implemented to select the appropriate

QP values for each video or frame to automate the process.

A key enabler to keep the size of the residuals small is to

limit the GOPs to within a specific scene of the video, which

is implemented using a scene transition detection method as

described in Section III-E.

E. SCENE TRANSITION DETECTION

Scene changes in video can be abrupt or gradual, but

either of them occurring within a GOP will lead to the

input frame to the semantic encoder becoming significantly

different from the context (key frame) used by the semantic

decoder, which will significantly reduce the fidelity of the

semantically decoded frame. Therefore, a scene transition

detection algorithm that can effectively determine abrupt and

gradual scene changes in uncompressed video input can be

applied at the input to the proposed system, as shown in Fig. 2,

using the method described in [47]. Scene transitions are used

to trigger a new GOP, where the key frame will provide valid

context for the semantic encoders, enabling one to keep the

fidelity of the semantically decoded image sufficiently high

and manage the size of the residuals.

The end-to-end system described in Sections III-A to III-E

is implemented and tested using a set of videos with varying

complexity and compared with conventional video coding

systems in terms of rate distortion performance, of which the

process is described in Section III-F.

F. PERFORMANCE EVALUATION

20 video clips of spatial resolution 320 × 180 pixels and

frame rate 20 frames per second (fps), shown in Fig. 7, are

used to demonstrate the performance of the system described

in Sections III-A to III-E. These videos were selected to

represent a range of SI and TI content calculated using [68]

and shown in Fig. 8.

To meaningfully summarize the performance of the

proposed system and the reference systems, the 20 video

clips are classified into three categories based on complexity,

as shown in Fig. 8. Videos 1, 3, 4, 5, 7 and 8, which have

low SI and low TI, are considered to be low complexity

videos for the purpose of analysis. Videos 6, 9, 10, 12, 13,

18 and 20 have medium SI andmedium TI and are considered

medium complexity videos. Videos that have high SI (Videos

14, 15, 16 and 17) or high TI (Videos 2, 11 and 19) are

considered high complexity videos.

The resolution of the video clips selected for testing

was restricted by the limitations of computational resources

available to train the semantic encoder and semantic decoder

in multiple iterations during simulations. However, the

resolution of the test videos does not have a significant impact

on the rate distortion measures (PSNR, SSIM, and VMAF)

used to evaluate the quality of the reconstructed video, since

they are based on the input video. This can be verified by

considering the variation of the observed PSNR for different

spatial resolutions of an example video given in Table 6,

which shows only an insignificant change in the metric when

the spatial resolution is increased. Therefore, this will not

be a limiting factor in scaling up the proposed system for

videos of any spatial resolution. Furthermore, the proposed

system can also be implemented on blocks partitioned from a

high-resolution video using the same principle, which allows

it to be scaled on such a basis as well.

TABLE 6. Effect of Spatial Resolution of Video and Observed PSNR for
Different Video Coding Systems.

The proposed system is benchmarked against the cur-

rently most widely used conventional video coding systems

of the H.26X family: VVC, HEVC, and AVC. VVenC

1.8 codec [69] is used as the implementation of VVC and the

tools available in ffmpeg [70] are used for the implementation

of HEVC and AVC. The parameters used for setting up VVC,

HEVC and AVC reference codecs are given in Table 7. The

QP values used for residual coding of the proposed system are

matched to the QP values used for encoding the test videos

with VVC, HEVC and AVC to provide a comparison over a

range of quality levels.

Performance comparisons of the proposed system and the

three conventional video coding systems are made based on

the PSNR, SSIM and VMAF indices and are quantified by

calculating the BD rates. PSNR is the relationship between

the square of the maximum possible pixel value of an image

or video and the mean squared error of the pixel values and

is the most common index used to measure the quality of

reconstruction of images or videos after they have undergone

lossy compression [71]. SSIM is primarily an objective

measure of the structural consistency of the decoded video
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FIGURE 7. Video Clips used for Experiments: (a) Video 1 [48], (b) Video 2 [49], (c) Video 3 [50], (d) Video 4 [51], (e) Video 5 [52], (f) Video 6 [53], (g) Video
7 [54], (h) Video 8 [55], (i) Video 9 [56], (j) Video 10 [57], (k) Video 11 [58], (l) Video 12 [59],(m) Video 13 [60], (n) Video 14 [61], (o) Video 15 [62], (p) Video
16 [63], (q) Video 17 [64], (r) Video 18 [65], (s) Video 19 [66], (t) Video 20 [67].

FIGURE 8. Distribution of Structural Information (SI) and Temporal
Information (TI) in Test Videos. Categorized as: ◦ - Low Complexity Videos,
△ - Medium Complexity Videos, □ - High Complexity Videos.

clip in the spatial domain, and is used here mainly to compare

performance in spatial dimension [72]. VMAF, which is

an objective measure for both the structural and temporal

consistency of the decoded video clip on multiple factors,

is used here to mainly compare performance in the temporal

dimension [73]. The BD rate [74] is an objective measure that

compares the rate distortion performance of a test systemwith

a reference system, with a negative BD rate corresponding

to the better performance of the test system compared to

TABLE 7. Specifications of VVC, HEVC and AVC used as benchmarks.

the reference system, and a positive BD rate corresponding

to a worse performance of the test system compared to the

reference system.

The analysis of these metrics with relation to the proposed

system and VVC, HEVC, and AVC, and a discussion of their

implications are presented in Section IV.

IV. RESULTS AND DISCUSSION

The rate distortion performance of the proposed system is

evaluated against VVC, HEVC and AVC for the 20 test video

clips, as explained in Section III. The average rate distortion

rates (PSNR, SSIM and VMAF) and the corresponding

average BD rates are analyzed by grouping the test videos into

three groups: low complexity videos, medium complexity

videos and high complexity videos based on their SI and

TI content. The rate distortion performance of the proposed
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system and the three benchmark systems for each individual

video for different GOP sizes are shown in Appendix.

