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a b s t r a c t

Nitrogen-doped carbon quantum dots are synthesized by a one-step atmospheric pressure microplasma
process. The origin of the observed photoluminescence emission and its relationship with nitrogen
doping is studied using a range of optical and chemical measurements along with verification by
theoretical calculations. Nitrogen doping into the core and functionalization of surface states with ni-
trogen and oxygen groups gives rise to a hybrid structure which is responsible for the luminescence with
quantum yields up to 33%. Carrier multiplication is observed as a step-like enhancement in the quantum
yield. The analysis of visible-light emission suggests that the emission originates for the most part from
surface states and not due to recombination within the quantum dot core. The role of surface functional
groups is dominant over quantum confinement in determining the optical properties.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Photoluminescent nanomaterials have been widely explored in
the past decade and many semiconductor nanocrystals, metal
complexes, and carbon-based materials have given rise to a totally
new field reporting fluorescent materials. The complex nature and
a vast range of configurations of carbon-based materials have often
complicated the understanding of related properties and their
implementation in application devices. However, carbon-based
materials are, in principle, to be favored to other semiconductor
and metal complexes due to exceptional properties such as
biocompatibility, ease of synthesis, low-cost, photo-stability, and
low environmental impact [1]. However, for carbon to have a strong
emission is a challenge because its bulk allotropes graphite and
diamond are both non-luminescent due to the former being a
conductor and the latter an insulator with indirect bandgap of
5.5 eV. Carbon nanostructures like single-/multi-walled carbon
nanotubes and fullerenes exhibit interesting properties different
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from their bulk counterparts and efficient emission has been ach-
ieved, despite several challenges [2e4]. Carbon quantum dots
(CQDs) have been widely explored by various research groups
worldwide since they were first discovered by Xiaoyou Xu et al. in
2004 [5]. Carbon quantum dots are nanomaterials having sp2 hy-
bridized graphitic core with functionalized surface and size typi-
cally less than 10 nm. Several research groups have tried to explore
the photoluminescence mechanism by studying the chemical
structure and how the core structure and surface affect the energy
states giving rise to radiative recombination [6e9].

CQDs with size-tunable optical properties and high quantum
yields have been obtained by several top-down and bottom-up
synthesis methods including hydrothermal or solvothermal
[10e16], oxidative acid treatments [17,18], chemical-only methods
[19], laser ablation [20], microwave treatments [21,22], electro-
chemical methods [3] etc. Using these methods, high quality CQDs
have been obtained by appropriate choice of materials and reaction
conditions [23,24]. However, obtaining controlled particle sizes
often require post-synthesis treatment methods like washing,
annealing, which are time and energy consuming. This could
complicate manufacturing scalability and reproducibility. Instead
of using thermal or chemical energy for the synthesis, energy from
a plasma-liquid discharge can activate precursors and accelerate
the formation of these CQDs and this allows the use of
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. TEM image and HR-TEM image with lattice spacing calculated by FFT (insets) of N-CQDs synthesized at 4 mA (aeb), 6 mA (ced) and 8 mA (eef).
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temperature-sensitive or low-reactivity precursors [25]. These QDs
can be functionalized and doped by electron-induced dissociation
through so called plasma-induced non-equilibrium electrochem-
istry (PiNE) [26,27]. PiNE synthesis methods have been proven to
result in CQDs in some cases with strong luminescence [28e31].
Using higher reaction temperatures as in thermal methods may
result in the complete loss of surface functional groups which may
reduce the luminescence and thus low-temperature and low-
power synthesis methods should be preferred in some cases. For
instance, the power needed to sustain a microplasma is low
(12e24 W) compared to microwave methods (200e900 W) [30].
Surface functionalization by carboxyl, hydroxyl groups, and
2

nitrogen doping of CQDs has proven to be effective in improving the
optical properties and increasing in the quantum yield due to sur-
face passivation [32,33].

We previously demonstrated the synthesis of nitrogen-doped
CQDs (N-CQDs) by PiNE using an atmospheric pressure micro-
plasma and have reported on the performance of solar cells with
the N-CQDs used as an absorber layer [31]. Here we report on our
investigations, involving both experiments as well as first-princi-
ples calculations, that reveal new insights in the origin of electronic
transitions and that these are predominant at doped sites. We have
been able to study the relationship between the structure, chemical
composition, and emission properties of the N-CQDs thanks to our



Fig. 2. Size distribution histograms with lognormal fit for N-CQDs synthesized at (a)
4 mA; (b) 6 mA and (c) 8 mA.

