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Abstract
Optical emission spectroscopy from a small-volume, 5 µl, atmospheric pressure RF-driven
helium plasma was used in conjunction with partial least squares-discriminant analysis for the
detection of trace concentrations of methane gas. A limit of detection of 1 ppm was obtained
and sample concentrations up to 100 ppm CH4 were classified using a nine-category model. A
range of algorithm enhancements were investigated including regularization, simple data
segmentation and subset selection, feature selection via Variable Importance in Projection and
wavelength variable compression in order to address the high dimensionality and collinearity of
spectral emission data. These approaches showed the potential for significant reduction in the
number of wavelength variables and the spectral resolution/bandwidth. Wavelength variable
compression exhibited reliable predictive performance, with accuracy values >97%, under more
challenging multi-session train—test scenarios. Simple modelling of plasma electron energy
distribution functions highlights the complex cross-sensitivities between the target methane, its
dissociation products and atmospheric impurities and their impact on excitation and emission.

Keywords: methane detection, optical emission spectroscopy, atmospheric pressure plasma,
partial least squares, machine learning

(Some figures may appear in colour only in the online journal)

1. Introduction

Gas identification and in particular the detection of trace
levels of molecular components in gases has gained increas-
ing attention in many fields from atmospheric pollution and
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climate change monitoring to industrial safety [1] and breath
analysis for clinical diagnosis [2]. There are a number of
established techniques including mass spectrometry (MS) [3],
gas chromatography [4] optical spectroscopy, electrochem-
ical [5], solid-state and optic fibre [6], that have inspired the
development of a wide range of technologies in each cat-
egory. Laser absorption and spectroscopic detection meth-
ods such as non-dispersive IR absorption (NDIR) or Raman
have allowed limits of detection (LOD) in the low ppm to
ppb range to be achieved. Improvements in, for example,
mid-IR quantum cascade laser technology and photoacoustic
detectors will enable continued reduction of LOD. Among the
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spectroscopic techniques, tuneable diode laser IR absorption
spectroscopy (TLDAS) and atomic emission spectroscopy
ICP-AES are well-established and routine laboratory tech-
niques. Apart from improving LOD and increasing the num-
ber of target species, there is a major drive towards system
miniaturisation and cost reduction in order to achieve field
deployable gas detection capability e.g. for rapid and con-
tinuous environmental monitoring via autonomous distrib-
uted networks or point of care clinical breath screening. For
example, methane is a high priority greenhouse gas with strin-
gent targets for reduction, including reducing CH4 emissions
from e.g. landfill, oil and natural gas industries [7–10]. Field
deployment of high-resolution detectors and remote autonom-
ous monitoring is a major priority yet remains elusive due to
the very high system cost [10]. This has inspired the search
for high accuracy miniaturised systems. The ARPA-E (US)
MONITOR programme has funded development of various
technology strands including compact IR spectrometry, com-
pact MS, hollow-core optic fibre and low cost printed nanoma-
terials [11].Methane is also an important breath biomarker and
detection of trace CH4 levels is a major challenge. Recently
Dong et al reported a compact trace CH4 detection system
based on TLDAS with distributed feedback interband cascade
lasers in a 5 l volume package [12]. However, these compact
systems remain costly when considered for autonomous field
deployment. Detector arrays based on high porosity and high
surface area nanomaterials have been proposed as a low-cost
electronic nose platform for breath and environmental ana-
lysis. High sensitivity has been achieved when coupled with
machine learning [13] but systems struggle with lifetime, spe-
cies interference and cross-sensitivity (e.g. temperature and
humidity) [14, 15]. The use of plasmas as atomic and molecu-
lar sources for optical emission spectroscopy (OES) and MS
has a long history, with the ICP-AES technique being the most
popular. Samples in the form of liquid or solid particles are
introduced into the hot plasma resulting in vaporisation or
evaporation, excitation and ionisation and provide either the
photons for OES or ions for MS [16]. Low pressure glow dis-
charge plasmas and laser induced breakdown spectroscopy are
typically employed to produce OES species from solid sur-
faces.

Recent progress in the design and control of miniaturised
atmospheric pressure plasmas systems has encouraged their
application to new research fields such as e.g. plasma-based
medicine, agriculture, gas reforming, catalysis, advanced nan-
omaterials and environmental pollution control [16–18]. The
associated plasma devices are of simple construction, small,
low cost and operate at atmospheric pressure and at low tem-
peratures. They can also provide high intensity light emission
and therefore have the potential to act as an optical emis-
sion source for trace gas detection. Hyland et al first repor-
ted plasma OES with machine learning for trace gas detection
and recognition, using spectra from a range of trace volatiles
fed into neural networks [19]. Weagant et al investigated the
use of a low power atmospheric pressure Ar–H2 microplasma
and portable spectrometer to detect trace metal impurities.
Liquid samples were dried then electrothermally vaporised

into the plasma. Simple spectra resulted, dominated by low
excitation energy lines. However maintaining reproducible
line intensities and limiting background emission was diffi-
cult [20]. Similar trace metal detection in liquid has been
demonstrated using RF-excited glow discharge emission spec-
troscopy at atmospheric pressure [21]. Here the sample is dried
and then ablated by a plasma operating at gas temperature up
to 1500 ◦C. The observed spectral variability was up to 28%.
Atmospheric pressure plasmas in contact with water and com-
plex liquids have been investigated for rapid, lower cost and
low power analytical atomic spectrometry of metals [22–26].
High plasma densities (>1020 m−3) [27] and relatively high
gas temperatures (600 K–1100 K) are involved [27, 28] and
mechanisms depend on liquid evaporation and droplet forma-
tion while the inclusion of organic species can enhance emis-
sion or produce volatile species containing the elements for
detection [29].

