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Abstract—This article advances the existing theoretical analysis
of pulsed electric field (PEF) treatment, an application of pulsed
power technology. PEF treatment has attracted significant atten-
tion due to its potential to be used for non-thermal biological
sterilization and inactivation of microorganisms, bio-extraction,
and for the possible role that it may play in the treatment of
tumors and cancers such as in electrochemotherapy. However,
the bioelectric effects of impulsive electric fields on different
biological matter are not yet completely understood. Further
advances in this direction would aid in the optimization of
the necessary pulse waveforms to achieve the desired PEF
effects in, for example, various biomedical and food processing
industries. In this work, the commonly used multi-shell model of
microorganisms utilized for the analysis of cell transmembrane
potentials (TMPs) has been generalized to include an arbitrary
number of layers. This incorporates also a spheroidal geometry
of arbitrary eccentricity. Analysis has been conducted on the
novel mathematical model, which demonstrated the ability to
estimate TMPs and relaxation times for an n-shell topology
using a mesh-free approach. This allows for complex many-
shelled cell models to be analyzed, free from the limitations
of spatial or temporal discretization, i.e., those present when
using finite-element or finite-volume based methods. Using this
model, the effects that the pulse rise-time and pulse duration
have on the developed TMPs in a single 6-layer Saccharomyces
cerevisiae yeast, and under the microsecond-PEF regime, have
been investigated. It has been found that the pulse rise-time has
a far lesser effect on the PEF action compared to the modulation
of the pulse duration, supporting past experimental observations.
The role of the electrical conductivity of the extracellular medium
(and considering induced changes in the cell components) has
additionally been studied, under low (σ = 1 mS/m), medium
(σ = 50 mS/m), and high (σ = 100 mS/m) conductivity values.
Estimations provided by this model may support the optimization
of pulse waveforms for current and future PEF applications, and
for the analysis of complex multilayered cell structures under
pulsed electrical stress.

Index Terms—pulsed electric field, pulsed power technology,
electroporation, cell membrane, electric fields

I. INTRODUCTION

PULSED electric field (PEF) technology is a well-
established application of pulsed power that has gained

significant research attention during the past several decades.
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The process of PEF treatment involves the application of short
and intense electrical impulses to a target medium, which
can produce different bioelectric effects on various biological
matter [1]. Namely, electroporation can take place, where
nanopores are developed inside cell membranes [2]–[4]. Two
modes of electroporation are known to be possible: reversible
electroporation (RE), and irreversible electroporation (IRE).
The former allows the membrane to self-repair upon removal
of the pulse, which has implications for drug delivery and for
intracellular manipulation. In the latter case, the membrane
is unable to be repaired and may thus induce cell death,
enabling its effective application to bacterial inactivation, ster-
ilization and decontamination [5], [6], or biomass processing
technologies [7], [8]. In other work, nanosecond-PEF (ns-
PEF) showed promise for the treatment of tumors and cancers
[9]–[11], while emerging studies on picosecond-PEF (ps-PEF)
have suggested that precise and non-invasive pulse delivery
is possible [12], which may have impact on future treatment
methods for neurodegenerative diseases [13]. It is believed
that to effectively modulate the strength of the electroporation
process, the transmembrane potential (TMP) developed across
the cell membrane is of critical importance. Studies describe
a threshold TMP in the range of ∼ 0.5 − 1.5 V for IRE to
take place [14]–[16], and results from the detailed numerical
modeling of membrane pore formation generally corroborate
these findings, e.g., in [17], [18]. It is known that the character-
istics of the pulse can have major effects on the electroporation
process [19]–[22]. As such, there has been multiple studies
focused on modeling the developed TMPs under a variety of
pulsed waveforms, and using a variety of methods, see for
instance [23]–[26]. For a comprehensive review on the field
of Bioelectrics, in which includes the above applications and
other related phenomena, readers are referred to [27].

A class of multi-shell analytical dielectric models of biolog-
ical cells or microorganisms have been commonly employed,
with authors incorporating a varying number of layers, e.g.,
in [19], [23], [26], [28], representing various combinations
(where applicable) of the nucleoplasm, nuclear membrane,
cytoplasm, plasma membrane, cell wall, and extracellular
medium. Maxwell-Wagner theory is applied to solve for the
time-dependent potential field in each dielectric layer, thereby
estimating TMPs for single, isolated, cells. Past works includ-
ing [25], [29] have extended the traditional spherical model to
more complex geometries, such as spheroids, and in different
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orientations. These geometries may be more representative
of certain types of microbiological cell which would be
poorly approximated by an ideal sphere. In other literature,
closed-form solutions have been demonstrated for up to five
unique regions for spherically symmetric geometries [26].
Often, mesh-based methods such as the finite-element method
have been used for models which must incorporate additional
layers, for instance, when modeling non-mammalian cells
incorporating the cell wall [30]. However, due to the thick-
ness of membrane layers relative to the greater thicknesses
of the cytoplasm or extracellular space, very fine meshes
are typically necessary to attain sufficiently accurate results.
Even with adaptive methods, this may necessitate significant
computational resources and time. Mesh convergence studies
would typically be required to ensure convergent results.
When also considering the inherent time-dependency of the
problem, depending on the relaxation times and nature of the
voltage pulses under consideration, the time-step requirement
may become prohibitively small to ensure minimal truncation
error. In combination with the limitations to the mesh above,
these methods may take considerable time and require many
problem iterations to ensure numerical accuracy.