S.D. Dsouza, M. Buerkle, P. Brunet et al. Carbon 183 (2021) 1e11
synthesis method, which allows for a reproducible approach to
control substitutional vs. surface doping without impacting the QD
morphology. We therefore discuss the changes in the photo-
luminescence emission, carrier multiplication, and how the ab-
sorption of N-CQDs leads to radiative recombination of excitons.
2. Experimental and theoretical calculation details

We synthesized N-CQDs following our PiNE method based on a
microplasma [31] (Supporting Information, Fig. S1), using citric acid
3

(CA) and ethylenediamine (EDA) as the carbon and nitrogen pre-
cursor, respectively. We prepared aqueous solutions with 1.051 g
CA and 556 mL EDA. Themicroplasmawas applied for 30minutes as
the cathode and a voltage of 3 kV was applied until the set current
was reached. The set current was varied in the range 4e8 mA for
different samples and the distance between the nickel tubing and
the liquid surface was adjusted to be ~1.5 mm from the tip of
capillary tube. The colour of the precursor solution changes during
the course of the plasma process which indicates nanoparticle
formation, and the colour change is more rapid for higher currents.
All the measurements and characterization were carried out as
soon as possible after synthesis unless otherwise stated.

Transmission electron microscopy (TEM) was carried out with a
JEOL JEM-2100F microscope at an accelerating voltage of 200 kV.
Colloidal samples were first drop-casted on ultra-thin carbon film
on lacey carbon support filmswith 300mesh gold or 200mesh gold
TEM grids (Agar Scientific) within a week from synthesis and dried
at ambient conditions overnight; the analysis was carried out
within the following week. Particle size analysis for the images
with QDs that did not exhibit agglomeration, has been determined
using ImageJ software. Images that showed a degree of agglomer-
ation were analyzed and size estimated manually. Finally, some of
the images that showed unclear boundaries between QDs were not
considered in the size distribution determination. Atomic force
microscopy (AFM) characterization was performed in air using a
commercial system (D3100 Nanoscope III Digital Instruments, now
Bruker) in amplitude modulation AFM (tapping mode). Topo-
graphic images were acquired at a scan rate of 1 Hz, with a silicon
probe for soft tapping mode (FMV-A Bruker, spring constant 3
Nm�1, resonance frequency 75 kHz, radius of curvature 10 nm).
Samples for AFM were prepared by dip-coating 12 mm mica sub-
strates in the as-prepared N-CQDs colloid within two weeks from
synthesis and dried overnight; analysis was carried out within one
day. This approach was developed after a few attempts with
different methods and substrates. Mica substrates were utilized
due to their low roughness which allowed identification of N-CQDs
over the substrate. Using dip-coating and mica resulted in the
possibility of finding isolated N-CQDs, which was not possible with
the other methods. For X-ray photoelectron spectroscopy (XPS), N-
CQDs were drop-casted on silicon substrates soon after synthesis
and left to dry in ambient conditions overnight. Analysis was per-
formed within one day from synthesis using an ESCALAB Xiþ

spectrometer microprobe (Thermo Fisher Scientific) with a
focussed monochromatic Al Ka X-ray source (hn ¼ 1486.6 eV,
650 mm spot size) operating at a power of 225W (15 kV and 15 mA)
and the photoelectrons were collected using a 180� double-
focusing hemispherical analyser with a dual detector system. The
energy scale of spectrometer was calibrated with sputter cleaned
pure reference samples Au, Ag and Cu (Au 4f7/2, Ag 3d5/2 and Cu 3p3/
2) positioned at binding energies 83.96, 368.21 and 932.62 eV,
respectively. The base pressure in the analysis chamber was better
than 5 � 10�9 mbar, which increased up to 5 � 10�7 mbar with
charge neutraliser (flood gun) operated at 100 mA emission current.
For the Fermi level alignment, a copper strip was used to make a
good electrical contact between the sample and the spectrometer.
Spectra were referenced against the Au core level and valence band
spectra for charge compensation. For all the samples analyzed, the
survey spectra were recorded with a step size of 1 eV and a pass
energy of 150 eV and the narrow scans were recorded with a step
size of 0.1 eV and a pass energy of 20 eV. This pass energy gives a
0.65 eV width for the Ag 3d5/2 peak measured on a sputter cleaned
Ag sample. Data analysis and fitting were performed with Thermo
Avantage software. After smart background subtraction, compo-
nents in C 1s and N 1s core level spectra were adjusted using line
shapes consisting of convolution products of a Gaussian (70%)



Fig. 3. AFM characterization of the N-CQDs at 6 mA on mica substrates: topography and line profiles of labelled N-CQDs. (colour).