While trace metal detection by miniaturised plasmas may
offer low cost portable alternatives to ICP-AES, the trace
gas detection of molecular and complex volatile constitu-
ents represents a much greater challenge since microplasma
emission spectra are very complex, individual lines are weak
and poorly resolved, especially for non-equilibrium low tem-
perature (NELT) plasma devices. High resolution OES of
NELT plasmas containing molecular mixtures is often used
to fit observed to simulated spectra in order to determine
internal plasma parameters such as gas rotational and vibra-
tional temperatures [30] as well as electron temperature and
density [31]. We have carried out such analysis on similar
plasma devices to that used here [32, 33]. However with
objectives such as portability, low cost, field deployability
and possible autonomous operation, the intrinsic complexity
of the spectra and the temporal variation in plasma condi-
tions under uncontrolled conditions need to be considered.
Using design constraints and operating parameters that main-
tain low gas temperatures (<50 ◦C), e.g. for breath analysis
or managing safety concerns with flammable gases, adds fur-
ther noise and complexity to spectra. Knowledge of NELT
plasma chemistry is very limited and generating accurate sim-
ulated spectra for molecular gases and mixtures, especially
at trace concentrations below 100 ppm, is not feasible. This
coupled with the use of low-cost limited resolution spectro-
meters presents a major impediment to accurate detection and
to date, the use of OES with NELT plasmas to determine
the trace molecular constituents of a gas has not been con-
sidered. Kudryavtsev et al used a current probe technique
integrated into a helium microplasma, for CO2 gas analysis
via collisional electron spectroscopy. This involved measure-
ment of the high energy portion of the electron energy distri-
bution function (EEDF) to determine He metastable reactions
with impurities. CO2 detection at concentrations ⩾500 ppm
was achieved. However the plasma was operated below atmo-
spheric pressure [34]. Recently, we demonstrated the feasib-
ility of using OES to detect the presence of methane above
threshold values in the low ppm range using a helium NELT
plasma jet coupled with spectral analysis via machine learning
techniques [35].
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Spectral data is often used to help determine the con-
stituents of materials and can consist of, for example, meas-
ured values of radiation or mass intensity at fixed discrete
wavelengths or mass values, respectively. Chemometric and
machine learning techniques have been applied where spec-
tral discrimination is problematic [36]. The interpretation
of optical spectra, from UV to far IR, depends on the
experimental approach and the instrument resolution. Thus
with absorption spectra, the concentration of a target spe-
cies may be directly related to measured intensity through
the Beer–Lambert Law. For emission spectra, a relationship
between concentration and intensity, at a specific wavelength,
is only possible when the system is in local thermody-
namic equilibrium, in which case it is determined from the
Boltzmann distribution which relates excited state densities
to that of the ground state. High temperatures are therefore
required to obtain measurable emission intensities. For the
low temperature emission spectra used here, thermodynamic
equilibrium is not established and spectral data consist of a
large number of lines where there is little a priori information
about expected line strength and significance. Intensity values
will follow a complex non-linear relationship with concen-
tration. Line broadening via intrinsic or instrumental effects
will create data values around each peak which may be highly
correlated and redundant and/or merge peaks from differ-
ent excitation states and species. Important molecular gases,
including hydrocarbons such as methane, generally have mul-
tiple but weak lines in the UV–Vis–NIR region which often
overlap with spectral lines from plasma carrier gases, such as
helium or argon, and impurities. Furthermore, the introduction
of molecular gases into a plasma can affect parameters such
as electron density and temperature which in turn modify line
intensities of atomic and impurity gases (e.g. O2, N2 and H2O
dissociation products).

In order to cope with such complexity, we focus on devel-
oping machine learning algorithms for analysis of NELT
plasma emission spectra which can handle the challenges
of high dimensionality, where the number of variables
(wavelengths) greatly outnumbers the sample count, nonlin-
earity, redundancy, collinearity, where individual peaks bleed
into multiple nearby data points, and multimodality [37].
Recently, we developed a number of algorithmic approaches
based on partial least squares-discriminant analysis (PLS-DA)
to characterise reflectance spectral data from portable optical
and infra-red systems under uncontrolled and variable field
conditions [37–41]. Algorithm performance was also com-
pared with traditional laboratory-based absorption spectra.
Emission spectra, by contrast, display a much larger number
of sharp well-defined peaks with a wide range of intensities
and thus the algorithmic challenges are heightened. Recently,
machine learning approaches have been investigated in an
attempt to solve critical unresolved challenges in real-time dia-
gnostics and control of cold atmospheric pressure plasmas.
These include monitoring vibrational/rotational temperatures
and the effects of changing substrate properties on plasma con-
ditions [42, 43], and to determine the electron energy probabil-
ity function solely from optical emission spectra [44]. Using a
coplanar high-voltage AC plasma and spectral analysis based

on convolutional neural networks, Wang et al demonstrated
detection of methanol and acetone in real-time for concen-
trations above 1487 ppm and 3439 ppm respectively [45].
In this work, we seek to extend our initial feasibility study
[35] to identify impurity species at different and lower con-
centrations using multi-categorical models. Emission spectra
from methane in helium mixtures, with concentrations from
0 to 100 ppm, were obtained from a low cost portable NELT
plasma device. The gas mixtures also contained trace impur-
ities from air and H2O of unknown concentration. Machine
learning models based on PLS-DA were investigated, using a
range of training and test protocols, along with a number of
data manipulation and feature selection approaches in order to
maximise performance.