A key characteristic of the proposed system is that the

latent vector for a frame, regardless of the QP of residual

coding and key frames, is constant and small at 2.5 kbit/

s since it is capable of effectively extracting the semantics

of the frame from a dimensions of 320×180×1.5 to 8×1.

Therefore, the majority of the bandwidth consumed by the

proposed system consists of the VVC encoded residuals,

which are on the order of hundreds of kbit/s.

When GOP size 8 is considered (Fig. 9), rate distortion

performance measured by the averages of PSNR, SSIM and

VMAF of the proposed system is on par with VVC for low

complexity, medium complexity, and high complexity videos.

It also shows a significant coding gain over HEVC and AVC,

especially for QP values of 27 and QP 22 when the GOP size

is set to 8. These improvements can be quantified using BD

rates, as shown in Figs. 9j, 9k, and 9l. The proposed system

is capable of outperforming VVC in terms of PSNR, SSIM,

and VMAF under test conditions when the video complexity

is low or medium when the GOP size is 8. However,

VVC has marginally better rate distortion performance in

PSNR and SSIM when video complexity is high, although

it falls behind the proposed system in terms of VMAF.

These results demonstrate that the proposed system is capable

of significantly improving the rate distortion performance

compared to HEVC and AVC, while matching that of VVC,

when smaller GOP sizes, such as 8, are considered. Table 8

summarizes the BD rates for each rate distortion metric with

reference to AVC, HEVC, and VVC.

TABLE 8. Average BD Rates for Proposed System with Reference to AVC,
HEVC and VVC when GOP Size = 8.

When GOP size 16 is considered (Fig. 10), similar to GOP

size 8, the rate distortion performance of the proposed system

in terms of PSNR, SSIM and VMAF for low, medium, and

high complexity videos demonstrate clear improvements over

HEVC and AVC. The improvements achieved compared to

VVC are generally on par when considering PSNR and SSIM

metrics. However, VVC slightly outperforms the proposed

system in terms of average VMAF for low and medium

complexity videos when GOP size of 16 is considered.

Comparison of the performance of rate distortion on PSNR,

SSIM, and VMAF is clearly observable with the BD rates

shown in Figs. 10j, 10k, and 10l. Table 9 summarizes the BD

rates for each rate distortion metric with reference to AVC,

HEVC, and VVC.

TABLE 9. Average BD Rates for Proposed System with Reference to AVC,
HEVC and VVC when GOP Size = 16.

TABLE 10. Average BD Rates for Proposed System with Reference to AVC,
HEVC and VVC when GOP Size = 32.

The proposed system again demonstrates a rate distortion

performance comparable to that of VVC and significantly

better than that of HEVC and AVC when considering a

GOP size of 32 (Fig. 11). It has significantly better rate

distortion performance compared to HEVC and VVC across

all three categories of video complexity for a GOP size of 32.

Compared to VVC, the proposed system demonstrates better

PSNR and SSIM performance when video complexity is low

or high, but VVC outperforms it when video complexity is

medium. When VMAF is considered, the proposed system

outperforms VVC when the complexity of the video is

medium or high, but VVC shows better performance when

the complexity of the video is low. BD rates, as shown in

Figs. 11j, 11k, and 11l, confirm these observations for a GOP

size 32. Table 10 summarizes the BD rates for each rate

distortion metric with reference to AVC, HEVC, and VVC.

Overall, the proposed system has slightly lower rate

distortion performance compared to VVC, especially when

SSIM and VMAF are considered, when the GOP sizes

are 16 and 32, and when the video complexity is medium

(corresponding to medium SI and medium TI). When the

video complexity is high (corresponding to high SI or high

TI) or low (corresponding to low SI and low TI), the proposed

system outperforms VVC under the given test conditions.

The reason for VVC outperforming the proposed system

for videos with medium complexity is that while semantic

based frame prediction is capable of capturing inter frame
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FIGURE 9. Performance Comparison of Proposed System with VVC, HEVC, and AVC measured by PSNR, SSIM and VMAF and corresponding BD rates
when GOP size is 8. First Row (a, b, c): Averages for Low Complexity Videos. Second Row (d, e, f): Averages for Medium Complexity Videos. Third
Row (g, h, i): Averages for High Complexity Videos. Fourth row: (j) PSNR BD rate, (k) SSIM BD rate, (l) VMAF BD rate.

information in the temporal domain through the GOP wise

training process, it lacks the complexity and capabilities in

VVC,which has evolved over decades, to perform predictions

using motion estimation and motion compensation. However,

when the complexity of the video is high, the nonlinearity

of the transformation implemented in the proposed system

gives the advantage of requiring a lower bit rate to transmit

the video compared to VVC.

VVC predicts frames based on motion vectors of the

different blocks that are used to derive predicted frames

(P frames) and bidirectional frames (B frames), which have

evolved from the techniques used in AVC and HEVC [75].

Calculation of these motion vectors and prediction and

encoding of motion based on a range of cost functions

contribute significantly to computational complexity in VVC.

However, since most of the methods that implement motion

estimation, such as those discussed in [76], are linear

transformations optimized for medium complexity videos,

which are the most common types, it invariably leads to

an increase of the bit rate required when encountered with
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FIGURE 10. Performance Comparison of Proposed System with VVC, HEVC, and AVC measured by PSNR, SSIM and VMAF and corresponding BD
rates when GOP size is 16. First Row (a, b, c): Averages for Low Complexity Videos. Second Row (d, e, f): Averages for Medium Complexity Videos.
Third Row (g, h, i): Averages for High Complexity Videos. Fourth row: (j) PSNR BD rate, (k) SSIM BD rate, (l) VMAF BD rate.

a video with high TI and high SI. However, the nonlinear

nature of the transformation implemented by the semantic

encoding process keeps the bitrate of the latent vectors

constant regardless of the complexity of the frame. The

trade-off is with the size of the residual, which increases in

size compared to VVC when the video complexity increases

from low to medium. But when the video complexity

becomes high, the non linear encoding of the semantic

encoder is able to better predict the frames, leading to

lesser residuals which improve the overall rate distortion

performance.

