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A B S T R A C T

Advanced machine learning algorithms require large datasets, along with good-quality labels to reach state-of-
the-art performance. Although measurements themselves can often be easily available, the labelling process is
usually a bottleneck. To address this, active learning approaches exploit the fact that different samples provide
varying levels of information to the algorithm. However, these approaches often rely on several unrealistic
assumptions — an oracle is assumed to provide error-free labels, all at the same cost and effort. We propose
novel active learning-based methods for classification of time series measurements, typically obtained from
sensors continuously measuring highly fluctuating environmental conditions including electricity consumption,
and demonstrate their effectiveness for home energy management applications, where data labelling is a
challenge. A new acquisition function is proposed, which accounts for both model and labelling uncertainty
and class balancing. A stopping criterion is designed to stop the active learning process after an optimal point
is achieved, to reduce labelling effort. We assess the effect of labelling errors on classification performance
and propose two ways of mitigating their effects: (i) a re-labelling mechanism based on similarity of provided
labels; (ii) a revised loss function based on confidence levels provided by experts. We validate our contributions
for energy disaggregation task in a real-world scenario with three application domain experts. Our results
show that the proposed methodology significantly improves performance of algorithms transferred to unseen
domains with reduced number of labelled samples — from 61% reduction for dishwasher to 93% reduction
for kettle.
1. Introduction

Advanced inference approaches, especially for dynamic time-
varying measurements, require large, well-labelled datasets to achieve
good performance when training a model in a supervised manner. In
many applications, although raw measurements are easy to collect,
the labelling process is time consuming or expensive, thus hindering
use of the data. One way to significantly reduce labelling effort is via
active learning.

Active learning (Settles, 2009; Ren et al., 2021) is designed to
minimise the amount of data that needs labelling, by intelligently
selecting (a small amount) of most valuable data samples to label
among all the available data. Active learning builds on the fact that
not all data samples are equally important for training of the model,
and that there is redundancy within data, i.e., many samples are highly
correlated, so providing labels for some of them eliminates the need to
label the rest.

With the recent need towards trustworthy AI (European Commission
and Directorate-General for Communications Networks, Content and
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Technology, 2019) and the need for humans to be involved in the
learning process, human in the loop machine learning (HITL-ML) has
grown in popularity. During active learning, one of the approaches
towards HITL-ML, the AI system remains in control of the learning
process and humans are treated as oracles to annotate unlabelled
data (Mosqueira-Rey et al., 2023). However oracles are assumed to
provide absolutely true labels, without any errors, all with the same
effort and at the same cost (see Budd et al., 2021 for a review of
active learning approaches for medical image analysis — most of
active learning methods assume an oracle). This is a very unrealistic
assumption — human error during labelling will be (unintentionally)
introduced, especially for challenging to label samples (e.g., noisy
samples) and time-series samples that are not always visually inter-
pretable. Only a few studies have reported active learning system
results where users/experts are recruited to provide labels during the
active learning process. For example, Ghai et al. (2021) includes people
in the labelling process, for an income prediction task using linear
regression, investigating if active learning could boost their trust and
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confidence in AI, depending on their level of familiarity with AI, and
their willingness to engage with the process. However, studies that
actually deploy active learning concept focus mainly on social aspects
of active learning and human–computer interaction, e.g., trust, while
using toy active learning algorithms. The closer interaction between
users and learning systems, especially where human users select and
annotate examples to modify model features in an incremental fashion
is termed interactive machine learning (Mosqueira-Rey et al., 2023).
HITL-ML has not been explored in energy management related applica-
tions despite the acknowledged role of consumers on energy end use in
order to meet European Green Deal Ambition goals related to bringing
greenhouse gas emissions to the levels of 1990 by 2030 (Anon, 2022).

In this paper we propose a novel HITL-ML approach which sits
between active learning and interactive learning, where the machine
selects examples to query, then through a user interface which shows
the time-series electrical signal under questions, a human expert man-
ually labels such examples. Due to the nature of the variable electrical
signals belonging to the same class, we show that human uncertainty
is possible and the HITL-ML learns incrementally until a stopping
criterion is met. Our approach is demonstrated for classification of
time-series electrical data for smart home energy management applica-
tion. More specifically, we tackle the problem of energy disaggregation
from widely available smart meter aggregate measurements, but suf-
fers from unavailability of labelled samples (i.e., labelled appliances
contributing to the aggregate at each sampling point).

Energy disaggregation or Non-Intrusive Load Monitoring (NILM),
is a useful tool for inferring fine-grained, appliance-level information
from smart meter measurements. It consists of separating the aggregate
energy consumption of a building into its sub-components, i.e., electric-
ity consumption of individual appliances. This fine-grained information
is used to provide energy conservation recommendations, automating
load shifting to minimise carbon footprint and inform demand response
programmes. Numerous approaches to NILM have been proposed and
as per recent review papers (Huber et al., 2021; Angelis et al., 2022)
deep learning-based NILM algorithms dominate the landscape due to
ease of implementation (bypassing feature engineering) and state-of-
the-art performance. However, deep learning methods require huge
amounts of labelled data for training to achieve good performance, and
acquiring reliable labelled data is resource-intensive. Labelling is either
performed via submetering of individual appliances, which is intrusive
and costly, or visually by recognising appliance signatures in the aggre-
gate sample obtained from smart meter measurements. Moreover, once
trained with labelled data from one domain, deep learning algorithms
usually underperform when conditions change (i.e., appliance signa-
tures change due to wear-and-tear; new appliances are introduced into
the house; the number of occupants changes, etc.) or when transferred
to a new domain (i.e., a new, unseen house where labelled data to
train the models is unavailable) (Kaselimi et al., 2022). To overcome
this issue, transfer learning approaches have been adopted, but, they
often assume availability of new high-quality labelled data from the
target domain to fine-tune the models (Li et al., 2023), which is
resource-intensive to obtain.

Building on our prior work (Todic et al., 2023) that proposes a
framework for active learning for low-frequency model-based NILM, as-
suming perfect error-free labelling, in this paper, several contributions
are made to minimise labelling effort while accounting for possible
errors during labelling process.

Namely, the main contributions of this paper are:

– Design of a new acquisition function based on maximum a pos-
teriori hypothesis testing, that balances classes while taking into
account model uncertainty (Section 3.1).

– A new stopping criterion once the optimal performance is ap-
proached to minimise labelling effort (Section 3.2).

– Loss function weighted with experts confidence to control the
2

impact of potentially erroneous labels (Section 3.3).
– A mechanism for returning potentially wrongly labelled samples
to be relabelled by the expert (Section 3.4).

– Assessment of the impact of erroneous labels introduced during
expert labelling (Section 5.1.2).

– Evaluation of human-in-the-loop (expert) presence during model
training and evaluation, providing labels and their confidence,
in a real-world scenario using a designed user-friendly interface
(Section 5.1.3).

We use the well documented and widely used, publicly available
REFIT dataset (Murray et al., 2017), and an efficient transformer-based
NILM architecture, ELECTRIcity (Sykiotis et al., 2022), though other
deep learning NILM models, including the one used in Todic et al.
(2023), can be used. Section 2 provides the background on active
learning and NILM. The methodology, including acquisition functions
used, exploiting experts’ confidence and re-labelling mechanism, is
presented in Section 3. Section 4 describes experiments — dataset and
Deep Neural Network (DNN) NILM model used, and user interface.
Results and discussion are presented in Section 5, before the conclusion
in Section 6.

2. Related work/background

2.1. Active learning

The goal of active learning (Settles, 2009) is to reduce the amount
of labelled data needed to train models. It is an iterative process, where
an initial model 𝑚0 is trained using a limited set of labelled data 𝐷𝐷𝐷pt.
The prediction is then performed on a large pool of data 𝐷𝐷𝐷pool where
labels are not available, and the acquisition function 𝑞(⋅) is used to
select samples 𝑄𝑄𝑄 ⊆ 𝐷𝐷𝐷pool that are worth including in training, i.e., that
satisfy some informativeness criteria, as in Todic et al. (2023), diversity
criteria (Ash et al., 2019), or both (Prabhu et al., 2021; Kothandaraman
et al., 2023). Labels are requested for the chosen samples, and after
they are available, those samples are included into a new fine-tuning
(or re-training) set 𝐷𝐷𝐷ft. When retrained or fine-tuned on 𝐷𝐷𝐷ft, the model
uses new knowledge to query more data. The loop runs until a stopping
criterion has been met, as shown in Algorithm 1, where algorithm
𝑡𝑟𝑎𝑖𝑛 performs either re-training of the entire model or fine-tuning the
last layers.