Fig. 4. (a) Variation of the carbon, oxygen and nitrogen atomic percentages as a
function of the processing current from XPS survey spectra; (b) Atomic percentage
variation of carbon components with processing current. (colour)
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function and a Lorentzian (30%) function. Absorbance of the
colloidal samples was measured soon after synthesis with a Perkin
Elmer 1050 in transmission mode with deionized water as refer-
ence. Photoluminescence (PL) measurements were also taken from
the colloidal samples soon after synthesis with an Agilent Tech-
nologies Cary Eclipse Fluorescence Spectrophotometer G9800A. For
4

absolute quantum yield measurements, an integration sphere
attached to a Horiba Jobin Yvon fluoromax-4 spectrometer was
used to collect the PL of the N-CQDs. For excitation, a Xe lamp with
a double monochromator was used, and the PL was detected by a
charge coupled detector (CCD) mounted on a spectrograph via
coupled ultraviolet-grade optical fiber. The excitation wavelength
was selected through the monochromator. The emission spectra
from N-CQDs film on quartz substrate and the reference from
quartz were measured, and the number of emitted photons was
then calculated from spectral integration. The number of absorbed
photons was calculated using reduction of the excitation spectrum
and comparing the sample and reference. The absolute QY is ob-
tained as the ratio of the number of emitted photons to the number
of absorbed photons. Measurements were performed in triplicates
and the average value is reported for each excitation wavelength.

To elucidate the experimentally obtained optical properties we
simulated the emission spectra of the CQDs using first-principles
density functional theory (DFT) calculations at the level of linear
response time dependent density functional theory (TD-DFT)
within the Tamm-Dancoff approximation [34] as implemented in
the quantum chemistry package NWCHEM [35]. We use the CAM-



Fig. 5. (a) Atomic percentage variation of nitrogen components with processing current; High resolution XPS scan of the N 1s region for the samples processed at (b) 4 mA; (c) 6 mA
and (d) 8 mA. (colour)

Fig. 6. Absorbance of the N-CQDs measured in colloid form. (colour)

S.D. Dsouza, M. Buerkle, P. Brunet et al. Carbon 183 (2021) 1e11
QTP-02 functional [36] which tends to provide reliable excitation
energies [37] and use the Los Alamos National Laboratory double-
zeta basis set (LANL2DZdp) with diffuse and polarization func-
tions [38] and the corresponding LANL2 ECP [39]. Total energies are
converged with a precision of 10�7 a.u. and geometry optimization
carried out until the maximum norm of the gradient drops below
10�4 a.u.

Wemodel the CQD by 3 layers of approximately round graphene
sheets with a diameter of ~1.4 nm passivated by hydrogen and with
%2 of nitrogen doping to include both graphitic substitutional
doping as well as pyrrolic nitrogen terminations. We first optimize
within DFT the ground state geometry of the CQD model. Starting
from the ground state geometrywe optimize the CQDmodel for the
lowest singlet excited state. Once we have obtained the optimized
5

excited state geometry, we calculated for the N lowest lying exci-
tation the excitation energies εi and corresponding oscillator
strengthsUi fromwhichwe can, assuming a Lorentzian broadening
g ¼ 0:2 eV, obtain the optical spectra in the desired energy range as

aðEÞ �
XN

i

Ui
l

ðE � εiÞ2 þ l2
(1)
3. Results and discussion

TEM analysis shows that the N-CQDs are mostly spherical,
generally well-dispersed. The TEM images of samples synthesized
at different set discharge currents of 4mA, 6mA and 8mA are given
in Fig. 1a, 1c, and 1e and the corresponding size distributions in
Fig. 2aec, respectively. While we can provide a mean diameter
based on lognormal fitting (2.45 nm, 3.35 nm, and 3.36 nm for N-
CQDs synthesized at 4 mA, 6 mA, and 8 mA, respectively), we
should note that the distributions present bimodal characters. We
believe that this is due to the cylindrical shape (or disc-/pancake-
like) of the quantum dots where the thickness is determined by the
number of graphite layers (see more details further below). For this
reason, the TEM size distributions result from the diameter distri-
bution superimposed to the thickness (n. of graphite layers) dis-
tribution. This also contributes to an added degree of variability
whereby the distribution also depends on the orientation of the N-
CQDs on the TEM grid.

