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Hans-JoachimWerner47, David BWilliams-Young48 and Theresa Windus49,∗
1 Thomas Lord Department of Mechanical Engineering and Materials Science and Department of Chemistry, Duke University,
Durham, NC 27708, United States of America

2 Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
3 Department of Chemistry, University at Buffalo,State University of New York, Buffalo, NY 14260-3000, United States of America
4 Institute of Physical Chemistry, RWTH Aachen University, Aachen, Germany
5 Peter Grünberg Institute and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
6 Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, Atlanta, GA 30332, United
States of America

7 Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States of America
8 Molecular Sciences Software Institute, Blacksburg, VA 24060, United States of America
9 RIKEN Center for Computational Science, Kobe, Japan
10 Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
11 Physics Department and CSMB, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Germany
12 European Theoretical Spectroscopy Facility
13 MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
14 University Grenoble Alpes, MEM, L_Sim, F-38000 Grenoble, France
15 Department of Mathematics, Computer Science, and Physics, University of Udine, I-33100 Udine, Italy
16 Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, United States of

America
17 Department of Chemistry, Princeton University, Princeton, NJ 08544, United States of America
18 NVIDIA Helsinki Oy, Helsinki, Finland
19 SUPA, Department of Physics, University of Strathclyde, Glasgow, United Kingdom
20 Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
21 Department of Chemistry, Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC

27599-3290, United States of America
22 Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
23 CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
24 Department of Chemistry, University of Helsinki, PO Box 55, FI-00014 Helsinki, Finland
25 Department of Chemistry, University of Washington, Seattle, WA 98195-1700, United States of America
26 Department of Chemistry—BMC, Uppsala University, Uppsala, Sweden
27 Department of Chemistry and Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University,

Sapporo, Hokkaido 060-0810, Japan
28 Department of Chemistry, Department of Physics, and Illinois Quantum Information Science and Technology Center, University of

Illinois, Urbana, IL 61801, United States of America
29 Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
30 PPG Industries, Monroeville Chemicals Center, 440 College Park Drive, Monroeville, PA 15146, United States of America
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Lausanne, CH-1015 Lausanne, Switzerland
33 Laboratory for Materials Simulations (LMS), Paul Scherrer Institut (PSI), CH-5232 Villigen PSI, Switzerland
34 imec, 75 Kapeldreef, 3001 Leuven, Belgium
35 Department of Chemistry, University of California and Materials Sciences Division, Lawrence Berkeley National Laboratory,

Berkeley, CA 94720, United States of America
36 The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978,

Israel
37 Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland

© 2024 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2516-1075/ad48ec
https://crossmark.crossref.org/dialog/?doi=10.1088/2516-1075/ad48ec&domain=pdf&date_stamp=2024-11-15
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-8660-7230
https://orcid.org/0000-0001-9392-877X
https://orcid.org/0000-0003-3242-496X
https://orcid.org/0000-0002-6615-1122
https://orcid.org/0000-0001-9987-4733
https://orcid.org/0000-0003-2852-5864
https://orcid.org/0000-0002-7961-7016
https://orcid.org/0000-0003-4480-8565
https://orcid.org/0000-0002-7114-8315
https://orcid.org/0000-0003-3523-6657
https://orcid.org/0000-0002-2425-6735
https://orcid.org/0000-0003-1747-0247
https://orcid.org/0000-0002-9635-3227
https://orcid.org/0000-0003-3625-366X
https://orcid.org/0000-0002-3782-6995
https://orcid.org/0000-0003-3181-8190
https://orcid.org/0000-0002-7667-7101
https://orcid.org/0000-0001-5893-9967
https://orcid.org/0000-0002-2320-4394
https://orcid.org/0000-0001-5539-4017
https://orcid.org/0000-0001-5267-6852
https://orcid.org/0000-0001-6296-8103
https://orcid.org/0000-0001-7567-8295
https://orcid.org/0000-0001-8822-1147
https://orcid.org/0000-0002-3310-7328
https://orcid.org/0000-0002-0229-3666
https://orcid.org/0000-0003-1967-5094
https://orcid.org/0000-0003-1364-0907
https://orcid.org/0000-0002-3583-4377
https://orcid.org/0000-0003-2597-8534
https://orcid.org/0000-0003-2136-0606
https://orcid.org/0000-0003-2031-3525
https://orcid.org/0000-0002-9508-1565
https://orcid.org/0000-0002-7411-7901
https://orcid.org/0000-0002-3360-2281
https://orcid.org/0000-0002-3552-0677
https://orcid.org/0000-0001-7114-2821
https://orcid.org/0000-0002-0445-2990
https://orcid.org/0000-0002-2417-7869
https://orcid.org/0000-0001-9923-6256
https://orcid.org/0000-0002-7748-6243
https://orcid.org/0000-0002-2836-7619
https://orcid.org/0000-0002-0435-539X
https://orcid.org/0000-0003-2735-3706
https://orcid.org/0000-0001-6065-3167


Electron. Struct. 6 (2024) 042501 V Blum et al
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Abstract
This Roadmap article provides a succinct, comprehensive overview of the state of electronic struc-
ture (ES)methods and software formolecular andmaterials simulations. Seventeen distinct sections
collect insights by 51 leading scientists in the field. Each contribution addresses the status of a par-
ticular area, as well as current challenges and anticipated future advances, with a particular eye
towards software related aspects and providing key references for further reading. Foundational
sections cover density functional theory and its implementation in real-world simulation frame-
works, Green’s function based many-body perturbation theory, wave-function based and stochastic
ES approaches, relativistic effects and semiempirical ES theory approaches. Subsequent sections
cover nuclear quantum effects, real-time propagation of the ES, challenges for computational spec-
troscopy simulations, and exploration of complex potential energy surfaces. The final sections sum-
marize practical aspects, including computational workflows for complex simulation tasks, the
impact of current and future high-performance computing architectures, software engineering prac-
tices, education and training to maintain and broaden the community, as well as the status of and
needs for ES based modeling from the vantage point of industry environments. Overall, the field of
ES software and method development continues to unlock immense opportunities for future sci-
entific discovery, based on the growing ability of computations to reveal complex phenomena, pro-
cesses and properties that are determined by the make-up of matter at the atomic scale, with high
precision.