2. Experimental methods

CH4–He spectra were obtained from an RF-excited
(13.56 MHz) plasma formed in a quartz capillary between
two exterior ring electrodes (separation 5 mm) while helium
was used to sustain the plasma, figure 1. The 0.7 mm (ID)
capillary outlet was a large distance (∼100 cm) from the
plasma to minimise atmospheric impurity back-diffusion. The
systemwas initially conditioned to remove background impur-
ities from the capillary walls, using repeated daily exposure
to a 100% argon plasma, over 21 days, followed by isolation
and continuous exterior IR heating of the capillary. A two-
stage mass flow-controlled gas network was used to dilute
methane gas (purity 99.95%) in the carrier gas (He, purity
99.9995%). Two mass flow controllers (MKS, Model 1179 C,
precision 0.05% FSD) were used to deliver up to 0.005 SLM
of He–CH4 mixture at a concentration of 100 ppm into a pure
He flow up to 0.05 SLM. The overall specified precision at
1 ppm CH4 was ±1%. The set concentration error included
manufacturer specified flow meter error (±1% FS) and gas
supplier (Buse International) specified CH4 in He mixing
accuracy (±5%). The maximum deviation from set concentra-
tion was +30.9% / −26.8% and the absolute deviation values
are shown in figure 1(b). The gas temperature, measured in a
similar plasma system, remained below 30 ◦C [46].

CH4–He data was collected in two separate datasets, where
dataset A comprised 523 samples in nine CH4 concentration
categories (0, 1, 2, 4, 6, 12, 23, 77, 100 ppm) and dataset B
comprises 720 samples in eight (0, 1, 2, 4, 6, 23, 77, 100 ppm)
CH4 concentration categories. Spectra in the wavelength range
194 nm–1122 nm (interval 0.25 nm) were obtained using
an Ocean Optics HR4000CG-UV-NIR spectrometer (optical
resolution <1.0 nm, slit width 5 µm), with a total of 3648
wavelength points recorded. Spectral mean intensity versus
wavelength from 0 ppm, 2 ppm and 100 ppm CH4 sample sets
are shown in figure 2(a). Spectral change with concentration is
indicated in difference plots, figure 2(b) while intensity change
between samples is indicated by the relative standard deviation
at each wavelength, figure 2(c). The main spectral lines are
listed in table 1 in rank order of intensity at 0 ppm CH4 and
intensity values relative to the intensity of the largest peak at
588 nm are indicated. Using spectral intensity data, species
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Figure 1. (a) NIBEC RF capillary plasma system operated with He
carrier gas at atmospheric pressure. The electrode gap was 5 mm
and the internal diameter of the capillary was 0.7 mm, (b) Set
concentration deviation due to flow meter specified error and
supplied gas mixing accuracy.

involved in specific transitions are listed [47, 48]. Impurity
lines, representing species derived from air (N2, O2, N, O)
and water dissociation (OH, H), are noticeable with intensities
up to 20% of the maximum. The C2 (Swan) vibrational bands
around 516 nm are only visible at concentrations ⩾77 ppm.
The only other detectable lines that may be attributed to CH4

fragmentation are the CH(A–X) band at 388.90 nm which
overlaps with the He line at 388.86 nm and possibly N2 lines at
389.46 nm. The integrated line intensity taken over the range
388 nm ±3 nm exhibits an approximately constant value at
low concentrations, suggesting that CH (A–X) emission may
not be significant until 77 ppm, where the intensity is notice-
ably enhanced [35]. The Hα line intensity at 656.56 nm, which
may derive from H2O dissociation and/or CH4 fragmenta-
tion, varied approximately linearly with CH4 concentration
and at ⩾77 ppm was greater than that of the main He line at
588 nm [35].

Figure 2. (a) Mean spectra from samples with 0 ppm, 1 ppm and
100 ppm CH4, truncated to the wavelength range 300 nm–800 nm,
(b) Difference plots of 1 ppm CH4–0 ppm and 100 ppm
CH4–0 ppm. The inset shows the difference around 588 nm for
1 ppm CH4 and indicates the effect of misalignment as a contributor
to the observed difference. (c) % relative standard deviation
(SD/mean) for 0 ppm and 100 ppm spectra.

3. Computational methods

The overall objective is to develop an algorithmic solution
to the task of recognising an unknown spectrum as a mem-
ber of one category. In an exploratory search, the raw data
was subjected to various pre-processing steps. These included
Standard Normal Variation, normalization, baseline correc-
tion, auto scaling and noise reduction. Initially, we looked
briefly at the performance profile of four different algorithmic
approaches (PLS-DA, k-nearest neighbour, support vector
machine coupled with principal component analysis (SVM-
PCA), linear discriminant analysis (LDA)) using the Receiver
Operating Characteristic curve, figure 3, for a single category
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Table 1. Main OES peaks of CH4–He listed in rank order of
intensity as observed for 0 ppm CH4 except for features around
516 nm which are only observed at ⩾77 ppm CH4. The peak
wavelengths have been rounded to nearest integer values. The
relative intensity column values are calculated with respect to the
maximum peak intensity (588 nm) at 0 ppm CH4. The species
column lists the attributed species and for those wavelengths with
overlapping species peaks, the species are listed in order of expected
intensity.

Rank
Peak wave-length

(nm) Relative Intensity Species

1 588 1.00 He
2 706 0.79 He
3 667 0.21 Impurity, He
4 778 0.10 Impurity
5 389 0.08 He, CN, N2, O2

6 336 0.05 Impurity
7 728 0.04 He, impurity
8 656 0.03 H
9 415 0.02 He I

Selected peaks of intensity rank >9 or which only appear for
CH4 ⩾ 77 ppm

516 — C2 Swan
309 — OH
431 — CH

Figure 3. Comparison of Receiver Operating Curves (ROC) for
four algorithms (PLS-DA, wKNN, SVM-PCA and LDA) applied to
pure He spectra.

