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Abstract
In recent years, plasma-induced non-equilibrium electrochemistry (PiNE) has been increasingly
used for the synthesis of nanomaterials. In this study, we investigated the effect of solution pH
on the formation of AuNP/MWCNT nanocomposites synthesized by PiNE. It is found that
resulting nanocomposite morphology can be manipulated by the solution pH with pH 2 giving
the most uniformly distributed AuNP along the MWCNT surface during the nanocomposite
formation. The detailed mechanisms of AuNP/MWCNT nanocomposites formation under
different pH have been discussed. For selected AuNP/MWCNT, we further evaluated the
photothermal conversion performance under a blue laser (wavelength 445 nm) and the material
biocompatibility using HeLa cells. The promising photothermal capability and biocompatibility
of the composite sample point to their potential future applications such as solar thermal
conversion and healthcare technology.

Supplementary material for this article is available online
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1. Introduction

In recent years, there has been an increasing volume of
research in deploying atmospheric pressure plasma for a
wide range of applications ranging from healthcare to envir-
onmental remediation and material science [1–3]. In the
field of material synthesis, atmospheric pressure microplasma
(APM)–liquid interaction and PiNE has been successfully
deployed for applications such as surface functionalization of
nanostructures (e.g. carbon nanomaterials [4] and Si nanocrys-
tals [5]), synthesis of metal nanoparticles (NPs) (e.g. AuNPs
[6] and AgNPs [7]) and metal oxides such as Fe3O4 [8], CuO
[9], and Co3O4 [10]. Out of these studies, AuNPs synthesized
by APM is of particular interest, due to the unique physical
and chemical properties of the nanoparticles [11–13].

Recently, researchers have taken a step further to syn-
thesize AuNP based functional nanocomposites, such as
AgNP/polyvinyl alcohol (PVA) for antibacterial action [14],
AuNP/PEDOT:PSS for potential fuel cell electro-catalyst [15],
and AuNP/graphene oxide (GO) for biosensing applications
[16]. Early studies also demonstrated the capability of APM in
the synthesis of AuNP/carbon nanotube (CNT) nanocompos-
ites [17, 18]. The combination of plasmonic AuNPs with mul-
tiwall carbon nanotube (MWCNT) has led to nanocompos-
ites with strong photothermal conversion capability under near
infrared laser (NIR, 852 nm) irradiation. The photothermal
conversion efficiency of the as-synthesized nanocomposite
was also much higher than that of the individual constituents
(i.e. pure AuNPs or MWCNT), due to synergistic effects.

In this work, we further investigated the effect of differ-
ent solution pH on the resulting structures of the AuNP/CNT
nanocomposites synthesized by PiNE and the formationmech-
anisms under different pH conditions have been discussed.
In addition, the photothermal conversion of the AuNP/CNT
under a blue laser irradiation (445 nm) has been demonstrated
and the cytotoxicity of the composite was also evaluated.

2. Experimental details

2.1. APM set-up description

The direct current (DC)APM set-up used in this work is shown
in figure 1. A carbon rodwas deployed as anodewhile the cath-
ode was a hollow stainless-steel capillary (250 µm inner dia-
meter). The anode and cathode were placed vertically ~2 cm
apart. The cathode was placed 1 mm above the surface of the
aqueous solution, while the anode was immersed in the solu-
tion. Helium gas (25 sccm) was supplied through the capillary
and the microplasma was ignited at the gas liquid interface at
an initial applied DC voltage of ~2 kV. After the microplasma
was ignited, the current was adjusted to 5 mA and maintained
for 10 min for all sample treatment. It was observed that the
voltage gradually dropped over the treatment time and stabil-
ized at 0.9–1 kV for all samples, which indicates an increases
of solution conductivity in line with the literature [19]. The
temperature of the bulk solution was always below 40 ◦C
throughout the treatment process.

Figure 1. Schematic of the APM set-up deployed in this work.