An overview of deep active learning, explored recently for various
types of problems, such as medical image analysis (Budd et al., 2021),
and natural language processing (Zhang et al., 2022), is provided in a
recent survey (Ren et al., 2021).

Algorithm 1 Active learning
𝑖 = 1 - active learning iteration
𝑚𝑖 - DNN-based model at iteration 𝑖 ⊳ 𝑚0 - pre-trained DNN model
𝑞(⋅) - acquisition function
𝑄𝑄𝑄𝑖 - set of samples queried at iteration 𝑖
𝐷𝐷𝐷pool - query pool
𝐷𝐷𝐷ft = ∅ - fine-tuning set
𝑆 - stopping criterion met (Boolean flag)
while not 𝑆 do

𝑄𝑄𝑄𝑖 ← 𝑞(𝑚𝑖−1,𝐷𝐷𝐷pool)
𝐷𝐷𝐷pool ←𝐷𝐷𝐷pool ⧵𝑄𝑄𝑄𝑖
𝐷𝐷𝐷ft ←𝐷𝐷𝐷ft ∪𝑄𝑄𝑄𝑖
𝑚𝑖 ← 𝑡𝑟𝑎𝑖𝑛(𝑚0,𝐷𝐷𝐷ft)
𝑖 ← 𝑖 + 1

end while

2.1.1. Acquisition functions
Acquisition function is used to select the most worthy data samples

from 𝐷𝐷𝐷pool to be queried, labelled and added to 𝐷𝐷𝐷ft, by ranking samples
belonging to query pool 𝐷𝐷𝐷pool based on informativeness or diversity
criteria (Ren et al., 2021). For the classification problem, the model
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𝐷𝐷
Fig. 1. Difference between pool- and stream-based uncertainty sampling on an example of binary classification with 10 data samples in the query pool out of which 4 should be
elected for query. Samples belonging to 𝑄𝑄𝑄 are highlighted in green.
produces a vector containing probabilities that a data sample belongs
to each of the possible classes/labels. Common approaches use those
class probabilities to estimate model uncertainty (e.g., as in Todic
et al., 2023). This approach is commonly referred to as least confidence
uncertainty sampling, and can be implemented in pool- and stream-based
fashion. If in the pool-based fashion, then all samples from query pool
𝐷pool are evaluated and then the best subset, 𝑄𝑄𝑄, are selected. That is,
it is assumed that the whole query pool is available at the moment of
query. If in the stream-based fashion, then data samples are considered
to arrive in a stream, and the whole query pool is not available at query
time. Therefore, a predefined informativeness threshold is applied to
each data sample as it arrives, and if informativeness of the sample ex-
ceeds the threshold, then the sample is considered informative enough
and it is included in query 𝑄𝑄𝑄, and otherwise it is not. An example in
Fig. 1 shows how uncertainty sampling works in the pool- and stream-
based fashion — the task in the example is binary classification, query
pool contains 10 samples out of which 4 are selected for the query.

Selecting a batch of data samples to label independently leads
to redundancy because many similar highly-correlated samples would
be queried. Therefore, acquisition strategies that account for both
informativeness and diversity among queried data samples have been
developed. For example, BatchBALD (Kirsch et al., 2019) looks at mu-
tual information between a sequence of samples and model parameters.
Although it works well with small datasets, it underperforms for large
ones (Sener and Savarese, 2017; Todic et al., 2023). BADGE (Ash et al.,
2019) queries samples that give high-magnitude penultimate layer
gradients of different directions if the predicted label would be the true
one (i.e., if pseudo-labels are used to compute gradients). Samples are
chosen via k-means++ initialisation algorithm on the obtained gradient
embeddings. This approach needs computation of gradients for each
sample in the query pool, which is resource-intensive. CLUE (Prabhu
et al., 2021) scales the activations of the penultimate layer of the
network with the entropy of the output as uncertainty measure. Ob-
tained embeddings are clustered using k-means algorithm, and then
samples closest to cluster centres are chosen. This method depends
heavily on the clustering algorithm initialisation, and also on the
convergence of the clustering algorithm. Acquisition function used in
SALAD (Kothandaraman et al., 2023) combines l-2 norms of gradients
computed using pseudo-labels as in BADGE (Ash et al., 2019), and
entropy of the prediction as an uncertainty measure. Sum of the two
components is greedily maximised to choose samples for query. This
approach avoids clustering, but the whole SALAD framework contains
pre-trained network, target network, as well as guided attention trans-
fer network, which are all used throughout the process, and which can
3

be demanding.
2.1.2. Stopping criterion
Active learning is usually performed in an iterative manner, where,

in each iteration, the user provides a set of new labels that are used
to retrain the model. At some point, newly labelled data supplied to
the model will either not anymore improve the performance, or even
worse it can start degrading the performance due to overfitting. Hence,
it is important to stop the iterative labelling process on time. Setting
a threshold on the achieved performance, or observing performance
improvement smaller than a threshold (Ueno et al., 2021), can be used
to determine when to stop if this is practically possible. Also, confidence
levels of the model can be exploited (Zhu et al., 2010), or agreement
between the models from a couple of previous iterations (Bloodgood
and Vijay-Shanker, 2014).

If active learning is conducted in small steps (i.e., in each iteration
a small number of labelled samples are passed to the model), which is
the case in near real-time applications and is the case in this paper, it is
difficult to use stopping criteria based on measuring the improvement
between two successive iterations, because small to no improvement
can be observed long before the optimal point of active learning is
achieved. Furthermore, measuring model agreement requires saving
either several models from previous iterations, or their outputs for the
data used to determine when to stop, which is resource inefficient.

2.1.3. Human-in-the-loop
Although active learning has gained in popularity recently, there

are still very few papers where users or experts are included in the
loop, to verify the use of active learning in a real-world scenario — user
input is usually simulated (Ren et al., 2021). Several studies including
human-in-the-loop (Budd et al., 2021) use crowdsourcing platforms
to obtain annotations for biomedical image processing related tasks.
Although not implementing active learning, they offer several useful
conclusions. For example, Cheplygina et al. (2016) points out that
the annotation tool should not offer too many degrees of freedom,
and that instructions should be simple and clear to the annotators.
Labels provided by non-expert annotators can show medium to high
correlation with labels provided by experts, especially if crowdsourced
labels are aggregated. A study from Tinati et al. (2017) argues that
gamification of annotation tasks can be very beneficial, but, the method
is of limited generalisability.

2.2. Active learning for NILM

NILM consists of extracting per-appliance electricity consumption
from the aggregate electricity consumption of a building. To ensure
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wider adoption, NILM that considers practical challenges, such as trans-
ferability, reliability, scalability, safety, privacy, and trustworthiness,
are required (Kaselimi et al., 2022). Active learning can address many
of these practical challenges (Todic et al., 2023). By smartly selecting
small amounts of data for training, scalability and transferability can
be improved; new data can be added to the model by the end-user,
without the need to export the data out of the house, tackling privacy
and security issues; and, moreover, human-in-the-loop algorithm design
can improve their trust and boost confidence when using AI algorithms
in everyday life (Ghai et al., 2021).