(0 ppm CH4). As we previously found with infra-red spectra
[37, 39] the PLS-DA algorithm shows the best ability to dis-
tinguish spectral data from any two groups. For example, in
this case distinguishing 0 ppm CH4 concentration from those
⩾1 ppm CH4, the area under curve was >98% for PLS-DA
while LDA [49] showed the poorest classification at 64%. Both
weighted k-nearest neighbour [50] and SVM-PCA [51, 52]
show intermediate performance.

Table 2. Protocols for implementation of algorithm training,
evaluation and testing.

Protocol Description

1 Model training and cross-validation using
dataset A

2 Model training and cross-validation using
dataset B

3 Datasets A and B merged. Model training and
cross-validation using merged A + B data

4 Model trained and cross-validated using
dataset A. Model testing using dataset B

PLS-DA is a classification derivative of PLS regression
and is considered a useful algorithm for building predictive
models in cases where there is both a large number of para-
meters and factors which are highly collinear and has been
used regularly in the analysis of chemometric data. A Vari-
ance Inflation Factor (VIF) greater than ten indicates harm-
ful data collinearity and a reason for concern and almost all
CH4–He spectra data display VIF values >10 [53–56]. PLS
models the relationship between an input matrix (X) and an
output matrix (Y), to develop an N-dimensional hyperplane
in the input X space that is related as closely possible to the
output response matrix Y. PLS-DA searches for linear com-
binations of independent (predictor) variables, namely latent
variables (LV), that maximize the covariance between the lat-
ent variable and the response. Furthermore, where the Y data
measurements can be classified into different independent cat-
egories, i.e. trace gas concentrations, the algorithm is capable
of setting separate and simpler models for each Y category.
PLS-DA is implemented using the SIMPLS algorithm in
Matlab [57].

Models were constructed using nine output categories for
dataset A and eight for dataset B. Initially, model perform-
ance was evaluated using four different protocols as listed
in table 2. Protocols 1–3 represent within individual or com-
bined session evaluations while Protocol 4 uses one dataset
for training and the other for testing. In each protocol, the
ratio between training and validation samples is 50%–50%.
With cross validation, different subsets of the data are used
for training and testing and the accuracy of model prediction
with unseen test data is determined. This procedure is repeated
with different data subsets to provide an estimate of average
prediction accuracy and the root mean square error (RMSE)
[58]. The Leave One Out Cross Validation (LOO-CV) proced-
ure uses all samples but one as the training set, the remain-
ing sample acting as the blind test. This procedure is repeated
until all samples are used as test and the mean accuracy and
RMSE are returned. The PLS-DA algorithmwas tested using a
model set, where each individual model was constructed using
1–15 latent variables. LOO-CV approach was applied to each
model to acquire an estimate of the model accuracy versus the
number of LV used to build the model [58]. We investigated
a number of enhancements to the PLS-DA analysis, detailed
below, in order to evaluate and improve algorithm prediction
accuracy.
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3.1. Regularisation

Model overfitting, whereby the high accuracy obtained in
model training is not replicated in the test phase can often
be reduced using standard regularisation techniques whereby
a penalty term is introduced to constrain some of the model
regression coefficients [59–61]. Three common algorithms
were investigated, namely Lasso, Ridge and Elastic Net. Lasso
regularisation (L1 norm) forces the sum of the absolute value
of the regression coefficients to be less than a fixed valuewhich
in turn forces some coefficients to zero, removing them from

the model and its penalty term can be written as λ
p∑
j=1

|βj|

where λ is the regularization parameter that determines how
much the model’s flexibility should be penalized and βj is the
regression coefficient. In contrast, the penalty term for Ridge

regularisation (L2 norm) can be defined as λ
p∑
j=1

β2
j resulting

in all coefficients being regularised equally but with a much
smaller number of coefficients set to zero. Elastic net creates
a linear combination of the L1 and L2 regularisation penalties
by adding a quadratic, i.e. Ridge, penalty to that of Lasso with
a constant α determining the relative weights and is given by

λ

(
(1−α)

2

p∑
j=1

β2
j +α

p∑
j=1

|βj|

)
[62].

3.2. Data segmentation

To investigate the impact of data redundancy and the large
number of data variables on model prediction, each original
dataset of 3648 variables (wavelengths) was split into M sub-
sets, each containing N variables. For a given M, N and LV,
models were then built for each data subset and accuracy
compared. This was an exploratory task with the objective of
providing qualitative insight into how spectral characteristics
may affect predictions and hence a systematic variation of M,
N and LVwas not carried out. It is an informal approach which
compares different individual subset models unlike interval
PLS which performs an exhaustive search and then adds sub-
sets sequentially to the model.

3.3. Variable importance in projection (VIP) Selection

The relative importance of each input variable in modelling
the output response can be determined from the VIP scores.
These measure the contribution to the model of each predictor
variable, j, by accounting for the covariance between Xi and yi,
where i is the ith latent variable, as expressed by the calculated
PLS weights (Wi,j)2 in (1) [63, 64],

VIPj =

√√√√∑n
i S

2 (y, ti)(
Wij

wi
)
2(

1
m

)∑n
i S

2(y, ti)
(1)

wherem is the total number of predictor variables, n is the total
number of latent variables and s2 (y, ti) is fraction of y variance
defined by latent variable i. Subsequent revised models can

then be generated using a reduced set of input variables whose
VIP scores are above a given threshold. A common approach
assumes a threshold greater than 1, which is the average of the
squared VIP scores, thereby selecting variables with an above
average contribution to the model.