With particular significance to applications like bio-
extraction and food processing that may deal with microorgan-
isms with more complex cell structures than simple bacteria,
this work generalizes the analytical multi-shell approach to
include an arbitrary number of shells. The geometry which
has been considered is that of a spheroid, with its major axis
parallel to an external, uniform, electric field. It should be
emphasised, however, that the effects of eccentricity are not
the main focus of this approach. Rather, the main contribution
is the extension of the multi-layered approach to an arbitrary
number of layers. The effects of eccentricity have previously
been studied, e.g., in [31]. It is first demonstrated that the
model used in [26] represents the maximum theoretical limit to
the number of layers where closed-form time-domain solutions
are possible using the standard method. However, a new
approach to estimate the TMPs in any layer in an n-layer
geometry has been developed, which relies only upon the
numerical computation of polynomial roots, bypassing some
limitations of traditional mesh-based transient field analysis.
This ‘many-shells’ model was first validated against a finite-
element solver, before a systematic study on the developed
TMPs across a complex multi-layered cell geometry was
conducted, which investigated the role of rise-time, pulse
duration, and effects of the extracellular medium conductivity.

II. THE MANY-SHELLS MODEL

A. Nomenclature and Geometry

In this section, the development of the mathematical model
is described. An isolated multi-layered spheroidal inclusion
was considered, which was assumed to have an arbitrary
number of ‘shells’, each with a unique pair of values for its
relative permittivity, ε, and electrical conductivity, σ, in S/m,
as illustrated in Figure 1. This work focused on spheroidal
geometries that has their major axis aligned to that of the
direction of a uniform external electric field, E0(t). It should

Fig. 1. Prolate spheroidal coordinate system used to develop the many-shells
dielectric model.

be noted that in general, the term spheroidal refers to three-
dimensional geometries formed by the revolution of an ellipse
around one of its principal axes, and that therefore has a
circular cross-section in the plane of rotation. In some texts,
the term ellipsoid of revolution is equally valid. In this article,
the term spherical is used to explicitly refer to spheroids
which have all three principal axes of equal length. It is
remarked that ellipsoids – shapes that may have differing
lengths on all three principal axes, do not feature in this study.
Furthermore, the use of the term shell, in this article, refers to a
bounded region between two interfaces that identifies a single
unique layer in the composite layered structure, not including
the innermost bounded region, nor the unbounded external
medium. The term layer is instead used when referring to
any bounded or unbounded region, including the inner and
external subdomains. This is made clear here as there does
not appear to be an accepted meaning of the term shell, see
for instance, the differing definitions in [26], [28], and [32].

In this case, the geometry of interest was represented
using the prolate spheroidal coordinate system (µ, ν, θ), which
relates to the Cartesian system (x, y, z) with:

x = a0 coshµ cos ν,

y = a0 sinhµ sin ν sin θ,

z = a0 sinhµ sin ν cos θ, (1)

where a0 is the distance from the origin to the foci. Surfaces
traced by constant µ therefore form spheroids, and surfaces of
constant ν are confocal hyperboloids. Analysis was limited to
the case of azimuthal symmetry, where the θ coordinate can
therefore be neglected. As such, let i denote the layer number,
up to a total of n layers, with i = 1 therefore denoting the
innermost region, and i = n denoting the external medium.
The coordinate µ = µi hence represents the boundary between
the i and (i+1)-th layers, for a total of n−1 unique µi values
for n layers. Furthermore, let ei be defined as the eccentricity,
given by

ei =
√
1−K2

i , (2)
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where Ki is the ratio of the minor to major axis of the layer
i, which may further be shown to satisfy Ki = tanhµi.
Therefore, as ei tends toward zero, the geometry approaches
the spherical limit. It should be noted that because of (1) and
(2), a limitation to this geometry is the inability to have layers
of uniform thickness for all values of ν. As the number of
layers n increases, so too does Ki, such that for large n
(or large distance between adjacent µi relative to a0), Kn

approaches unity (e = 0) regardless of the eccentricity of
the innermost region. It is therefore important to provide a
definition for the shell thickness, which was taken to be the
difference between the Cartesian x coordinates of neighboring
layers at an angle of ν = 0, and may therefore be written

∆xi = a0 (coshµi+1 − coshµi) (3)

for i from 1 to (n − 2). Consecutive values for µi+1 can be
found recursively using (3) when the dimension of the inner
or outermost region is known. Each layer is also uniquely
characterized by a constant value of relative permittivity, εi,
and electrical conductivity, σi, in S/m.