Despite the fact that active learning is a very popular and effective
approach for relaxing labelling effort as demonstrated, e.g., in Wang
et al. (2022) for anomaly detection in time-series data, in Gu et al.
(2021) for transfer to a domain with known data distribution, and
in Martins et al. (2023) based on a meta-learning approach for feature
extraction and uncertainty threshold tuning, there have only been
a few attempts of leveraging active learning for the NILM problem
(see Liebgott and Yang, 2017, Fatouh et al., 2018, and Guo et al., 2020).
As reviewed in detail in Todic et al. (2023), prior work that explored
active learning for event-based, high-frequency NILM (Liebgott and
Yang, 2017, Fatouh et al., 2018, and Guo et al., 2020), have not
considered stopping criteria and batch-aware acquisition functions, and
has exclusively assumed an oracle providing always-correct labels.

A deep active learning framework for model-based, low-frequency
NILM was been proposed in Todic et al. (2023). The ability of active
learning for reducing labelling effort and improving performance of
models pre-trained with large, publicly available datasets when trans-
ferred to a new environment was demonstrated. However, labels are
considered to be provided by an oracle — they are error-free, all
obtained at the same cost. Stopping criteria was also not considered,
and the samples, once labelled were not returned for re-labelling.

In this paper, a detailed analysis of the active learning for model-
based low-frequency NILM is provided. The pitfalls of active learning
are explored, such as its vulnerability to errors in the labels, and
strategies to overcome this are investigated. A real-world scenario with
human-in-the-loop is deployed, where experts provide labels. Addition-
ally, we quantify the effect of errors potentially injected throughout
the active learning process, and consider mitigating measures such
as exploitation of user confidence when giving a label and returning
possibly wrong samples back, offering the possibility for re-labelling.

3. Methodology

In this section we describe the proposed active learning approach,
illustrated in Fig. 2. As in Todic et al. (2023), Algorithm 1, described in
Section 2.1, is used to select samples to query. Four main contributions
to Todic et al. (2023) are made. First, a new acquisition function 𝑞(⋅)
s proposed based on hypothesis testing to ensure diversity of labels
n terms of reliability and classes (see Section 3.1). Second, a stopping
riterion is introduced when all ‘‘uncertain’’ samples are exhausted (see
ection 3.2). Third, confidence levels are included during model learn-
ng within the fine-tuning step (Section 3.3), to account for experts’
onfidence about provided labels and mitigate the effect of errors intro-
uced for hard-to-label samples. Finally, after the fine-tuning step, an
dditional step for returning potentially wrongly labelled data samples
ack to experts for re-labelling is proposed (Section 3.4).

.1. Acquisition function

Traditional uncertainty-based acquisition strategies for selecting
amples to label tend to first query windows of samples containing
ppliance activations, i.e., positive samples (Todic et al., 2023). This
eads to a very unbalanced set after labelling, containing predominantly
ositive samples. To keep the diversity of queried samples, both in
erms of classes (all classes should be well represented) and model un-
ertainty (most uncertain samples should be queried), a new acquisition
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unction based on maximum a posteriori (MAP) hypothesis testing is
roposed next.

Let �̂� be a realisation of a random variable 𝑌 ∈ [0, 1] denoting the
odel output (0 = appliance if off; 1 = appliance is on). Let us consider

wo hypotheses: hypothesis 𝐻0 corresponding to the appliance being
n off-state, and hypothesis 𝐻1 corresponding to the appliance being
n on-state. Suppose that prior probabilities of both states are known,
.e., 𝑃 (𝐻0) and 𝑃 (𝐻1), as well as probability density distributions of
odel output �̂� under the two hypotheses, i.e., 𝑓𝑌 (�̂�|𝐻0) and 𝑓𝑌 (�̂�|𝐻1).

Then, after applying Bayes’ rule, posterior probabilities of hypothe-
es 𝐻0 and 𝐻1 are obtained as:

𝑃 (𝐻𝑖|𝑌 = �̂�) =
𝑓𝑌 (�̂�|𝐻𝑖) ⋅ 𝑃 (𝐻𝑖)

𝑓𝑌 (�̂�)
, 𝑖 ∈ {0, 1}. (1)

Using the MAP test, the winning hypothesis will be the one that
maximises (1). Since the denominator is the same for both hypotheses,
hypothesis 𝐻0 is chosen if and only if:

𝑓𝑌 (�̂�|𝐻0) ⋅ 𝑃 (𝐻0) > 𝑓𝑌 (�̂�|𝐻1) ⋅ 𝑃 (𝐻1). (2)

Otherwise, hypothesis 𝐻1 is chosen.
The model output value �̂�∗ for which posterior probabilities of the

two hypotheses, 𝐻0 and 𝐻1, are the same, i.e.,

𝑓𝑌 (�̂�
∗
|𝐻0) ⋅ 𝑃 (𝐻0) = 𝑓𝑌 (�̂�

∗
|𝐻1) ⋅ 𝑃 (𝐻1) (3)

s considered the most challenging model output value to make a
ecision. Therefore, model output space [0, 1] is divided into three
egions: likely negative model predictions (𝐻0 chosen; model output

value close to 0), likely positive model predictions (𝐻1 chosen; model
output value close to 1), and uncertain model predictions (model output
value close to �̂�∗ where posterior probabilities for 𝐻0 and 𝐻1 are
qual). See Fig. 3 for illustration. Each point in the model output space
s assigned to one of three regions depending on its proximity to 0,
�̂�∗, and 1. Samples to be queried are taken from all three regions as
er equation:

𝑄𝑄𝑄𝑖 =𝑄𝑄𝑄𝑖, 𝑙𝑖𝑘𝑒𝑙𝑦 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 ∪𝑄𝑄𝑄𝑖, 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛 ∪𝑄𝑄𝑄𝑖, 𝑙𝑖𝑘𝑒𝑙𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑄𝑄𝑄𝑖, 𝑙𝑖𝑘𝑒𝑙𝑦 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 ⊂ {𝑠 ∈𝐷𝐷𝐷𝑝𝑜𝑜𝑙|𝑦 = 𝑚𝑖−1(𝑠) ∈ (0,
�̂�∗

2
)}

𝑄𝑄𝑄𝑖, 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛 ⊂ {𝑠 ∈𝐷𝐷𝐷𝑝𝑜𝑜𝑙|𝑦 = 𝑚𝑖−1(𝑠) ∈ (
�̂�∗

2
,
1 + �̂�∗

2
)}

𝑄𝑖, 𝑙𝑖𝑘𝑒𝑙𝑦 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 ⊂ {𝑠 ∈𝐷𝐷𝐷𝑝𝑜𝑜𝑙|𝑦 = 𝑚𝑖−1(𝑠) ∈ (
1 + �̂�∗

2
, 1)}

(4)

where query from the current iteration 𝑖 is denoted by 𝑄𝑄𝑄𝑖. 𝐷𝐷𝐷𝑝𝑜𝑜𝑙 is query
pool, 𝑠 denotes samples belonging to the query pool, 𝑚𝑖−1 is the model
from previous active learning iteration, and 𝑦 is the model output for
sample 𝑠. The number of samples from each region is controlled by
hyper-parameters.

Since off-state of an appliance is more frequent than on-state (that
is, most appliance are not used continuously), point �̂�∗ is expected
to be closer to 1 than to 0 (see the example in Fig. 3), so samples
containing measurements while appliance is turned on are favoured
by this strategy, which is beneficial to NILM algorithms, as discussed
later in Section 5.1. Most of queried samples therefore come from the
uncertain region as defined above (the number is controlled by a hyper-
parameter), but to prevent model from forgetting, samples are also
taken from the two likely (positive/negative) regions.

3.2. Stopping criterion

Stopping criteria usually rely on comparison of performance across
subsequent active learning iterations (e.g., in Ueno et al., 2021) or on
agreement of models in subsequent iterations (e.g., in Bloodgood and
Vijay-Shanker, 2014 and Zhu et al., 2010). To avoid the need to store
the models from multiple iterations and compare them, or to store the
model outputs or uncertainty levels from multiple iterations, which can
be resource-intensive, a stopping criterion relying on confidence of the

model from a single, current iteration is designed.
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Fig. 2. Active learning framework.
Fig. 3. Acquisition strategy — an illustration (for appliance kettle): Distributions
of the model output under hypotheses 𝐻0 and 𝐻1, and three model output space
regions.