List of Acronyms

AFIR artificial force induced reaction
AIMD ab-Initiomolecular dynamics
API application programming interface
ARPES angle-resolved photoemission spectroscopy
ASESMA African School on Electronic Structure Methods and Applications
BBGKY Bogoliubov–Born–Green–Kirkwood–Yvon
BO Born–Oppenheimer
BSE Bethe–Salpeter equation
CASSCF complete active space self-consistent field
CC coupled cluster
CCA Common Component Architecture
CI configuration interaction
CMS content management system
CPU central processing unit
DF density functional
DFT density functional theory
DFTB density functional tight binding
DMC diffusion Monte Carlo
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DMFT dynamical mean-field theory
EELS electron energy loss spectroscopy
EHT extended Hückel theory
ES electronic structure
Exc exchange correlation
FAIR Findable, Accessible, Interoperable and Reusable
FCI full configuration interaction
FF force field
FLOP floating point operation
FPGA field programmable gate array
GF Green’s function
GGA generalized gradient approximation
GPU graphical processing unit
GUI graphical user interface
HEG homogeneous electron gas
HF Hartree–Fock
HPC high-performance computing
KS Kohn–Sham
LDA local-density approximation
LOSC local-orbital scaling correction
LR linear-response
MBPT many-body perturbation theory
MCSCF multi-configurational self-consistent-field
MCTDH multiconfiguration time-dependent Hartree
MD molecular dynamics
mGGA meta-generalized gradient approximation
MI materials informatics
ML machine learning
MolSSI Molecular Sciences Software Institute
MPI modular path integral
NDDO neglect of diatomic differential overlap
NEB nudged elastic band
NEO nuclear-electronic orbital
OEP optimized effective potential
OLED organic light emitting diodes
PBE Perdew–Burke–Ernzerhof
PES potential energy surface
PI path integral
QC quantum chemistry
QCPI quantum–classical path integral
QED quantum electrodynamics
QMC quantumMonte Carlo
QP quasiparticle
QPU quantum processing unit
QuAPI quasi-adiabatic propagator path integral
RDM reduced density matrix
RIXS resonant inelastic x-rays scattering
RT-TDDFT real-time time-dependent density functional theory
SaaS Software-as-a-Service
SH surface hopping
SIC self-interaction correction
SMatPI small matrix path integral
SOC spin–orbit coupling
TD time-dependent
TDHF time-dependent Hartree–Fock
TS transition state
VMC variational Monte Carlo
WFT wave-function-based electronic structure theory
X2C exact two-component
XANES x-ray absorption spectroscopy
XC exchange-correlation
XDM exchange-dipole moment
XX exact exchange
ZDO zero-differential overlap
ZPE zero-point energy
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1. Methods and software for electronic structure based simulations of chemistry and
materials

Volker Blum1 and Theresa Windus2
1 Thomas Lord Department of Mechanical Engineering and Materials Science and Department of Chemistry,
Duke University, Durham, NC, United States of America
2 Department of Chemistry, Iowa State University, Chemical and Biological Sciences Division, Ames
National Laboratory, Ames, IA, United States of America

ES methods form the core of today’s quantitative understanding of chemistry and materials science by
simulations from the atomic scale upwards. The appeal of the field rests upon the fact that quantum
mechanics provides an, in principle, exact mathematical prescription to predictively simulate any
phenomenon of relevance that is related to the composition of matter as we know it. However, any practical
computational implementations must necessarily be approximate, since the effort to solve the exact quantum
mechanical formalism scales as a combinatorial explosion with problem size. The result is a rich field with
immense existing capabilities, but one that is not even close to being finished. New computational capabilities
and methodological developments continue to open up new scientific vistas to the science community.

This roadmap summarizes theoretical and methodological progress and current challenges in methods
and software for ES methods for materials science and chemistry, as implemented on current and foreseeable
future computers. While not exhaustive, topics covered range from foundations of practical approximations
to current software technology challenges and use cases in industry. Emphasis is on pathways to practical
implementation of these concepts in current software and hardware environments, making them accessible
to a broad community of scientists. At the outset, it may be important to clarify the terms ‘methods’ and
‘software’—which are distinct but, in practice, inevitably intertwined. By ‘method,’ we refer to the level of
formal, i.e. theoretical approximation that can be applied to make a particular phenomenon tractable (e.g. a
particular density functional approximation in ES theory or a particular way of treating atomic nuclei as
classical or quantum particles). In contrast, ‘software’ refers to the actual implementation as coded on a
computer, whether in the form of a standalone code or as part of a larger software package. Frequently, the
effectiveness of a given mathematical approximation (i.e. method) is determined by the degree to which it
can be made applicable to real-world problems on an existing computer. This roadmap therefore reviews
both ‘methods and software’, with an emphasis on practical solutions that are developed—or, in the words of
Dirac (1929) ‘should be developed, which can lead to an explanation of the main features of complex atomic
systems without too much computation’ [1]. Remarkably, even 95 years after Dirac’s paper, this summary
remains accurate in the development of software and methods for simulations in chemistry, physics and
materials science on the most up to date computational hardware.

Each section was contributed by a team of leaders in the field who were asked to contribute their ideas on
four areas:

(i) Status of the field,
(ii) Current and future challenges,
(iii) Advances in science and technology to meet challenges,
(iv) Concluding remarks.