B. Governing Equations and Boundary Conditions

Following Maxwell-Wagner theory, and under the assump-
tion that charge exists only at the layer interfaces, the potential
field φ in the domain is governed by the Laplace equation,
which in the azimuthally symmetric prolate spheroidal coor-
dinate system reads:

∇2φ =
1

h2

(
∂2φ

∂µ2
+

∂2φ

∂ν2
+ cothµ

∂φ

∂µ
+ cot ν

∂φ

∂ν

)
= 0,

(4)
where h is the scale factor h = a0

√
cosh2 µ− cos2 ν. Equa-

tion (4) is separable, and under a uniform external field can
be shown to admit solutions with the general form:

φi(t, µ, ν) = [Ai(t) +Bi(t)F (µ)] coshµ cos ν, (5)

where subscript i refers to the potential field in layer i, and
with the conditions that B1(t) = 0 and An(t) = −a0E0(t),
which arise from the necessity for the potential to be non-
singular within the innermost region, and must become self-
consistent with the external potential for µ ≫ µn−1. The
function F (µ) depends only on geometry, and is given by

F (µ) = sech µ− ln

√
coshµ+ 1

coshµ− 1
. (6)

The time-dependent coefficients Ai(t) and Bi(t) can be ob-
tained by applying an appropriate set of boundary conditions.
In this case, the continuity of the potential and of current must
be prescribed, such that

φi(t, µi, ν) = φi+1(t, µi, ν), (7)

and[
σiE⃗i(µi) + ε0εi∂tE⃗i(µi)

]
· n̂

=

[
σi+1E⃗i+1(µi) + ε0εi+1∂tE⃗i+1(µi)

]
· n̂, (8)

where ∂t denotes the time derivative, n̂ is the unit normal,
and E⃗i is the electric field developed in layer i, satisfying
E⃗i = −∇φi and results in the expression (9) when combined
with (5):

E⃗i(t, µ, ν) =− 1

h
[Ai(t) +Bi(t)G(µ)] sinhµ cos ν · µ̂

+
1

h
[Ai(t) +Bi(t)F (µ)] coshµ sin ν · ν̂ (9)

The function G(µ) follows from F (µ), satisfying the relation
G(µ) sinhµ = ∂µ [F (µ) coshµ], and therefore has the defini-
tion:

G(µ) = cothµ csch µ− 1

2
ln

(
coth

µ

2

)
. (10)

C. Matrix Representation of the System

For an n-layer system, a total of 2(n − 1) first-order
differential equations arise from (7), (8), and (9). The system
of equations can be reduced to a linear algebraic system by
application of the Laplace transform, replacing the time deriva-
tive operator ∂t by multiplication with the complex frequency
variable s. For brevity, functional notation is hereafter omitted,
and the substitution

λi =
(σi+1 + ε0εi+1s)

(σi + ε0εis)
=

σi+1 (1 + τi+1s)

σi (1 + τis)
(11)

is made to maintain compactness of expressions. Similarly,
F (µi), G(µi), and E0(s) become Fi, Gi, and E0, respectively.
Here, τ1 . . . τn are the intrinsic relaxation time constants for
the respective layer, defined as the ratio:

τi =
εi
σi

ε0. (12)

M =

G1λ1 − F1 λ1(F1 −G1) · · · 0
λ1 − 1 G1λ1 − F1

G2λ2 − F2 F2G2(λ2 − 1) λ2(F2 −G2)
F2 −G2 λ2 − 1 G2λ2 − F2

... G3λ3 − F3 F3G3(λ3 − 1)
. . .

...

F3 −G3

. . . Gn−2λn−2 − Fn−2

. . . Fn−1Gn−1(λn−1 − 1)
0 · · · Fn−1 −Gn−1 Gn−1λn−1 − Fn−1


(14)
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The set of equations for i from 1 to (n− 1) then read:

Ai +BiFi = Ai+1 +Bi+1Fi,

Ai +BiGi = λi (Ai+1 +Bi+1Gi) . (13)

Equations (13) were transformed into a matrix representation
of the form Mu⃗ = b⃗, which facilitated the solution pro-
cess by revealing the underlying mathematical structure of
the system. Here, u⃗ is the vector of unknown coefficients,
u⃗ = [A1, A2, B2, . . . An−1, Bn−1, Bn]. It was found possible
to transform the system matrix into tridiagonal form with a
regular structure, shown in (14) and the vector b⃗ in (15),
which significantly simplifies the solution process, detailed in
the next section.

b⃗ =



...
0
...

a0E0λn−1(Fn−1 −Gn−1)
a0E0(λn−1 − 1)

 (15)

III. SOLUTIONS

A. s-domain solutions
Tridiagonal systems are characterized by their ability to be

solved using a set of repeated elimination row operations,
followed by backward substitution. This is also to say that
should either A1 or Bn become known, all other coefficients
can be found through (13) by propagating the known solutions
backward (or forward) through each equation in sequence. One
direct and efficient method that can be used for tridiagonal
systems is the Thomas algorithm [33], which when applied to
(14) and (15) yields a solution to A1 for a structure with n
layers, here indicated by an additional (n) superscript:

A
(n)
1 = −a0E0

Pn

n−1∏
m=1

λm (Fm −Gm) , (16)

where the denominator Pn is the characteristic polynomial of
the system, the roots of which define the relaxation characteris-
tics of the multi-layered structure, and is a critically important
property when considering the application of time-dependent
electric fields. From the row operations, it can be shown that
Pn satisfies the following second-order recurrence relation:

Pn =(Fn−1 −Gn−1λn−1)Pn−1

− Fn−1Gn−1 (λn−1 − 1)