When using the proposed acquisition function, as described in Sec-
tion 3.1, there is a region in the model output space where model
predictions are considered uncertain. During the active learning pro-
cess, the uncertain region is quickly exhausted, but, as the model
changes during the process, the model output for some samples can
shift from likely positive or negative regions to uncertain. When sam-
ples from the uncertain region are exhausted, the process is meant to
stop — it means that the uncertain samples have been already included
in training and only samples for which the model has high level of
certainty remain. To ensure that the model is consistently certain in its
predictions, patience for a few epochs can be introduced - i.e., active
learning can stop when the uncertain region is empty, or does not
contain enough samples to fill 𝑄𝑄𝑄 for a few consecutive epochs, as per
5

Eq. (5).

𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒𝑖−1 + 1, {𝑠 ∈𝐷𝐷𝐷𝑝𝑜𝑜𝑙|𝑦 = 𝑚𝑖−1(𝑠) ∈ ( �̂�
∗

2 ,
1+�̂�∗
2 )} = ∅

0, {𝑠 ∈𝐷𝐷𝐷𝑝𝑜𝑜𝑙|𝑦 = 𝑚𝑖−1(𝑠) ∈ ( �̂�
∗

2 ,
1+�̂�∗
2 )} ≠ ∅

𝑆 =

⎧

⎪

⎨

⎪

⎩

𝐹𝑎𝑙𝑠𝑒, 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒𝑖 < 𝑚𝑎𝑥_𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒

𝑇 𝑟𝑢𝑒, 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒𝑖 ≥ 𝑚𝑎𝑥_𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒

(5)

Patience in current iteration 𝑖 is denoted by 𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒𝑖, while
𝑝𝑎𝑡𝑖𝑒𝑛𝑐𝑒𝑖−1 denotes the patience from the previous active learning
iteration. 𝑆 is a boolean variable denoting if the stopping criterion
has been met or not. This strategy offers timely stopping of the active
learning process without the need to store and compare performance
of the models from earlier stages of the process. In addition, this
strategy eliminates the need for setting a predefined threshold on model
performance, which can be a challenging task since it is not always
straightforward to estimate the level of expected performance if the
model is deployed in a new previously unseen environment.

3.3. Exploiting experts’ confidence

To account for possible wrong labels introduced by humans during
labelling, a method to incorporate their confidence about a label is
introduced. Expert confidence levels are used to set weights inside the
loss function during training – instead of treating all samples equally –
by applying weighted average when calculating the loss as:

𝐿𝑜𝑠𝑠 = 1
𝑁

⋅
𝑁
∑

𝑖=1
𝑐𝑖 ⋅ 𝐿𝑜𝑠𝑠𝑖. (6)

Here, 𝑁 denotes the total number of samples, and 𝐿𝑜𝑠𝑠𝑖 is the model’s
loss value for the 𝑖th sample. The higher the expert certainty, the higher
the sample confidence weight 𝑐𝑖. A lower weight means that the effect
of a sample to the calculated loss is attenuated, thus it contributes less
to model learning.

3.4. Re-labelling samples

To reduce likelihood of training the model with wrong labels, a
mechanism for returning samples with possibly erroneous labels, 𝑅𝑅𝑅, for
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re-labelling is implemented as:

= {𝑠 ∈𝑄𝑄𝑄 ∶ 𝑀𝑅(𝑦, �̂�) < 𝑇return} (7)

where

𝑀𝑅(𝑦, �̂�) =
∑𝑁

𝑖=1 min{𝑦𝑖, �̂�𝑖}
∑𝑁

𝑖=1 max{𝑦𝑖, �̂�𝑖}
, (8)

and 𝑁 is the signal window length.
Namely, after the loss function has been applied to each newly

added sample 𝑠𝑖 ∈𝑄𝑄𝑄, match rate (Eq. (8)) between the correct label 𝑦𝑖
of sample 𝑠𝑖 and soft model prediction �̂�𝑖 is calculated – if 𝑀𝑅 is below
a threshold 𝑇return even after the loss function is applied, it means that
the sample possibly deviates from the rest of the training set, and that
the label is possibly wrong; thus this sample is sent back for re-labelling,
enabling the expert to re-consider and change their original decision.

4. Experimental setup

4.1. Data & DNN model

To facilitate reproducibility, we use the well documented public
REFIT (Murray et al., 2017) and UK-DALE (Kelly and Knottenbelt,
2015) real-world electrical load measurements datasets as these two
datasets are among the most widely used datasets for evaluation of
NILM algorithms mimicking well real-world conditions (Angelis et al.,
2022; Huber et al., 2021; Kaselimi et al., 2022). For example, both
REFIT and UK-DALE datasets are used in Sykiotis et al. (2022) for
complexity reduction and transferability via transformer-based archi-
tecture, in D’Incecco et al. (2020) for cross-domain and cross-appliance
transfer, and in Murray et al. (2019) for evaluation of transferability
of DNN architectures. REFIT consists of 2-year long (2013–2015) con-
tinuous time series electricity consumption recordings from 20 houses
in the United Kingdom. Each house data contains aggregate electricity
consumption time series measurements (see Fig. 5), as well as con-
sumption of 9 individual appliances, measured at an 8-sec interval.
The large number and diversity of appliance waveforms or signatures
across 20 houses makes the REFIT dataset one of the most challenging
NILM datasets and a good exemplar for robust evaluation of active
learning methodologies.

To align with the widespread smart meter roll-out with in-house
recording granularity of about 10 sec (Anon, 2013), the data is re-
sampled to 10-sec sampling interval. Appliance types used in this study
are kettle and microwave – resistive loads with short activation times
– as well as washing machine and dishwasher – inductive (and also
resistive) loads, with long cycle duration and multiple states. Measured
aggregate electricity consumption expressed in Watts (W) is normalised
using Z-normalisation technique: 𝑍 = 𝑥−𝜇

𝜎 , where 𝑥 denotes the original
measurement, and 𝜇 and 𝜎 stand for mean value and standard deviation
of 𝑥 across the training dataset, respectively. To determine the ON–
OFF state of appliances, thresholds are applied to measured electricity
consumption of each appliance, according to Table 1.

In all experiments, as in Sykiotis et al. (2022), REFIT house 5, and
UK-DALE house 1, which contain all four targeted appliances with
many activations, are used for testing. A continuous period without
missing data from 1st March 2014 to 1st September 2014 is chosen
— first 2 months for the query pool and the rest for testing, to
ensure that there is enough diversity among testing data, and that the
query pool is of reasonable size since manual labelling is included in
experiments. Continuous recordings from the query pool and testing
data are sliced into non-overlapping windows before being fed to
the model. As explained in Section 2.1, labels are not available for
the query pool data, so, in the query pool, only aggregate electricity
consumption measurements are used. Labels are provided later after
the model makes a query, either by an oracle (Experiment 1), or by
an expert (Experiment 2). For testing, submetering measurement labels
6

are used to quantify model performance. Houses and time periods used
Table 1
On-state power thresholds [W], REFIT houses and time periods used for training for
each target appliance.

Appliance Training houses (REFIT) ‘‘On-power’’
threshold [W]

Kettle
6 (28.11.2013–28.06.2015.)

20008 (01.11.2013–10.05.2015.)
17 (06.03.2014–19.06.2015.)

Microwave
6 (28.11.2013–28.06.2015.)

2008 (01.11.2013–10.05.2015.)
17 (06.03.2014–19.06.2015.)

Washing machine
2 (17.09.2013–28.05.2015.)

203 (25.09.2013–02.06.2015.)
16 (10.01.2014–08.07.2015.)

Dishwasher
2 (17.09.2013–28.05.2015.)

103 (25.09.2013–02.06.2015.)
16 (10.01.2014–08.07.2015)

for pre-training of each appliance are shown in Table 1 - for washing
machine and dishwasher as in Sykiotis et al. (2022), and for microwave
and kettle as in Murray et al. (2019). It is worth mentioning that in
NILM, like in many other real-world applications based on time-series
data where class-balance depends on the frequency of events, even
though raw measurements are highly imbalanced (home appliances
are turned off most of the time), it is possible to create balanced
training datasets through continuous recording over long periods of
time, without data augmentation.