As one can imagine, trying to capture all of these aspects in a very short section is challenging. For further
reading, key references are included to foundational articles, current developments, and reviews. The sections
are also meant to provide insights into the new challenges in the field for future stakeholders in these areas.

While the different sections provide insights into the specific subfields of ES, several concepts showed up
in multiple sections:

• We are at a crossroads where great achievements have been accomplished, but where innovations in new
methods and algorithms for more accurate calculations to address more challenging chemical challenges in
a shorter period of time are on the horizons.

• Interoperability of different methods and software were seen as solutions toward addressing complex sci-
entific challenges. For example, embedding in its many different forms was discussed multiple times.

• Changes in hardware and software languages, while enabling technologies, create turbulence and reformu-
lations ofmethods and algorithms. Reengineering our thinking and approaches is perhaps the only constant
in the field.
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• ES developers are exploring ways to use all of the new computing platforms including GPUs, cloud com-
puting, ML, and quantum computing to accelerate solutions. Each of these has its own challenges that need
to be overcome for ES method implementations.

• Best practices in software engineering are seen as cornerstones to addressingmany of the software challenges
faced by the community. In particular, separation of concerns (more modular programming), development
of abstract programming interfaces to allow for easier use and interoperability, usage of packaging tools,
and provisions for support, documentation, and tutorials were seen as essential.

• The complexity of the software is such that multiple investigators are developing automated derivation and
implementation tools to facilitate rapid development of methods and algorithms.

• Software usability in amanner that allows complexworkflows for high throughput simulations or for ‘trivial’
parallelization is necessary for complex science.

• In a related point, verification, validation, and reproducibility are becoming evenmore important and solu-
tions such as workflow tools may help with this.

• Another challenge in ES methods is a better systematic understanding of errors in methods to facilitate
collaborations with experimentalists.

• Training of the next generation of computational chemists and material scientists for new and evolving
programming models, software paradigms, mathematical foundations, and ES methods is challenging.
However, it is key to making new advances in the field.

• Career paths for computational scientists who have the essential software engineering skills must be
developed in a more open environment and recognized by metrics other than publications.

Overall, it is an exciting time to be a developer of ES methods and there are many promising future directions
to pursue. We hope that this roadmap provides not only windows, but actually a doorway into this future, for
those who wish to shape it.
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2. Density functional theory: formalism and current directions

Volker Blum1 and Susi Lehtola2
1 Thomas Lord Department of Mechanical Engineering and Materials Science and Department of Chemistry,
Duke University, Durham, NC, United States of America
2 Department of Chemistry, University of Helsinki, PO Box 55, FI-00014 Helsinki, Finland

Status
Density-functional theory (DFT) [2], particularly Kohn–Sham [3] and generalized Kohn–Sham DFT, is
responsible for the bulk of today’s ES applications. Approximate DFT methods provide sufficient accuracy
for many applications in materials science and chemistry at highly competitive computational cost compared
to higher-level, more accurate approximations to the Schrödinger or Dirac equations.

This chapter focuses on ground state DFT; TDDFT is addressed in section 10 of this Roadmap. Ground
state DFT rests upon the Hohenberg–Kohn theorem of 1964 and the more rigorous Levy–Lieb demonstration
[4, 5] that the ground-state energy Etot can be expressed uniquely as a functional of the density n(r), i.e. the
probability density of finding a particle (usually an electron) at point r. In the vast majority of cases, practical
applications of DFT assume the Born–Oppenheimer approximation, separating the treatment of the nuclear
coordinates {RI} from the electronic ones. The result is the Born–Oppenheimer ground-state total energy
E0[n(r)] as expressed in the shaded box in figure 1, where n(r) is now the ground-state electron density.

The strength of the Kohn–Sham formalism of DFT is that the minimization of Etot can be formulated as a
problem of finding the states of auxiliary non-interacting particles moving in an effective field, allowing one
to obtain the single-particle kinetic energy Ts[n(r)] and thus Etot and n(r) by iterating over a set of
straightforward three-dimensional partial differential equations. Orbital-free DFT methods relying on
explicit kinetic energy functionals T[n(r)] are faster than Kohn–Sham DFT that employs Ts[n(r)]. Although
the development of orbital-free methods continues, they are arguably still less accurate and thus more
restricted in their application space than Kohn–Sham DFT.

In Kohn–Sham DFT, the shaded expression for Etot in figure 1 contains only one term that is unknown in
its exact form, i.e. the XC energy functional Exc[n(r)]. As a result, Exc[n(r)]must be approximated. An
established pathway to construct practical density functionals is to rely on known constraints and norms [7],
but establishing the ‘best’ parameterization of density functionals remains an active work in progress [7] and
the optimum choice almost certainly depends on the specific application sought. A hierarchy of the most
common types of approximations to Exc[n(r)] found in the literature today is also shown in figure 1.

The simplest approximate form of Exc is the LDA, introduced in [2, 3], which relies on the known XC
energy density ϵHEG(n(r)) of the HEG. Already the LDA accounts for the early successes of DFT: properties of
metals, simple semiconductors, and other systems are captured with remarkable accuracy with the simple,
parameter-free approximation. A key insight enabling these applications was the theory’s extension to finite
temperature via fractional occupations of the Kohn–Sham auxiliary orbitals [8].

Next, the central box in figure 1 shows the three most widely used approximations in production DFT
calculations today: First, [9] GGAs, which introduce a dependence on the density gradient |∇n(r)|; second,
hybrid density functionals, which reintroduce a fraction of the ‘exact exchange’ (XX) term of the HF
equations [10]; and third, mGGA functionals, which add further derivative terms related to the Kohn–Sham
density—the single-particle kinetic energy density τ(r) [11] and/or the density Laplacian∇2n(r); these
terms arise naturally from a Taylor expansion of the Kohn–Sham functional [12], giving rise to the
well-known Jacob’s ladder of DFT [13].