High resolution TEM (HR-TEM) images of the samples reveal the
crystalline nature of the N-CQDs (Fig. 1b, d, 1f) and the lattice
spacing was calculated by performing fast Fourier transform (FFT)
(insets). We observed lattice spacing of 2.22e2.69 Å (~56% of the
time), which we attribute to the (1120) lattice plane of graphene
reported to be close to 2.42 Å [32,40e43]. We also observed values
of 3.15e3.38 Å (~19% of the time) that can be attributed to the (002)



Fig. 7. (a) Normalized PL spectra of the maximum emission peak for each N-CQD sample in colloid form; 3-D colour mapped surface of excitation-emission spectra for the N-CQDs
at (b) 4 mA; (c) 6 mA; (d) 8 mA (colour)
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plane spacing reported for graphite (3.3 Å) [32,42] and values of
1.92e2.21 Å (~25% of the times) related to the (100) plane of
graphite (2.0 Å) [44e46]. Although the lattice spacing is close to
that of graphite, the values that we have observed have been also
interpreted in the literature as due to nitrogen doping into the
carbon core which may have induced disorder into the lattice
[47e53]. These results also suggest that the N-CQDs exhibit a
preferential orientation (56%) when on the grid, i.e. with the gra-
phene plane parallel to the grid plane. The graphite spacing instead
was observed more often when the samples showed some degree
of agglomeration as seen in Fig. 1d, corroborating our observation
about the bimodal character of the distributions. To understand
better the 3-dimensional morphology of the N-CQD, AFM charac-
terization was performed on the N-CQDs synthesized at 6 mA
(Fig. 3). Due to the AFM tip convolution effect, the diameter of the
N-CQDs measured with this technique is an overestimate and
hence only the height of the discs-shaped N-CQDs is considered to
be fully reliable [54]. The height measured from line profiles from
the AFM images varied between 1.3 nm and 4.2 nm (Fig. 3) and thus
from TEM and AFM results we can infer that these N-CQDs are
formed by 4e12 layers of graphene and present a cylindrical shape.

Several reports in the literature suggest the dependency of the
optical properties of N-CQDs on the chemical structure such as
surface functionalization, the extent of nitrogen doping, and the
position of nitrogen atoms (i.e. whether they are within the carbon
core or on the surface) [9,55]. To study this, XPS was performed on
the synthesized N-CQDs. The XPS survey spectra for all samples
(Supporting Information, Fig. S2) show the presence of C, N, and O
at binding energies around 285 eV, 400 eV and 531 eV, respectively.
6

The atomic percentage of carbon, nitrogen, and oxygen with vary-
ing synthesis currents is given in Fig. 4a which shows increased
carbon percentage and decreased nitrogen and oxygen relative
content at higher current values. This could be due to preferential
chemical pathways in the dissociation of the carbon precursor and
may be responsible for the slightly larger particles at higher cur-
rents also resulting in a higher degree of doping at lower synthesis
currents. We have then analyzed high resolution C 1s and N 1s
spectra of the N-CQDs synthesized at 4e8 mA currents. Deconvo-
lution of the spectra reveals the presence of C]C sp2 at 284.6 eV
[56e62], CeC/CeH at 285.2 eV [57,61,62], CeN at 285.8 eV
[59,63e69], CeO at 286.5 eV [58,62,69e75], C]N at 287.2 eV
[71,76], C]O at 288.3 eV [8,57,58,63,65,68e70,72,73,75,77e79],
OeC]O at 289.0 eV [60,61,73e75], pyridinic nitrogen at 399.1 eV
[45,58,71,80,81], amine groups at 399.9 eV [57,63,68], pyrrolic ni-
trogen at 400.6 eV [70,71,78,81,82] and graphitic nitrogen at
401.7 eV [8,32,57,58,68,70,78] (Fig. S3, Supporting Information and
Fig. 5bed for deconvoluted spectra). Generally, both the C and O
peaks are easily affected by contamination where for instance
adventitious carbon can present peaks corresponding to CeC/CeH,
CeO and C]O. We have therefore focused on the peaks originating
from C]C sp2 bonds at 284.6 eV and carbon-nitrogen bonds at
285.8 eV (CeN) and 287.2 eV (C]N). We report in Fig. 4b (C 1s) and
Fig. 5a (N 1s) the trends with processing current of atomic per-
centage of the atoms in the different chemical bond arrangements
considered. The C]C sp2 bond is characteristic of the CQDs. Of the
carbon peaks involving bonds with nitrogen, CeN could originate
from both the unreacted EDA precursor as well as from the N-CQDs,
while the component corresponding to C]N is most likely to