In terms of encoder complexity, the main burden of

the proposed system is the training process of the AE

encoder layers and the AE decoder layers, which must be

carried out over multiple epochs to achieve convergence.

The AEs used are optimized by minimizing the number

of layers and implementing uniform initialization across

each to ensure that each AE is initialized with the same
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FIGURE 11. Performance Comparison of Proposed System with VVC, HEVC, and AVC measured by PSNR, SSIM and VMAF and corresponding BD
rates when GOP size is 32. First Row (a, b, c): Averages for Low Complexity Videos. Second Row (d, e, f): Averages for Medium Complexity Videos.
Third Row (g, h, i): Averages for High Complexity Videos. Fourth row: (j) PSNR BD rate, (k) SSIM BD rate, (l) VMAF BD rate.

weights, minimizing the MSE at the output. While the

fundamentally different architectures used by the proposed

system and conventional video coding systems make a direct

comparison of complexity meaningless, the computational

complexity of the proposed system can be analyzed in terms

of floating point operations (FLOPs), which is an estimate of

the computational cost, and multiply-accumulate operations

(MACs), which is an estimate of the memory usage. For

videos with spatial resolution 320 × 180 and YUV420 pixel

format (corresponding to 1.5 color channels) used to test

the proposed system, FLOPs and MACs are calculated with

reference to the AE architecture shown in Fig. 3.

In the semantic encoder, the first flatten layer does not

involve any computations that contribute to FLOPs and

just converts the tensor with dimensions 320 × 180 × 1.5

to a vector with dimensions 86, 400 × 1. The first dense

layer fully connects the input layer to a hidden layer of

dimensions 1024 × 1 corresponding to 176,947,200 FLOPs,

which subsequently fully connects to the bottleneck layer of

dimensions 8 × 1 corresponding to 16,384 FLOPs. The AE
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decoding layers follow a similar setup in reverse, and the

reshape layer at the end does not contribute to any FLOPs.

Therefore, the total FLOPs for the AE based encoder and

decoder approximate 353,927,168. The same AE architecture

(shown in Fig. 3) yields approximately 176,963,584 MAC

operations.

Although an identical metric is not available to objec-

tively compare the computational complexity of VVC (as

implemented in VVenC), a subjective comparison shows

that VVenC, as used in the proposed system, is required

to perform considerably less motion estimation due to

the temporal redundancies already being captured in the

semantic encoding process. Since motion estimation is the

most resource intensive module in VVC [77], the ability of

the proposed system to significantly minimize the motion

estimation required should contribute to significantly less

computational complexity taken up for residual coding in the

proposed system.

A rough estimate of the possible reduction in computa-

tional complexity with the proposed system can be made

considering the time taken to encode a video using VVenC

with and without the use of the semantic encoder. On the

same hardware, the average time taken to encode the residual

of the semantic encoder with VVenC is 0.765 s/frame, while

the time taken to encode the same video with VVenC without

using the semantic encoder is 2.026 s/frame. Therefore, it can

be assumed that the semantic encoding process enables a

significant reduction in computational complexity, although

it is necessary to train the semantic encoder/decoder for each

GOP and scene.

The proposed system is the first attempt to propose a

semantic communication based hybrid video codec, where

the semantic decoder is remotely trained using latent

vectors, key frames, and residual information that makes it

unnecessary to transmit the trained decoder to the receiver

or implement a feedback channel from the receiver to the

transmitter [78] to allow the use of a trained decoder in

the receiver. The dynamic retraining of the AE based neural

network for each GOP also enables the proposed system

to transmit video clips of increased complexity involving

multiple scene changes, which will not be possible with a

static trained neural network based decoder. However, there

are still multiple open research areas that must be covered

to realize the proposed system, which can consistently

outperform conventional video coding systems.

The proposed system employs a semantic decoder that

attempts to reconstruct predicted frames based on a decoder

network trained with only the GOP key frame. Although

this approach reduces the amount of context information

that needs to be exchanged between the transmitter and

receiver in the form of key frames, it also increases the

entropy of the residuals that are created between the predicted

and original frames. This leads to more bandwidth being

required to encode the residual, which diminishes the coding

gain that can be achieved from using a semantic encoder

to encode the predicted frames instead of a conventional

frame encoder. Therefore, further improvements in frame

prediction, as well as scene detection, can be incorporated

into the proposed system to improve the prediction accuracy,

and thereby reduce the entropy of the residuals.

Another approach to improve the frame prediction capabil-

ity using the semantic decoder is to implement hierarchical

frame prediction, where rather than sequentially reconstruct-

ing the predicted frames using the key frames, a hierarchical

approach (e.g. for a GOP of 8, use frames 1 and 9 to predict

frame 5, frame 1 and frame 5 to predict frame 3, frame 1 and

frame 3 to predict frame 2 etc.). Adopting such a hierarchical

prediction approach enables the predicted frames to be better

approximations of the original and leads to decreasing the

entropy of the residuals from the predicted frames.

In terms of complexity, the proposed system has the

additional task of training neural networks compared to

conventional video coding systems, which will add com-

putational cost, but will also provide the benefits of a

lower bitrate and a more resilient base layer to combat

channel noise. This complexity can be traded off if the

proposed video coding system is able to encode the residuals,

avoiding the use of VVC encoding, as discussed above.