One major challenge in DFT is that while some properties follow a clear pattern along Jacob’s ladder—for
instance, thermochemistry results tend to improve going from LDAs to GGAs, and from GGAs to
mGGAs—the same does not apply to all properties. A related issue is that the accuracy of functionals is not
necessarily transferable from one property to another. There is a huge number of GGA and mGGA
functionals derived or fitted in dissimilar fashions, and different GGA (or mGGA) functionals can
sometimes predict significantly different properties. A concise discussion of such issues is provided, e.g. in
[7]. In applications, a practical approach to navigating the landscape of different functionals is therefore to
benchmark results from a given functional against sound, experimentally obtained reference values for
similar problem classes in order to ensure reliable results.

Despite the advances made in functional development (see below), the density functionals most widely
employed by practitioners are thus often determined by the immense body of experience that exists
regarding their successes and limitations—e.g. that of the PBE GGA functional [14] in materials science
(overall, tremendously successful but known to overestimate equilibrium lattice parameters of solids by
∼1%–2%) or of the B3LYP hybrid functional [15] in QC (even though much more accurate functionals are
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Figure 1. Kohn–Sham DFT expression for Etot (shaded box) and hierarchy of mathematical forms of exchange-correlation
functionals Exc[n(r)]. HEG: homogeneous electron gas, SIC: self-interaction correction, LOSC: local-orbital scaling correction,
OEP: optimized effective potential, XDM: exchange-dipole moment, DF: density functional, (m)GGA: (meta-)generalized
gradient approximation, XX: exact exchange. Depictions of this hierarchy are now established in the literature (e.g. [6]); in the
present version, the central box highlights the three arguably most productive levels of theory (GGA, mGGA, hybrid DFT).

nowadays available [16]). Nevertheless, many important advances have since been made on several fronts, as
we will briefly summarize.

A critical advance was the realization that GGA/mGGA/hybrid functionals do not capture long-range
dispersion interactions, which spawned multiple successful schemes to add the missing dispersion
interactions to Exc in either classical or density functional form (right box in figure 1). While weak compared
to primary bonds, dispersion effects accumulate in large systems and can be critical determinants of the
structure of large molecules, molecular assemblies or molecular crystals.

The issue that the (auxiliary) Kohn–Sham orbitals are not immune to self-interaction and incorrect
occupation in strongly correlated systems has spawned a host of schemes including SICs, correction schemes
to restore Koopmans’ theorem, the so-called+U parameterizations to shift orbital energies based on
projectors and effective occupations, or, more generally, local-orbital scaling corrections to ensure the
analytically correct linear behavior of Etot(N) between integer electron counts N (left box in figure 1). A
related issue is the systematic underestimation of energy band gaps by LDA and GGA functionals, which
stems from this deviation from linearity.

Another route to improve upon the accuracy of ‘mainstream’ GGA/mGGA-hybrid group of functionals is
to introduce more costly analytical approximations from the many-body realm, in terms of ‘doubly-hybrid’
functionals, the random-phase approximation, or more general variants; however, doing so results in a
significant increase of the computational cost. Local hybrids that determine the local fraction of exact
exchange from the electron density offer a further avenue that has not yet become mainstream.

Finally, a recent pathway is to realize that the existing, computationally affordable approximations to
DFT are not fully analytically derived, and to turn to ML the functional instead [17]. The realm of ML
functionals is poised to expand greatly in coming years, already because access to ML technology and tools is
nowadays widespread.

Current and future challenges
The open nature of the form of Exc[n(r)] continues to encourage many developments trying to go beyond the
state of the art. Beyond the obvious challenge of approaching ‘the exact functional’ for all conceivable
chemical situations, a host of technical challenges remain.
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Figure 2. Statistics on the number of functionals by year of (latest) publication and the cumulative number of functionals based
on the functionals implemented in Libxc version 6.2.0 [18].

The number of proposed density functionals has increased strongly in the past several decades, as
captured by the publication dates of functionals included in the Libxc library [18] shown in figure 2, for
instance. Even though the overwhelming majority of these functionals do not become widely used, the
proliferation of functionals causes problems of its own, as the implementation of ‘all’ functionals in any
given density functional program is a constantly and rapidly moving target. Moreover, many publications on
new density functionals do not provide sufficient information to make the functionals fully reproducible. It
is therefore not guaranteed that the implementations of a given functional in different programs afford
mutually reproducible results.

To be useful for a broad range of applications, functionals—and computational implementations
thereof—need to provide a number of higher derivatives. Applications to geometry optimization of excited
states within the TD DFT approach require fourth derivatives; ML of functionals for such properties will
require even higher ones. This poses both theoretical and practical challenges: not all functional forms afford
such derivatives, and the question on the efficient implementation of the large number of derivative terms is
a difficult one, given that many functionals—especially machine learned ones—are complicated and heavily
parameterized, resulting in a large number of contributions to each derivative term. A further issue is that
the numerical well-behavedness of the functionals has not been given adequate attention by the developer
community [19]. Because functionals are supposed to represent universal physics, they should be be
transferable between systems, as well as numerical methods. However, functionals designed for small
Gaussian basis sets may fail to work in a more flexible basis set such as finite elements [20], raising questions
on whether they really afford ab initio approaches.