3.4. Peak width compression

From [35] we have found that data in regions around spectral
peaks makes the most important contribution to the simplified
binary classification. Also the model accuracy was found to
be very sensitive, in some conditions, to peak measurement
misalignment due to spectrometer jitter. This misalignment
caused peaks in similar samples to appear up to a few vari-
able units away from its nominally true value and is interpreted
by the model as separate variables. To counter this, the vari-
able values of a number of major peaks were established as
references and spectra subjected to alignment shifting. How-
ever the required shift was non-linear and the existence of reli-
able reference peaks below 500 nm could not be guaranteed for
all conditions. Therefore an alternative approach was investig-
ated. Where the underlying optical transition is expected to be
a line transition at a single wavelength subject to instrumental
broadening, each measured peak spans a range of wavelengths
due to the low resolution and inherent jitter of the spectro-
meter. Therefore in this approach the observed broad peak,
over a wavelength range∆λ, is compressed to a single intens-
ity value by summing the intensities over ∆λ. This value is
then assigned to a single wavelength variable. The remaining
variables within ∆λ are then discarded from the model. This
procedure is carried out on each peak of intensity greater than
a set threshold (100) for each category using the Savitzky-
Golay (SG) algorithm for data smoothing and peak finding.
This method aims to remove correlated variables around a
peak while assigning their summed intensity to the single peak
variable and also avoiding the issue of misalignment.

4. Results

Multi-category PLS-DA models were constructed from
He–CH4 spectra with varying CH4 concentrations up to
100 ppm, using the full 3668 wavelength variable set over
a range of LV values for each of the protocols in table 2.
Using cross-validation (CV) the model accuracy range for
each LV was determined and results are given in figure 4. As
expected, accuracy improves with LV and tends to saturate for
LV >8. While the outcomes for protocols 1 and 2 are similar,
the accuracy is lower when both datasets are merged, protocol
3. With protocol 4 the test data is obtained from a different
session to that of the training data and the outcome is a poor
classification accuracy across all LV values. With the addi-
tion of regularisation, the penalty factor, λ, was determined
from ten-fold CV of the least absolute shrinkage and selection
operator (LASSO) algorithm. The variation in mean square
error (MSE) with λ is given in figure 5 with λmin = 10−2.25

at the lowest MSE. However implementing either LASSO
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Figure 4. Comparison of PLS-DA accuracy versus the number of
model latent variables for four protocols given in table 2. Error bars,
representing the RMSE values at each latent variable, are of similar
size to symbols for LV >5 and are excluded for clarity.

Figure 5. Mean square error (MSE) versus the LASSO penalty λ
from ten-fold CV. The minimum cross-validated MSE occurs at
λ = 10−2.25 (red line) while the sparsest model with low MSE
occurs at λ = 10−2.

or Ridge regularisation with λ from λmin to 10−2, where the
sparsest models are formed, resulted in limited improvement
in accuracy. The LASSO regularisation identified a subset of
275 wavelength variables, from the original ∼3600, for use
in the model. While this indicates a high degree of variable
redundancy, over 30% of the selected variables were from
the long wavelength range (>800 nm) which is featureless and
highlights the likelihood of noise amplification as a by-product
of the penalty term.

Figure 6. (Upper) Subset model accuracy for 36 subsets with ∼100
wavelength variables each. Vertical lines indicate subset boundaries.
Accuracy values are given for training samples (red) and test
samples (blue). (Lower) Original spectrum example.

Table 3. Wavelength ranges of the top five test model accuracies
and their relation to the spectral peak height ranking.

Subset No.
Wavelength
Interval (nm)

Subset
Accuracy %

Peak
Intensity rank

15 562.64–588.47 91.33 1
13 511.02–536.73 92.58 2
5 300.62–327.10 92.49 3
11 458.86–484.71 91.89 4
16 588.47–614.23 90.15 5

An exploration of the regions of the spectra important to
model accuracy was undertaken via data segmentation into
M subsets, each containing N wavelength variables. M sub-
set models were constructed using protocol 2 and an LV value
of 15. In figure 6 the accuracy is compared for each subset
model for both training and test data, where M is 36 and N is
∼100. Overall the outcome shows a degree of overfitting that
is most pronounced in the featureless regions at long and short
wavelengths, while the lowest degree of overfitting occurs in
the wavelength range 300.62 nm–327.10 nm. The best subset
model accuracy was observed for subsets in the wavelength
range 511.02 nm–536.73 nmwith accuracy 92% similar to that
achieved from full variable models (95%). The wavelength
ranges of the top five test model accuracies correlate well with
the highest spectral peaks, table 3.

However this level of accuracy was not maintained when
train and test followed protocol 4. The accuracy was found to
fall considerably for all subsets with a maximum accuracy of
60% observed, figure 7.

Full wavelength variable models were further analysed by
calculating the VIP scores to determine the relative contribu-
tion of each variable. For the simplest case of pure He, the
scores versus wavelength plot, figure 8, shows the highest VIP
scores occur at spectral peaks. However the rank of the scores
does not match the peak intensity rank, table 4 i.e. the intens-
ities of spectral peaks are not necessarily a good indicator of
value to the model. Note, the VIP wavelengths do not exactly
match the original peak values as the latter were rounded to
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Figure 7. Subset model accuracy for 36 subsets with ∼100
wavelength variables each. Comparison between Protocol 1 and
Protocol 4.

Figure 8. VIP scores for whole spectra in pure He. The red
diamonds highlight 14 VIPs with score ⩾8. Each VIP corresponds
to a single wavelength value.

indicate spectral variability. Selected VIPs are therefore asso-
ciated with their nearest wavelength peak reported in table 1.
In the case of VIP rank 6 (391.7 nm), this is associated with
original peak labelled 389 nm, which is a broad peak likely
reflecting a main He line and other, much smaller, impurity
features (CN, N2, O2).