Furthermore, future research on preprocessing, optimizing

the autoencoder design, and optimizing the training strategy

making use of inherent redundancies and correlations present

in video can drastically reduce the computational cost, while

adapting optimized hardware for neural network deploy-

ment can significantly lower the latency of the proposed

system.

Another key area for future research, especially for

applications intended for human viewing, is the imple-

mentation of an effective residual coding mechanism to

transmit the residuals of the image more efficiently between

the transmitter and the receiver. Currently, it is based on

VVC, which is not optimized for residuals resulting from

semantic encoding and decoding. Resolving this problem

with an innovative approachwill not only enable the proposed

video coding system to drastically reduce the bandwidth it

needs to operate effectively but can also provide a means

to improve the coding performance of conventional video

coding systems as well, since residual coding uses up most

of the data rate required for both systems.

In summary, the proposed system has shown that it

can perform better than VVC, HEVC, and AVC for most

video coding scenarios involving low and high complexity

videos under test conditions, and it can closely follow the

performance of VVC rate distortion for medium complexity

videos. Thus, the concept, with the refinements discussed,

has enormous potential to be adapted to a wide range of

next-generation video coding paradigms.

V. CONCLUSION

We propose a novel hybrid video codec based on semantic

communication and VVC, which incorporates concepts of

semantic communications to create a latent vector of video

frames augmented by residual coding capabilities of VVC,
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FIGURE 12. Rate distortion performance (PSNR, SSIM and VMAF) for each test video clip when GOP size is 8.

which can achieve significant coding gains over VVC, HEVC

and AVC for videos with low complexity (low SI and low TI)

and high complexity (high SI or high TI). It also introduces

a novel approach to using DNN based video encoders in

real-world scenarios, where the receiver-side decoder can

be trained remotely in coordination with the transmitter-side
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FIGURE 13. Rate distortion performance (PSNR, SSIM and VMAF) for each test video clip when GOP size is 16.

encoder, removing the burden of having to compress and

transmit the DNN parameters to the receiver, which will

negate any coding gain and noise resilience obtained by using

semantic communications concepts.

When compared to conventional video codecs, VVC,

HEVC, and AVC, the proposed system consistently out-

performs HEVC and AVC with significant coding gains

quantified by BD rates in terms of PSNR, SSIM, and VMAF
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FIGURE 14. Rate distortion performance (PSNR, SSIM and VMAF) for each test video clip when GOP size is 32.

for all videos tested. It also outperforms VVC when the

video complexity is low or high, while falling slightly behind

when the video complexity is medium. The key challenges

identified in moving forward with the proposed system is

optimizing the entropy of the residual through better frame

prediction and optimizing the residual coding mechanism

to make it optimized for semantic communications and

independent of VVC. Overcoming these challenges will
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allow the proposed system to consistently outperform VVC,

the state-of-the-art conventional video coding system, in a

wide range of video applications.

APPENDIX

INDIVIDUAL RATE DISTORTION PERFORMANCE FOR TEST

VIDEOS FOR GOP SIZE 8, 16 AND 32

The individual rate distortion performance for each test video

under GOP sizes of 8, 16 and 32 are shown in Fig. 12,

Fig. 13 and Fig. 14 respectively. For each video clip, the

performances of PSNR, SSIM and VMAF of the proposed

system (orange with the symbol ◦) as well as those of VVC

(blue with the symbol ♢), HEVC (blue with the symbol □)

and AVC (blue with the symbol △) are shown. Individual

video clips are identified by the prefix V and two digits to

represent the video number, as referred to in Fig. 7.

The figures in the main text show a summarized version

of these results by presenting the averages of PSNR, SSIM

and VMAF when the 20 test videos are grouped in terms of

complexity.

ACKNOWLEDGMENT

The authors would like to thank the editors and the

anonymous reviewers from IEEE ACCESS for their constructive

and insightful comments and suggestions which helped in

substantially improving the presentation of this article.

REFERENCES

[1] Ericsson. (2023). Video Traffic Update. Stockholm. [Online].

Available: https://www.ericsson.com/en/reports-and-papers/mobility-

report/dataforecasts/traffic-by-application

[2] Vcodex. (2010). Historical Timeline of Video Coding Standards and

Formats. Accessed: Aug. 2, 2023. [Online]. Available: https://www.

vcodex.com/historical-timeline-of-video-coding-standards-and-formats/

[3] D. García-Lucas, G. Cebrián-Márquez, and P. Cuenca, ‘‘Rate-

distortion/complexity analysis of HEVC, VVC and AV1 video codecs,’’

Multimedia Tools Appl., vol. 79, nos. 39–40, pp. 29621–29638, Oct. 2020.

[4] A. Mercat, A. Mäkinen, J. Sainio, A. Lemmetti, M. Viitanen, and J. Vanne,

‘‘Comparative rate-distortion-complexity analysis of VVC and HEVC

video codecs,’’ IEEE Access, vol. 9, pp. 67813–67828, 2021.

[5] D. Liu, Y. Li, J. Lin, H. Li, and F. Wu, ‘‘Deep learning-based video coding:

A review and a case study,’’ ACM Comput. Surv., vol. 53, no. 1, pp. 1–35,

Feb. 2020, doi: 10.1145/3368405.

[6] C. E. Shannon and W. Weaver, The Mathematical Theory of Communica-

tion. Urbana, IL, USA: Univ. Illinois Press, 1949.

[7] Z. Qin, X. Tao, J. Lu, W. Tong, and G. Ye Li, ‘‘Semantic communications:

Principles and challenges,’’ 2021, arXiv:2201.01389.

