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Optimization of direct-detection quantum illumination
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Quantum illumination uses quantum correlations to improve the detection of objects in the presence of
background noise. A simple and common practical approach to quantum illumination is to use threshold detectors
to measure the idler mode. We investigate the optimization of these direct measurement protocols. Surprisingly,
we find that there can be an advantage to having a signal detector whose quantum efficiency is significantly
less than perfect, one that does not vanish for low object reflectivities or signal strengths. We also show that
decreasing the separation between pulses, while keeping the rate of photons transmitted per second fixed, can
improve the performance, under appropriate conditions. We further show that postselecting on the idler detector
firing is less efficient at object detection than not postselecting.
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I. INTRODUCTION

Quantum correlations have long been of fundamental
importance [1,2] but with the development of quantum in-
formation, quantum correlations form the basis of many
applications such as sensing [3,4], quantum imaging [5],
teleportation [6], and quantum key distribution [7,8]. One
promising application is quantum illumination, which pro-
vides an advantage for detecting objects in the presence
of background noise [9–12]. Normally, to detect an object
against background light, the intensity of the signal must be
increase to compensate. However, this is not always possible.
For instance, the object of interest might be fragile, or laser
safety might limit the signal intensities. Another possibility is
that one wants to detect an object covertly, in which case the
signal’s intensity should be lower than that of the background
[13–15]. In each of these examples, quantum illumination can
be used to detect an object without requiring a high signal
intensity.

Quantum illumination exploits correlations in intensity be-
tween two optical modes, often called the signal and idler. One
can generate correlated twin beams by using nondegenerate
spontaneous parametric down-conversion (SPDC) [16–18].
One of the beams, the signal, is transmitted to the target
region, where an object may or may not be present, but
from which emanates bright background light. If an object
is present, then some of the signal light will be reflected
to the detection system. Alternatively, if there is no object,
then only background light is detected. These two cases can
be distinguished more easily using the intensity correlations.
In the early quantum illumination protocols [9,10], a joint
measurement on the idler and signal modes was proposed to
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provide close to optimal detection [10]. However, this mea-
surement is difficult to achieve in experiments [19,20]. This
has motivated the exploration of experimentally simpler ap-
proaches. One common approach is to use threshold detectors
to measure the idler mode and then transmit the signal mode
to the target [14,21–26]. Any reflected light is measured by
another threshold detector. This measurement is not optimal
and does not yield the 6 dB quantum advantage over optimal
classical schemes [10]. Nevertheless, using this approach has
been shown to give an advantage compared with transmitting
single-mode coherent states [15,26]. Other types of protocol
exist, such as using multiple idler detectors [26], using ran-
dom coherent states to mimic quantum illumination [15], and
jamming resistant protocols [14,27].

The performance of direct detection protocols depends on
environmental parameters, which we cannot control, together
with system parameters, which we can change. Examples of
system parameters are the mean number of signal photons, the
efficiencies of the idler and signal detectors, and the spacing
between pulses. We have examined the effects of changing
each of these system parameters, with the aim of optimizing
the performance of the protocol. One parameter that we can
control easily is detector efficiency, the probability that a
single photon causes a detector to fire. Better technology can
improve efficiency, but we can always make it worse via at-
tenuation. Surprisingly, we find that, under certain conditions,
the optimal efficiency for the signal detector is less than one.

There are other ways in which one could try to improve the
performance of the protocol. For instance, suppose we keep
the rate of transmitted signal photons per second constant.
One can then investigate whether we improve the performance
of the protocol by using pulses of shorter duration and shorter
separations, where each pulse has fewer photons per pulse. We
find that using more frequent and shorter pulses with fewer
photons per pulse does help to improve the performance of
direct measurement illumination. Finally, we analyze proto-
cols that postselect on the idler detector firing. We argue that
postselection does not improve the performance even if one
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neglects the increased time required to acquire postselected
data.

The outline of the paper is as follows: In Sec. II we de-
scribe direct measurement illumination, before introducing an
analytic criterion for its evaluation. This criterion is then used
in Sec. III to show that, under appropriate conditions, using
unequal detector efficiencies can improve quantum illumina-
tion. The size of this effect is determined both analytically for
a single experimental shot and by performing Monte Carlo
simulations for multiple shots. In Sec. IV we analyze quantum
illumination protocols in terms of the number of photons
transmitted. Using this approach, we find that using pulses
with fewer photons, but with shorter separations, can improve
the effectiveness of quantum illumination. We also investigate
the effects of postselection. Finally, we discuss our results in
Sec. V.

II. DIRECT MEASUREMENT QUANTUM ILLUMINATION

We start by outlining the particular quantum illumination
scheme we are investigating. This protocol replaces the com-
plex joint measurement of the idler and signal modes proposed
in many schemes [10,11,20,28,29], with separate measure-
ments on each mode. As such, we call it a direct measurement
protocol. This type of protocol has been demonstrated ex-
perimentally [14,21,22]. The use of separate measurement
is, however, nonoptimal. In particular, the protocol does not
provide a quantum advantage over the all possible classical
protocols. Nevertheless, direct measurement protocols have
been shown to have an advantage over using coherent states
[15,26].

Direct measurement protocols requires a state with quan-
tum intensity correlations between two modes such that when
one mode is brighter than average, the other one is also. An
example of such as state is a two-mode squeezed vacuum
(TMSV) state [30]

|�〉I,S = 1√
1 + n̄

∞∑
n=0

(
n̄

1 + n̄

)n/2

|n〉I |n〉S, (1)

where n̄ is the mean photon number in each mode, |n〉 is an
n-photon Fock state, and the subscripts I and S respectively
denote the idler and signal modes. This state has perfect
photon number correlations and can be produced to a good
approximation by a nondegenerate SPDC source [13,16–18].
The average unconditioned state in the signal (or idler) mode
is provided by tracing over the idler (or signal) mode and
is a thermal state with mean photon number n̄ [31,32]. The
interbeam correlations ensure that measurements of the idler
mode will condition the state of the signal mode. The con-
ditional state can have an enhanced mean photon number,
depending on the measurement outcome. However, due to the
no-signaling theorem [33], the averaged state of the signal
mode is still a thermal state with mean photon number n̄. This
is important when covertness is required as it means that on
average, the signal mode has the same photon statistics as the
background [13].

The TMSV state is not the only two-mode state with
perfect photon number correlation. An alternative is to
use the mixed state ρ̂IS = (1 − λ)

∑
n λn|n, n〉IS〈n, n|, where

FIG. 1. A diagram illustrating direct detection illumination.

λ = n̄/(1 + n̄). The reduced state for the signal mode is a
thermal state with mean photon number n̄, the same as for the
TMSV state. Similarly, the conditional states are found to be
the same as for the TMSV state, which are given in Eq. (A5)
and (A8) of Appendix A. All of the results we present for
the TMSV state would be the same if one used the mixed
state ρ̂IS . For the sake of definiteness, we outline the protocol
using the TMSV state (1). One interesting feature of both the
TMSV and the mixed state is that the state of the signal mode
conditioned on detecting photons in the idler mode, given in
Eq. (A8) of Appendix A, can display sub-Poissonian photon
statistics when n̄ is low [26,34]. Furthermore, both the TMSV
state and the mixed state have been shown to exhibit sub-
Poissonian photon statistics in experiments [35]. This holds
even if one uses single-photon detectors [36]. Additionally,
the conditional state of the signal mode given in (A8) violates
Klyshko’s criterion for nonclassicality for all values of n̄ [37].
Both the TMSV and the mixed state are thus nonclassical.

We consider the experimental setup shown in Fig. 1. The
idler and signal detectors are inefficient threshold detectors
with efficiency ηI and ηS , respectively. The target object is
modeled by a beam splitter with reflectivity

√
κ . The thermal

background is accounted for by injecting a thermal state with
mean photon number n̄B/(1 − κ ) into the other input port
of the beam splitter so that no matter what its reflectivity,
the background mean photon number that is emitted from
the target is n̄B. In the absence of signal photons, this will
be the mean number of photons incident on the signal detec-
tor. The threshold detectors are both described by POVMs,
where for a detector with efficiency η the POVM element
corresponding to the detector not firing is �̂0(η) = ∑

n(1 −
η)n|n〉〈n| and the POVM element for the detector to fire is
�̂1(η) = 1̂ − �̂0(η). The no-fire POVM corresponds, in the
Copenhagen interpretation, to collapse of the idler state onto
the thermal state of mean photon number (1 − η)/η [38]. For
unit efficiency this provides measurement in the vacuum state,
but poorer detection efficiency provides collapse onto states
of increasingly higher mean photon number. Dark counts
within the signal detector can be taken account of within the
background using the method outlined in Ref. [15]. In pulsed
systems the idler detector can be gated so as to reduce dark
counts to such an extent that they can be neglected.