The DNN model used in this paper is the ELECTRIcity transformer
(Sykiotis et al., 2022), designed to work well with unbalanced data. The
model architecture is presented in Fig. 4. It is trained in two phases:
an unsupervised pre-training phase followed by a supervised training
phase. The model shows superior performance to other state-of-the-
art algorithms (Sykiotis et al., 2022). In experiments in this paper,
for creating pre-trained models to be transferred to a new house, both
training phases are used, but during the active learning process, only
supervised fine-tuning phase is used. A 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 activation function has
een added to the final layer of the network to perform on/off-state
inary classification (instead of regression as in Sykiotis et al., 2022).
ne DNN model is created per monitored appliance — for example,

f 4 different appliances are monitored in a house, then 4 different
odels will be created, for determining the state of each appliance

eparately. Therefore, each DNN model performs classification to 2
lasses — on and off state. Since the model works in a sequence-to-
equence fashion, a pooling function is applied to the model output
o get a single uncertainty value, by taking the maximum value of
he model prediction window, with a reasoning that signal window is
onsidered positive if there is at least one sample in that window where
he appliance is active.

.2. Evaluation metrics

The classification performance of the DNN-based NILM algorithm
s evaluated using the standard 𝐹1-score, which is calculated as the
armonic mean of precision and recall:

1 = 2 ⋅
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

= 𝑇𝑃
𝑇𝑃 + 1

2 ⋅ (𝐹𝑃 + 𝐹𝑁)
(9)

where TP denotes true positives – both model prediction and ground
truth are positive; FP for false positives – prediction is positive but
ground truth is negative; and FN for false negatives – prediction is
negative while ground truth is positive.

AL performance is usually presented as a curve showing model
accuracy against the number of labelling iterations, i.e., the number of
samples queried and labelled. If a point with no labelling effort (i.e., it-
eration 0), and the maximum possible model performance (i.e., 𝐹1-score
equal to 1) is considered as an ‘‘ideal’’ point, as proposed in Todic
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Fig. 4. Architecture of ELECTRIcity transformer model (Sykiotis et al., 2022).
et al. (2023), then the optimal point of the active learning process can
be calculated as the point with minimum Euclidean distance from the
ideal point:

𝑑𝑖𝑠𝑡 =

√

√

√

√(1 − 𝐹1)2 +
(

|𝐷𝐷𝐷ft|

|𝐷𝐷𝐷pool|

)2
(10)

4.3. Experiments

Two experimental settings were considered in this paper, as de-
scribed next.

• Experiment 1: Transfer learning with labels obtained via subme-
tering, with simulated labelling errors and re-labelling mecha-
nism, and simulated confidence levels
In this experiment, samples from the query pool are labelled using
submetering electricity consumption measurements. The effect of
balancing of queried batches using different acquisition functions
is explored using several balanced acquisition functions. Stopping
criterion is also applied to reduce labelling effort after the optimal
point is achieved, as explained in Section 3.1. To study the effect
of possible labelling errors and mimic a real-world active learning
process when labels are provided by humans, different levels of
false positive and false negative errors are simulated. Namely,
if the model prediction for a sample in the query pool contains
appliance activation, but the ground truth does not, false positive
error is introduced to that sample by accepting model prediction
as ground truth label, with a predefined probability. On the
other hand, if model prediction for a sample does not contain
appliance activation, but the ground truth does, false negative
error (missing appliance activation; setting ground truth label
to 0) is introduced with a predefined probability. The proposed
re-labelling mechanism (Section 3.4) is then applied to detect
possibly wrong labels and send them back for re-labelling. Also,
simulated confidence levels in correlation with simulated errors
were utilised throughout the process to attenuate negative effects
of errors (Section 3.3).

• Experiment 2: Transfer learning with expert labelling, exploiting
expert confidence levels
In this experiment, the best setup obtained from the first exper-
iment is verified in a real-world scenario, where experts provide
labels during the active learning process. As those labels can
be erroneous, expert’s confidence level is considered during the
training phase, assuming that if an expert is not confident about
a label, the label is more likely to be wrong, and should be
7

used with caution. A graphical user interface enabling experts
to quickly provide labels together with their confidence was
developed and used (see Section 4.4).

All DNN and active learning hyper-parameters are shown in the
Table 2. Parameters for the DNN used are set as in Sykiotis et al. (2022).
Although in Sykiotis et al. (2022), a window length of 480 samples is
used for all appliances, here the window length is shortened for kettle
and microwave to 120 samples instead of 480, because those appliances
have very short activation times. Therefore query pool sizes differ for
kettle and microwave (4416 samples) from those for washing machine
and dishwasher (1104 samples), although the same time period of two
months is used for the query pool. Learning rate and the number of
epochs are different in the pre-training and fine-tuning phases — they
are set lower in the fine-tuning phase within the active learning process
to mitigate effects of overfitting due to a small number of labelled
samples, especially in the beginning. At each labelling iteration, one
batch of samples is queried. Confidence threshold for stream-based
uncertainty acquisition function is set to be the same as in Todic et al.
(2023). The number of uncertain samples coming from the uncertain
region for the proposed acquisition function is set to 56 so that the
majority of queried samples come from the uncertain region, and the
rest - 8 samples per iteration from the likely positive and likely negative
prediction regions — for the purpose of preserving diversity among
queried data and preventing forgetting of the model. A PC with the
following specifications is used in the experiments: Intel(R) Core(TM)
i7-7800X CPU @ 3.50 GHz, 32 GB RAM, and a NVIDIA TITAN Xp GPU.

4.4. User interface

In order to facilitate experts’ participation in the active learning
process, a graphical user interface, shown in Fig. 5, is developed.
Queried samples (windows of electric load measurements) from one
labelling iteration are shown to the expert in a sequence, one by one.
The aggregate signal in Watts is shown on the left vertical axis —
this value can help experts decide if the appliance in question is on
or off. Model prediction is shown together with aggregate signal (the
values of the prediction can be seen from the right vertical axis, in
range 0–1), to inform experts of model’s behaviour and possibly help
them make a decision. Horizontal axis shows time, which also can help
an expert make a decision - e.g., some appliances are more likely to
be operated during a particular time of a day. Experts are asked to
mark the part of the window where they think the appliance of interest
is active, by simply drawing a rectangle over that area, as shown in
Fig. 5. Apart from labels, experts are asked to provide their confidence
level associated with each label - i.e., they are asked to select one of

three offered options — low confidence, medium confidence or high
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Fig. 5. User interface that facilitates quick labelling by experts participating in the active learning process.
Table 2
Hyper-parameters used in the experiments.

DNN model

Input window size kettle, microwave: 120
washing m., dishwasher: 480

Heads, hidden, layers 2, 256, 2

Dropout rate 0.2

tau 0.1

Learning rate pre-training: 1e−3
fine-tuning: 1e−4

Epochs pre-training: 100
fine-tuning: 10

Batch size 64

Model threshold 0.3

Active learning

Queries per iteration 64

Query pool size 2 month worth of samples:
kettle, microwave: 4416
washing m., dishwasher: 1104

Confidence threshold
(stream-based unc. acq. function; Exp.1)

0.9

# of samples
for the proposed
acquisition function

4 likely neg.
56 uncertain
4 likely pos.

confidence. High confidence is then mapped in the back end to a
coefficient 𝑘 = 3, mid confidence to 𝑘 = 2, and low confidence to 𝑘 = 1,
which are then converted into sample weight according to:

𝑐𝑖 =
𝑁

∑𝑁
𝑗=1 𝑘𝑗

⋅ 𝑘𝑖, (11)

calculated at a batch level. This way, the samples with higher confi-
dence have triple the weight of samples with lower confidence, and
samples with mid confidence double, but the sum of weights in a
batch remains the same as before the weights were adjusted. Obtained
weights are then included in the loss function (see Eq. (6)), as described
in Section 3.3.
8

5. Results & discussion

In this section we report our experimental results. The goal of the
experiments is to: (1) evaluate performance of the proposed acquisition
function against state-of-the-art benchmarks without labelling errors;
(2) test effectiveness of the proposed stopping criteria; (3) test if
the proposed re-labelling leads to performance gains, and (4) show
usefulness of the introduced expert confidence scores.