[8] G. E. Hinton and R. R. Salakhutdinov, ‘‘Reducing the dimensionality of

data with neural networks,’’ Science, vol. 313, no. 5786, pp. 504–507,

Jul. 2006, doi: 10.1126/science.1127647.

[9] A. A. Alatan, L. Onural, M. Wollborn, R. Mech, E. Tuncel, and T. Sikora,

‘‘Image sequence analysis for emerging interactive multimedia services—

The European COST 211 framework,’’ IEEE Trans. Circuits Syst. Video

Technol., vol. 8, no. 7, pp. 802–813, Nov. 1998.

[10] L. Hanzo, P. Cherriman, and J. Streit, Video Compression and Com-

munications: From Basics to H.261, H.263, H.264, MPEG4 for DVB

and HSDPA-Style Adaptive Turbo-Transceivers. Chichester, U.K.: Wiley,

2007.

[11] B. Bross, K. Andersson, M. Bläser, V. Drugeon, S.-H. Kim, J. Lainema,

J. Li, S. Liu, J.-R. Ohm, G. J. Sullivan, and R. Yu, ‘‘General video

coding technology in responses to the joint call for proposals on video

compression with capability beyond HEVC,’’ IEEE Trans. Circuits Syst.

Video Technol., vol. 30, no. 5, pp. 1226–1240, May 2020.

[12] B. Bross, J. Chen, J.-R. Ohm, G. J. Sullivan, and Y.-K. Wang,

‘‘Developments in international video coding standardization after AVC,

with an overview of versatile video coding (VVC),’’ Proc. IEEE, vol. 109,

no. 9, pp. 1463–1493, Sep. 2021.

[13] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, ‘‘Overview of the

high efficiency video coding (HEVC) standard,’’ IEEE Trans. Circuits Syst.

Video Technol., vol. 22, no. 12, pp. 1649–1668, Dec. 2012.

[14] M. T. Pourazad, C. Doutre, M. Azimi, and P. Nasiopoulos, ‘‘HEVC:

The new gold standard for video compression: How does HEVC compare

with H.264/AVC?’’ IEEEConsum. Electron. Mag., vol. 1, no. 3, pp. 36–46,

Jul. 2012.

[15] L. Mou, X. Chen, T. Huang, and W. Gao, ‘‘Overview of IEEE 1857.3:

Systems of advanced audio and video coding,’’ in Proc. IEEE Int. Conf.

Multimedia Expo Workshops (ICMEW), Jul. 2014, pp. 1–4.

[16] P. K. Aeluri, V. Bojan, S. Richie, andA.Weeks, ‘‘Objective quality analysis

of MPEG-1, MPEG-2 & windows media video,’’ in Proc. 6th IEEE

Southwest Symp. Image Anal. Interpretation, Sep. 2004, pp. 221–225.

[17] Xiph.org Foundation. (2008). Theora Video Compression. Accessed:

Jul. 19, 2023. [Online]. Available: https://www.theora.org

[18] J. Bankoski, P. Wilkins, and Y. Xu, ‘‘Technical overview of VP8, an open

source video codec for the web,’’ in Proc. IEEE Int. Conf. Multimedia

Expo, Jul. 2011, pp. 1–6.

[19] D. Mukherjee, J. Han, J. Bankoski, R. Bultje, A. Grange, J. Koleszar,

P. Wilkins, and Y. Xu, ‘‘A technical overview of VP9—The latest open-

source video codec,’’ SMPTE Motion Imag. J., vol. 124, no. 1, pp. 44–54,

Jan. 2015.

[20] Alliance for Open Media. (2023). Accessed: Aug. 2, 2023. [Online].

Available: https://aomedia.org/av1/

[21] G. J. Sullivan and T.Wiegand, ‘‘Video compression—From concepts to the

H.264/AVC standard,’’ Proc. IEEE, vol. 93, no. 1, pp. 18–31, Jan. 2005.

[22] S. Ma, X. Zhang, C. Jia, Z. Zhao, S. Wang, and S.Wang, ‘‘Image and video

compression with neural networks: A review,’’ IEEE Trans. Circuits Syst.

Video Technol., vol. 30, no. 6, pp. 1683–1698, Jun. 2020.

[23] G. Lu, W. Ouyang, D. Xu, X. Zhang, C. Cai, and Z. Gao, ‘‘DVC: An end-

to-end deep video compression framework,’’ in Proc. IEEE/CVF Conf.

Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 10998–11007.

[24] D. Alexandre, H.-M. Hang, W.-H. Peng, and M. Domanski, ‘‘Deep video

compression for interframe coding,’’ in Proc. IEEE Int. Conf. Image

Process. (ICIP), Sep. 2021, pp. 2124–2128.

[25] A. Mercat, M. Viitanen, and J. Vanne, ‘‘Uvg dataset: 50/120fps 4k

sequences for video codec analysis and development,’’ in Proc. 11th ACM

Multimedia Syst. Conf. New York, NY, USA: Association for Computing

Machinery, 2020, pp. 297–302, doi: 10.1145/3339825.3394937.

[26] A. Golinski, R. Pourreza, Y. Yang, G. Sautiere, and T. S. Cohen, ‘‘Feedback

recurrent autoencoder for video compression,’’ in Proc. Asian Conf.

Comput. Vis., 2020, pp. 1–17.

[27] A. Habibian, T. V. Rozendaal, J. Tomczak, and T. Cohen, ‘‘Video

compression with rate-distortion autoencoders,’’ in Proc. IEEE/CVF Int.

Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 7033–7042.

[28] N. Sigger, N. Al-Jawed, and T. Nguyen, ‘‘Spatial-temporal autoencoder

with attention network for video compression,’’ in Proc. 17th Int. Joint

Conf. Comput. Vis., Imag. Comput. Graph. Theory Appl. Comput. Vis.