Returning to the challenge of approaching the ‘exact functional,’ one major current area of concern (for
the ground state) is ‘strong correlation’. Most strikingly, there is no guarantee that the occupation of the
auxiliary Kohn–Sham orbitals (determined by their single-particle energies) matches the density of the actual
many-electron wave function, when density functional approximations are employed. In some situations, a
solution can be found by explicitly including the underlying physical degrees of freedom in the functional
itself (e.g. separate spin densities in spin-polarized systems with localized states or the superconducting order
parameter in DFT of superconductivity and its extensions [21]). Similarly, mapping the density and energy
associated with a truly multi-determinantal many-electron wave function poses ongoing challenges. As one
example, density functional studies of f -electron systems are hampered by this issue: although progress for
some f -electron systems is being made [22], benchmark density functional studies involving f -electron
elements with two or more holes or electrons in their filled f shell (e.g. Pr, Nd, or Pm) remain rare. Finding
adequate density functional approximations for such systems remains an open area.

Advances in science and technology to meet challenges
A continually fruitful direction of functional development is to incorporate exact, analytical limits in the
construction of practical density functionals. Already the PBE functional and earlier GGAs were motivated
by satisfying known constraints, nevertheless leaving enough freedom for a proliferation of derived
functionals. The addition of only one (τ(r)) or two (τ(r) and∇2n(r)) additional functions of the density as
ingredients in mGGAs seems like a simple thing, but the construction of such functionals that are both
numerically robust and satisfy additional constraints is arguably not yet finished [19, 20].

ML density functionals from higher-level data seems an obvious idea, but this raises the questions: which
higher level, and data on what systems? Determining sufficiently accurate many-electron wave functions for
functional construction is itself a challenge for many types of chemical systems. For solids, for example,
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coupled-cluster theories even at the level of singles and doubles are extremely challenging, whereas molecular
chemistry has clear examples of multireference systems where even the much more demanding level of triples
is not enough. QMC derived wave functions may offer a practical alternative but it is not yet clear how other
aspects of this technique (and, in fact, the remaining inaccuracies of QMC wave functions) will impact their
utility for future density functional development. The choice of the training data is also problematic. The
ranking of functionals in any static benchmark is often determined by a small number of poorest performing
systems [23]. As a result, the arising rankings are extremely sensitive to the exclusion or inclusion of few
systems [23]. This suggests that ML functionals are also sensitive to the training dataset.

In the relativistic theory necessary to capture many interesting phenomena in heavier-element solids, it
turns out that even classical electrodynamics is not satisfied with the density alone as a variable. Instead, the
scalar electron density and the three-dimensional current density should appear on equal footing to conform
to Lorentz covariance, and this observation should also be reflected in the relativistic density functional (in
fact, similar developments may be incorporated in non-relativistic functionals as well). Developing
appropriate current-density functionals is an open area at present in non-relativistic, scalar relativistic, as
well as relativistic calculations, with relativistic calculations typically still relying on functionals borrowed
from scalar- or non-relativistic constructions.

Finally, multicomponent DFT (e.g. considering density functional constructions of the nuclear density in
addition to the electron density) is an active area that is gaining steam, as the quantum nature of the nuclei
may be introduced in an efficient manner with such approaches, as discussed in a later section of this
Roadmap.

As the above directions suggest, the considerable software engineering challenge involved in keeping
implementations up to date with the rapidly increasing number of published functionals can be expected to
continue into the future. Such challenges can be met by reusable, modular open source software libraries.
Libxc [18] currently enables reliable reproduction of results across some 40 software packages by allowing
exactly the same (numerical implementation of a) density functional to be used regardless of the basis set or
numerical approximation employed to solve the Kohn–Sham equations in these programs, eliminating the
possibility of implementation-specific differences or bugs between the functionals in these programs. Libxc
thereby greatly improves the cross-program reproducibility of computational results. The existence of Libxc
also significantly simplifies the problem of integrating new density functionals into packages: in most cases,
introducing new functionals requires simply linking to the newest version of Libxc.

Because fourth derivatives with respect to all density functional ingredients are necessary for some
applications, and as many functional forms are prohibitively complicated to allow manual implementations,
the use of automated approaches to form the derivatives is a practical necessity. Various methods may be used
to compute such derivatives: in addition to the use of computer algebra systems to generate the derivatives as
employed in Libxc [18], automated differentiation as originally proposed in the XCFun library [24] can also
be employed; however, the computational cost for the latter approach is higher, as the derivatives need to be
redetermined at every evaluation instead of being pregenerated and compiled into efficient binaries.

Concluding remarks
DFT and the early successes of simple density functional approximations such as the LDA, various GGAs and
hybrid functionals have revolutionized our ability to simulate materials and molecules with a degree of
generality that was simply inaccessible by empirical parameterizations. Despite the successes of the robust
approximate many-body quantum mechanics baked into the framework of Kohn–Sham and generalized
Kohn–Sham DFT, subtle energy differences encountered in the correct energy hierarchy of low-lying
structures and even some qualitative failures still elude us. Much exciting physics and chemistry is thereby
still left to be covered by applications of and new developments in DFT.
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Status
Beginning in the 1980s, the introduction and development of reliable computational methods for the
solution of Kohn–Sham equations, within both plane waves and localized basis sets, has made of DFT an
exceedingly useful tool for the simulation of molecular and materials properties [25, 26]. More recently,
further theoretical and computational advances, in conjunction with commensurate increases in
computational power, have considerably extended the scope of what can be computed using DFT methods.
We mention in particular: first-principle MD, the modern theory of polarizability, density functional
perturbation theory and improvements in functionals (hybrid, mGGA, Hubbard-corrected, to name a few).
DFT simulations are by now routinely performed for systems containing O(100− 1000) atoms and for time
scales of tens of ps, very often using advanced functionals beyond the simple GGA. In addition to a wealth of
useful results, these methods provide an excellent starting point for studying excited states within many-body
perturbation theory. These successes and the availability of efficient software implementations capable of
leveraging the latest advances in modern HPC have made DFT the de facto standard tool for studying large
scale quantum systems and a ‘must-have’ capability in the modern ES ecosystem.