The performance of quantum illumination for optimal mea-
surements is determined using the Helstrom bound and the
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quantum Chernoff bound [10,39,40]. For direct measurement
illumination, the measurement data must be analyzed us-
ing an appropriate statistical method [23,41]. We consider a
Bayesian approach because it allows one to easily incorpo-
rate any prior information that exists for whether an object
is present within a given target location. However, here we
consider only equal initial priors for all examples, i.e., P(O) =
P(Ō) = 1/2, where O denotes object present and Ō means
no object. The reason for this is that we want to evaluate the
performance of the protocols in the situation where we have
no additional information.

In total, we transmit N copies of the TMSV state. We
assume the copies are temporally separated into distinct time
bins. This could be achieved experimentally by using a pulsed
laser to pump a nonlinear crystal, but it is not strictly necessary
because appropriate time bins can be defined for a cw source
via an appropriate detection window at the idler detector. The
parameters n̄ and n̄B are taken to be the mean number of
photons per time bin. Within each time bin, we have measure-
ment results for the idler and signal detectors. These detection
probabilities are calculated in Appendix A. For the TMSV the
probability for the idler detector to not register a click in one
shot is

PI (0) = 1

1 + ηI n̄
, (2)

and the probability for it to fire is PI (1) = 1 − PI (0). When
there is no object present, the detection probability for the sig-
nal detector is independent of the idler detector. In this case,
the probability for the signal detector to not fire is PS (0|Ō) =
1/(1 + ηSn̄B) and the probability to fire is PS (1|Ō) = 1 −
PS (0|Ō). When an object is present, we denote the detection
probabilities for the signal mode as PS (s|O), where s ∈ {0, 1}.
In this case, the results for the signal mode are not independent
of the idler measurement result and we must consider the
joint probability PIS (i, s|O), where i, s ∈ {0, 1}. The form of
the joint probability is rather long and thus we only state
PIS (0, 0|O) and the marginal probability PS (0|O) (see Ap-
pendix A for more details),

PS (0|O) = 1

1 + ηS (κ n̄ + n̄B)
,

PIS (0, 0|O) = 1

1 + ηI n̄ + ηS[n̄B + ηI n̄Bn̄ + (1 − ηI )κ n̄]
.

(3)

Let �r denote the set of measurement outcomes after mea-
surements on r time slots. After each measurement, we use
Bayes’ rule to update the posterior probability for the object
to be present:

P(O|�r )

= PIS (ir, sr |O)P(O|�r−1)

PIS (ir, sr |O)P(O|�r−1) + PIS (ir, sr |Ō)P(Ō|�r−1)
.

(4)

To evaluate the performance of the protocol, we perform a
Monte Carlo simulation. This entails generating a random
set of measurement outcomes that on average satisfy the cal-
culated measurement probabilities when either the target is

FIG. 2. A plot of the single copy averaged posterior probability
for an object to be present, P (O), plotted against n̄. The solid black
line is for ηI = ηS = 0.9, κ = 0.1, and n̄B = 3.0; the dashed black
line is ηI = ηS = 0.9, κ = 0.1, and n̄B = 2.0; the solid red line (gray
offline) is ηI = ηS = 0.9, κ = 0.05, and n̄B = 2.0; and the dashed red
line (gray offline) is ηI = ηS = 0.5, κ = 0.1, and n̄B = 3.0.

present or not and then calculating the posterior probability
for the object to be present. The results are then averaged
over multiple runs; for more details see Refs. [15,26]. This
approach shows the utility of the Bayesian approach, which
becomes more apparent for multiple pulses for which the
subsequent pulse priors are altered by earlier measurement
results.

Suppose one is interested in the relative change in per-
formance when a parameter is altered, i.e., does varying a
parameter make the performance better or worse? We could
evaluate this without a full Monte Carlo simulation; instead
one can consider the average behavior of P(O|i, s) for one
copy of the TMSV state, N = 1. The averaged posterior prob-
ability is

P (O) =
∑
i,s

PIS (i, s|O)P(O|i, s)

=
∑
i,s

PIS (i, s|O)

[
1 + PS (s|Ō)

PS|I (s|i, O)

]−1

, (5)

where P(O|i, s) is found from Eq. (4), PIS (i, s|O) is given in
Eqs. (3) and (A10), and PS|I (s|i) is the conditional probability
defined in Eq. (A7) of Appendix A. The quantity P (O) is a
function of the parameters: n̄, ηI , ηS , κ , and n̄B. However,
the parameters κ and n̄B are determined by the environment
and are beyond our control. In contrast, we can control the
source intensity, n̄, and we should have some control over the
efficiencies ηI and ηS . Equation (5) can be used to optimize the
protocol by exploring the effect of changing these parameters.
These effects will be small, as we are only working with one
copy of the state. The changes in probability from the prior
value of 0.5 will be tiny. However we see that they accrue
with the number of copies (pulses) to provide measurable and
significant differences.

To provide a basic understanding of how changing each
parameter affects P (O), we plot Eq. (5) in Fig. 2 against n̄ for
various different values of κ , n̄B, ηI , and ηS . The solid black
curve corresponds to ηI = ηS = 0.9, κ = 0.1, and n̄B = 3.0;
the dashed black curve is ηI = ηS = 0.9, κ = 0.1, and n̄B =
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FIG. 3. A plot of the single copy averaged posterior probability
for an object to be present, P (O), plotted against (a) ηI and (b) ηS .

2.0; the solid red (gray offline) curve is ηI = ηS = 0.9, κ =
0.05, and n̄B = 2.0; and the dashed red (gray offline) curve is
ηI = ηS = 0.5, κ = 0.1, and n̄B = 3.0. As expected, we see
that increasing n̄ improves the performance of the protocol.
We also see that decreasing the detector efficiencies from 0.9
to 0.5 has an effect, but in relative terms, this is not as strong
an effect as decreasing either n̄B or κ . For example, the dashed
black curve (n̄B = 2.0) reaches the value of P (O) ≈ 0.50014
at n̄ = 1.0, while the solid black curve (n̄B = 3.0) requires
n̄ = 1.85, almost double the mean photon number. We also
see that halving κ has an even stronger effect.

III. IMPROVING QUANTUM ILLUMINATION VIA
DETECTOR MISMATCH

Intuitively, one would expect that the optimal performance
of a quantum illumination system would occur for ηI = ηS =
1, i.e., for perfect detectors. This idea can be tested using
Eq. (5). In Fig. 3(a) we plot P (O) as a function of the idler
detector efficiency ηI . The solid black line corresponds to
n̄ = 1.0, ηS = 0.9, κ = 0.1, and n̄B = 3.0; the dashed black
line is n̄ = 1.0, ηS = 0.5, κ = 0.1, and n̄B = 3.0; the solid
red (gray offline) is n̄ = 0.5, ηS = 0.9, κ = 0.1, and n̄B =
2.0; and the dashed red (gray offline) is n̄ = 1.0, ηS = 0.9,
κ = 0.05, and n̄B = 3.0. As expected, we see that increasing
ηI always improves P (O). However, we sometimes see that
the values tend to saturate, so that further improvement can
be incremental. This is not always the case, as the solid red
curve shows. However, when P (O) saturates it tells us that
improving the efficiency ηI will provide only incremental
gains. This is an important observation for the design of
practical quantum illumination systems. We see that, under

FIG. 4. A plot of the probability for the object to be present given
we have transmitted N signals. All curves are for the case where an
object is present and for the parameters: n̄ = 2.0, n̄B = 3.5, ηI = 0.9,
κ = 0.1 and we average over 8000 runs. The solid curve is for ηS =
ηI = 0.9, while the dashed curve is for ηS = 0.28.

certain circumstances, increasing ηI by using better detectors
and improving the mode coupling into the detector, might not
be worth the effort. For example, it is easy to show that for
n̄ = 1.0, κ = 0.1, ηS = 0.9, and n̄B = 3.0, that the values of
P (O) for ηI = 0.8 and ηI = 1.0 agree to six decimal places
[approximately the linewidths in Fig. 3(a)]. A more extreme
example occurs for n̄ = 1.0, κ = 0.05, ηS = 0.9, and n̄B =
3.0, where we again obtain agreement to six decimal places
for P (O) with ηI = 1.0 and ηI = 0.65.