Theory Appl. (VISAPP), vol. 4. Setúbal, Portugal: SCITEPRESS Digital

Library, Feb. 2022, pp. 364–371.

[29] S. Sangeeta, P. Gulia, and N. S. Gill, ‘‘Flow incorporated neural network

based lightweight video compression architecture,’’ Indonesian J. Electr.

Eng. Comput. Sci., vol. 26, no. 2, pp. 939–946, May 2022.

[30] S. Wang, Y. Zhao, H. Gao, M. Ye, and S. Li, ‘‘End-to-end video

compression for surveillance and conference videos,’’ Multimedia Tools

Appl., vol. 81, no. 29, pp. 42713–42730, Dec. 2022.

[31] W. Weaver, ‘‘The mathematics of communication,’’ Sci. American,

vol. 181, no. 1, pp. 11–15, 1949.

[32] G. Shi, D. Gao, X. Song, J. Chai, M. Yang, X. Xie, L. Li, and X. Li, ‘‘A new

communication paradigm: From bit accuracy to semantic fidelity,’’ 2021,

arXiv:2101.12649.

[33] G. Shi, Y. Xiao, Y. Li, and X. Xie, ‘‘From semantic communication to

semantic-aware networking: Model, architecture, and open problems,’’

IEEE Commun. Mag., vol. 59, no. 8, pp. 44–50, Aug. 2021.

[34] H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, ‘‘Deep learning enabled

semantic communication systems,’’ IEEE Trans. Signal Process., vol. 69,

pp. 2663–2675, 2021.

[35] A. Green, ‘‘The hard problem of semantic communication,’’ Philosophia,

vol. 50, no. 3, pp. 1117–1130, Jul. 2022.

[36] A. Li, X. Wei, D. Wu, and L. Zhou, ‘‘Cross-modal semantic communica-

tions,’’ IEEE Wireless Commun., vol. 29, no. 6, pp. 144–151, Dec. 2022.

[37] H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, ‘‘Deep learning based semantic

communications: An initial investigation,’’ in Proc. GLOBECOM-IEEE

Global Commun. Conf., Dec. 2020, pp. 1–6.

79222 VOLUME 12, 2024



P. Samarathunga et al.: Semantic Communication and VVC Based Hybrid Video Coding System

[38] X. Luo, H.-H. Chen, and Q. Guo, ‘‘Semantic communications: Overview,

open issues, and future research directions,’’ IEEE Wireless Commun.,

vol. 29, no. 1, pp. 210–219, Feb. 2022.

[39] Y. Zhang, H. Zhao, J. Wei, J. Zhang, M. F. Flanagan, and J. Xiong,

‘‘Context-based semantic communication via dynamic programming,’’

IEEE Trans. Cognit. Commun. Netw., vol. 8, no. 3, pp. 1453–1467,

Sep. 2022.

[40] M. Zhang, Y. Li, Z. Zhang, G. Zhu, and C. Zhong, ‘‘Wireless image

transmission with semantic and security awareness,’’ IEEE Wireless

Commun. Lett., vol. 12, no. 8, pp. 1389–1393, May 2023.

[41] A. Li, X. Liu, G.Wang, and P. Zhang, ‘‘Domain knowledge driven semantic

communication for image transmission over wireless channels,’’ IEEE

Wireless Commun. Lett., vol. 12, no. 1, pp. 55–59, Jan. 2023.

[42] E. Erdemir, T.-Y. Tung, P. L. Dragotti, and D. Gündüz, ‘‘Generative joint

source-channel coding for semantic image transmission,’’ IEEE J. Sel.

Areas Commun., vol. 41, no. 8, pp. 2645–2657, Jun. 2023.

[43] M. U. Lokumarambage, V. S. S. Gowrisetty, H. Rezaei, T. Sivalingam,

N. Rajatheva, and A. Fernando, ‘‘Wireless end-to-end image transmis-

sion system using semantic communications,’’ IEEE Access, vol. 11,

pp. 37149–37163, 2023.

[44] P. Jiang, C.-K. Wen, S. Jin, and G. Y. Li, ‘‘Wireless semantic communica-

tions for video conferencing,’’ IEEE J. Sel. Areas Commun., vol. 41, no. 1,

pp. 230–244, Jan. 2023.

[45] S. Wang, J. Dai, Z. Liang, K. Niu, Z. Si, C. Dong, X. Qin, and

P. Zhang, ‘‘Wireless deep video semantic transmission,’’ IEEE J. Sel. Areas

Commun., vol. 41, no. 1, pp. 214–229, Jan. 2023.

[46] X. Glorot and Y. Bengio, ‘‘Understanding the difficulty of training

deep feedforward neural networks,’’ in Proc. 13th Int. Conf. Artif.

Intell. Statist., vol. 9, Y. W. Teh and M. Titterington, Eds., Sardinia,

Italy, 2010, pp. 249–256. [Online]. Available: https://proceedings.mlr.

press/v9/glorot10a.html

[47] W.A. C. Fernando, C. N. Canagarajah, andD. R. Bull, ‘‘A unified approach

to scene change detection in uncompressed and compressed video,’’ IEEE

Trans. Consum. Electron., vol. 46, no. 3, pp. 769–779, Jun. 2000.

[48] P. Midtrack. People Enjoying the Day in a Beach. Accessed: Feb. 12, 2024.

[Online]. Available: https://www.pexels.com/video/people-enjoying-the-

day-in-a-beach-3150419/

[49] T. Miroshnichenko. People Playing Soccer. Accessed: Feb. 12, 2024.

[Online]. Available: https://www.pexels.com/video/people-playing-

soccer-6077718/

[50] C-Couple. A Bowl of Avocados and Vegetables. Accessed: Feb. 12, 2024.