We are now undergoing a scientific and technological revolution in computer simulation that will enable
the discovery of new materials and the understanding of complex processes in condensed matter, chemistry,
and biology. This simulation revolution stands on three pillars: (1) the design of clever algorithms which
permit the computation of properties and the simulation of processes of ever growing complexity in ever
more realistic operating conditions; (2) the availability of larger computing resources, exploiting increasingly
powerful and complex processors and accelerators (e.g. GPUs), and (3) the development of increasingly
flexible and portable software implementations capable of implementing (1), while optimising the
performance for (2). The concurrent evolution of algorithms and codes has proceeded steadily, having and
continuing to require a continuous and extensive re-engineering of the code-base for DFT methods. In this
report, we briefly examine a number of pressing implementation and software challenges associated with the
development of the next generation of DFT software and highlight a number of recent successes
(see figure 3).

Current and future challenges
DFT simulations are still limited in terms of size of systems and scales of time that can be realistically
accessed and simulated. A correct treatment of strongly correlated and of open-shell systems is still
problematic, with results whose quality and reliability is difficult to assess. Advanced functionals often carry
a sizable computational overhead and suffer from numerical stability problems. Finally, the ability to
perform calculations including non-adiabatic effects and excited-state MD is strongly desired for dealing
e.g. with photo-physics.

GPU accelerators have revolutionized DFT software and science efforts while introducing a number of
software development challenges [27]. The starkest departure has been in modern hardware diversity which
has largely precluded single-source development models in favor of vendor-specific software solutions,
introducing a sustainability crisis for performance portability in development efforts. This increased
computational power has also exposed previously less-apparent computational bottlenecks, such as data
movement and communication, which has led to significant challenges in the development of scalable solvers
for (post-)Kohn–Sham methods. These challenges are likely to be exacerbated as we endeavour into
(post-GPU) energy-efficient computing technologies. We are approaching a threshold for DFT development
efforts which will require significant advances in software, algorithms and hardware to overcome.

As summarized in a past review coauthored by one of us [26], a fundamental challenge in atomistic
simulations, especially with DFT codes, is their demand for expertise, encompassing both scientific and
technical knowledge, for effective utilization. Originally developed by and for scientists within the same
community, these codes often prioritize scientific functionality over user-friendliness, graphical interfaces, or
collaborative tools. Addressing these aspects is crucial for fostering collaborations across diverse
communities. Moreover, conducting atomistic simulations entails the utilization of substantial HPC
resources. While such resources are commonplace in academia, their availability is not guaranteed in the
industrial sector, where best practices can vary among academic communities. ‘By taking the most advanced
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Figure 3. Brief graphical depiction of the history and status of DFT implementation, capabilities and scope.

codes for atomistic simulations and lowering their adoption barriers, it will be possible to ‘democratize’
atomistic simulations and to open them up to a much broader community [26].’

Advances in science and technology to meet challenges
Most advances in ES theory will likely take place in ‘beyond-DFT’ calculations. Incremental improvements
are however to be expected also for ‘pure’ DFT calculations, in particular in the field of advanced functionals:
faster and more robust implementations, providing better and more reliable results. The usefulness and wide
adoption of those improvements will depend upon the availability of a portable and maintainable
implementation. It will also be crucial to extend the work on validation and verification, performed in recent
years for simple properties and GGA [28], to more advanced property calculations.

While DFT simulations involving thousands of atoms are routinely performed, aspirations involving
millions atoms remain out-of-reach, and will require improvements in software and algorithmic scalability
to achieve. Recently, efforts to address performance portability and solver scalability through modular
development models have been explored [29–31]. Although often requiring significant developer effort in
targeting new architectures, these efforts have represented a departure from the monolithic development
models of old, and offer clear pathways for future extensibility. Recent years have also seen explorations into
low-precision computing, leading to the surpassing of the exaflop barrier for a DFT application [32]. These
developments must be extended as they will play a critical role in the scalable, energy-efficient computing
future.

As the capacity for simulating larger systems grows, insights generated by communities accustomed to
dealing with smaller systems, such as the ES community, can be extended to other scientific domains. In this
context, solutions like SaaS platforms emerge as promising avenues to expedite research in nanoscale
systems. SaaS integrates cutting-edge simulation codes, predefined workflows, user-friendly high-level tools,
an intuitive collaborative interface, and adaptable cloud-based computing resources, streamlining the
utilization of atomistic simulations.

Among the tools gaining popularity in recent years, Jupyter notebooks stand out, enabling the creation of
reproducible scientific workflows. These notebooks consolidate pre-processing, calculation execution, and
post-processing/analysis of results, offering a unified platform. Numerous codes from diverse scientific
communities contribute tools that seamlessly interact with these notebooks. The concept of a ‘separation of
concerns’ facilitates viewing codes as a service, wherein a client part—potentially Python-based—and a
server part collectively execute computations, utilizing local or HPC resources (refer to figure 4). As
experiments scale up in complexity, such high-level tools become imperative. They serve as essential aids for
end users, enabling them to effectively manage all the elements required to run, comprehend, and replicate
experiments.
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Figure 4. Depiction of how a workflow-management engine can be employed for the scheduling of the operations on a remote
HPC machine.