We organise the section into two parts: first we report the results
related to Experiment 1 as described in the previous section; then,
we evaluate the proposed system with three NILM experts using the
designed user interface.

5.1. Experiment 1

5.1.1. Acquisition function
In this subsection we compare the performance of the proposed

acquisition function against state-of-the-art benchmarks. Acquisition
functions used for benchmarking are pool- and stream-based uncer-
tainty acquisition functions, as they are lightweight algorithms and
demonstrate good performance for the NILM problem (Todic et al.,
2023).

For the stream-based uncertainty acquisition function an informa-
tiveness threshold is used to make a decision if samples are sent for
labelling or not (see Section 2.1.1). Since in Todic et al. (2023), it
was demonstrated that low values of informativeness threshold provide
higher improvement in the beginning of the active learning processes,
the starting threshold is set to 0.9, and then as the process progresses,
it is increased if the number of selected samples is lower than the
batch size. This way the active learning process experiences both high
performance improvement in the beginning and longer lasting process
which includes samples with a higher confidence at later stages.

Two additional benchmarks are used that attempt to diversify sam-
ples and balance the classes: BADGE acquisition function (Ash et al.,
2019) that diversifies queried samples to avoid redundancy by looking
at gradient embeddings, and CLUE acquisition function (Prabhu et al.,
2021), that diversifies queried samples by looking at penultimate layer
activations, but also includes least confidence uncertainty, i.e., it takes
advantage of both uncertainty and diversification of queried batch
of samples.
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Fig. 6. Comparison between different acquisition functions — transfer to REFIT house 5: the proposed one based on the optimal thresholding strategy; pool-based uncertainty (as
in Todic et al., 2023); stream-based uncertainty (Todic et al., 2023); BADGE (Ash et al., 2019); CLUE (Prabhu et al., 2021). Dots denote the optimal points and stars the stopping
point for the proposed strategy.

Fig. 7. Comparison between different acquisition functions — pre-training on the REFIT dataset and transfer to UK-DALE house 1: The proposed acquisition function based on
the optimal thresholding strategy; pool-based uncertainty (as in Todic et al., 2023); stream-based uncertainty (Todic et al., 2023); BADGE (Ash et al., 2019); CLUE (Prabhu et al.,
2021). Dots denote the optimal points and stars the stopping point for the proposed strategy.
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.

Results of the comparison for the four appliances from REFIT house
5 are shown in Fig. 6, and from UK-DALE house 1 in Fig. 7. Hor-
izontal axis shows the AL, i.e., labelling, iteration, and vertical axis
the achieved 𝐹1-score. Optimal points calculated based on Eq. (10)
are marked as dots, and stopping points for the proposed acquisition
function as proposed in Section 3.2 are marked with stars. Results for
BADGE (Ash et al., 2019) and CLUE (Prabhu et al., 2021) acquisi-
tion functions are averaged over 3 independent runs, because those
algorithms depend on cluster initialisation.

Numerical results of this experiment for REFIT house 5 - achieved
𝐹1-scores and percentage of query pool samples queried at optimal
point, maximum performance point and stopping point (for the pro-
posed acquisition function) - are presented in Table 3, and for UK-DALE
house 1 in Table 4.

As shown in Figs. 6 and 7 (and in accordance with findings of Todic
et al., 2023), pool- and stream-based acquisition functions both demon-
strate high and stable performance. Batch-aware acquisition function
BADGE (Ash et al., 2019) performs slightly worse than pool- and
stream-based uncertainty (except for dishwasher in Fig. 6(d), and wash-
ing machine in Fig. 7(b)), which indicates that the dataset does not
benefit from batch balancing during acquisition, and that some types
of samples (windows containing activations in this case) are more
significant for model improvement. Although CLUE (Prabhu et al.,
2021) diversifies queried samples as well, it exploits model uncertainty,
so its performance is on par with pool-based acquisition function.

It is observed that with pool- and stream-based uncertainty ac-
quisition functions, in the beginning of the process, mostly samples
containing appliance activations are being queried and added to the
training set, due to high uncertainty associated with them. That usually
results in a large jump in performance. After all samples containing acti-
vation have been exhausted, samples without activation, but with high
aggregate consumption, are being queried, and finally, samples without
appliance activation and with low aggregate values are being queried.

Our proposed acquisition function favours low- and mid-certainty
signal windows containing appliance activation, but also chooses sam-
ples without appliance activation, as well as high-certainty samples
containing activation. That way, it keeps diversity among queried data,
but also ensures that sufficient number of samples important for learn-
ing of new patterns are regularly selected. This strategy performs the
best for kettle and microwave in REFIT house 5 (Figs. 6(a) and 6(b)),
since these two appliances are often confused with washing machine,
since they have similar wattage. Moreover, those two appliances have
very short duration times, hence a small number of samples within a
window contain an activation. Thus, it is important to choose enough
samples where the model predicts there is an activation, but also
high-certainty samples help in preventing forgetting of patterns of
interest, and correcting wrong behaviour caused by confusions with
other appliances as described above.

For washing machine and microwave in REFIT house 5, with multi-
state relatively more complex signatures, high-certainty samples are
usually correctly predicted and the model benefits mostly from low-
certainty samples. Therefore, the pool-based acquisition function per-
forms well. Transferability of the washing machine and microwave
models, compared to more distinct kettle signature, is relatively poor
in general (D’Incecco et al., 2020; Li et al., 2023) and often excluded
in the NILM literature.

However, for washing machine in UK-DALE house 1, initial perfor-
mance is very good, due to much lower background noise levels in this
house. The active learning curve, hence, does not have the usual shape,
but its range covers only the 𝐹1-score from 0.96 to 0.97 — there is
not much room for improvement if starting performance is so good, as
opposed to other appliances from this house and from REFIT house 5.

For the dishwasher, the starting performance is poor in REFIT house
5 and UK-DALE house 1, indicating that the dishwasher model in the
test houses is very different from those present in the pre-training
10

dataset, but only two (Fig. 6(d)) and three (Fig. 7(c)) active learning
Table 3
Comparison between five acquisition functions for 4 appliances from REFIT house
5: kettle, microwave, washing machine and dishwasher. The optimal points (Opt.),
stopping points (Stop) and maximum performance (Max) are all included. Note that
Maximum point is a point where the curves reach their maximum, which is unknown in
practice and cannot be used to stop. |𝑫ft |

|𝑫pool |
is the percentage of samples being labelled

Acquisition
function

Kettle Microwave Washing M. Dishwasher

𝐹1
|𝑫ft |

|𝑫pool |
𝐹1

|𝑫ft |

|𝑫pool |
𝐹1

|𝑫ft |

|𝑫pool |
𝐹1

|𝑫ft |

|𝑫pool |

Pool based unc. Opt. 0.71 4% 0.45 16% 0.46 17% 0.60 11%
Max 0.76 96% 0.49 100% 0.47 100% 0.66 78%

Stream based
unc.

Opt. 0.72 4% 0.41 6% 0.43 22% 0.60 12%
Max 0.76 35% 0.47 22% 0.48 89% 0.66 100%

BADGE (Ash
et al., 2019)

Opt. 0.72 12% 0.42 16% 0.38 12% 0.60 12%
Max 0.75 55% 0.47 81% 0.47 100% 0.66 100%

CLUE (Prabhu
et al., 2021)

Opt. 0.73 6% 0.43 13% 0.45 18% 0.61 12%
Max 0.75 36% 0.48 91% 0.47 71% 0.67 53%

PROPOSED
Opt. 0.73 9% 0.48 13% 0.44 11% 0.61 11%
Stop 0.73 12% 0.47 19% 0.46 28% 0.66 39%
Max 0.75 43% 0.49 80% 0.48 83% 0.66 50%

Table 4
Comparison between five acquisition functions for 3 appliances from UK-DALE house
1: kettle, washing machine and dishwasher. The optimal points (Opt.), stopping points
(Stop) and maximum performance (Max) are all included. Note that Maximum point
is a point where the curves reach their maximum, which is unknown in practice and
cannot be used to stop. |𝑫ft |

|𝑫pool |
is the percentage of samples being labelled.