Fig. 8. (a) Excitation energy dependence of the absolute PL quantum yield at room
temperature; (b) Calculated emission spectra, excitation energies and corresponding
oscillator strength; onset of emission corresponds to 2 times the step up in the
quantum yield as suggested in Ref. [93]; (c) Transition density for the excitation at
1.12 eV and 1.65 eV. The transition density is mainly localized around nitrogen atoms.
Red isosurface corresponds to positive weight and yellow isosurface to negative
respectively. (colour)
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originate from pyridinic nitrogen doping of the QDs. The relative
higher concentrations corresponding to CeN and C]N with
respect to sp2 bonds (Fig. 4b) suggest a very high degree of doping
either at the core or at the surface of the N-CQDs. Also, while sp2

bond contribution increases at higher current, C]N is decreasing
which supports our previous suggestion inferred from Fig. 4a that
CA decomposition is faster at higher currents; i.e. QD growth by
carbon atoms is faster than nitrogen doping as the current is
increased. The increasing trend of the CeN bond contribution
further supports this idea and suggests surface doping by nitrogen
increases with current increasing. The N 1s peak components
(Fig. 5) on the other hand can be used to distinguish the type of
nitrogen doping, where graphitic-N corresponds to doping within
the core and pyrrolic-N and amine groups are mainly indicative of
nitrogen bonds at the surface. Pyridinic-N can be present both
7

within the core, therefore introducing defects, or at the surface.
Fig. 5a shows that most of the nitrogen appears as graphitic,
therefore indicating N-doping within the core for the most part.
Graphitic-N decreases as the current is increased, corroborating a
faster carbon precursor supply to the growth at higher current so
that nitrogen atoms are incorporated less within the core of the N-
CQDs and tend to bond at the surface instead, as the current is
increased. This is further confirmed by the percentage corre-
sponding to pyrrolic-N and amine groups, which can be associated
with surface terminations, and that increase with increasing cur-
rent. As pyridinic-N can represent nitrogen both at the surface as
well as within the core, the trend is representative of a mixed
behavior. Hydrogen and oxygen-based surface states are also likely
to be present as shown by the CeC/CeH peak at 285.2 eV, CeO at
286.5 eV, C¼O at 288.3 eV and O-C]O at 289.0 eV (Supporting
Information, Fig. S3). Overall, the XPS analysis shows that in addi-
tion to hydrogen and limited oxygen-based terminations, which are
expected based on the formation mechanisms reported in the
literature (see further below), N-CQDs are terminated by N-groups
and with substitutional nitrogen (graphitic) doping being pre-
dominant. A higher processing current seems to limit N-doping and
accelerate QDs growth with a faster carbonization. CA and EDA are
in competition when contributing to the growth of the QDs. As the
carbon supply from CA prevails, N-doping at the core is reduced
and will tend instead to bond at the surface. This is also supported
by the decrease in ID/IG ratio at higher current as shown by the
Raman spectra (Supporting Information, Fig. S4).

There have been a number of reports in literature on the growth
mechanisms of CQDs and N-CQDs [32,56,83e85]. These suggest
that the precursors CA and EDA self-assemble to form a large
network with formation of amide bonds due to intermolecular and
intramolecular dehydration and polymerization among the car-
boxylic, hydroxyl and amine groups. This results in a carbon core
structures with N-atoms incorporated as pyridinic, pyrrolic, amide,
and graphitic entities leading to N-CQD formation [32,56,84,85].
The synthesis of N-CQDs by PiNE follows very similar growth
mechanisms, where plasma-induced reactions accelerate the de-
livery of precursors but also localize CQD formation in a small
volume below the plasma-liquid interface. The localization is
important as it provides a different degree of control on the growth
that does not depend on precursor concentrations. Compared to
other microplasma-based synthesis of carbon dots, our method is
proven beneficial due to reduced reaction time, crystalline struc-
ture of the N-CQDs, and higher QY [29,30].