2.2. Synthesis of AuNP/MWCNT nanocomposites

Hydrogen tetrachloroaurate (III) (HAuCl4·3H2O, >99.9%)
was supplied by Sigma Aldrich. Carboxyl group (-COOH)
functionalized multi-walled carbon nanotubes (MWCNTs,
purity >95 wt%, length 10–30 µm, diameter 20–30 nm) were
purchased from Cheap Tubes Inc. 0.1 mg ml−1 MWCNTs
aqueous mixture (prepared using 18.2 MΩ cm−1 deionized
water from a Millipore Milli-Q machine) was sonicated for
6 h under 140 W power. The dispersed MWCNTs supernatant
was collected and further diluted by distilled water to obtain a
50 ± 3 µg ml−1 aqueous solution.

Mixture of HAuCl4/MWCNT with 0.1 mM HAuCl4 were
prepared by mixing proper amount HAuCl4 solution (5 mM)
and the diluted MWCNTs solution (50 ± 3 µg ml−1);
this solution exhibited a pH of 2, very likely due to the
presence of HAuCl4 and the de-protonation of the -COOH
CNT terminations. Afterwards, sodium hydroxide (NaOH,
Sigma Aldrich) was used to adjust the solution pH of
0.1 mM HAuCl4/MWCNT to 7 and 12, respectively. 0.1 mM
HAuCl4/MWCNT mixtures with different pH (2, 7, and 12)
were settled for 30 min before treated by PiNE under the same
processing parameters. All samples mentioned in this work
were treated by PiNE at a current of 5 mA for 10 min, the
resulting composite samples were named as AuNP/MWCNT-
pH2, AuNP/MWCNT-pH7, and AuNP/MWCNT-pH12. Pure
0.1 mM AuNPs (prepared using the same parameters without
MWCNTs) synthesized under different pH (pH 2, 7 and 12)
were used as reference samples, and they were named as
AuNP-pH2, AuNP-pH7, and AuNP-pH12, respectively.

2.3. Characterization

ACary 60 UV–Vis (Agilent Technologies) spectrophotometer
was used to examine the optical properties of all samples. A
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Jeol JEM 1400-plus transmission electron microscope (TEM)
was used to analyse the morphologies of the AuNP/MWCNT
nanocomposites. The size distribution of AuNPs was analysed
using an open source ImageJ software using >100 particles
from each sample. The diameter was measured for spher-
ical NPs, while for NPs with other morphologies, the longest
dimension was measured. X-ray photoelectron spectroscopy
(XPS) analysis was performed by using an ESCALAB 250Xi
spectrometer microprobe (Thermo Fisher Scientific) with a
focused monochromatic AlKα x-ray source (hν= 1486.6 eV,
<900 µm spot size) and the photoelectrons were collected
using a 180◦ double-focusing hemispherical analyzer with a
dual detector. The binding energy scale was calibrated with
respect to the Au 4f7/2 peak at 84.00 eV. For all the samples
analysed, the survey spectra were recorded with a step size
of 1 eV and a pass energy of 150 eV and the narrow scans
were recorded with a step size of 0.1 eV and a pass energy of
20 eV. Data analysis and fitting were performed with Avantage
software. Deconvoluted C1s peak components were adjusted
using asymmetric line shapes using line shapes consisting of a
convolution product of a Gaussian function (75%) and Lorent-
zian function (25%).

2.4. Laser irradiation tests

AuNP/MWCNT-pH2 nanocomposite was selected for photo-
thermal conversion experiment using a blue laser (445 nm
wavelength, 1 W, KALE CNC). 2 ml of as-obtained
AuNP/MWCNT-pH2 colloid was placed inside a quartz
cuvette, the aqueous solution was irradiated by the laser for
15 min. The temperature of the solution was recorded using a
thermocouple (RS-1384 4-Input Data Logging Thermometer)
immersed in the sample solution in close proximity to the irra-
diation spot. For comparison, the temperature of pure water,
AuNP-pH2, and pure MWCNT (50 ± 3 µg ml−1) were also
measured using the same setup.