×
[
(λn−2 − 1)Pn−2 +

Gn−2 − Fn−2λn−2

Fn−2Gn−2 (λn−2 − 1)

× [Pn−1 − (Fn−2 −Gn−2λn−2)Pn−2]

]
, (17)

for n ≥ 3 and with the conditions that:

P1 = 1,

P2 = F1 −G1λ1. (18)

The polynomial Pn can be shown to be of order n − 1, and
is of the form:

Pn = c0s
n−1 + c1s

n−2 + c2s
n−3+

. . .+ cn−2s
1 + cn−1s

0, (19)

where ci are constant coefficients. The general s-domain
solution may then be written:

A
(n)
1 = −a0E0(s)σn (1 + τns)

c0σ1 (1 + τ1s)

n−1∏
m=1

Fm −Gm(
s+ 1

τm+n

) (20)

where the additional n− 1 time constants are found from the
roots of (19), and hence:

τm+n = − 1

roots (Pn)m
. (21)

Equation (20) allows closed-form solutions to be found for
A

(n)
1 in the s-domain, and consequently allows all coefficients

in u⃗ to be determined via backward substitution into (13), with
the knowledge that B(n)

1 is always zero, as per the non-singular
condition described in section II-B. As for time-domain so-
lutions, the ability for these to be derived analytically or in
closed-form is discussed in section III-B.

B. Time domain solutions

The existence of analytical time-domain solutions to (4)
is dependent on the ability to perform the inverse Laplace
transform on the resulting s-domain coefficient expressions
as given by (20). To do so would require the factorization
of the characteristic polynomial, Pn, of order n − 1 in s as
given by (21), and to define an appropriate choice of external
field, E0(s). As shown similarly and explained in [34] for
a one-dimensional multi-layered planar model, this prohibits
closed-form time domain solutions to be sought for n > 5
using this method (since in general, roots of polynomials with
order n > 5 cannot be found in radicals, in accordance with
the Abel-Ruffini theorem), for which numerical root finding
techniques can be employed as an alternative (for example,
using the eigenvalue theorem). It is remarked, however, that
even if (19) could be symbolically factored for n > 5, the
size of the resulting expressions would become increasingly
impractical and unwieldy, as the number of terms in Pn

according to (17) can be shown to grow by a factor of four
for each additional layer. Equations (13) and (20) nonetheless
provide a full analytical solution to the problem, which can be
processed by common computer algebra systems, provides an
exact solution, and is not dependent on a full computational
mesh nor discrete time-stepping. Provided that (21) can be
solved accurately for the relaxation time constants, (13) and
(20) can be used to compute the electric potential and electric
field anywhere in the domain, and at any time, free from the
limitations of a spatial and temporal discretization.

IV. SUMMARY OF MODELLING PROCESS

For clarity, this brief section provides a step-by-step descrip-
tion of the modelling process based on the derived general
solution. The region with available closed-form solutions
(n ≤ 5) where numerical root-finding is not strictly necessary
is also discussed. It is remarked that numerical methods for
computing roots may also be applied for n ≤ 5 despite the
existence of closed-form solutions, if desired. Regardless of
n, the process can be described in the following steps:
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1) Evaluate the characteristic polynomial according to (17).
2) Compute the n − 1 layer relaxation times based on

the polynomial roots using (21). This may be done
analytically or numerically (see below after this list).

3) Evaluate (20) using the obtained relaxation times and
the desired external field expression, E0(s). This results
in the s-domain solution for the coefficient A(n)

1 .
4) Perform an inverse Laplace transform on the obtained

solution from step (3), yielding the time-domain solution
A

(n)
1 (t).

5) Repeated backpropagation of A
(n)
i (t) using the linear

system (13) allows the determination of all required
unknown coefficients.

6) With the obtained coefficients, evaluation of (5) yields
the potential field, while (9) yields the electric field
developed in the i-th layer.

Step (2) involves the the computation of the relaxation times,
which as discussed in Section III-B is generally limited to
n ≤ 5 if closed-form solutions are necessary, as limited
by the Abel-Ruffini theorem. In those cases, numerical root-
finding schemes should be used in Step (2) to determine the
polynomial roots. Otherwise, closed form solutions may be
sought analytically as demonstrated in the following.

For n = 1, this corresponds to the absence of any cell
or particle and represents solely the application of a uniform
external field to a single bulk dielectric region. By definition
of (18), P1 is equal to unity and the evaluation of (20) is
therefore A

(n)
1 = −a0E0(s). Substitution into (5) recovers the

expression for the uniform external field in prolate-spheroidal
coordinates, as expected.

For n = 2 the polynomial is P2 = F1 − G1λ1 as per
(18), such that (21) can be solved through direct algebraic
rearrangement. For the cases n = 3, 4, 5, the characteristic
polynomial has order 2, 3, and 4, respectively. The roots
may therefore be computed following the quadratic, cubic,
or quartic formulas without the necessity of numerical root-
finding techniques.