To create VIP feature selected models, an arbitrary VIP
score threshold was chosen to balance the need for a man-
ageable number of scores with the probability of including
those most appropriate. For a threshold value of NVIP > 8,
14 spectral peaks are selected in four wavelength regions,
namely (a) 336.61 nm, (b) 587.18–588.21 nm, (c) 656.30–
656.82 nm and (d) 706.31–707.33 nm. A set of 14 reduced
feature count PLS-DA models (9 LVs, Protocol 1) was cre-
ated using ±10 wavelength variables around each of the 14
VIP-selected peaks and their accuracy compared in figure 9
(lower).

With VIP feature selection, an accuracy of 88% is achiev-
able using only 20 wavelength variables over a very restricted
wavelength range. This compares to 92% accuracy achieved

for the full model comprised of >3600 wavelengths. While
there appears to be no relationship between VIP height and
resultant model accuracy, figure 9 (inset), a trend of increasing
accuracy is apparent for sets containing the higher VIP scores,
figure 9 (lower). To further reduce the number of features, we
selected the peaks corresponding to the highest scores from
each of four sets and built PLS-DA models (2, 3 or 4 peaks,
±10 wavelength variables per peak with 9 LVs). This resul-
ted in an increase in accuracy to 99%, figure 9 (upper). A fur-
ther set of models were created for a number of VIP selected
peaks (9 LVs,±10 wavelength variables) with the training and
testing carried out via Protocol 4. As occurred with data seg-
mentation subset models, the accuracy fell significantly, with
a maximum of 45%, figure 10.

While regularisation, data segmentation and VIP-related
models reduced the wavelength variable count considerably
(to 275, 100, and 20 respectively), only a limited number of
variables are removed when using a peak width compression
approach. After SG smoothing, all spectral peaks above an
arbitrary threshold height (100) are selected for compression,
figure 11. Overall, the total number of wavelength variables
is reduced from the original 3668 depending on the extent of
peak broadening e.g. for 6 ppm 3328 variables remain and
3300 for 100 ppm.

The outcome of peak compression showed slight improve-
ment in accuracy over results for protocols 1 and 2, figure 4,
but for protocol 4 a significant increase in accuracy was
observed, figure 12, reaching ⩾97% for 8 LVs.

5. Discussion

Using PLS-DA classification applied to low resolution UV—
visible range optical emission spectra derived from plasma
excitation, we have demonstrated the ability to detect the pres-
ence of methane down to concentrations of 1 ppm and to label
sample concentrations up to 100 ppm. Simple application of
PLS-DA in protocols 1 and 2, with limited pre-processing,
shows the capability of this algorithmic approach in develop-
ing accurate multi-categorical models based on high dimen-
sionality spectral data. As expected, the accuracy increases
with increasing number of latent variables used, levelling
off in accuracy (>90%) for LV ⩾ 10. However the poten-
tial for overfitting of spectral data is obvious from protocol
3 where the mixed session data shows a fall in accuracy, for
a given LV, compared to protocols 1 and 2. In protocol 4,
the training and test data were from entirely different ses-
sions presenting a much more realistic and stringent challenge
which the algorithm failed to handle satisfactorily. These relat-
ively simple plasma devices along with portable spectrometers
inevitably produce highly variable output. Within a single ses-
sion, relative standard deviation (RSD) values for pure He can
be >10%, which increases to∼30%with added CH4. Machine
learning algorithms and associated pre-processing or enhance-
ments offer the opportunity to directly negate the effect of this
variability on predictive accuracy. They also offer the oppor-
tunity to gain further insight into underlying mechanisms to
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Table 4. Comparison of VIP scores rank with peak intensity rank for pure He spectra.

VIP Rank VIP wavelength VIP score Peak Intensity Rank Species

1 706.8 15.36 2 He
2 587.7 12.41 1 He
3 656.8 10.55 8 H
4 336.6 8.00 6 Impurity
5 778.2 7.97 4 Impurity
6 391.7 6.92 5 He, CN, N2, O2

7 516.5 5.54 > 9 C2 Swan
8 309.9 3.41 > 9 OH
9 431.4 3.25 > 9 CH
10 668.1 3.24 3 Impurity, He

Figure 9. Lower: Accuracy of 14 reduced feature count PLS-DA
models, each based on ±10 wavelength variables around single
spectral peak centred at wavelengths where VIP scores >8. Models
were trained and tested according to Protocol 1 with 9 LVs. Upper:
Accuracy of three reduced feature count PLS-DA models, each
based on ±10 wavelength variables around 2, 3 or 4 spectral peaks
centred at wavelengths where VIP scores >8. Models were trained
and tested according to Protocol 1 with 9 LVs. The two-peak model
(peaks c, d) uses VIP determined peaks at 707.07 nm and
656.56 nm, while three and four peak models use peaks (b, c and d)
and (a, b, c and d) respectively. Inset:Model accuracy versus VIP
height.

help improve issues such a plasma hardware, operating pro-
cedures and auto-filtering of data to allow progress to more
complex sensing scenarios.