Acquisition
function

Kettle Washing M. Dishwasher

𝐹1
|𝑫ft |

|𝑫pool |
𝐹1

|𝑫ft |

|𝑫pool |
𝐹1

|𝑫ft |

|𝑫pool |

Pool based unc. Opt. 0.87 4% 0.96 0% 0.75 17%
Max 0.88 80% 0.97 56% 0.77 89%

Stream based
unc.

Opt. 0.81 1% 0.96 0% 0.68 6%
Max 0.86 17% 0.96 33% 0.76 33%

BADGE (Ash
et al., 2019)

Opt. 0.84 3% 0.96 0% 0.72 18%
Max 0.87 78% 0.97 88% 0.80 100%

CLUE (Prabhu
et al., 2021)

Opt. 0.86 6% 0.96 0% 0.72 12%
Max 0.87 70% 0.97 94% 0.77 47%

PROPOSED
Opt. 0.83 1% 0.96 0% 0.65 6%
Stop 0.86 7% 0.96 22% 0.75 17%
Max 0.86 7% 0.96 11% 0.75 17%

labelling iterations are sufficient to significantly improve the perfor-
mance. All query strategies perform equally well in REFIT house 5 - due
to a very low starting performance, all acquisition functions provide a
highly informative fine-tuning set that contributes to significant model
improvement. Nevertheless, it can be seen that the proposed strategy
(purple star in Figs. 6(d) and 7(c)) led to the highest performance in
both test houses.

Based on the proposed stopping criteria, stopping is applied after
3 consecutive iterations with less than a half of the required high-
uncertainty samples present in the query pool, to ensure consistent
certainty of the model. Stopping points are therefore always located
several iterations after the optimal points. It can be seen from Figs. 6
and 7, as well as from the numerical results presented in Tables 3 and 4,
that the proposed early stopping significantly saves the labelling effort
with negligible performance loss. Indeed, the gap between the point
where the maximum performance is achieved and the stopping point is
always very small.

5.1.2. The impact of errors and re-labelling mechanism
Next, we evaluate the performance when labelling errors are present

in REFIT house 5 and assess usefulness of the proposed re-labelling
strategy with the proposed acquisition function and the proposed stop-
ping criteria.

Fig. 8 shows the results when false negative errors are introduced
into labels, i.e., positive labels are set as negative. Blue line corresponds
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Fig. 8. Active learning with simulated false negative errors in the labels for kettle (a), microwave (b), washing machine (c) and dishwasher (d) from REFIT house 5.
o correct labels, without any errors introduced. Note that the number
f iterations differ across the appliances due to the proposed stopping
riteria. As expected, as error probability 𝑝 increases, the performance
ecreases — lower 𝐹1-score is achieved. Kettle is sensitive to high levels
f error, especially at later stages — it has a signature of short duration
hat is easily forgotten by the model if the error rate is high. Lower
rror rates do not impact the performance significantly. Microwave
nd washing machine are sensitive to this type of labelling errors even
ith lower error probabilities, which is reasonable since they have

ignatures that are already challenging to disaggregate even without
ny errors in labels.

Fig. 9 shows the results when false positive errors are introduced
nto labels, i.e., negative labels are set as positive. Since samples
ith appliance activations are more likely to be queried first as de-

cribed above, the impact of false positive errors is expected to be
ess pronounced than the impact of false negative errors, at least in
he beginning, which can be confirmed in Fig. 9. Namely, since the
ataset is already highly imbalanced in favour of sample windows
ithout appliance activation, with false negative errors, we introduce
ven more negative samples, and the model starts to ‘forget’ the pattern
t learnt to recognise. On the other hand, false positive errors are likely
o be introduced for samples where the aggregate signal looks as if there
s appliance activation, so the model retains the ability to recognise
mportant patterns.

Fig. 10 demonstrates the usefulness of the proposed re-labelling
echanism. Performance is compared between the case with and with-

ut re-labelling, with false negative errors occurring with the proba-
ility of 0.3. Match rate threshold 𝑇return in Eq. (7) is heuristically set
o 1𝑒 − 4 for kettle and microwave, and 5𝑒 − 5 for washing machine
nd dishwasher, since these appliances have longer lasting cycles and
he match rate is expected to be lower even for the good predictions.
he assumption is that once a sample is returned for re-labelling, a
orrect label is provided. Improvement in performance when using
he re-labelling mechanism is observed for all four appliances, and
t is most pronounced for washing machine, which is very sensitive
o this type of error (see Fig. 8(c)). This means that the mechanism
11
successfully captures the samples which were wrongly labelled, and
enables correcting labels by taking another look at them.

Results show that more samples are returned in active learning
iterations where a drop in performance is observed (e.g. iterations 6
and 7 for kettle, iterations 6–9 for microwave), indicating that the
model started to adopt wrong labels, but still has not forgotten the
pattern of interest, and still can detect suspicious labels. Due to the
complex pattern of washing machine, the model is less confident in its
predictions, and relies more and adapts to provided labels, making the
predictions similar to labels, even if those are wrong. However, samples
re-labelled in the beginning do improve the performance, and the
improvement achieved in the beginning does not decline in later stages.

5.1.3. Exploiting confidence during training
Fig. 11 shows the usefulness of the proposed modification of loss

function (Eq. (6)) to take into account confidence levels related to
labels. False negative errors with probability of 0.5 are simulated.
Based on the assumption that confidence level is correlated with the
quality of label, two confidence levels are assumed — high confidence
for samples without labelling errors and low confidence for samples
containing a labelling error. The improvement in performance when
using confidence levels during training compared to not using them is
observable for kettle, washing machine and dishwasher from the very
beginning. Even though proposed strategy improves performance for
microwave and washing machine, clear convergence is not reached as
with kettle and dishwasher. This is due to the complex, multi-state
signatures of microwave and washing machine, as opposed to distinct
patterns of kettle and dishwasher.

5.2. Experiment 2

In this subsection we report the results when three experts are asked
to label the samples using the user interface presented in Fig. 5. Each
expert was asked to label one or more appliances. We used the proposed

acquisition function, the stopping criteria and re-labelling mechanism.



Engineering Applications of Artificial Intelligence 133 (2024) 108589T. Sobot et al.

h

d
i

Fig. 9. Active learning with simulated false positive errors in the labels for kettle (a), microwave (b), washing machine (c) and dishwasher (d) from REFIT house 5.
Fig. 10. The proposed active learning method with and without the re-labelling mechanism for kettle (a), microwave (b), washing machine (c) and dishwasher (d) from REFIT
ouse 5.
Fig. 13 shows the results with and without using expert confi-
ence levels. Horizontal axis represents the number of active learn-
ng labelling iterations, and vertical 𝐹 -score achieved. The blue line
12

1

corresponds to the case when labels are provided by an expert familiar
with NILM, but without his/her confidence levels related to each label
taken into account during training (i.e., all confidence levels are set
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Fig. 11. Active learning with and without confidence taken into account during training for kettle (a), microwave (b), washing machine (c) and dishwasher (d) from REFIT
house 5.
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to ‘high’); and the orange line corresponds to the case when labels are
provided by an expert, and their confidence levels are included into the
loss function (Eq. (6)) during training.

Examples of signal windows from REFIT house 5 labelled for wash-
ing machine by expert #3 and tagged with low and high confidence
levels are shown in Fig. 14, showing that more noisy samples, with not
so distinct signatures, are more challenging to be labelled by naked eye.