2.5. In vitro cytotoxicity test

The cytotoxicity of as-synthesized AuNP/MWCNT-pH2
nanocomposite was evaluated using the Alamar BlueTM
cell viability reagent (ThermoFisher Scientific Inc. Gaith-
ersburg, MD, USA) following the manufacturer’s instruction.
HeLa cells (ATCC® CCL-2TM, Manassas, VA, USA) of
immortalized human cervical cells were cultured in minimum
essential medium (MEM supplied by ThermoFisher Scientific
Inc.) consisting of L-glutamine (3.9 mM), sodium pyruvate
(1.0 mM), sodium bicarbonate (2.2 g l−1) and fetal bovine
serum (FBS, 10%). The HeLa cells were cultured at 37 ◦C in
a humidified atmosphere (with 5% CO2) until their confluency
reached ~80%. HeLa cells were subsequently seeded into 96-
well assay plates (Costar 3904, Corning Inc. NY, USA) with
initial cell densities of 3 × 103, 4 × 103, and 5 × 103 cells
per well followed by a further 24 h culture. 100 µl MWCNT,
AuNP-pH2, or AuNP/MWCNT-pH2 nanocomposites solu-
tion was then added into 100 µl 2X MEM supplemented with
10% FBS and 1% Primocin (ThermoFisher Scientific Inc.)
to form the test media. The cultured medium in each well

of the HeLa cell culture plates was replaced with above pre-
pared 200 µl complete medium of tested materials. Cells with
new cultural media were maintained in the 37 ◦C incubator
for 24 h (plate with 5 × 103 cells per well), 48 h (plate with
4 × 103 cells per well) and 72 h (plate with 3 × 103 cells
per well), respectively. 100 µl of autoclaved double-distilled
water was used as control. Cultured cells were washed twice
with PBS after incubation, followed by another 2 h incubation
after the complete medium containing 10% Alamar Blue®
solution was added into each well. Finally, the fluorescence
of these wells was measured using a POLARstar® Glomax
multidetection system (Promega, Southampton, UK) with
excitation/emission wavelength at 544–590 nm. Cell viabil-
ity was evaluated by the relative ratio of fluorescence between
test materials and control media (double-distilled water). One-
way ANOVA was performed followed by Dunnett’s multiple
comparisons test.

3. Results and discussion

The plasma treated AuNP/MWCNT sample solutions showed
distinctively different colours (figure 2(a) inset). UV–vis spec-
tra (figure 2(a)) of all samples reveal absorption peaks at
542 nm, 547 nm, and 570 nm, which can be attributed to
the surface plasmonic resonance (PR) of as-formed AuNPs
within the solution [20]. It can be seen that with increas-
ing pH, the AuNP PR peak red-shifted, which is indicative
of increased AuNPs size [21]. TEM images in figures 2(b)–
(d) show the morphologies of different AuNP/MWCNT nano-
composites. For AuNP/MWCNT-pH2, the AuNPs are mostly
spherical in shape and arewell dispersed and anchored, as indi-
vidual NPs, on the surfaces of MWCNT with no evidence of
AuNP agglomeration prior to anchoring (figure 2(b)). AuNPs
in this sample have an average size of 28.7 ± 14.1 nm. For
AuNP/MWCNT-pH7, the AuNPs attached to the MWCNT
show similar spherical morphology (figure 2(c)). However,
their average size is significantly larger (57.1 ± 16.8 nm) and
with a lower number density. This is consistent with the shift
of the PR peak observed in the UV–vis spectra as compared
to that of the AuNP/MWCNT-pH2 sample. When the solution
pH is adjusted to pH ~12, there is also evidence of agglom-
eration of the AuNPs (figure 2(d)), which may have occurred
prior to the AuNPs attachment to the CNTs. The size of these
AuNPs/respective agglomerates varied from 5 nm to 200 nm,
which correlates well to the broadened PR peak in its UV–vis
spectra. Also, the density of the anchored sites is far lower in
density than in the samples synthesized at lower pH.