V. MODEL VALIDATION

To ensure the accuracy of the developed model, the electric
fields for a ten-layer (8 total shells) spheroidal structure
(parameters and geometry of which were arbitrarily chosen
for the purposes of validation), energized with a step voltage
corresponding to an external field magnitude of 20 kV/cm
was calculated using (20) and compared to the same solution
computed using the finite-element (FEM) solver QuickField
Professional v6.4 [35]. The parameters used and resulting
comparison have been included as Appendix A. The time-
dependent solution from the many-shells model was found
to agree very well with FEM, with any discrepancies likely
arising from the quantization and truncation errors from the
QuickField model, or minimal errors from computing the roots
of (21).

To compare the developed approach with previous models
established in the literature, the reader is referred to the
spherical model of Kotnik and Miklavčič [36] and to the
spheroidal model of Nath, Sinha and Thaokar [31], who also

Fig. 2. Comparison of inner and outer TMPs developed across a spherical
cell with data from [31] and [36] with the present many-shells model with
n = 5. Note that all models used are analytical and produce three essentially
identical curves. Discrete datapoints have therefore been selected from [31]
and [36] and plotted as an overlay for visibility.

validated their model by means of comparison with [36].
Figure 2 compares the TMP estimations from these works
under a trapezoidal voltage pulse (10 ns duration, 1 ns rise
and fall time) on a spherical cell, to those estimated by the
present many-shells model with n = 5. The exact conditions
and parameters used are listed in [31]. In the present work and
in Nath et al., [31] prolate spheroidal coordinates were used,
and in following [31] an aspect ratio value of K = 1.01 was
assumed to represent the spherical limit. Excellent agreement
with both works was found. It is further remarked that the
approach in [31] is identical to the present derivation, such that
the equations of [31] can be recovered from the many-shells
model. The exception is that this work extends the approach
with general solutions, provides analytical limits to n, and
provides a solution strategy that can extend beyond this limit.

As further validation of (20), one may consider the field
enhancement factor inside and outside of a single-shelled
(two layered) particle of arbitrary eccentricity, e. Known
solutions exist for the maximum field enhancement induced
by conducting inclusions where ε1, σ1 ≫ ε2, σ2, as commonly
applied to the analysis of metallic particles suspended in an
insulating medium. By applying this assumption to (20), and
normalizing the resulting field magnitude by the external field,
the field enhancement factor found at the surface of the particle
at ν = 0 was found to be:

fε1,σ1≫ε2,σ2 = 1− G(µ)

F (µ)
. (22)

Since K = tanhµ, the maximum level of field enhancement
outside a conducting spheroid under a uniform field is a
function only of its eccentricity. Figure 3 plots (22) as a
function of the eccentricity, which has also been verified to
be identical to an expression derived by Lekner [37], and was
further confirmed to tend toward a value of f = 3 when
e = 0, which is an elementary solution for the maximum
enhancement on the surface of a conducting sphere. Similar
analysis can be conducted for a second limiting case: a single-
shelled particle with ε1, σ1 ≪ ε2, σ2, often used to represent
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Fig. 3. Comparison of the two limiting cases of field enhancement factor
between the present model and known limits.

a gas void embedded within a more conductive bulk in the
field of electrical insulation. Equation (23) gives the derived
expression for the field enhancement internal to the void, in
this case, and has also been plotted on Figure 3.

fε1,σ1≪ε2,σ2
= 1− F (µ)

G(µ)
(23)

Once again, the enhancement is purely a function of the
eccentricity, and as e tends toward zero, (23) approaches the
well-established limit of 3/2 for spherical geometries [38].

VI. TRANSMEMBRANE POTENTIALS

The developed many-shells model of a biological cell has
been used to analyze a complex, 4-shelled (6-layer) cell
structure, as shown in Figure 4. This geometry has particular
significance to biomass processing technologies, which may
deal with cells that incorporate a cell wall (for example,
algae or yeast). The parameters chosen in this work reflect
typical values for the commonly-studied yeast, Saccharomyces
cerevisiae. In addition, since conventional closed-form solu-
tions for geometries of greater than 5 layers do not exist
(as discussed in section III-B), this example thus serves to
demonstrate how the novel many-shells approach can be
applied despite this limit. A systematic study was conducted
to investigate the effects of the pulse rise time, pulse duration,
and extracellular conductivity on the developed transmem-
brane potentials. The waveform of choice follows that of a
double-exponential (DE) impulse, analytically represented in
the time-domain as:

E0(t) = A0Ē0

(
e−αt − e−βt

)
, (24)

where Ē0 is the peak electric field magnitude in V/m, α and
β are wave-shaping parameters with units s–1, and A0 is a
dimensionless scaling constant, unique to each impulse. The

Fig. 4. 6-layer cell domain considered within this work, as a model of the
yeast Saccharomyces cerevisiae. Note that the cell is assumed spherical (e =
0), details on the effects of e are discussed further in Section VI-D. Pictorial
representation only, relative layer thicknesses are not to scale.

selection of a DE waveform was informed by the output of
capacitive-based impulse generators which have been used in
PEF treatment, which in practice, produces the characteristic
DE waveform with defined rising and falling edges. Unless
otherwise stated, the geometric parameters which were used to
model the cell are tabulated in Table I. Since the external field
was assumed uniform and directed in the positive Cartesian x
direction, the maximum TMPs exist at ν = 0 following:

∆φi = φi (µi−1)− φi (µi) . (25)