[Online]. Available: https://www.pexels.com/video/a-bowl-of-avocados-

and-vegetables-7656166/

[51] Pixabay. Blue Sky Video. Accessed: Feb. 12, 2024. [Online]. Available:

https://www.pexels.com/video/blue-sky-video-855005/

[52] T. Elliot. A Couple Walking Towards the Launching Area of the Hot

Air Balloons Festival. Accessed: Feb. 12, 2024. [Online]. Available:

https://www.pexels.com/video/a-couple-walking-towards-the-launching-

area-of-the-hot-air-balloons-festival-3064025/

[53] D. C. Paduret. Culturing a Chamomile Flower Plant. Accessed: Feb. 12,

2024. [Online]. Available: https://www.pexels.com/video/culturing-a-

chamomile-flower-plant-3011973/

[54] S. Garenko. A Girl Running Across a Bridge. Accessed: Feb. 12, 2024.

[Online]. Available: https://www.pexels.com/video/a-girl-running-across-

a-bridge-19805236/

[55] V. Singh. Rangdum Village in Zanskar Valley. Accessed: Feb. 12, 2024.

[Online]. Available: https://www.pexels.com/video/rangdum-village-in-

zanskar-valley-19022224/

[56] M. Kilinc. Nemrut - Bitlis. Accessed: Feb. 12, 2024. [Online]. Available:

https://www.pexels.com/video/nemrut-bitlis-18856748/

[57] M. T. Kirkgoz. Cold Snow Sea Dawn. Accessed: Feb. 12, 2024.

[Online]. Available: https://www.pexels.com/video/cold-snow-sea-dawn-

18051870/

[58] Old Town Cross. Xiph.org. Accessed: Apr. 2, 2024. [Online]. Available:

https://media.xiph.org/video/derf/

[59] Controlled Burn. Xiph.org. Accessed: Apr. 2, 2024. [Online]. Available:

https://media.xiph.org/video/derf/

[60] Ducks Take Off. Xiph.org. Accessed: Apr. 2, 2024. [Online]. Available:

https://media.xiph.org/video/derf/

[61] Four People. Xiph.org. Accessed: Apr. 2, 2024. [Online]. Available:

https://media.xiph.org/video/derf/

[62] Galleon. Xiph.org. Accessed: Apr. 2, 2024. [Online]. Available:

https://media.xiph.org/video/derf/

[63] L. Photography. A Wooden Bridge Built Above Water. Accessed:

Apr. 2, 2024. [Online]. Available: https://www.pexels.com/video/wood-

sea-landscape-nature-3971351/

[64] C. Studio. A Person Writing on the Blueprint. Accessed: Apr. 2, 2024.

[Online]. Available: https://www.pexels.com/video/a-person-writing-on-

the-blueprint-7484777/

[65] P. Whelen. Man Walking on Road Among Pine Trees. Accessed: Apr. 2,

2024. [Online]. Available: https://www.pexels.com/video/man-walking-

on-road-among-pine-trees-5738706/

[66] P. Whelen. A Person Doing Graffiti Art By Using a Spray Paint. Accessed:

Apr. 2, 2024. [Online]. Available: https://www.pexels.com/video/a-person-

doing-graffiti-art-by-using-a-spray-paint-5621707/

[67] A. Podrez. A Young Man Executing a Kick Flip Skateboard Trick.

Accessed: Apr. 2, 2024. [Online]. Available: https://www.pexels.com/

video/a-young-man-executing-a-kick-flip-skateboard-trick-4832083/

[68] N. Barman, N. Khan, andM. G. Martini, ‘‘Analysis of spatial and temporal

information variation for 10-bit and 8-Bit video sequences,’’ in Proc. IEEE

24th Int. Workshop Comput. Aided Model. Design Commun. Links Netw.

(CAMAD), Sep. 2019, pp. 1–6.

[69] A. Wieckowski, J. Brandenburg, T. Hinz, C. Bartnik, V. George,

G. Hege, C. Helmrich, A. Henkel, C. Lehmann, C. Stoffers, I. Zupancic,

B. Bross, and D. Marpe, ‘‘VVenC: An open and optimized VVC encoder

implementation,’’ in Proc. IEEE Int. Conf. Multimedia Expo Workshops

(ICMEW), Jul. 2021, pp. 1–2.

[70] S. Tomar, ‘‘Converting video formats with FFmpeg,’’ Linux J., vol. 2006,

no. 146, p. 10, 2006.

[71] Q. Huynh-Thu and M. Ghanbari, ‘‘The accuracy of PSNR in predicting

video quality for different video scenes and frame rates,’’ Telecommun.

Syst., vol. 49, no. 1, pp. 35–48, Jan. 2012.

[72] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality

assessment: From error visibility to structural similarity,’’ IEEE Trans.

Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[73] Z. Li, A. Aaron, I. Katsavounidis, A. Moorthy, and M. Mahohara.

(Apr. 2017). Toward a Practical Perceptual Video Quality Metric.

Accessed: Feb. 12, 2024. [Online]. Available: https://netflixtechblog.com/

toward-a-practical-perceptual-video-quality-metric-653f208b9652

[74] G. Bjontegaard, Calculation of Average Psnr Differences Between

Rd-curves, document VCG-M33, 2001. [Online]. Available:

https://www.itu.int/wftp3/av-arch/video-site/0104_Aus/VCEG-M33.doc

[75] S. Acharjee, S. Chakraborty, W. B. A. Karaa, A. T. Azar, and N. Dey,

‘‘Performance evaluation of different cost functions in motion vector

estimation,’’ Int. J. Service Sci., Manag., Eng., Technol., vol. 5, no. 1,

pp. 45–65, Jan. 2014.