For comparison, we also synthesized 0.1 mM AuNPs
under pH of 2, 7 and 12, under the same PiNE condi-
tions. The PR peak of the AuNP samples exhibit a sim-
ilar red-shift with increasing pH (see figure S1(a) (available
online at stacks.iop.org/JPhysD/53/425207/mmedia)). How-
ever, pure AuNPs tend to exhibit more irregular shapes with
agglomeration (see figures S1(b)–(d)) compared to that of
AuNP/MWCNT nanocomposites. This indicates that the pres-
ence of MWCNT also plays a role in AuNP formation and its
associated morphology.
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Figure 2. (a) The UV-vis spectra of AuNP/MWCNT nanocomposites synthesized from precursors with different pH; insets: corresponding
optical images; (b) AuNP/MWCNT-pH2, (c) AuNP/MWCNT-pH7, and (d) AuNP/MWCNT-pH12.

Our previous work has showed that the presence of—
COOH functionalities on MWCNT surface play an important
role in the formation mechanism of AuNP/MWCNT nano-
composites [17]. Prior to the PiNE treatment, free [AuCl4]-

species react with deprotonated—COO- on MWCNT sur-
face through ion exchange interactions following equation
(1) [22, 23]:

−COO−+[AuCl4]
−
[−COOAuCl3]

−
+Cl−. (1)

This initial step reduces the concentration of Au salt in
solution prior to plasma treatment and produces nucleation
sites at the surface of the CNTs. Our TEM results also show
that AuNPs formation occurs only at the CNT surfaces as no
AuNPs were found detached from the MWCNTs. This indic-
ates that the concentration of the remaining gold salt in solu-
tion prior to plasma treatment is not sufficient to support nucle-
ation and growth in solution, i.e. NPs are subsequently formed
only by surface growth at the [-COOAuCl3]- sites [17]. During
PiNE treatment, electrochemical and other physical/chemical
phenomena are taking place at the plasma–liquid interface as
well as at the solid cathode/anode. These are all interdepend-
ent and therefore it is not possible to determine which inter-
face plays a major role; however some of the reactions and
mechanisms can be described in more details. Au salt reduc-
tion at the nucleation sites and the supply of reduced gold
atoms contributing to surface growth can take place through
two different reaction pathways.More specifically, close to the
plasma–liquid interface, both free Au ions in solution and the

[–COOHAuCl3]- conjugates can be directly reduced by solv-
ated electrons following equation (2) [24, 25]:

Au3++3e−Au0 (plasma–liquid interface) . (2)

In addition, H2O2 formed during the plasma–liquid interac-
tions [11] can diffuse into bulk solution and lead to the reduc-
tion of Au ions following equation (3) [6, 26]:

3H2O2 + Au3 + + 3OH -

→ Au0 + 3HO2 + 3H2O(bulk solution) . (3)

To clarify, the reduction induced by the short-lived
hydrated electrons (equation (2)) is expected to occur close
to the plasma–liquid interfaces [24, 25], while the reduc-
tion driven by H2O2 (equation (3)) is dominant in the bulk
of the solution. Reaction 3 above is also inhibited at low
pH due the lower concentration of OH- and also at high pH
where the gold salt tends to react with hydroxyl ions dir-
ectly (see equation (4)). Therefore, it is expected that reduc-
tion of gold salt by hydrogen peroxide is enhanced close to
neutral pH and suppressed for low/high pH values. The pH
of the solution therefore influences the overall synthesis pro-
cess, where two closely related outcomes have been observed.
On one side, with increasing pH, the number of nucleation
sites on the CNTs surfaces appear to decrease, while the NP
mean size increases. The latter is merely the consequence
of the former has a higher number of reduced Au atoms
available per nucleation site as the pH increases, therefore
leading to larger NPs. This phenomenon can be further sup-
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Figure 3. (a)–(c) C1s XPS spectra of AuNP/MWCNT-pH2, AuNP/MWCNT-pH7, and AuNP/MWCNT-pH12, respectively.

Figure 4. (a) Au 4f core XPS spectra of AuNP/MWCNT-pH2, AuNP/MWCNT-pH7, and AuNP/MWCNT-pH12, respectively; (b)
de-convoluted Au 4f core peak of AuNP/MWCNT-pH12.

ported by low-magnification TEM images (see figure S2)
of each AuNP/MWCNT nanocomposite synthesized under
different pH.