It is widely believed that a TMP in the range of ∼ 0.5− 1.5
V is necessary to induce electroporation, while TMPs in
excess of this range almost guarantee cell necrosis. Once
electroporation takes place, the formation of membrane pores
leads to a significant increase in the membrane conductivity,
local to the region where pores were formed, and causes the
TMP to collapse. As the present model does not consider time-
varying membrane conductivity, calculated TMPs that exceed
the electroporation threshold are unlikely to be representative.
However, the observed characteristics of the TMPs beyond ∼ 1
V are nevertheless discussed, for several reasons. Firstly, there
exists some variation to the electroporation threshold, since
the parameter is heavily dependent on cell type, geometry,
pulse type, and other conditions. Developed threshold TMPs
upward of 2 V have been previously suggested in some cases
[16], [39], [40]. Additionally, in other work [41]–[43], authors
have elucidated details regarding the finite delay time for
pore formation, which may induce a further overshoot of the
TMP. Considering this, the results presented here do not limit
the estimated TMPs to a particular voltage. However, the
moment when the TMP reaches 1 V has been demarcated
within all figures and discussed, as it represents a useful
point of reference. It is further remarked that the present
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Fig. 5. TMPs developed across the plasma and nuclear membranes of the
6-layer spherical cell of Figure 4 at various rise times given by Table III, with
the FWHM fixed at 10 µs.

work has been restricted to µs-PEF, and has solely focused
on waveforms which lie within a range typically used for
microbial inactivation and bio-extraction purposes. The use
of this model in the ns-PEF and ps-PEF regime has been
left as a subject for future investigation. Sections VI-A to
VI-C also assume a spherical cell, as the focus here is not
on the analysis of eccentricity. Nevertheless, Section V-D
briefly discusses the cell eccentricity as a separate matter.
The shell parameters were chosen to represent the commonly
studied yeast, Saccharomyces cerevisiae, for which there is a
wealth of existing and available literature, and have often been
studied using spherical or spheroidal dielectric models. These
parameters are tabulated in Table II, and unless otherwise
stated, have been used.

A. Effect of Rise-time

To investigate the effects of the rise-time of the applied field,
the wave-shaping parameters for five waveforms following the
form of (24) were computed, using a swarm-like parameter

TABLE I
GEOMETRIC PARAMETERS FOR THE 6-LAYERED SHELL MODEL OF FIGURE

4, BASED ON DATA FROM [28] AND [44].

Parameter Value Parameter Value
Ē0 30 kV/cm ∆xc 2757 nm
∆xn 1000 nm ∆xp 8 nm
∆xnm 15 nm ∆xw 220 nm

TABLE II
ELECTRICAL PARAMETERS FOR THE 6-LAYERED SHELL MODEL OF

FIGURE 4. PARAMETERS REPRESENT S. cerevisiae YEAST, FROM [28] AND
[44].

Parameter Value Parameter Value (S/m)
εn 80 σn 0.55
εnm 11.69 σnm 3× 10−7

εc 50 σc 0.2
εp 6 σp 0.25× 10−6

εw 60 σw 14× 10−3

εe 78 σe 1× 10−3

optimization algorithm. Each signal is characterized by its
10–90% rise time (tf ), and its full-width at half-maximum
(FWHM). In this section, the FWHM was held constant at 10
µs, while the front-time was varied from 100 ns to 500 ns
(typical for µsPEF applications, e.g., [46]–[48]), in steps of
100 ns. The computed wave-shaping parameters are shown in
Table III. For each wave-shape, the maximum TMPs across
the plasma and nuclear membranes were estimated using the
many-shells model, at an angle of ν = 0 and over 10 ms.
The obtained results are shown in Figure 5, where red circles
indicate the moment when the TMP value exceeds a threshold
of 1 V.

In general, pulses in the present microsecond range pro-
duced significant TMPs across the plasma membrane, which
exceeded the threshold value of 1 V in all cases. Although
the nuclear membrane also developed a TMP, the maximum
TMP over the course of the input pulse did not exceed 1
V, in agreement with the known characteristics of µsPEF,
which predominantly targets the outer membrane. The rise-
time, however, had a clear effect on the time necessary for the
plasma membrane TMPs to reach 1 V, which were prolonged
with a longer signal front-time, as evidenced from Figure 5.
An increase from tf = 100 ns to tf = 500 ns prolonged the
time to reach a TMP of 1V from around 100 ns to 300 ns.
Longer front-time also saw the decrease in the maximum TMP
magnitude across the nuclear membrane, the peak of which
was also delayed in time. Beyond 1 V, plasma and nuclear
TMPs appear to converge, regardless of front-time. This may
suggest that after the formation of pores and the stabilization
of the pore density, the subsequent bioelectric effects on the
electroporated membrane may not differ significantly with
different rise-times under the range of conditions studied
here. However, the authors emphasize that this suggestion is
made based on the results here where explicit pore formation
(e.g., using Smoluchowski’s equation) was not considered.
Validation of these results with explicit pore formation taken
into account is an area for future work.