In Fig. 3(b), we plot P (O) as a function of ηS . The solid
black line corresponds to n̄ = 1.0, ηI = 0.9, κ = 0.1, and
n̄B = 3.0; while the dashed black line is for n̄ = 1.0, ηI = 0.5,
κ = 0.1, and n̄B = 3.0; and the solid red (gray in offline
version) line is for n̄ = 1.0, ηI = 0.9, κ = 0.1, and n̄B = 2.0.
Surprisingly, we see that, for each curve, there is a value for
ηS that maximizes the averaged posterior probability. Beyond
this maximum, increasing the efficiency will decrease P (O).
We see that this behavior occurs for different values for ηI

and n̄B. Numerical investigations also show that this behavior
is also found for different values of κ . Nevertheless, there are
parameters for which the maximum of P (O) occurs for ηS =
1.0. For the cases where a maximum does occur for ηS < 1,
one can improve the performance of quantum illumination
by using the optimal value for ηS . Heuristic approaches for
understanding this effect will be presented later. For now, an
important question to address is how great is this improvement
in practice?

To determine the size of this effect for a repeated experi-
ment, we perform a full Monte Carlo simulation for N pulses.
In Fig. 4, we plot the probability for an object to be present
against the number of pulses. In all curves, an object is present
and we average the Monte Carlo simulation over 8000 runs.
Both curves are for n̄ = 2.0, κ = 0.1, n̄B = 3.5, and ηI = 0.9.
The solid curve is for ηS = ηI = 0.9, while the dashed curve
is for ηS = 0.28. The figure shows that using ηI �= ηS can
give a clear improvement in the posterior probability for an
object to be present. For example, we reach a posterior prob-
ability of 0.9 for N ≈ 7700 pulses, while N ≈ 10 500 pulses
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are needed for ηS = ηI = 0.9. Using ηS = ηI = 0.9 required
roughly 36% more pulses to achieve a posterior probability
of 0.9 compared with using ηS = 0.28, a signal detector less
than one third as efficient. The results show a that using the
optimal value of ηS in Eq. (5) can significantly improve the
performance of direct measurement quantum illumination.

The examples provided in Fig. 3 all showed that increasing
ηI increases P (O). Of course, we found that sometimes the in-
crease in P (O) would slow and start to saturate. For practical
purposes, this is important because it allows one to use smaller
values for ηI without a significant decreases in P (O). Nev-
ertheless, we did not find any situation where increasing ηI

would lead to a decrease in P (O). This was checked further by
performing numerical investigations of the derivative of P (O)
with respect to ηI , to see if we can find any stationary points
within the interval ηI ∈ (0, 1]. For the range of parameters n̄,
n̄B ∈ (0, 5], ηS ∈ (0, 1], and κ ∈ (0.001, 0.2], we did not find
any stationary points. Furthermore, we found the derivative
was always positive. This suggests that the optimal choice for
ηI is always unity.

One can understand why choosing ηI = 1 is optimal by
considering the effects of the idler measurement on the state
of the signal mode. An outcome i for the idler measurement
will condition the state of the signal mode to be ρ̂S|i with
probability PI (i), where i = 0 or 1. If there is no object, then
detection probability at the signal is independent of the condi-
tioning. However, if an object is present, then conditioning on
the idler detector will affect the signal mode. For conditioning
to have a strong effect, we want the outcomes to be as distinct
as possible. One way of measuring the distinguishability is

	T = ||PI (0)ρ̂S|0 − PI (1)ρ̂S|1||, (6)

where we use the trace norm, i.e., ||Â|| = 1
2 Tr[(Â†Â)1/2]. This

quantity is related to the minimum error for discriminating
between the two conditional signal states [39]. In Appendix B
we show that for n̄ fixed, 	T is maximized when ηI = 1. We
see that using ηI = 1 leads to signal states that are as distinct
as possible. This optimal distinctness improves the contrast
between states at the signal detector when an object is present
and when we have only background, which should increase
P (O).

The values of ηI and ηS that yield the optimal performance
can be found from (5). The previous discussion suggests that
ηI should equal one. With this assumption, it is possible to
find the maximum of P (O) as a function of ηS analytically,
with all other parameters treated as constants. This is achieved
using elementary calculus, which after some algebra, yields
the result

η
(opt)
S =

√
2n̄B + κ (1 + n̄)

n̄B
[
2n̄2

B + κ n̄B(3n̄ − 1) + κ2n̄(n̄ − 1)
] . (7)

This result gives the optimal value of ηS for use in the direct
measurement protocol. As an example, consider the special
case where n̄ = 1. We find that η

(opt)
S = 1/n̄B, which means

that for n̄B = 3 we find that η
(opt)
S = 1/3.

For certain values of n̄, κ , and n̄B, we find that (7) will
either equal or exceed the value one. In these instances, the
optimal value for ηS is one. We can thus use (7) as a condition
for determining when we can obtain an improvement with

FIG. 5. A plot showing how n̄(min)
B , the minimum value for n̄B for

which η
(opt)
S < 1, varies with n̄ for different values of κ . All plots are

for ηI = 1. The solid black curve is for κ = 0.1, the dashed black
curve is for κ = 0.05 and the solid red (gray offline) curve is for
κ = 0.01.

ηS < 1. This is explored in Fig. 5, were we plot the minimum
value of n̄B for which η

(opt)
S < 1, against n̄, for different values

of κ . The solid black curve is for κ = 0.1, the dashed black
curve is for κ = 0.05, and the solid red (gray offline) curve
is for κ = 0.01. A point on or above these curves shows that
range of values for n̄B such that η

(opt)
S < 1. As such, the curves

show the region in parameter space where an inefficient signal
detector improves performance. We see that as κ decreases,
the curves tend towards a constant value, which is independent
of n̄. This can be seen directly by taking the limit of (7) as
κ → 0, which yields the result that η

(opt)
S = 1/n̄B. All three

curves show that, for sufficiently low numbers of background
photons, the optimal performance occurs when ηS = ηI = 1.
For κ = 0.1, i.e., the solid black curve, we see that increasing
n̄ decreases the minimum number of background photons
needed for η

(opt)
S < 1. This suggests that the key feature in this

phenomenon is the number of photons incident on the signal
detector.

To understand why we sometimes have a maximum in
P (O) for ηS < 1, we investigate further how the protocol
works. An outcome i ∈ {0, 1} for the idler detector conditions
the signal mode to be in the state ρ̂S|i with probability PI (i).
If there were no object present, then the mode incident on the
signal detector would be in a thermal state, σ̂n̄B , with mean
photon number n̄B. Alternatively, when an object is present,
then the state of the signal detector’s mode is

ρ̂S|i,O = Ûκ

(
ρ̂S|i ⊗ σ̂n̄B/(1−κ )

)
Û †

κ , (8)

where Ûκ is a unitary of the beam splitter that describes the
object. To be able to determine if an object is present, we
require σ̂n̄B − ρ̂S|i,O �= 0 for at least one of the conditional
states.

To quantify how difficult it is to determine if an object is
present, we need a quantity that depends on σ̂n̄B − ρ̂S|i,O, such
as the trace distance of this operator. The trace distance is
related to minimum error state discrimination [39]. However,
the signal detector does not perform an optimal minimum
error measurement. As such, we propose a different figure of
merit for quantifying the difficulty in determining if an object
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is present

	 =
∣∣∣∣∣
∑

i

Tr
[
PI (i)

(
σ̂n̄B − ρ̂S|i,O

)
[�̂1(ηS ) − �̂0(ηS )]

]∣∣∣∣∣, (9)

where the term �̂1(ηS ) − �̂0(ηS ) takes account of the fact
that the information gained from the measurement depends
on how different the two measurement operators are. In Ap-
pendix C we explicitly calculate 	 and determine a necessary
and sufficient condition for it to have a maximum for ηS ∈
(0, 1). A maximum only occurs within this interval when
n̄B(κ n̄ + n̄B) > 1, i.e., when the flux of photons is sufficiently
great. In particular, there is always a maximum for ηS ∈ (0, 1)
when the background mean photon number is larger than
unity, whatever the value of the object reflectivity or the signal
field strength. When such a maximum exists, then it occurs at
the value ηS = √

1/(n̄B[κ n̄ + n̄B]). While this is not equal to
(7), it is very close for typical values for n̄ and n̄B that satisfy
the respective conditions for the existence of a maximum.

An alternative way of understanding why a maximum can
occur for ηS ∈ (0, 1) is found by considering the probabilities
PIS (i, s|O) and PIS (i, s|Ō). If these two joint probabilities are
too similar, then it is difficult to determine whether an ob-
ject is present. This is because in Bayes’ rule, the posterior
probabilities P(O|i, s) and P(Ō|i, s) depend respectively on
the joint probabilities PIS (i, s|O) and PIS (i, s|Ō). One can thus
get a qualitative feel for our ability to distinguish if an object is
present by investigating the difference between the two joint
probabilities. This difference can be measured using the L1

distance [42,43]. In Appendix C we calculate the L1 distance
between PIS (i, s|O) and PIS (i, s|Ō). We find that it is the same
as 	 in Eq. (9).