[76] S. Acharjee, D. Biswas, N. Dey, P. Maji, and S. S. Chaudhuri, ‘‘An efficient

motion estimation algorithm using division mechanism of low and high

motion zone,’’ in Proc. Int. Mutli-Conference Autom., Comput., Commun.,

Control Compressed Sens. (iMacs), Mar. 2013, pp. 169–172.

[77] W. Ahmad, H. Mahdavi, and I. Hamzaoglu, ‘‘An efficient versatile video

codingmotion estimation hardware,’’ J. Real-Time Image Process., vol. 21,

no. 2, p. 25, Apr. 2024.

[78] M. Yang, C. Bian, and H.-S. Kim, ‘‘Deep joint source channel coding for

WirelessImage transmission with OFDM,’’ 2021, arXiv:2101.03909.

PRABHATH SAMARATHUNGA (Graduate Stu-

dent Member, IEEE) received the B.Sc. degree

(Hons.) in software engineering from the Uni-

versity of Plymouth, U.K., in 2021. He is

currently pursuing the Ph.D. degree in semantic

communication-based video streaming for M2M

communication with the Department of Computer

and Information Sciences, University of Strath-

clyde, U.K. His research interests include semantic

communication, video coding, video streaming in

error-prone channels, and machine learning.

VOLUME 12, 2024 79223



P. Samarathunga et al.: Semantic Communication and VVC Based Hybrid Video Coding System

YASITH GANEARACHCHI (Graduate Student

Member, IEEE) received the B.Sc. degree (Hons.)

in electrical and electronic engineering from the

University of Peradeniya, Sri Lanka, in 2008,

the M.B.A. (Merit) degree from the University

of Sri Jayewardenepura, Sri Lanka, in 2019,

and the P.M.B.A.D.T. (Merit) degree from Asian

Institute of Technology, Thailand, in 2022. He is

currently pursuing the Ph.D. degree in computer

and information sciences with the University of

Strathclyde, U.K. Following 15 years of telecommunications industry

experience during the Ph.D. degree with Sri Lanka Telecom PLC.

THANUJ FERNANDO (Student Member, IEEE)

is currently pursuing the B.Sc. degree in computer

science with the Department of Computer and

Information Sciences, University of Strathclyde,

U.K. His research interests include machine learn-

ing, vision processing, and communications.

ADHURAN JAYASINGAM (Member, IEEE)

received the B.S. (Eng.) degree (Hons.) in

electronics engineering and the M.Eng. degree

in microelectronics and embedded systems from

Asian Institute of Technology, Thailand, in

2015 and 2017, respectively, and the Ph.D.

degree from the Center for Vision, Speech, and

Signal Processing, University of Surrey, in 2022.

He worked as a Lecturer (Probationary) at the

University of Jaffna, Sri Lanka, from July 2018

to September 2018. He also worked for BBC Research and Development

as a R&D Engineer. He is currently a Visiting Researcher with Kingston

University, U.K. He has authored several technical papers on video coding,

video quality assessment, and video streaming technologies. His current

research focus is in the field of video coding and video quality assessments.

INDIKA ALAHAPPERUMA (Graduate Student

Member, IEEE) received the B.Sc. degree (Hons.)

in electronics and telecommunication engineering

from the University of Moratuwa, Sri Lanka,

in 2003, and the M.B.A. degree from the Univer-

sity of Sri Jayewardenepura, Sri Lanka, in 2016.

He is currently pursuing the Ph.D. degree in

computer and information sciences with the Uni-

versity of Strathclyde, U.K. Following 20 years

of telecommunications industry experience during

the Ph.D. degree.

ANIL FERNANDO (Senior Member, IEEE)

received the B.Sc. degree (Hons.) in electron-

ics and telecommunication engineering from the

University of Moratuwa, Sri Lanka, in 1995, the

M.Sc. degree (Hons.) in communications from

Asian Institute of Technology, Bangkok, Thailand,

in 1997, and the Ph.D. degree in computer science

(video coding and communications) from the Uni-

versity of Bristol, U.K., in 2001. He is currently

a Professor in video coding and communications

with the Department of Computer and Information Sciences, University of

Strathclyde, U.K., where he leads the Video Coding and Communication

Research Team and also a Visiting Professor with the Center for Vision,

Speech and Signal Processing (CVSSP), University of Surrey, U.K.

He has been working with all major EU broadcasters, BBC, and major

European media companies/SMEs in the last decade to provide innovative

media technologies for British and EU citizens. He has graduated more

than 110 Ph.D. students and is currently supervising 20 Ph.D. students.

He has worked onmajor national and international multidisciplinary research

projects and led most of them. He has published more than 430 papers in

international journals and conference proceedings and has published a book

on 3D video broadcasting. His main research interests include video coding

and communications, machine learning, artificial intelligence, semantic

communications, signal processing, networking and communications, inter-

active systems, resource optimization in 6G, distributed technologies, media

broadcasting, and quality of experience.

79224 VOLUME 12, 2024


	A Semantic Communication and VVC Based Hybrid Video Coding System
	ABSTRACT
	I. INTRODUCTION
	II. RELATED WORK
	A. CONVENTIONAL VIDEO CODING
	B. DEEP NEURAL NETWORK BASED VIDEO CODING
	C. SEMANTIC COMMUNICATIONS FOR VIDEOTRANSMISSION
	D. CHALLENGES AND OPPORTUNITIES
	III. PROPOSED SYSTEM
	A. SEMANTIC ENCODER
	B. SEMANTIC DECODER (FRAME PREDICTOR)
	C. CONTEXT ENCODER/DECODER
	D. RESIDUAL ENCODER/DECODER
	E. SCENE TRANSITION DETECTION
	F. PERFORMANCE EVALUATION
	IV. RESULTS AND DISCUSSION
	V. CONCLUSION
	REFERENCES