The data challenges faced in this work highlight one of
the main practical difficulties with high dimensionality data.
With a relatively small number of samples, models overfit
to the training data and have reduced generality. The stand-
ard regularization approaches used here were unable to over-
come the overfitting issue directly and appeared to penalize
the data to the extent that featureless regions of the spectrum

Figure 10. Accuracy of 6 reduced feature count PLS-DA models,
each based on ±10 wavelength variables around single spectral
peaks centred at wavelengths (336.6 nm, 587.2 nm, 587.4 nm,
587.7 nm, 588.0 nm, 706.6 nm) where VIP scores >8. Models were
trained and tested according to Protocol 4 with 9 LVs and compared
with Protocol 1.

became primary predictors in the model. Our data segmenta-
tion approached showed that by reducing the number of pre-
dictor (wavelength) variables from ∼3600–100 resulted in
limited loss in model accuracy for protocols 1 and 2. This was
observed for a number of subset models across the wavelength
range 300 nm to 600 nm. However, even with such a reduced
variable number, overfitting is still a significant factor and
application of the approach using protocol 4 was unsuccessful.
Nevertheless, reduction of variable count has been shown to
be important not only for data analysis but may also allow use
of lower specification and narrower range spectrometers, with
implications for reduced cost. There is considerable scope in
exploring the data segmentation approach further using mul-
tiple segment models and variable window sizes. Using VIP
scores to reduce the variable count further, with models con-
taining only 20 variables at single peaks, also resulted in high
prediction accuracy for protocol 1 but much lower predictive
success for protocol 4. This again indicates the prevalence of

9
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Figure 11. Spectrum of He–CH4 (100 ppm) sample before (red) and
after (blue) peak compression in the wavelength interval
270 nm–500 nm.

Figure 12. PLS-DA accuracy versus LV using peak compression
and trained/tested under Protocol 4, in comparison with accuracy
obtained from uncompressed peaks.

overfitting even though the number of wavelength variables is
small compared to the number of samples. In contrast, the peak
compression procedure has provided the greatest predictive
success with regard to protocol 4 with accuracy values >97%,
an outcome as good as that obtained from Protocol 1. By redu-
cing the multiple correlated wavelength variables around each
spectral peak to a single variable, the effect of overfitting has
beenminimized. Also, since the compressed peakwavelengths
are the same for each sample, the issue of spectrum misalign-
ment is no longer a concern. Including segmentation and/or
VIP selection with peak compression offers routes for consid-
eration with more complex gas mixtures.

VIP score calculation is a technique by which the PLS-DA
can report the significance of each individual variable
(wavelength) to the model predictions and as such provides
direct physical insight into the primary plasma factors under-
lying the model. By definition, the average VIP score is one
and is often used as a significance threshold. However, in order

to restrict the wavelength priority list to a manageable number
we used a high threshold value (VIP > 8), producing a list of 14
wavelengths. Analysis of the full variable (>3600) count mod-
els using VIP indicated, as expected, that the primary contrib-
utors to models were located at the spectral peaks. However,
the spectral peak height ranking did not necessarily follow the
ranking of theVIP scores.Within this list of top tenVIP scores,
the top two represent the highest peaks from He emission,
while of the remainder, five can be attributed to hydrogen,
nitrogen or oxygen related impurities, with relatively small
peaks, and two to carbon-based species.

The nature and impact of chemical species on the algorithm
prediction is important on two counts. If the algorithm were
to be dependent solely on He peaks, then the applicability of
the technique with other plasma gases, e.g. Ar, N2 or air, is
unclear. A dependence on hydrocarbon impurity peaks may
imply a high degree of CH4 dissociation which could hamper
attempts to differentiate different hydrocarbons. With the dis-
covery of non-CH4 impurity emission as a significant factor
in the VIP score list, it is possible however that prediction
depends on CH4—induced changes to the overall plasma. As
is observed with molecular gases in general, we would expect
collisions with low-energy electrons to result in vibrational
excitation of the molecule while the absorption of these elec-
trons may lead to change in the EEDF sufficient to affect the
emission of all species. The development of suitable plasma
chemistry models is severely hampered by the limited rate
coefficient and cross-section data for many of the possible
reactions and the lack of experimental plasma parameter val-
ues. Nevertheless, it is worthwhile assessing the potential sig-
nificance of both CH4 dissociation and non-CH4 impurity
impact on EEDF.

Given the likely complexity of the plasma chemistry along
with the limited spectrometer resolution, multiple species
assignment to a single emission line is possible and while
knowledge of the underlying chemistry would be valuable,
it is not currently available. In Vincent et al, we discuss the
possible He–CH4 chemistry at trace methane levels and its
impact on emission spectra [35]. Molecular CH4 has no emis-
sion lines in the wavelength range 200 nm–1100 nm. How-
ever we observe small features around 431 nm and 389 nm
which can be attributed to CH emissions from the A2∆→X2π
system [65] and the (0,0) band of the B2Σ¯→X2π system,
although the 389 nm peak also represents emission from the
He transition (1s2s–1s3p) [48]. These features are weak and
the variance is relatively large, nevertheless there is a trend of
increasing intensity with CH4 concentration. The Hα line at
656.28 nm is present in all spectra but becomes the domin-
ant peak at CH4 concentrations above ∼40 ppm. At low CH4

concentrations the dissociation of H2O may be the primary
source of Hα; observed peaks around 310 nm are likely due
to OH(A–X) emission [33]. From high resolution humidity
measurements of the plasma source gas, we estimate H2O con-
tent between 10 ppm and 500 ppm in our pure He plasmas.
Emission due to C2 Swan vibrational bands around 516 nm
appears at concentrations above 77 ppm. These correspond to
transitions between the d3πg (2.48 eV) and a3πu (0.09 eV)
electronic states and indicate the final hydrogen abstraction
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endpoint from CH4. CH emission normally dominates over
C2 emission in hot methane flames or plasmas [66] since the
latter derives fromC2Hy species which in turn are produced by
heavy particle collisions betweenmethane radicals, e.g. dimer-
isation reactions between CH and CHx [66]. These reactions
are often exponentially dependent on gas temperature, with
thresholds typically >1000 ◦C [65]. Therefore CH4 dissoci-
ation and emission from CxHy fragments (x: 0 → 2, y: 0→ 4)
can be expected to make some contribution to PLS-DA
models.