These two approaches both confirm the results shown in
Fig. 5: that a maximum occurs for ηS ∈ (0, 1) only when the
flux of photons on the signal detector is sufficiently high.
Intuitively, if the flux of photons on the signal detector is too
great, then the signal detector will fire very frequently and, if
a target is present, changes in light levels at the signal detector
due to idler conditioning do not affect the signal detector firing
probability very much. A decrease in ηs, while lowering the
probability of detecting a possible signal photon, increases
the information gain when the detector either fires or does
not. The situation is analogous to when ηS is very small. We
find then that the signal detector will fire infrequently, which
makes it difficult to gain information on whether an object is
present. Increasing ηS then improves the situation.

IV. OPTIMIZING PERFORMANCE PER
TRANSMITTED PHOTON

To evaluate the performance of the protocol, we have previ-
ously examined how the posterior probability for an object to
be present grows with the number of pulses. The importance
of the number of pulses is that it is a proxy for the time taken to
identify if an object is present. Let 	T be the time between the
center of each pulse and let τ be the pulse width. If N pulses
are required to achieve a satisfactory level of confidence,
then this corresponds to a time period of N	T . One way of
reducing the time is to use pulses with a shorter separation,
which enables more pulses to be transmitted within the same

time period. If the new pulses have the same mean photon
number, then the number of photons transmitted will have
increased. One would expect that transmitting more photons
should improve the performance. A more interesting question
is whether the performance can be improved without increas-
ing the number of transmitted photons? One approach to this
is to assume that the total number of photons per second is
fixed. Using pulses with shorter separations would then ne-
cessitate a decrease in the mean photon number of each pulse.
We assume that this is achieved by decreasing the pulse width
such that the mean photon number per pulse is decreased. For
example, if we halve the separation 	T , then to keep the rate
fixed, we also halve τ such that n̄/2 signal photons on average
are transmitted in each pulse. The situation is illustrated in
Fig. 9 of Appendix D.

Suppose that we initially use pulses with mean photon
number n̄ and separation 	T such that there are n̄B back-
ground photons per time bin. We replace this with pulses of
separation 	T/m and mean photon number of n̄/m. This is
achieved by reducing the pulse width to τ/m. One can thus
reduce the time that the signal detector is gated on. This
reduction in time will reduce n̄B, the number background
photons detected within the time bin. The number of back-
ground photons in each time bin is now taken to be n̄B/m.
The following analysis does not hold if the pulse width is held
constant, unless we are not gating the detectors. In that case
the mean number of background photons per time bin depends
only on the size of the time bin, which equals the spacing of
the pulses. For more details of this analysis, see Appendix D.

To determine the effect of this, one can look at the posterior
probability averaged over m consecutive time bins, which are
of total length 	T and so still contain on average n̄ photons.
For m = 1, this corresponds to (5), while for m > 1 the aver-
aged posterior probability is

P (m)(O) =
∑
�m

P(�m|O)P(O|�m), (10)

where �m is a possible set of m outcomes for the idler and
signal detectors, and the summation is taken to be over all
possible sets of m outcomes. The number of terms within the
summation in (10) scales as 4m. Evaluating the sum for large
values of m is impractical but can easily be approximated us-
ing Monte Carlo simulations. However, for small values of m
we can analytically evaluate the summation, as we did for the
case of m = 1 in (5). Nevertheless, the number of terms soon
grows and, as such, we use the Mathematica software package
to aid us in this task [44]. Investigating how P (m) depends on
m allows us to determine whether there is an advantage to
using pulses with both shorter widths and separations, even
when the rate of transmitted photons per second is fixed.

In Fig. 6 we plot the averaged posterior probability against
m for different values of n̄/m and n̄B/m. For all plots, κ = 0.1,
ηI = ηS = 0.9, the black line is for the quantum illumination
scheme and the red line (gray offline) is for when we transmit
coherent states with mean photon number n̄/m. In Fig. 6(a)
n̄ = 0.1 and n̄B = 0.1, and in Fig. 6(b) n̄ = 1.0 and n̄B = 3.0.
Both Figs. 6(a) and 6(b) show that, for direct measurement
quantum illumination, increasing m improves the averaged
posterior probability for the object to be present. This shows
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FIG. 6. A plot of the averaged posterior probability for an object
to be present against m, the number of copies of the state. All plots
are for κ = 0.1, ηI = ηS = 0.9, and for the case when an object is
present. Panel (a) is for n̄ = 0.01 and n̄B = 0.1, while panel (b) is for
n̄ = 1.0 and n̄B = 3.0. In both plots, the black curves are for a direct
detection quantum illumination, while the red (gray offline) are for
transmitting coherent states.

that using more pulses gives an advantage, even if doing so
decreases the mean photon number of each pulse. However,
in Fig. 6(a) we see that the rate of increase for the posterior
probability, decreases with m, which leads to P (m)(O) starting
to plateau. This suggests that for given values of the parame-
ters, such as n̄, n̄B, ηI , ηS , and κ , there is a limiting value for
P (m)(O). In practice, if the separation, 	T/m, is too small,
detector jitter will become important and will start to limit
P (m)(O). A more sophisticated analysis is required to find the
trade-off, one in which jitter is included [45].

In both Figs. 6(a) and 6(b), we compare the performance
of quantum illumination against transmitting a coherent state.
We make the same assumption about coherent pulses that both
the width and separation are decreased and that the signal
detector can be gated on for less time so as to decrease the
background. Both plots confirm the previous findings [15,26]
that direct measurement protocols can outperform coherent
states under appropriate conditions. Furthermore, Figs. 6(a)
and 6(b) also show how the posterior probability of coherent
states scales with the mean photon number, n̄/m, of each
pulse. We see that increasing m has either no effect as in
Fig. 6(a) or a very weak effect as shown in Fig. 6(b). This
is in stark contrast to quantum illumination, where increasing
m has a relatively strong effect. This should not be surprising
as previous research has established that direct measurement
quantum illumination schemes work well when the number
of signal photons is much less than the background, but this
is not true for coherent states [15,26]. Increasing m increases

the number of pulses per second, but decreases the number
of photons per pulse. For quantum illumination, this provides
more pulses while keeping us within a regime for which each
pulse still provides information on whether an object is there
or not. In contrast, for coherent states, the increase in the
number of pulses is partially balanced by the decrease in
the information each pulse provides. This idea of information
gained per photon can be made more rigorous, see Appendix E
for a discussion on this topic.

Another way of understanding this is in terms of the signal-
to-noise ratio (SNR). For coherent states, the mean number of
signal photons per pulse is κ n̄/m, while the mean number of
background photons per time bin is n̄B/m, when we match the
detectors temporal window to the pulse width. For this case,
the SNR is κ n̄/n̄B, which is independent of m. This explains
why increasing m does not provide a benefit for coherent
states.

In contrast, for direct detection illumination, the idler con-
ditions the signal to be in one of two different states. The
results of the idler measurement indicates which state was
transmitted and thus we can partition the events into two
different cases, each with different SNR. If we again match
the detector’s temporal widow to the pulse width, then in
both cases, the mean number of background photons per time
bin is again n̄B/m. The first case is when the idler fires.
For m = 1, the conditional mean number of signal photons
is n̄1 = n̄ + (1 + n̄)/(1 + ηI n̄) [26]. In general, the SNR is
κ n̄/n̄B + κ (m + n̄)/[n̄B(1 + ηI n̄/m)], which increases with m.
As m increases, n̄/m will eventually grow smaller, which
makes the SNR approximately κ (n̄ + m)/n̄B. In the limit
where n̄ is very small, the SNR is approximately κm/n̄B. In
each instance we see a clear growth in the SNR with m. The
other case is when the idler does not fire. The SNR is now
κ n̄(1 − ηI )/[n̄B(1 + ηI n̄/m)], which in the limit of n̄/m � 1,
is approximately κ (1 − ηI )n̄/n̄B. The key point is that the
SNR for when the idler fires, grows with m. One can average
together the SNRs for each case. This gives an indication of
the performance of the system if we did not use the idler
information when calculating the posterior probability. When
n̄ � 1, increasing m will eventually lead to a point where the
total probability for the idler to fire becomes small. This will
balance the increase in the SNR when the idler fires. The
observation explains the behavior found in Fig. 6(a), where
n = 0.01. We see a growth in the posterior probability in m,
until the probability starts to flattens out.