TABLE III
WAVE-SHAPING PARAMETERS FOR THE INVESTIGATION OF THE RISE TIME

IN SECTION VI-A.

tf /FWHM (µs) A0 α (s−1) β (s−1)
0.1/10 1.0194 69498.4687 31071038.2553
0.2/10 1.0313 69537.0528 14987443.8394
0.3/10 1.0495 69325.6201 9777309.0234
0.4/10 1.0560 69414.7813 7107373.7338
0.5/10 1.0619 69780.2604 5591169.1755

TABLE IV
WAVE-SHAPING PARAMETERS FOR THE INVESTIGATION OF THE PULSE

DURATION IN SECTION VI-B.

tf /FWHM (µs) A0 α (s−1) β (s−1)
0.2/1 1.3091 726051.5405 10549715.2144
0.2/5 1.0553 138217.7119 14300387.5032

0.2/10 1.0313 69537.0528 14987443.8394
0.2/100 0.9968 6935.4589 16061651.6931
0.2/500 1.0001 1385.5814 16261259.7578
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B. Effect of Pulse Duration

Following the methodology described in Section VI-A, this
section presents the results of a complementary study on the
effects of the pulse duration, in this case, defined as the
FWHM. Holding the front time constant at 200 ns, parameters
for five waveforms of 1, 5, 10, 100, and 500 µs FWHM
were computed, as shown in Table IV. The resulting TMPs
are shown in Figure 6. The variation of the FWHM over
this range found no effects on the time necessary for the
plasma membrane to reach the threshold TMP, nor any effects
on the peak TMP magnitude across the nuclear membrane.
However, since the FWHM effectively controls the dynamics
of the wave-tail, significant effects were observed beyond
the ∼ 1 V threshold. It was estimated that a prolonged
pulse duration resulted in higher maximum plasma membrane
TMP, accompanied by a significant delay in the time for
this maximum TMP to be reached, as shown in Figure 6.
If the electroporation threshold TMP is within the higher
(> 1.5 V) range, this may result in waveforms of shorter
pulse duration being unable to induce electroporation, or
producing only reversible effects. The time that the plasma
membrane TMP was above the voltage threshold was also
prolonged with longer pulse duration, which may suggest the
intensification of any bioelectric phenomena at the membranes,
during and after pore formation. This supports the findings
of experimental studies such as [20], [49], which reported a
positive correlation between effective pulse duration and PEF
inactivation performance.

C. Effect of Extracellular Medium Conductivity

In this section, the effects of the electrical conductivity of
the external medium on the TMP dynamics were investigated.
PEF systems used in bio-extraction and food processing tech-
nologies will encounter a variety of target media, which may
have vastly different characteristics. In general, changing the
properties of the extracellular media will also cause changes to
the properties of the other cell layers [27], [28], which must be
incorporated when modelling TMPs to better reflect practical
values. In this work, low (σe = 1 mS/m), medium (σe = 50
mS/m), and high (σe = 0.1 S/m) conductivity external media
were considered, following the strategy in [28]. These may
represent standard laboratory solutions such as deionized water
[28], or on the higher end, certain liquid foodstuffs that may
be subject to PEF treatment in the food processing industry
[50]. Alongside changing the parameters of the extracellular

TABLE V
ELECTRICAL PARAMETERS FOR LOW, MEDIUM, AND HIGH

EXTRACELLULAR CONDUCTIVITY RANGES USED IN SECTION VI-C,
GATHERED FROM [28] AND [51].

Parameter Low σe Med σe High σe

σe 1× 10−3 S/m 50× 10−3 S/m 0.1 S/m
σw 14× 10−3 S/m 5× 10−3 S/m 20× 10−3 S/m
σp 0.25× 10−6 S/m 0.1× 10−3 S/m 0.1× 10−3 S/m
σc 0.2 S/m 0.55 S/m 0.6 S/m
εe 78 78 77
εp 6 7.6 5.2
εc 50 50 58

Fig. 6. TMPs developed across the plasma and nuclear membranes of the
6-layer spherical cell of Figure 4 at various FWHM given by Table IV, with
the rise time fixed at 0.2 µs.

medium, the induced changes on the cell wall and membranes
were also incorporated according to [28]. It is remarked that
these parameters were originally measured and reported in
[51], where both living and dead (heat-treated) yeast cells were
investigated. The parameters used reflect the case of living
cells, and are tabulated in Table V. The waveform was fixed
with a 200 ns front-time and 10 µs FWHM. It should be noted
that for simplicity, it was assumed that the applied field can
be fully established regardless of the medium conductivity.

As before, plasma and nuclear TMPs were estimated in each
case, and plotted together in Figure 7. Higher extracellular
conductivity resulted in more rapid establishment of threshold
TMPs than for lower conductivity values, resulting from the
rapid (and more intense) redistribution of the electric field to
the far less conductive membranes. A corresponding increase
in the nuclear membrane TMPs were also observed, such that,
for the parameters used in this study, the nuclear membrane
also came close to the 1 V threshold in the highest conductivity
case. Beyond 1 V, lower conductivity resulted in a prolonged
time for the TMP to peak and a slight reduction of the
maximum TMP. For applications targeting cell lysis, a higher
conductivity medium may therefore prove beneficial to PEF
that aims to induce IRE.