The absorbance of the N-CQDs in colloid form (diluted 50 mg in
10mLwater) is measured in a 10mmquartz cuvette with deionized
water as reference and the resulting spectra for varying discharge
currents are given in Fig. 6. All samples show similar patterns with
the onset of absorption in the visible region, higher absorbance in
the ultraviolet (UV) region and a couple of peaks. The absorbance in
the UV region around 270 nm can be attributed to p/p* transi-
tions where the p states are the aromatic sp2 hybridized carbon
atoms in the core.

The absorbance peak at around 340 nm can be assigned to
n/p* transitions which could indicate absorption by nitrogen or
oxygen containing groups at the surface of the N-CQDs [55,86].
With increase in discharge current, the absorbance seems to
maintain the same spectra however with an overall increase in
intensity. This indicates that a larger number of N-CQDs are pro-
duced, consistent with the ability of the process to decompose CA at
a faster rate when the current is higher. A closer analysis also shows
that the absorbance intensity corresponding to the n/p* transi-
tions is higher with respect to that of the p/p* transitions for
higher processing current, therefore the absorbing surface states
have increased for the N-CQDs synthesized at 6 mA and 8 mA
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(corresponding intensity ratios are 0.66, 0.83 and 0.83). This is in
very good agreement with the XPS analysis. The Tauc plots are
given in Figs. S6aec (Supporting Information), which yield direct
bandgap values of 3.17 eV, 3.17 eV and 3.15 eV for 4 mA, 6 mA and
8 mA samples. If an indirect bandgap is considered (Figs. S7aec),
the values are 2.46 eV, 2.44 eV and 2.38 eV for 4mA, 6mA and 8mA
samples respectively. Both direct and indirect bandgap values are
smaller for higher processing current. Graphitic nitrogen and sur-
face nitrogen atoms have presence of lone pair of electrons which
results in positive charge due to electron donation to the carbon
structure thus increasing the electron density which reduces the
bandgap [9,87]. In this way the electronic structure of the N-CQDs
and the absorption tails depend on the charge transfer and also
frontier orbital hybridization between the carbon core and surface
functional groups [88,89]. A slight decrease of the bandgap is
therefore consistent with a decrease in substitutional doping at
higher current as observed in our XPS analysis (Fig. 5a).

The photoluminescence (PL) measurements (240 nm excitation)
for the N-CQDs synthesized with varying processing currents result
in maximum emission intensities at wavelength 410 nm, 414 nm,
417 nm for 4 mA, 6 mA and 8 mA samples as shown in the
normalized PL spectra in Fig. 7a. The data has been normalized to
the emission maxima. The small red-shift of the emission wave-
length could be linked to the small reduction in the bandgap for the
N-CQD synthesized at higher current, however this is super-
imposed onto surface-state emission (see below) [67]. Colored-
coded maps of the photoemission are given in Fig. 7bed with
emission wavelength in the x-axis, excitation in y-axis and the
colour scale giving the PL intensity, (the full set of PL emission
spectra for each excitation can be found in the Supporting Infor-
mation, Figs. S9 and S10). For all the samples, the excitation-
emission figures show similar patterns with three different re-
gions excited at different wavelengths, labelled as “A”, “B” and “C”.
Bandgap emission is expected to be affected by size distribution for
each sample and therefore would appear as an elongated pattern in
Fig. 7 [87]. This corresponds for instance to the emission that peaks
in the range 400e450 nm and excited by ~320 nm (A). This is also
sufficiently close to the indirect bandgap (2.38e2.46 eV) for all
samples andwe can therefore attribute it to bandgap emission from
the core of the N-CQDs and originating from above-bandgap energy
levels. This core bandgap emission is however relatively weak, and
we can observe that lower excitation wavelengths offer different
emission pathways. The strongest emission for all samples is for
instance in the same region (400e450 nm) but excited at
~240 nm (B). This appears to be different than emission from the
core bandgap transitions and it is specifically excited only with a
narrow range of wavelengths; it therefore appears as a confined
and non-elongated spot (B) in Fig. 7. This emission originates from
UV absorption and excitons may have sufficient energy to recom-
bine in different states from where they have been produced. It is
therefore likely that this emission is associated with surface states
which may include transitions due to N, associated with pyrrolic
and amine groups, or O surface states, edge states and molecular
states [90]. Finally, Fig. 7b, corresponding to the sample produced at
4 mA, also shows a noticeable emission at 300e325 nm, excited
with ~270 nm (C); this is progressively weaker for increasing cur-
rent in Fig. 7bec. The emission originates from EDA precursor (see
Supporting Information) and suggests that this is consumed more
effectively at higher current, possibly due to increasing surface
doping over a greater total surface area. This is again in agreement
with our previous absorbance results that indicated a higher
number of N-CQDs synthesized with increasing current. Overall
Fig. 7 shows that emission is dominated by surface states (B) with
weak emission from bandgap transitions (A). This is also in agree-
ment with previous reports [91,92]. Therefore, to manipulate the
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emission of CQDs, varying the nature and density of surface func-
tional groups is the most direct way to produce considerable
modification of PL whereas quantum confinement effect or core
doping in CQDs is far less effective. This is also confirmed by Deng
et al. while studying the optical properties of separated fragments
of carbon dots with high colloidal stability by gradient-based
centrifugation method [69]. We have observed that the emission
properties of these N-CQDs in colloidal form are stable over time
and also under given operational conditions (e.g. under prolonged
illumination, see section G in the Supporting Information); how-
ever, the impact of film formation steps from the colloid, including
annealing has shown some changes in the emission patterns (sec-
tion F of the Supporting Information) that will need to be investi-
gated fully in order to effectively integrate N-CQDs in application
devices.