Figure 6 demonstrates that increasing the number of pulses,
while keeping the rate of photons transmitted per second fixed,
can provide an advantage in direct measurement based quan-
tum illumination. To quantify how great this advantage is we
again perform Monte Carlo simulations. In Fig. 7 we show
the averaged results of a Monte Carlo simulation with 8000
runs. In particular, we plot the averaged posterior probability
against the mean of the total number of photons transmitted.
All curves are for ηI = ηS = 0.9, κ = 0.1, n̄ = 1.0, and n̄B =
3.0. The solid black curve is for m = 1, the dashed curve is for
m = 2 and the dotted curve is for m = 3. We see that increas-
ing m has a significant effect. For example, to reach a posterior
probability of 0.9 requires approximately 20,200 photons for
m = 1, while only ≈5800 photons are required for m = 2, and
≈2900 photons are needed for m = 3. Recall, that for all three
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FIG. 7. A plot of the averaged posterior probability for an object
to be present the total number of photons transmitted. All curves are
for κ = 0.1, ηI = ηS = 0.9. The solid curve is for m = 1, n̄ = 1.0,
and n̄B = 3.0. The dashed curve is for m = 2, n̄/2 = 0.5, and n̄B/2 =
1.5, while the dotted curve is for m = 3, n̄/3 = 0.33, and n̄B/3 = 1.0.

curves in Fig. 7, the flux is the same, so the horizontal axis is
a proxy for time. If we set our confident detection threshold
at 0.9 then for m = 3 we would detect an object in around
1/7 of the time taken for m = 1. Thus using fewer photons
translates into acquiring the same information faster. Using
less intense pulses with shorter duration, in principle, provides
a clear benefit. In practice, one must be careful not to make m
so great such that detector jitter starts to become the dominant
source of noise.

Why is there such a benefit to increasing the pulse rate
while keeping the intensity constant? There are three effects
at play here but one is dominant. First the probability of the
idler detector firing per unit time increases so that slightly
more signal pulses contain a postselection-increased number
of photons. Against this, when the idler detector fires the
increase in signal photon number is itself marginally smaller,
so these two effects counteract (and both vanish at ηI = 1).
By far the dominant effect is based on the constant rate of
background photons, which means that the background mean
photon number per pulse decreases to n̄B/m. The system now
has the easier task of searching for roughly the same fraction
of postselected signal photons as before, but against an en-
feebled background. The overall result is to provide the better
than 1/m decreases in time taken to reach any imposed object
detection probability threshold in Fig. 7.

If we had decreased the mean photon number per pulse
without also decreasing the pulse width, then n̄B would not
be reduced. In that case the results would be changed. For
example, in Fig. 6(a), if n̄B was unchanged, then black curve,
which corresponds to the direct measurement illumination,
would not increase with m and is flat. In contrast, the red
(gray offline) curve, which corresponds to coherent states,
would decrease with m. The improvement in performance
is thus partially related to the decrease in background. The
background can also be reduced by using mode filtering [29].
However, for direct detection illumination, we have the added
complication that the idler measurement results in two possi-
ble signal states.

FIG. 8. A plot comparing the averaged posterior probability for
the standard protocol and a protocol with postselection. For the post-
selected protocol, we neglect the failure probability. A more realistic
assessment of postselection is found by multiplying the postselected
curve by PI (1). This significantly decreases the postselected curves
such that they are all below the curves for the standard protocol
by such an amount that they would not be visible using the current
axes. All curves in panels (a) and (b) are for κ = 0.1, ηI = ηS = 0.9,
n̄B = 3.0, and for the case where an object is present. In panel (a),
both curves are for the same TMSV state with mean photon number
n̄. In panel (b), the postselected curve is for a TMSV state with mean
photon number n̄, while the standard protocol is for a TSMV state
with mean photon number n̄ + (1 + n̄)/(1 + ηI n̄).

The analysis in this and the previous section involves av-
eraging over all possible measurement outcomes. However, it
is common in many quantum optics experiments to postselect
on a given outcome. For direct measurement illumination, one
could postselect on the idler detector firing. To study the ef-
fects of this, we evaluate the average posterior probability for
N = 1, with postselection. Let P (O|i = 1) denote the average
posterior probability to detect an object given one is present,
when we postselect on the idler detector firing. This is defined
in Eq. (F1) of Appendix F. In Fig. 8(a), we compares the
results of (5) against (F1) for κ = 0.1, ηI = ηS = 0.9, and
n̄B = 3.0 and for an object present. We see that that post-
selection does seem to improve the performance. However,
Eq. (F1) neglects the fact that, on average, order 1/PI (1)
pulses are required for the idler to fire. To take account of the
failure probability, we multiply (F1) by the probability for the
idler detector to fire. The new averaged posterior probability
P (O, i = 1) is defined in Eq. (F2) of Appendix F. By com-
paring (5) with (F2), we can verify that P (O, i = 1) � P (O),
i.e., postselection makes the performance worse. However,
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even if one neglected the cost of postselection, the result in
Fig. 8(a) would still be misleading as the mean photon number
for the postselected protocol is no longer equal to n̄, that of the
TMSV state. Instead, it equals the mean photon number of the
postselected conditional state (A8). In Fig. 8(b) we account
for this discrepancy and find that the nonpostselected protocol
is now superior to postselection, even when we ignore the
postselection probability. For more details, see Appendix F.

V. CONCLUSIONS

We have investigated the optimization of direct measure-
ment based illumination, in which the idler and signal modes
are measured separately using threshold detectors. The perfor-
mance of such a system depends on several system parameters
such as the efficiency of the idler detector, the efficiency of
the signal detector, the mean number of signal photons and
the spacing between pulses. To optimize the protocol, we
examined the effects of changing these system parameters.
This was achieved by deriving a simple analytic expression,
which came from the average performance of the protocol for
a single set of idler and signal measurements.

Surprisingly, we found that, when the background count
probability is high, it can be beneficial to use a signal detector
with efficiency less than one. For example, an efficiency of
0.33 can be optimal for the signal detector when the mean
number of background photons was three per time bin and the
reflectance of the object was 0.1. The size of this effect was
demonstrated by performing a full Monte Carlo simulation for
N measurements. The results show that optimizing the signal
detector efficiency could significantly reduce the number of
pulses needed to determine if a target object is present. Note
that, for a sufficiently bright background, the optimal signal
detector efficiency is less than 1, no matter what the reflectiv-
ity of the target is, nor the mean photon number of the signal
beam. This could be an important result for quantum lidar sys-
tems, for which the effective target reflectivity is often limited
by geometric factors, and for which weak optical nonlinearity
means that TMSV generating systems are inefficient. In con-
trast, we also found that increasing the idler detector efficiency
always improved the performance of the protocol. However,
sometimes the increase in performance would saturate. This
meant that for all practical purposes, a lower value for the idler
detector efficiency would be sufficient.

We also investigated the interplay between the number of
photons vs number of pulses needed to determine if an object
is present. In particular, we considered shortening both the du-
ration and separation of the pulses while keeping the number
of transmitted photons per second constant. This meant that
if we transmitted the pulses more frequently, then the mean
photon number of each pulse would be decreased. We found
that increasing the frequency of pulses does improve the per-
formance of direct measurement based illumination, provided
the one also reduces the gating time of the detectors. This was
in contrast with using coherent pulses, which were found to
either not increase, or increase very slowly before saturating.
The results show that using higher repetition rates for quantum
illumination sources will provide an advantage even if the
total number of photons transmitted is not increased.

Finally, we looked at the effect of postselecting on the
idler detector firing. Provided one neglects the postselection
probability, then postselection was found to improve the per-
formance of the protocol. However, the improvement was
achieved by effectively increasing the mean number of signal
photons per time bin. When this effect was accounted for, then
a comparison of postselected illumination with the standard
protocol showed that the standard protocol performed better.

The results in this paper should help to improve ex-
perimental implementations of direct measurement based
illumination. In particular, Eq. (5) can be used to determine
reasonable values for the idler detector efficiency and the
optimal choice for the signal detector’s efficiency. Our anal-
ysis also points to an advantage in increasing repetition rates,
without the need to increase power. The results thus provide a
framework for the analysis and improvement of experimental
implementations of direct measurement based illumination.
Together with recent experimental such as [14], our work
helps point the way towards the deployment of direct mea-
surement based illumination.
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APPENDIX A: CALCULATION OF DETECTION
PROBABILITIES

In this Appendix we calculate the detection probabilities.
The approach will use the results of Refs. [26] and [15]. A
thermal state with mean photon number m̄ has the form

σ̂m̄ = 1

1 + m̄

∞∑
n=0

(
m̄

1 + m̄

)n

|n〉〈n|, (A1)

The probability for the idler detector to fire is PI (0) =
TrIS[|�〉IS〈�|�̂0(ηI ) ⊗ 1̂]. Taking the partial trace over the
signal mode gives PI (0) = TrI [σ̂n̄�̂0(η)], where σ̂n̄ is a ther-
mal state, which is formed by tracing over the signal mode of
the state (1). A straightforward calculation yields Eq. (2).

Consider now the probability for the signal detector to not
fire. If there is no object present, then we have only the thermal
background incident on the signal detector. The probability
to not register a click is PS (0|Ō) = 1/(1 + ηSn̄B). When an
object is present, then the probability to not register a click is
found using the reduced state for the signal mode, which is a
thermal state with mean photon number n̄. We now prove a
useful result that we use repeatedly in this Appendix.