Concluding remarks
Over the years, DFT methods development has reached a level of maturity which enables it to be employed as
the basis for novel investigation directions that, thanks to synergistic progress in HPC and software
development strategies, were unfeasible even some years ago. In light of the many research pathways which
have been enabled by these efforts, there remain a number of pressing software, algorithmic, and
methodological challenges which must be addressed in the years to come. Such a future will also certainly
include an increasing amount of interdisciplinary collaborations, necessitating the continuance of
dissemination activities to bring DFT calculations to communities of non-specialists. Although we still have
a long road ahead to achieve our aspirations, recent progress and successes in DFT methodology,
implementation, and outreach efforts, together with growing participation and collaboration within the DFT
software community, indicate a promising future.
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Status
Ground state properties of materials, such as the charge density or total energy, are today routinely described
for many materials using DFT. However, properties involving electronic excitations are more easily expressed
as functionals of interacting GFs that play a major role in the description and analysis of the response of
materials to electromagnetic radiation or beams of charged particles. This response is the focus of our
interest here: it governs absorption or EELS, direct and inverse photoemission, inelastic x-ray scattering, and
scanning tunneling spectroscopy, to name a few experimental techniques, and it is responsible for things such
as stopping power, radiation damage, or light-induced phase transitions. In essence, the aforementioned
measurements can be formally expressed in terms of one- and two-body GFs [33–35] capturing the
propagation of quasiparticles (QPs), their coupling, and incoherent contributions. Calculating those GFs is,
however, still a challenge. In principle, the one-body GF can be formulated in terms of self-energy: an
effective energy-dependent potential governing the QP propagation and representing all many-body
interactions. The self-energy plays a role analogous to the XC potential in the Kohn–Sham (KS) equations.

For weakly and moderately correlated systems, MBPT is one popular way to approximate the self-energy
and hence, GFs. The most frequent choice is to expand the self-energy in terms of the screened Coulomb
interactionW and stop at first order: this leads to the widely used GW approximation [33]. It was initially
employed to describe QP excitations in extended systems; indeed, the GW approximation has been extremely
successful in describing the band gaps and band structures [34] of a wide range of systems, including
complex and composite materials. This flexibility is largely due to the fact that screening is explicitly taken
into account, at variance with more approximate approaches, such as, e.g. hybrid functionals. In recent years,
there has also been considerable interest in applying GW to finite systems where its performance can be
benchmarked against QC methods [36, 37]. For small molecules with a large energy gap, one instead
typically expands the self-energy or the GF in terms of the bare Coulomb interaction. For example,
truncating such an expansion at the second order leads to the second Born approximation. Further, to go
beyond GW, vertex corrections can be added to the self-energy, or one can express the GF in terms of a
cumulant expansion, efficiently describing excitations beyond the QPs, in particular, plasmon satellites [38].

The one-body GF describes electron addition and removal in materials. Analogously, two-body GFs can
describe rich phenomena involving two-particle excitations. In particular, the particle-hole sector of the
two-body GF encodes information about optical absorption and EELS. A key equation that captures the
two-particle interactions is the BSE, analogous to the Dyson equation for the one-body GF [34, 35]. The
most common approximation for the electron–hole BSE builds upon GW and uses a QP approximation
[39]. Today, GW+BSE is the state-of-the-art approach for determining optical spectra and exciton binding
energies in extended materials.

Finally, one should mention that MBPT can also accommodate the coupling of the electronic charge
degrees of freedom to other collective modes, in particular, phonons [40] and magnons [41].

Current and future challenges
GF-based MBPT is today one of the most widely used approaches for first principles ES and spectroscopy
calculations. Despite their success, perturbative GF methods are also encountering significant challenges that
pose limits to their applications in condensed matter physics and materials science, both computationally and
conceptually. Some of these are briefly discussed below as points on a roadmap to future research directions.

Choice of ingredients or self-consistency.MBPT calculations are often used in a non self-consistent way on
top of a mean-field (KS of HF) calculation. The reason is twofold: the relatively high computational cost and
the fact that the fully self-consistent evaluation of a low-order expression may lead to unsatisfactory results.
On the other hand, the absence of self-consistency makes the results starting-point dependent and of low
quality when the starting charge density and density matrix are poor.

For example, for many years, GW was supposed to fail for materials with localized d- or f -electrons, but
this was often due to a poor description of charge localization. It was later shown that GW performed on top
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of a suitable starting point or in a partially self-consistent way allows one to describe many of those materials
[42]. Self-consistency is also important for the simulation of the real-time dynamics of externally perturbed
systems, where the fulfillment of sum rules may be particularly critical. On the other hand, self-consistency is
not always possible computationally, and it does not always improve the results. Therefore, GW and beyond
calculations still face the issue of the appropriate choice of GF and the screened interaction to be used to
build the self-energy, and more theoretical arguments, model results, and computational benchmarks are
needed to settle this question.

Computational challenge. Besides the conceptual hurdles, the methodology is also limited by practical
considerations. GF calculations come with a relatively high computational cost. Indeed, the bottleneck of a
straightforward implementation of GW is the calculation of the full dynamical screened interactionW,
which scales typically as N4

el with the number of electrons (or higher for methods beyond GW). More
generally, contrary to DFT, the GF approaches deal with electronic transitions rather than individual states
and, as such, also involve the spectrum of empty states. This calls for the use of clever basis sets. Moreover,
when one is interested in spectra instead of numbers such as total energy, details do not integrate out,
resulting in a need for a dense sampling of the Brillouin zone. Further, memory problems arise, particularly
when two or more particle correlator problems are solved, e.g. in the BSE. Iterative inversion schemes help to
avoid such bottlenecks, but often, there is a price to pay concerning the analysis of the results.

Precision and reproducibility of results. GW and related approaches have met great success for the
qualitative correction of the band gap, starting from the KS eigenvalue gap. Today, quantitatively reliable
results are required, which necessitates well-established standards. Work is needed along several lines,
including:

(i) The treatment of time or frequency. The GW self-energy is a product in time or convolution in frequency
space. While in principle equivalent, evaluation of GF and self-energy in frequency and time domains
require numerical treatments that address distinct forms of instabilities (e.g. low-rank approximation
of operators based on energy/frequency cutoffs or finite propagation time in operator/correlator
evolution). A different problem is encountered in a finite temperature formalism that operates on the
imaginary frequency axis: extracting observables of interest requires transformation to the
real-frequency axis, leading to numerical difficulties.