The reduced number of nucleation sites can be explained
through the interactions of OH- with the gold salt and nucle-
ation sites. The literature suggests that Au3+ complexes are
present in different forms with increased solution pH [27] as
shown in equation (4):

[AuCl4]
- ⇋ [AuCl3 (OH)]

- ⇋ [AuCl2(OH)2]
-

⇋
[
AuCl(OH)3

] - ⇋ [Au(OH)4]
-
. (4)

Note: pH increases from left to right in this equation

As the solution pH increases to pH 7 and pH 12, the
[AuCl4]- species in solution and at the nucleation sites can
gradually turn into [AuCl4-x(OH)x]- (with x = 1–4). Under
such pH conditions, the chance of ion exchange (equation
(1)) is suppressed, hence less [–COOHAuCl3]- sites are avail-
able for the preferential formation, nucleation and growth of
AuNPs on MWCNT surfaces.

In order to gain more insight into the AuNP/CNT interac-
tion during nanocomposites formation under different solution
pH, XPS analysis was carried out to investigate C 1s and Au
4f in different samples. The C 1s of each sample were de-
convoluted and results are shown in figure 3. The XPS C 1s
spectra were deconvoluted into different peaks, namely, C=C
(sp2), C-C (sp3), C-OH, C-N, C-O, C= O, O-C= O and plas-
mon lossesπ-π∗ and detailed fraction of each fitted component
is listed in table 1 [17]. With increased solution pH, the most

5



J. Phys. D: Appl. Phys. 53 (2020) 425207 D Sun et al

Ta
b
le

1.
X
PS

an
al
ys
is
re
su
lts

of
C
1s

pe
ak
s
fo
r
di
ff
er
en
tA

uN
P/
M
W
C
N
T
na
no
co
m
po
si
te
s
[1
7]
.

Sa
m
pl
es

C
di
s

C
=

C
C
-C

C
-O

H
C
-N

C
-O

C
=

O
O
-C

=
O

Pl
as
m
on

π
-
π
∗

pH
2

B
E
(e
V
)

Fr
ac
tio

n
(%

)
28
3.
82

±
0.
05

1%
28
4.
43

±
0.
05

37
.7
0%

28
5.
00

±
0.
05

18
.8
6%

28
5.
43

±
0.
05

18
.2
6%

28
5.
94

±
0.
05

11
.1
9%

28
6.
78

±
0.
05

4.
72
%

28
7.
43

±
0.
05

2.
37
%

28
8.
33

±
0.
05

2.
14
%

28
9.
44

±
0.
05

3.
71
%

pH
7

B
E
(e
V
)

Fr
ac
tio

n
(%

)
-

28
4.
44

±
0.
05

8.
35
%

28
5.
02

±
0.
05

17
.0
5%

28
5.
42

±
0.
05

20
.6
0%

28
5.
81

±
0.
05

23
.5
1%

28
6.
38

±
0.
05

10
.4
4%

28
7.
18

±
0.
05

5.
85
%

28
7.
76

±
0.
05

2.
92
%

28
9.
09

±
0.
05

11
.2
8%

pH
12

B
E
(e
V
)

Fr
ac
tio

n
(%

)
-

28
4.
43

±
0.
05

6.
65
%

28
5.
00

±
0.
05

5.
24

28
5.
62

±
0.
05

8.
63
%

28
6.
03

±
0.
05

16
.0
5%

28
6.
52

±
0.
05

23
.5
2%

28
7.
03

±
0.
05

19
.9
8%

28
7.
97

±
0.
05

7.
85
%

28
9.
88

±
0.
05

11
.8
7%

6



J. Phys. D: Appl. Phys. 53 (2020) 425207 D Sun et al

Figure 5. Photothermal response of water, MWCNT, 0.1 mM
AuNP-pH2, and AuNP/MWCNT-pH2 nanocomposite under the
irradiation of 455 nm laser (1 W) for 15 min.

obvious change is the relative increase of oxygen containing
bonding (e.g. C-O, C = O, C-OH), which may be because
less [AuCl4]- species were available as the reaction in equation
(4) progressed towards higher pH, and there is less interaction
between the [AuCl4]- species and the CNT oxygen containing
surface functions.