A general thermal state, with mean photon number m̄, can
be represented in terms of coherent states

σ̂m̄ = 1

πm̄

∫
e−|α|2/m̄|α〉〈α|d2α, (A2)

where |α〉 is a coherent state. Suppose the mode that is inci-
dent on the object, as depicted in Fig. 1, is a thermal state with

052612-9



THOMAS BROUGHAM AND JOHN JEFFERS PHYSICAL REVIEW A 109, 052612 (2024)

mean photon number m̄. Let Ûκ be the unitary of the beam splitter that describes the object. The probability PS (0|O) is

PS (0|O) = Tr
[
Ûκ

(
σ̂m̄ ⊗ σ̂n̄B/(1−κ )

)
Û †

κ 1̂ ⊗ �̂0(ηS )
]

= 1

πm̄

∫
e−|α|2/m̄Tr

[
Ûκ

(|α〉〈α| ⊗ σ̂n̄B/(1−κ )
)
Û †

κ 1̂ ⊗ �̂0(ηS )
]
d2α. (A3)

The trace factor inside the integral is the probability for the
signal detector to not fire, given the input was the coherent
state |α〉. This probability is calculated in Appendix A of
Ref. [15]. Using the previous results we find that

PS (0|O) = 1

πm̄

∫
e−|α|2/m̄ 1

1 + ηn̄B
exp

(−ηκ|α|2
1 + ηn̄B

)
d2α

= 1

1 + ηS[κm̄ + n̄B]
, (A4)

and PS (1|O) = 1 − PS (0|O). A straightforward application of
this result is to calculate PS (0|O) when our input state is the
reduced state of a TMSV. From (A4) we find that P(0|O) =
1/(1 + ηS[κ n̄ + n̄B]).

The joint probability PIS (i, s|O) will be calculated by look-
ing at the case where both the idler and signal detectors do
not fire. The state of the idler mode conditioned on the idler
detector not firing is

ρ̂S|0 = TrI [|�〉IS〈�|�̂0(ηI ) ⊗ 1̂]

TrIS[|�〉IS〈�|�̂0(ηI ) ⊗ 1̂]
= σm̄0 , (A5)

where

m̄0 = n̄(1 − ηI )

1 + ηI n̄
. (A6)

The conditional state is a thermal state with mean photon
number m̄0. The probability for the signal detector to not fire,
conditioned on the idler not firing, is

PS|I (0|0, O) = Tr
[
Ûκ

(
σ̂m̄0 ⊗ σ̂n̄B/(1−κ )

)
Û †

κ 1̂ ⊗ �̂0(ηS )
]

= 1

1 + ηS[κm̄0 + n̄B]
, (A7)

where the second line follows by the same argument that led
to (A4). Using the definition PIS (0, 0|O) = PS|I (0|0, O)PI (0)
and some straightforward algebra, we find that PIS (0, 0|O) is
given by (3).

If instead the idler detector fired, then the signal mode
would be prepared in the state

ρ̂S|1 = TrI [|�〉IS〈�|(1̂ − �̂0(ηI )) ⊗ 1̂]

PI (1)

= 1 + ηI n̄

ηI n̄
σn̄ − 1

ηI n̄
σm̄0 , (A8)

where σx denotes a thermal state with mean photon number x.
A straightforward application of (A4) yields the conditional
probability

PS|I (0|1, O) = 1

ηI n̄

(
1 + ηI n̄

1 + ηS[κ n̄ + n̄B]
− 1

1 + ηS[κm̄0 + n̄B]

)
.

(A9)

The other conditional probabilities can be found us-
ing PS|I (1|0, O) = 1 − PS|I (0|0, O) and PS|I (1|1, O) = 1 −
PS|I (0|1, O). Alternatively, one can use the definitions for the
marginal probabilities: PI (i) = ∑

s PIS (i, s|O) and PS (s|O) =∑
i PIS (i, s|O), to obtain

PIS (0, 1|O) = PI (0|O) − PIS (0, 0|O),

PIS (1, 0|O) = PS (0|O) − PIS (0, 0|O),

PIS (1, 1|O) = 1 − PI (0) − PS (0|O) + PIS (0, 0|O), (A10)

where the last equation follows from PIS (1, 1) =
1 − PIS (0, 0) − PIS (0, 1) − PIS (1, 0). The joint probabilities
PIS (i, s|O) and PIS (i, s|Ō) can now all be evaluated.

APPENDIX B: MAXIMIZING THE DISTINGUISHABILITY
OF THE CONDITIONAL SIGNAL STATES

In this section we calculate (6) and show that, for n̄ fixed,
	T is maximum when ηI = 1. This shows that the conditional
states of the signal mode are most distinguishable when the
idler detector has perfect efficiency, i.e., ηI = 1. Using the
results of Appendix A, in particular Eqs. (A5), (A7), (A8),
and (A9), we find that

PI (0)ρ̂S|0 = 1

1 + n̄

∞∑
k=0

(1 − ηI )kλk|k〉〈k|,

PI (1)ρ̂S|1 = 1

1 + n̄

∞∑
k=0

λk[1 − (1 − ηI )k]|k〉〈k|, (B1)

where |k〉 are Fock states and λ = n̄/(1 + n̄). A straightfor-
ward calculation shows that

	T = ||PI (0)ρ̂S|0 − PI (1)ρ̂S|1||

= 1

2(n̄ + 1)

∞∑
k=0

λk|2(1 − ηI )k − 1|. (B2)

We now consider n̄ to be fixed and aim to maximize (B2) with
respect to ηI ∈ (0, 1]. Note that if ηI = 0, then PI (1) = 0 and
thus we would only have one state prepared; for this reason,
we exclude ηI = 0.

The only place ηI appears in (B2) is |2(1 − ηI )k − 1|. This
vanishes when ηI is x = 1 − (1/2)1/k . We find that, for 0 �
ηI � x, |2(1 − ηI )k − 1| is strictly decreasing. For x � ηI � 1
we find that |2(1 − ηI )k − 1| is strictly increasing. This means
that the maximum of |2(1 − ηI )k − 1| occurs at the endpoints
of the interval 0 � ηI � 1. We see that for ηI equal to zero
or one, |2(1 − ηI )k − 1| = 1, however, ηI = 0 corresponds to
PI (0)ρ̂S|0 = 0. To maximize the distinguishability, 	T , we
want to make |2(1 − ηI )k − 1| as large as possible, which
means we set ηI = 1.

We have proven the desired result; we now examine the
solution. A quick calculation shows that for ηI = 1, 	T = 1/2

052612-10



OPTIMIZATION OF DIRECT-DETECTION QUANTUM … PHYSICAL REVIEW A 109, 052612 (2024)

and the states ρ̂S|0 and ρ̂S|1 have disjoint support and are
orthogonal, i.e., ρ̂S|0ρ̂S|1 = 0. This confirms the mathematical
result that the states are most distinguishable when ηI = 1.

APPENDIX C: CALCULATION OF EQUATION (9)
AND L1 DISTANCE

In this Appendix we calculate equation (9) and the
L1 distance between probability distribution PIS (i, s|O) and
PIS (i, s|Ō). Both of these quantities help us gauge how diffi-
cult it is to distinguish between the situations where there is
no object and when there is an object present.

We start by calculating (9) as a function of the parameters
n̄, n̄B, κ , ηS , and ηI . By expanding out (9) and evaluating the
trace, we find

	 = |[PIS (0, 0) − PI (0)PS (0|Ō)]

+ [PIS (1, 0) − PI (1)PS (0|Ō)]

= [PI (0)PS (1|Ō) − PIS (0, 1)]

+ [PI (1)PS (1|Ō) − PIS (1, 1)]|, (C1)

where we have used the fact that PIS (i, s|O) =
PS|I (s|i, O)PI (i). This expression can be further simplified
using the fact that

PS|I (0|i, O) − PS (0|Ō) = PS (1|Ō) − PS|I (1|i). (C2)

We thus find that

	 = |2[PIS (0, 0) − PI (0)PS (0|Ō)]

+ 2[PIS (1, 0) − PI (1)PS (0|Ō)]|. (C3)

Substituting in Eqs. (A7), (A9), and (A10) from Appendix A;
one can show that

	 = 2κ n̄ηS

(1 + ηSn̄B)(1 + ηS[κ n̄ + n̄B])
. (C4)

Before studying this equation, we calculate the L1 distance.
To determine whether an object is present, we use the

observation data, which is sampled from the probability dis-
tribution PIS (i, s|O) when an object is present or PIS (i, s|Ō)
when there is no object. If these two joint probabilities are the
same, then we cannot determine whether an object is present.
The difference between them thus serves as a proxy for how
easy it is to distinguish between these two alternatives. To
quantify the difference between the probabilities, we use the
L1 distance [42,43],

L1 =
∑

i,s

|P(i, s|O) − P(i, s|Ō)|. (C5)

This quantity can be simplified by recalling that PIS (i, s|O) =
PI (i)PS|I (s|i, O) and PIS (i, s|Ō) = PI (i)PS (s|Ō). We find that

L1 = 2
∑

i

PI (i)|PS|I (1|i, O) − PS (1|Ō)|

= 2
∑

i

PI (i)|PS|I (0|i, O) − PS (0|Ō)|, (C6)

where we have used the identity (C2).
The form given in Eq. (C6) is instructive. When n̄B in-

creases, both PS|I (0|i, O) and PS (0|Ō) will become small.
Decreasing ηS from one causes both PS|I (0|i, O) and PS (0|Ō)

to increase. However, when n̄B is large, the probabilities in-
crease in slightly different ways.