The absolute quantum yield (QY) was determined using an
integrating sphere attached to the photoluminescence spectrom-
eter. The QY varied up to 33% for the 6mA sample. Interestingly, the
QYalso depends on the excitation energy (Fig. 8a). At low excitation
energy (between 2.2 eV and 2.4 eV), the QY was measured to be
below 0.2% which increased in a step like fashion to around 7%
(from 2.5 to 2.7 eV) and finally rapidly reaches 33% as the selected
excitation energy was increased to around 2.8 - 3 eV.

As demonstrated in Ref. [93] such step-like enhancement of the
QY could point to carrier multiplication occurring in these CQDs
[94]. Steps in the QY occur at integer multiples of the excitation
energies in the emission spectra, essentially a single absorbed
photon of energy E0 leads to the emission of N photons with energy
E0=N. As we cannot experimentally observe the emission spectra
excited with energies below 2 eV, it is not possible to directly probe
the multiphoton emission correlated with the observed step-like
behavior of the QY. Therefore, we calculated the emission spectra
of CQDs with a diameter of around 1.4 nm and with 2% nitrogen
doping using TD-DFT. While the CQD considered in the simulations
are at the lower end of the size distribution, they should be suffi-
ciently large, as we did only observe a weak size dependence of the
optical properties in experiment and, as we see in the following, the
emission properties are correlated with localized electronic tran-
sition. Fig. 8b shows the emission spectra for the relevant energy
range; we can see that QY step (at ~2.8 eV, Fig. 8a) corresponds to
twice the onset energy in the calculated spectrum (at ~1.4 eV,
Fig. 8b). The corresponding transition densities [95] of the corre-
sponding excitations (Fig. 8c and Fig. S13 in Supporting Informa-
tion) show that the relevant electronic excitations occur localized at
the vicinity of the nitrogen dopants. Furthermore, at higher energy
the emission appears to be more concentrated at the surface ter-
minations and although the excitation energy is not comparable, it
is in qualitative agreement with our PL results.

4. Conclusions

Crystalline N-CQDs are obtained using a one-step, environ-
mentally friendly and easy synthesis process. We have studied the
optical properties combined with an in-depth chemical, structural,
and morphological characterization. Prominent emission bands
show emission from both core transitions and surface groups,
where the latter is by far dominant. The change in synthesis con-
ditions, precisely increasing the current, allows for a reduction of
substitutional nitrogen doping in favor of surface states that are
more efficient in their emission. In this way, we open the possibility
of direct tunability control over doping, that within the range
studied has no impact on other properties. The observation of
emission originating from carrier multiplication is confirmed with
first-principles calculations, however this remains limited and
secondary to the emission originating from surface states. This
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work has therefore shown avenues to control the degree of doping
at the surface vs. substitutional doping, with the first far more
efficient for enhancing emission properties. These results also
suggest that this synthesis technique offers methodologies for
synthesizing doped CQDs with a variety of precursors, including
those that are temperature-sensitive and that these may allow to
tailor emission to desired requirements for optoelectronic
applications.
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