The Au 4f core peaks of each sample are compared in
figure 4(a) and the peak of AuNP/MWCNT-pH12 has been de-
convoluted, see figure 4(b). It can be seen that all Au3+ were
successfully reduced to Au0 state when the initial solution pH
was adjusted to pH 2 and pH 7. However, residual Au3+ is
present in the AuNP/MWCNT-pH12 sample. This may be due
to the higher the pH suppressed hydrogen peroxide production
[28], and hence the inhibited reaction (3).

Our previous work demonstrated that the AuNP/MWCNT
nanocomposites possess enhanced photothermal conver-
sion under the NIR laser (852 nm) irradiation [17].
AuNP/MWCNT-pH2 nanocomposite demonstrated the best
controlled AuNPsmorphologies and the most uniform particle
distribution along the CNTs. Other samples with clear sign
of agglomeration may not be ideal for the proposed potential
applications. In this work, PiNE synthesized AuNP/MWCNT-
pH2 nanocomposites was selected as a typical sample and its
response under irradiation of a 455 nm blue laser was invest-
igated to demonstrate the potential of our nanocomposite in
photothermal conversion in response to light with different
wavelengths. The increase in temperature (∆T) from room
temperature serves as an indicator of the heat transfer from
nanostructures to the surroundingmedia. As shown in figure 5,
when exposed to 455 nm laser, both the MWCNT and 0.1 mM
AuNP solutions exhibit a similar ∆T (~15 ◦C) after 15 min
irradiation. In contrast, AuNP/MWCNT-pH2 shows a much
higher ∆T (21.5 ◦C in 15 min). This result has demonstrated
the capability of our as synthesized AuNP/MWCNT to con-
vert light at a shorter wavelength into heat, which may enable

its different applications such as solar thermal applications,
etc [29, 30].

AuNPs and CNTs have been widely reported for applica-
tions in the field of healthcare technology, such as drug deliv-
ery [31, 32], cancer therapies [33, 34] and bio-sensing [35, 36]
etc. AuNP/CNT nanocomposites are likely to offer combined
functionalities/advantages of both AuNPs and CNT, and hence
may enable a wider range of biomedical applications. Since
the cytotoxicity is a major concern for application of nano-
materials in biological settings, we evaluated the cytotoxicity
of a typical nanocomposite sample (0.1 mM AuNP/MWCNT-
pH2) using established cell viability testing protocols. 0.1 mM
AuNP and MWCNT solutions have been used as references,
see figure 6. Results confirm that all samples tested presented
no significant cytotoxicity against HeLa cells after incubation
for 24 h (figure 6(a)), 48 h (figure 6(b)), and 72 h (figure 6(c)).
In addition, the AuNP/MWCNT demonstrates better biocom-
patibility comparing to pure AuNP and MWCNT, respect-
ively, suggesting potential future applications in the biomed-
ical field.

In conclusion, we have investigated the effects of pre-
cursor pH on the formation AuNP/MWCNT nanocompos-
ites synthesized by PiNE and the role of solution chemistry
on the nanocomposites formation mechanisms has been elu-
cidated. Our AuNP/MWCNT has demonstrated photothermal
response under 455 nm laser irradiation and has shown min-
imal cytotoxicity when deployed against Hela cells. This work
has offeredmore insights into NP formation under multi-phase
(gas, plasma, CNT, AuNP, water) interaction under different
precursor pH conditions. The work has also pointed to the pos-
sibility of the as synthesizedAuNP/CNT nanocomposites for a
wide range of applications in biomedical, solar thermal applic-
ations as well as stimulation of thermoresponsive material.
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Figure 6. In vitro cell viability of HeLa cells after incubation with different solutions (MWCNT, 0.1 mM AuNP, and 0.1 mM
AuNP/MWCNT) for 24, 48, and 72 h, respectively. One-way ANOVA followed by Dunnett’s multiple comparisons test. ∗∗∗∗ p < 0.0001.
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