Note that Eq. (C6) equals (C3) when

PS|I (0|0, O) � PS (0|Ō),

PS|I (0|1, O) � PS (0|Ō). (C7)

Physically, these conditions say that adding photons to the
signal mode makes us more likely to detect something. The
first inequality follows immediately by comparing PS (0|Ō) =
1/(1 + ηSn̄B) to (A7). Using (A9) we find that the second
inequality is equivalent to

Y = ηI n̄BC − (1 + ηI n̄)AC + AB � 0, (C8)

where

A = 1 + ηSn̄B,

B = 1 = ηS[κ n̄ + n̄B],

C = 1 + ηS[κm̄0 + n̄B]. (C9)

We can prove this inequality by noting that B � C and thus Y
is lower bounded by

Y � ηI n̄BC − (1 + ηI n̄)AC + AC = CηI n̄
2ηSκ � 0. (C10)

We have thus proven that L1 = 	, and thus the trace distance
is given by Eq. (C4).

An interesting feature of Eq. (C4) is that it does not depend
on ηI . However, from the numerical evaluation of (5) together
with the argument around Eq. (6) and in Appendix B, we
know that ηI = 1 is the optimal choice for the idler detector.
Suppose we keep n̄, κ , and n̄B constant and treat 	 as a func-
tion of ηS . Using elementary calculus, we find that 	 has a
maximum for ηS < 1 when n̄B(κ n̄ + n̄B) > 1. The maximum
occurs at ηS = √

1/(n̄B[κ n̄ + n̄B]). This confirms that when
the total number of photons is high, we should use a value for
ηS which is less than one.

APPENDIX D: EFFECTS OF CHANGING PULSE
SEPARATION AND PULSE WIDTH ON SYSTEM

PARAMETERS

In Sec. IV we looked at the effect of using shorter and more
frequent pulses with lower mean photon numbers, but with
the rate of photons per second fixed. In this section we elab-
orate on this and demonstrate that, while the mean number of
background photons n̄B can decrease, the rate of background
photons is not affected.

Let n̄ be the mean number of signal photons per pulse and
let 	T be the separation between pulses. We separate each
pulse into its own time bin of width 	T . The rate of signal
photons is RS = n̄/	T . Similarly, the rate of background
photons is RB. If we gate the detector on only for the duration
of the pulse, then the mean number of background photons in
each time bin, n̄B, is RBτ . Alternatively, if we do not gate the
detector on, then the background mean photon umber would
be RB	T . Suppose we decrease the width of the pulses such
that the mean photon number per pulse is now n̄/2. To keep
RS fixed, we must decrease the separation between pulses to
	T/2. The situation is illustrated in Fig. 9.

The effect of decreasing the pulse separation from 	T to
	T/2 is to double the pulse repetition rate. To compensate
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FIG. 9. Illustrating the setup for decreasing the width of the
pulses such that the mean photon number per pulses is halved, but
where the photon flux is kept fixed by increasing the rate of pulses.
Panel (a) is the original case, where pulses have width τ , separation
	T and mean photon number per pulses of n̄. Panel (b) shows pulses
with half the width, τ/2 and half the separation, 	T/2. The mean
photon per pulse is now n̄/2, but the rate of photons per second is the
same in panels (a) and (b). Notice that the size of the time bins (the
dotted lines) in panel (b) are half the size of those in panel (a).

we halve the size of the time bins we use for each pulse to
keep the rate of signal photons constant. We first analyze the
situation without gating the signal detector on and off. In this
case, halving the size of the time bin will result in halving
of the mean number of background photons per time bin. If
we originally had on average n̄B background photons per time
bin, then this will be reduced to n̄B/2. Note that the rate of
background photons per second, RB, is unchanged. Altering
the pulse widths, their separation or the time-bin widths can-
not affect the rate at which we receive background photons.
However, changing the size of the time bin does affect the
mean number of photons detected within each one.

In practice, one often gates the signal detector on and off
to reduce the background. The time-duration for which the
detector is gated on will depend on the pulse width τ , although
there may be a minimum possible gating time set by detector
jitter limits. If we had decreased the mean photon number
per pulse while keeping the pulse width fixed, then the mean
number of background photons would have been unchanged.
However, we decrease the pulse width to τ/2, so that the
time the detector is gated on can also be decreased. It is for
this reason that we can take the mean number of background
photons per time bin as reduced to n̄B/2. Again note, the
rate of background photons per second, RB, has not changed.
Instead, the background mean photon number has reduced due
to the decrease in time for which the detector is active in each
time bin.

In general, if we reduce the pulse width to τ/m and the
mean photon number per pulse to n̄/m, then to keep the rate
of signal photons per second fixed, we must decrease the pulse

separation to 	T/m, which reduces the width of the time bins
to 	T/m. The time the signal detector is gated on can also
be reduced by a factor of 1/m due to the decrease in pulse
duration. The effect of this is to reduce the mean number of
background photons per time bin to n̄B/m.

APPENDIX E: INFORMATION GAIN PER PHOTON

In this Appendix we use an information theoretic approach
to examine our gain in information when we obtain mea-
surement outcomes. The approach we take is the same as in
Sec. IV. We transmit n̄ signal photons spread over m time bins,
where the width of each time bin is 	T/m, the width of each
pulse is τ/m and the number of background photons per time
bin is n̄B/m. For all positive integers m, we transmit the same
number of photons in the time interval 	T .

We are interested in quantifying how much information
we gain after we have detected m pulses. Our knowledge of
whether the object is present is encoded within the posterior
probability P(O|�m), where �m is the set of m idler and signal
detection events. Before the measurements, our knowledge
was given by the prior probability. The increase in information
after measurements is related to the change in the probability
due to Bayesian updating.

A common way of quantifying the difference between two
probabilities is to use the relative entropy, which is also known
as the Kullback-Leibler divergence [42,43]. For a given set of
measurement outcomes, �m, the relative entropy is

S(�m) =
∑

k∈{O,Ō}
P(k|�m) log2

(
P(k|�m)

P(k)

)
. (E1)

The relative entropy has many different applications in
physics and statistics [42,43,46]. For example, the relative
entropy between a joint probability and its two marginal dis-
tributions is known as the mutual information, which plays
a pivotal role in information theory [43]. A more pertinent
application comes in the field of inference, where Eq. (E1)
has been used to quantify the increase in our knowledge
from Bayesian updating [47,48]. We take Eq. (E1) to be the
increase in our knowledge given a specific set of measure-
ment outcomes, �m The average increase in our knowledge is
found by averaging (E1) over all possible sets of measurement
outcomes

S̄m =
∑
�m

P(�m|O)S(�m), (E2)

where the summation is over all possible sets of measurement
outcomes for m time bins.

In Sec. IV we examined the averaged posterior probability
for the object to be present given we had transmitted a given
amount of signal photons. To determine the average gain
per photon, we consider S̄m divided by the mean number of
photons incident on the signal detector during the time period
	T . The quantity we consider is

Im(O) = S̄m

(n̄ + n̄B)
. (E3)

The reasons for considering this quantity rather than S̄m/n̄ is
as follows. First, using n̄ + n̄B in the denominator is more
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pessimistic than using just n̄. This becomes important when
n̄ is small and less than n̄B. In this regime there would be an
incentive to decreasing n̄ if we used Sm/n̄. Related to this is
the fact that in the limit of n̄ → 0, the quantity Sm/n̄ is not
defined. We can verify this directly for m = 1. We first find
that in the limit of n̄ → 0

P(O|i = 0, s = 0) = P(O|i = 0, s = 1) = 1

2
,

P(O|i = 1, s = 0) = 1 − ηκ + ηn̄B

2 − ηκ + 2ηn̄B
,

P(O|i = 1, s = 1) = κ + n̄B + ηn̄2
B

κ + 2n̄B(1 + ηn̄B)
, (E4)

where for simplicity, we have taken ηI = ηS = η. From this,
we see that the limit of S̄1, as n̄ → 0, is defined and nonzero.
But this means that the limit of S̄1/n will not be defined. An
immediate consequence of this is that if we used S̄1/n, then
we would find that making n̄ arbitrarily small would yield an
arbitrarily large value for S1/n. These problems are all avoided
by using (E3).