The quality of expert-provided labels, in terms of hit, miss and false
alarm, compared to the submetering ground truth is shown in Tables 5
and 6. Hit is defined as the case when the expert-provided label is
overlapping with the submetering label (equivalent to TP); Miss as the
case when the submetering label has an activation, but the expert-
provided label does not (equivalent to FN); and False alarm as the
case when the submetering label does not have an activation, but the
expert-provided label does (equivalent to FP). In cases when there is
an activation both in submetering and expert-provided label, but they
do not overlap, the label falls under the Miss & False alarm category.
A histogram of expert confidence levels is given next to the number of
labels belonging to each of the four categories, where red denotes low
confidence, yellow middle, and green high confidence levels.

For kettle from REFIT house 5 in Fig. 12(a), using confidence levels
did not improve the results — the labels are already of high quality,
the number of misses and false alarms is very low compared to the
number of hits, which is expected since the kettle has a single state,
easily recognisable signature. Moreover, the expert assigned to most of
the labels high confidence, as in the no-confidence level benchmark.
However, a couple of mistakes have high confidence levels, which
probably caused the confidence level curve to be slightly worse than
no confidence level in Fig. 12(a). The same situation is observed in
UK-DALE house 1 in Fig. 13(a). For microwave (Fig. 12(b)), which
is a challenging appliance to label since activations are sparse and
fluctuating, the power/watt level is lower compared to kettle, and there
are different modes of running the appliance, expert-provided labels
contain a significant number of mistakes. However, those mistakes are
tagged with low confidence levels, so utilising user confidence levels
13
did improve the results compared to the benchmark. For washing ma-
chine REFIT house 5, Fig. 12(c), which was labelled by another expert,
there is a larger percentage of labelling mistakes, some of which have
high confidence levels. However, there are low and mid-confidence
levels among wrongly labelled samples, which was enough to lead to
performance improvement compared to no confidence level case. For
washing machine in UK-DALE house 1, Fig. 13(b), a vast majority of
samples are correctly labelled, and tagged with high confidence. This
causes weights to be very similar as in the case when confidence levels
are not accounted for. Even though in Fig. 13(b) it looks like there
is a significant gap between the two curves, note that the difference
is at most 0.001 in 𝐹1-score, so performance is practically the same.
or dishwasher from REFIT house 5, Fig. 12(d), labelled by another
xpert, the provided labels are of higher quality since they have a
ore distinct signature than microwave. In addition, the correct labels
ostly have high confidence values, which increased the contribution

f confidence exploitation, and led to minor differences between the
wo curves. In UK-DALE house 1, Fig. 13(c), there are very few ac-
ivations among queried samples before the active learning process
topped, and therefore there is almost no difference between the two
urves — there are many correctly labelled negative examples tagged
ith high confidence levels.

The main challenges encountered in this experiment are the cases
hen an expert assigns the same confidence value to almost all samples
then the proposed weighing of samples based on expert’s confidence

pproaches the case when no confidence is accounted for (the vast
ajority of samples get the same weight). This is not the problem in
atasets with low noise levels, when labels are of very high quality (for
xample, washing machine in UK-DALE house 1, see Table 6) - the most
f high-confidence samples are correctly labelled; but this is a problem
n very noisy datasets where there are both correct and wrong labels,
ut the expert is either over-confident (many wrong labels tagged by
igh confidence) or under-confident (many correct labels tagged with
ow confidence). Therefore, skill level of experts poses a limitation to
his approach to some extent.
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Fig. 12. Experiment 2, REFIT house 5: Three experts asked to provide labels, where each expert labels one or two appliances. The performance curves are shown with and without
expert confidence taken into account.

Fig. 13. Experiment 2, UK-DALE house 1: Experts asked to provide labels, where each expert labels one or two appliances. The performance curves are shown with and without
expert confidence taken into account.
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Fig. 14. Experiment 2: User interface showing examples of signal windows from REFIT house 5 with washing machine tagged with low and high confidence levels by expert #3.
Table 5
Quality of expert-provided labels compared to ground truth for REFIT house 5. Red
denotes low confidence, yellow middle, and green colour high confidence levels.

Kettle Microwave Washing M. Dishwasher
Expert #1 #3 #3 #2

Hit 113 26 46 87

Miss 36 28 25 26

False alarm 32 30 7 6

Miss & False alarm 5 2 0 0

Total # of labels 320 768 384 448
15
Table 6
Quality of expert-provided labels compared to ground truth for UK-
DALE house 1. Red denotes low confidence, yellow middle, and green
colour high confidence levels.

Kettle Washing M. Dishwasher
Expert #1 #3 #3

Hit 99 78 17

Miss 12 4 6

False alarm 7 1 0

Miss & False alarm 3 0 0

Total # of labels 320 256 192
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6. Conclusions

This paper proposes a human-in-the-loop active learning method-
ology for time series data, demonstrated and evaluated for the non-
intrusive load monitoring problem. Novel contributions to enable the
proposed overall active learning methodology comprise: design of an
acquisition function based on maximum a posteriori hypothesis test-
ing, accounting for both model uncertainty and balancing classes; a
stopping criterion once optimal performance is achieved, to minimise
resource-intensive labelling effort; mitigating the effect of wrong labels
possibly provided by users throughout the process via two mechanisms
by returning possibly wrongly labelled samples for re-labelling, and
accounting for user’s certainty level about provided labels, respectively.

Two experiments are conducted, applying novel AL-based
approaches to the problem of time series classification of individual
loads in aggregate smart meter measurements, leveraging on publicly
available REFIT (Murray et al., 2017) and UK-DALE (Kelly and Knotten-
belt, 2015) datasets, and transformer-based deep learning ELECTRIcity
model (Sykiotis et al., 2022). The first set of experiments show that the
proposed acquisition function achieves similar performance to state-of-
the-art methods, but with smaller number of samples labelled due to
balancing better classes and cleverly stopping when good performance
is reached. Labelling effort is reduced by between 61% (in the case
of dishwasher) and 88% (in the case of kettle) in REFIT house 5, and
between 78% (in the case of washing machine) and 93% (in the case of
kettle) in UK-DALE house 1. Furthermore, even with errors introduced
throughout the labelling process, the proposed active learning method
enhances the model to be generalised for various profiles for the same
label. The proposed re-labelling mechanism is shown to be effective
in detection of mistakes during the labelling process, and offers the
possibility to improve the performance by providing new labels for
uncertain data samples. Finally, including confidence levels of human
experts, especially in cases where samples are noisy, is beneficial as
it prevents a drop in performance caused by accumulation of wrong
labels. The second experiment verifies the use of proposed active learn-
ing approaches in real-world scenarios, where despite unintentionally
introduced errors, model performance is still boosted, especially with
the use of the proposed methods for error effect mitigation.

The proposed active learning approach demonstrated improved per-
formance when pre-trained NILM models are transferred to new, un-
seen homes. Even when the initial performance prior to active learning
is poor, the proposed approach can largely improve performance by
labelling a considerably small amount of data. The method can scale
to many houses (hundreds, thousands) - algorithms are adjusted to
each house separately — no data needs to be exported, and users
(house owners) can help label their own data based on time when
specific appliances are used, until the algorithms become well tuned
and high performing. Considering recordings from a long period of
time ensures heterogeneity of data and stability of the model. Even if
circumstances in their house change (e.g., an appliance is replaced or
a new high-consuming load is introduced), which impact the aggregate
measurements and hence the NILM algorithm performance, the active
learning process can adjust the model, ensuring performance stability.

The proposed approach is demonstrated to be applicable to sensor
measurements where the data being measured is fluctuating, varies
across houses (domains), is noisy, and labelling is challenging. Further-
more, the very challenging nature of the load disaggregation problem is
akin to the broader single source separation problem arising often from
environmental sensing and therefore the method’s efficacy in NILM
stretches to other application domains based on solving single source
separation problem from noisy time-series reading.

As some types of labels are very hard to be provided by users (for
example, regression labels for the problem of load disaggregation, or
strong labels for time-series windows in general), it would be worth
exploring the use of Siamese networks in future work, that could be pre-
16

trained for both regression and classification tasks at the same time, or
with both strong and weak labels at the same time. Furthermore, user-
provided confidence levels could be used to further train the model to
learn its own confidence level. Moreover, along with model prediction,
some explanation tools could be used to inform the expert of the
reasoning behind the prediction to help labelling.
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