The presence of H2O, N2 and O2 impurities and their asso-
ciated radicals also lead to additional emission features. For
example, a persistent peak around 336 nm can be attributed
to N2 rotational and vibrational molecular bands. To estim-
ate the effect of CH4 or CH4 plus some dissociation frag-
ments on pure He emission with or without molecular impur-
ities, we calculated the EEDFs of different mixtures using a
Boltzmann solver [67] along with the available cross-sections
for CH4, some related CH4 dissociation reactions [68] as well
as those for H2O,N2 andO2 [69]. Calculated rate equations for
CH4 elastic collisions are similar to those of helium and given
the trace level CH4 concentrations, the calculated electron
energy loss due to He elastic collisions remains unchanged
on the introduction of trace gases. We observed no change
in absorbed power as CH4 is added to the helium plasma. In
figure 13(a), the impact of CH4 (1 ppm) and impurities (H2O
500 ppm, O2 10 ppm, N2 10 ppm, and H 10 ppm) on the
pure He EEDF can be observed. The addition of CH4 tends
to increase the high energy tail of the EEDF with this effect
decreasing as the concentration reaches 100 ppm,

Figure 13(b). However, atmospheric impurity species have
almost the opposite effect of decreasing the higher energy
regions of the EEDF. Nevertheless, the addition of CH4

(1 ppm) to He with impurities included tends to negate this
effect, figure 13(c), and the high energy tail increases. The
impact of CHx dissociation species on EEDF also shows a
complex relationship with concentration. While EEDFs for
He–CH4 (100 ppm) and He–CH4 (0 ppm) are almost indistin-
guishable, the presence of 10 ppm CHX in He–CH4 (100 ppm)
leads to a significant decrease in EEDF between mean elec-
tron energies of 4–13 eV before rising again at higher ener-
gies, figure 13(d). For example, the impact of this change in
EEDF on the He emission (1s3d→1s2p, 587.56 nm) is illus-
trated by the variation in calculated rate coefficients for the He
1s3d excitation, figure 13(e). The rate coefficient is very sens-
itive to the mean electron energy (ε), falling sharply around
2 eV before increasing up to 10 eV. Using an expected value
of ε = 2 eV, the calculated reduction in rate coefficient is
∼32%. Experimentally the observed reduction in the He emis-
sion (1s3d→1s2p, 587.56 nm) peak is 35%–40% with the
addition of 100 ppm CH4. The analysis of EEDF variation
due to the inclusion of trace impurities and hydrocarbons has
limited direct predictive capability at this stage due to a lack
of information on plasma chemistry at atmospheric pressure
and cross-section details for a large number of potential reac-
tions. Nevertheless, even with small quantities of impurities
or hydrocarbons, the change in EEDF is noticeable. This is

Figure 13. (a) EEDF plots for He, He + CH4 (1 ppm), He + H2O
(500 ppm) + N2/O2 impurities (10 ppm), (b) ratio of EEDF vs
energy with addition of CH4 to the EEDF of He (0 ppm), (c) change
in impurity to helium EEDF ratio with the addition H2O (500 ppm)
to He (black), with addition of H, N2 and O2 impurities to He–H2O
(500 ppm) (blue), and with the addition of CH4 to He–H2O/H/N2/O2

(red), (d) change in EEDF ratio with the addition of CH4 and CHx

(x: 0→3) to He, (e) variation in the ratio of rate coefficients for the
He 1s3d excitation in He and in He + CH4/CHx (100 ppm/10 ppm).
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expected since a high rate of vibrational/rotational excitation
occurs in molecular gases as well as dissociation, at energies
well below those of pure noble gases. Overall, with the object-
ive being trace gas detection, we observe spectral changes
due to additional impurity and hydrocarbon peaks as well as
changes to the primary He peaks, due to impurity and hydro-
carbon induced EEDF modification. According to the prior-
ity VIP list, the latter is a significant factor in the algorithm
operation.

6. Conclusion

We have demonstrated the capability of using OES from a
small-volume (5 µl) atmospheric pressure plasma, coupled
with PLS-DA spectral classification algorithms, to detect the
presence of methane down to concentrations of 1 ppm and to
label sample concentrations up to 100 ppm. This compares
well with portable NDIR systems [10], which deliver LOD
values above 50 ppm, and low cost chemi-resistive sensors
which represent the most commonly deployed technology
[70]. The ability to detect CH4 and assign a concentration
classification offers scope for higher resolution classifications
which will be valuable for diagnostics, online monitoring of
trends and developing advanced warning capabilities. Nev-
ertheless, future plasma emission sensor devices will also
need to handle increased levels of matrix gases including air
and other hydrocarbons and will require further development
of algorithms and plasma sources. We have investigated
a number of algorithm enhancements including regulariz-
ation, simple data segmentation and subset selection, VIP
feature selection and wavelength variable compression. All
these approaches showed the potential for significant reduc-
tion in the number of wavelength variables and the spectral
resolution/bandwidth—an important technological considera-
tion. However only wavelength variable compression exhib-
ited reliable predictive performance under the more challen-
ging multi-session train—test scenarios. Nevertheless, there
is still considerable scope for fine tuning the application of
single and multiple enhancements. Gaining some understand-
ing of plasma—gas interactions, their appearance in spectra
and their interpretation by classification algorithms is import-
ant for algorithm enhancement when faced with a wide array
of options. Although knowledge of radical species densities
and their cross-sections is very limited, modelling the impact
of chemistry on plasma conditions has illustrated the complex
cross-sensitivities in the excitation of noble gas, impurities,
target CH4 and its dissociation fractions. The discovery that
trace impurity species variation, other than in the target gas, is
a significant factor in algorithm prediction indicates that suc-
cessful operation can be possible independent of the choice of
plasma gas.
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