In addition to the average information gain per photon, we
can also explore the information gain per photon for a specific
set of measurement outcomes, which is given by

Im(O|�m) = S(�m)

(n̄ + n̄B)
. (E5)

To understand the information measures we first look at the
example of m = 1, where there is only a single outcome each
for idler and signal detectors. Consider the case where the
idler detector fires. If the signal detector does not fire, then we
become less confident there is an object present. The posterior
probability for the object to be present will thus decrease. In
contrast, if the signal detector fires, the posterior probability
will increase. Both of these outcomes provide information,
which we quantify by I1(O|i = 1, s = 0) and I1(O|i = 1, s =
1). We find that the outcome that provides the most infor-
mation depends on both the number of background photons,
n̄B and the number of signal photons n̄. For high numbers of
photons, we gain more information when the signal detector
does not fire, while the opposite is true when the total number
of photons is lower. This is illustrated in Fig. 10, where we
plot the minimum number of background photons, n̄min

B , such
that I1(O|i = 1, s = 0) > I1(O|i = 1, s = 1), against n̄. Both
curves are for ηI = ηS = 0.9, while the solid black curve is
for κ = 0.1, while the dashed black curve is for κ = 0.05.
We see that the value of n̄(min)

B , for which I1(O|i = 1, s = 0) >

I1(O|i = 1, s = 1), becomes lower as n̄ increases.
Intuitively, one can understand this behavior by recalling

that when we condition on the idler detector firing, the number
of photons in the signal mode is larger than n̄. If an object
is present, then we expect to detect light reflected from it,
especially as the mean number of signal photons increases.
If we do not detect photons, then it would be surprising if
an object is present. This would instead imply that an object
is not present. It is for this reason that I1(O|i = 1, s = 0) is
greater than I1(O|i = 1, s = 1). In contrast, when we have few
background photons, then we do not expect the signal detector
to fire, unless the signal photons have been reflected from an

FIG. 10. A plot showing how n̄(min)
B , the minimum value for n̄B

for which I1(O|i = 1s = 0) > I1(O|i = 1, s = 1), varies with n̄ for
different values of κ . All plots are for ηI = ηS = 0.9. The solid black
curve is for κ = 0.1, and the dashed black curve is for κ = 0.05.

object. In this case, we find that I1(O|i = 1, s = 1) > I1(O|i =
1, s = 0).

We can study the dependence of the averaged informa-
tion gain, Im(O), on m, for fixed values of n̄. In Fig. 11 we
plot Im(O) against m for different values of n̄ and n̄B. In
both Figs. 11(a) and 11(b), κ = 0.1 and ηI = ηS = 0.9. In
Fig. 11(a) we have n̄ = 0.01/m and n̄B = 0.1/m, while for
Fig. 11(b) we have n̄ = 1/m and n̄B = 3/m. In both figures,

FIG. 11. A plot of the averaged information gain per photon,
Im(O), when an object is present, against m, the number of copies
of the state. All plots are for κ = 0.1, ηI = ηS = 0.9 and for the case
when an object is present. Panel (a) is for n̄ = 0.01 and n̄B = 0.1,
while panel (b) is for n̄ = 1.0 and n̄B = 3.0. In both plots, the black
curves are for a direct detection illumination, while the red (gray
offline) are for transmitting coherent states.
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the black curve is for quantum illumination, while the red
(gray offline) is for transmitting coherent states. The infor-
mation gain per photon is seen to increase as m increases.
This is consistent with the results shown in Fig. 6. The ra-
tio background-to-signal photons, n̄B/n̄, is ten in Fig. 11(a),
but only three in Fig. 11(b). Yet despite the greater ratio of
background-to-signal photons, the information gain per pho-
ton is greater in Fig. 11(a) than in Fig. 11(b). However, while
the ratio n̄B/n̄ is greater for Fig. 11(a) than Fig. 11(b), the
number of background photons, n̄B, is greater in Fig. 11(b).
It is thus the number of background photons, rather than the
ratio of background to signal photons, which is important for
the information gain per photon.

The functional dependence of Im(O) on n̄ can be inves-
tigated. One interesting feature we find is that Im(O) can
have a maximum for some value of n̄. The position of this
maximum will depend on ηI , ηS , n̄B, and κ . We often find
that the value of the maximum occurs for large values of n̄.
For example, for κ = 0.1, ηI = ηS = 0.9, and n̄B = 3, then the
maximum of I1(O) occurs at n̄ = 37.3. If we keep κ , ηI , and
ηS the same, but now n̄B = 1.0, then the maximum of I1(O)
occurs at n̄ = 18.1. For large values of n̄, we find that the
state conditioned on the idler firing, ρ̂S|1, is approximately a
thermal state [15,26]. Furthermore, the relative enhancement
in mean photon number for the conditional state is negligible
when n̄ is large. This means that, for large values of n̄, direct
measurement based illumination does not perform as well as
using a coherent states [15,26]. It is thus not advisable to
run the setup at or near the value of n̄ that optimizes the
information gain per photon.

APPENDIX F: THE EFFECTS OF POST-SELECTING
ON THE IDLER DETECTION FIRING

In this section we address two questions. First, does
postselection improve the performance of direct detection
illumination? Second, if we neglect the times we did not
obtain the desired outcome, does postselection then improve
the performance? Unsurprisingly, we find postselect does not
improve direct detection illumination, unless we neglect the
undesired outcome. This is surprising because normally post-
selection is associated with situations where we have a failure
outcome. But in direct detection illumination, all outcomes
yield information. It thus seems a paradox that discarding
information can improve the performance. We resolve this
issue in this Appendix.

We consider postselecting on the idler detector firing. We
evaluate the average performance for N = 1, by modifying
Eq. (5) to

P (O|i = 1) =
∑

s

PIS (1, s|O)P(O|1, s)∑
s PIS (1, s|O)

, (F1)

where P (O|i = 1) denotes the averaged posterior probability
given we postselect on the idler detector firing. For a given
TMSV state (1) with mean photon number of n̄ in each mode
and using the same values for κ , ηI , ηS , and n̄B, we find that
P (O|i = 1) is generally greater than P (O), i.e., postselection
improves the performance. This is illustrated in Fig. 8(a).
This compares the results of (5) against (F1) for κ = 0.1,
ηI = ηS = 0.9, n̄B = 3.0, and for an object present. However,
Eq. (F1) neglects the fact that to obtain one postselected event
requires of order 1/PI (1) pulses. As such, postselection will
not improve the time taken to be confident that an object is
present or not. To take account of this, we multiply (F1) by
the probability for the idler detector to fire. The new averaged
posterior probability is

P (O, i = 1) =
∑

s

PIS (1, s|O)P(O|1, s). (F2)

By comparing (5) with the above equation, we see that (5) is
equal to P (O, i = 1) plus additional non-negative terms, and
thus P (O, i = 1) � P (O). Once we account for the postselec-
tion probability, the performance of postselection is found to
be worse than not postselecting.

Postselection is thus not as effective as not postselecting.
However, when we neglect the extra time taken to generate
postselected results, we found that postselection can give
an advantage. For example, Fig. 8 showed that (F1) can be
greater than (5), but from a Bayesian perspective, the occa-
sions when the idler detector does not fire should still provide
some information. How then can discarding such events im-
prove the performance?

When we do not postselect, then on average we transmit n̄
photons per time bin. When the idler detector fires, the signal
mode has a mean of n̄ + (1 + n̄)/(1 + ηI n̄) photons in the
time bin [26]. This is balanced by a reduction in the mean
photon number when the idler detector does not fire. However,
when we postselect, we neglect the situations where the mean
photon number is reduced. In relative terms, postselection
increases the mean number of photons transmitted in each
pulse. To account for this we should compare postselection
on a TMSV state with n̄ to the previous protocol with a
TMSV state with n̄ + (1 + n̄)/(1 + ηI n̄). This is illustrated
in Fig. 8(b), which is plotted for κ = 0.1, ηI = ηS = 0.9,
n̄B = 3.0 and for an object present. We find that even when we
neglect the postselection probability, the protocol described
in Sec. II is better than postselection once we equalize the
mean number of photons transmitted. This occurs because not
postselecting retains information both for when the idler fires
and when it does not. If there is an object present, then these
two situations will lead to different detection probabilities for
the signal detector. In contrast, when there is no object, then
the background is fixed as is the signal detector’s probability.
The information discarded in postselection is thus useful in a
Bayesian analysis.
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