D. Note on Cell Eccentricity

The model developed in this work assumed the arbitrary
eccentricity of the modelled cell, by making use of prolate
spheroidal coordinates. This provides a somewhat better rep-
resentation of cells that deviate more substantially from the
spherical case, or may be used to approximate longer, cylinder-
or rod-like geometries characteristic of some bacterial cells.
However, the limitations imposed from the use of the confocal
spheroid approach were already discussed in Section I. When
applied to model geometries which may include many layers,
or have certain layers which are significantly thicker than
others, one must be cautious when interpreting the estimated
TMPs, as the geometry may begin to deviate significantly
from reality. Since the effects of the cell eccentricity are
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Fig. 7. TMPs developed across the plasma and nuclear membranes of the
6-layer spherical cell of Figure 4 with different extracellular conductivity as
given by Table V, using a 0.2/10 µs pulse.

highly dependent on the specific cell characteristics, a detailed
analysis will not be presented in the present work. For the
Saccharomyces cerevisiae cell demonstrated in this study,
microscope images indicate that they are often ovular, but not
significantly [44], [52]. When the eccentricity was changed to
have a minor to major axis ratio of K = 0.75, insignificant
changes in the TMP responses were observed, showing that
the deviation from the spherical form was not sufficient to
have a large impact in this case.

VII. CONCLUSION

In this work, the generalization of the commonly-used
multi-shell model for estimating transmembrane voltages in
PEF applications has been presented. A many-shells dielectric
model for biological cells has been developed using prolate-
spheroidal coordinates, incorporating an arbitrary number of
poorly-conducting ‘shells’, and subjected to a uniform time-
dependent electric field of double-exponential form. Mathe-
matical analysis indicates the bounds for which closed-form
solutions are able to be obtained, and a full methodology
that can be applied to cases beyond this range has been
described. The model therefore allows TMP estimates and
relaxation characteristics to be computed, that are free from the
limitations of mesh-based approaches like the finite-element
method, for layered cell geometries of significant complexity.

For an isolated yeast cell model under the application of a 30
kV/cm (peak) double-exponential impulse in the microsecond
regime, the many-shells model indicated that the signal rise-
time likely has a weak effect on the developed TMPs across
the plasma and nuclear membranes, despite prolonging the
time required to reach threshold TMPs on the lower range
(∼ 0.5 − 1 V). Pulse duration, on the other hand, had little
effect on the time to reach a TMP of ∼1 V or lower, but
may have more pronounced impact on cells with threshold
TMPs in the higher (≳1.5 V) range. It is also thought that
behavior beyond the threshold voltage may indicate that the
pulse duration has major effects on the subsequent efficacy of
PEF bioelectric effects on the porated membrane. Under three

different values of extracellular medium conductivity (and also
considering the induced changes to the other layer properties),
results suggest that high-conductivity media may be beneficial
for PEF processes targeting lysis and inactivation, though the
balance with thermal effects must also be considered.

The present model, however, does not consider dynamic
pore formation and the subsequent changes induced in the
membrane conductivity. It would be of high interest to couple
such an approach with pore formation models, such as the
Smoluchowski equation, to analyze the developed pore densi-
ties under various configurations. It would also be of signifi-
cant interest to further investigate PEFs in the nanosecond and
picosecond regimes, believed to be effective for the treatment
of cancers and neurodegenerative diseases. The ability for the
model to incorporate n layers also opens up the possibility
for its application as a first-order approximation of radially-
nonuniform layer parameters, as a further step toward higher
fidelity models.

APPENDIX A
10-LAYER MODEL VALIDATION WITH FEM

The parameters used for the comparative validation study of
a 10-layer inclusion subjected to a step function are shown in
Table VI, and the comparison results of the developed electric
fields are shown in Figures 8 and 9 for various timesteps. The
utilised step function incorporates an instantaneous transition
from zero to +20 kV/cm. The numerical simulation was
performed using QuickField Professional version 6.4 [53].

Fig. 8. Electric field magnitude of (top row) QuickField FEM computed
solution and (bottom row) analytical many-shells to a ten-layer spheroidal
inclusion subject to +20 kV/cm step function, with parameters as defined in
Table VI.
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Fig. 9. Comparison of QuickField and analytical field solution at t = 0.01
s for 10-layer spheroidal inclusion, along the line y = 0, x ≥ 0.

TABLE VI
PARAMETERS USED FOR 10-LAYER COMPARISON STUDY WITH FEM

SOLVER.

Parameter(s) Value Parameter(s) Value
ε1, σ1 1.0, 10-15 S/m ε6, σ6 3.0, 10–12 S/m
ε2, σ2 4.5, 10–9 S/m ε7, σ7 2.0, 10–15 S/m
ε3, σ3 3.2, 10–13 S/m ε8, σ8 7.0, 10–10 S/m
ε4, σ4 7.0, 10–10 S/m ε9, σ9 9.0, 10–8 S/m
ε5, σ5 9.0, 10–8 S/m ε10, σ10 4.0, 10–13 S/m
∆xi 0.3 mm K1 0.25
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[3] S. Haberl, D. Miklavčič, G. Sersa, W. Frey and B. Rubinsky, ”Cell
membrane electroporation- Part 2: The applications,” IEEE Electr. Insul.
Mag., vol. 29, no. 1, pp. 28–37, Jan. 2013.
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