(ii) Another source of approximation is related to the solution of the QP problem that constitutes a
non-linear eigenvalue problem, which has been commonly either approximated (e.g. by linear
extrapolation of the self-energy) or neglected (e.g. using the static limit in the electron–hole interaction
kernel in BSE which avoids a two-frequency equation).

(iii) To address the time evolution of highly excited systems, non-equilibrium techniques, and numerically
stable time-evolution techniques for both one and two-body GF are required.

(iv) Different implementations of GF methods address the above-mentioned problems distinctly. Moreover,
GW calculations contain several convergence parameters that are partially interlinked. This is the case,
for example, for the very slow convergence with the number of empty states that is also related to the
size of the plane wave basis and the size of the response matrix. This makes it difficult to obtain reliable
results, especially for newcomers. In practice, this impedes the reproducibility of computational results,
and validation/verification has typically focused merely on a few single QP levels (e.g. fundamental
gaps or individual quasiparticle energies). The development of novel functionalities, e.g. formulation
and implementation of total energy and its gradients or the detailed analysis of multi-quasiparticle
signatures in theoretical spectra, however, requires a set of robust and transferable numerical methods.
Only recently, thorough comparisons of distinct implementations and various convergence parameters
have been performed [36] across a wide variety of codes, underlying the effort in validation,
verification, and reproducibility of tools employing MBPT. Clearly, more collective initiatives are
needed to compare different approximations and implementations, and also to establish detailed and
reliable workflows.

Extension of the MBPT formalism to encompass additional aspects. Calculations capturing relativistic
effects, in particular SOC, are gaining interest. Relativistic effects are sometimes included via
pseudopotentials, and SOC is often incorporated at the mean-field (DFT) level, to which QP energy
corrections are added. More advanced calculations include relativistic effects also in the evaluation of MBPT
[43, 44], but much still remains to be explored. Another important topic is temperature effects. Most
calculations are done at vanishing lattice temperature, whereas at room temperature, for example,
absorption spectra may have significantly different peak positions and spectral shapes.
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A significantly more complex task is the description of an interacting system out-of-equilibrium. In the
treatment of explicitly TD problems, besides the computational cost associated with the self-energy
evaluation, the scaling further increases with the overall simulation time (typically as O(N3

t ), where Nt is the
number of timesteps) [45]. This is because such simulations also require explicitly evaluating GFs and the
self-energy as functions of two times and including memory effects. Additional problems appear due to the
numerical instability of the time evolution. As a result, the non-equilibrium GF simulations are mostly
employed in studies of model systems, and only recently, simulations of realistic systems became possible
using approximations, in particular for memory effects [46, 47].

Diagrams beyond, or alternative to, GW. In GW, electronic correlations are limited to charge linear
response coupled to electron addition or removal and treated in an approximate way that is correct to first
order inW. There is no unique and well-established way yet to go beyond GW, and of course, the
straightforward addition of higher-order terms leads to a strong increase of the computational cost [48–51].
On the other hand, some important physical effects are clearly identified and can be linked to appropriate
corrections. These are, in particular, the correction of a self-polarization error in GW that can be mitigated
using second-order terms and/or approximations derived from TD DFT [52], and the coupling of QPs to
bosonic excitations, which leads to the emergence of satellite peaks and represents multi-particle excitations.
This requires, in principle, vertex corrections that are of first and higher orders inW. In practice, satellites are
most efficiently incorporated using cumulant GFs, both for electron addition and removal spectra and for
electron–hole excitations [53, 54]. This also includes coupling to phonons.

Many questions remain to be explored, though: these include the convergence of MBPT, the choice of
classes of diagrams and their resummation that is needed for a given problem, the rigorous combination of
ingredients from MBPT and DFT, the fulfillment of exact constraints such as positivity of the spectral
function, and the appropriate level of self-consistency in the vertex corrected approximations. The design of
vertex corrections is based on the idea that in Hedin’s formalism, the self-energy is expressed as GW plus
additional (correcting) terms [55]. However, GW is not the most appropriate starting point for systems with
strong particle-particle interaction effects. Alternatively, one may choose another starting point, e.g. a
T-matrix expression, to which, e.g. screening corrections are then added [56]. Some works using T-matrix
self-energies in first-principles calculations have been carried out for molecules and solids, but there is still a
choice of classes of diagrams to be made and the combination with screening is not obvious [57]. Moreover,
the computational cost of a full implementation is higher than that of GW calculations. Nevertheless,
including such an alternative to GW in the toolbox of ab initioMBPT calculations may open the way to
describe materials and properties that were considered to be out of reach of MBPT beforehand. Finally, it
may be appropriate to explicitly address three-body and higher-order correlation functions to gain access to
complex QPs such as trions and coupled exciton-electron excitations.

Combination with other approaches. The low-order approximations in MBPT are often not sufficient for
situations close to degeneracy, where correlation determines the physics. Even in situations of more modest
correlation strength, the accuracy of GW may not be sufficient to meet the practical needs. This happens, for
example, concerning band offsets, effective masses, or total energies. In this case, combinations with other
approaches may overcome the problem. One historically explored route is to simulate vertex corrections by
using the XC kernel of TD DFT, which leads to a screened interaction that is more appropriate for interacting
fermions than the screened interaction W of the GW approximation and, in particular, reduces the
self-screening problem of GW. For strongly correlated materials, a combination with DMFT can be
envisaged. This is also a GF approach but implicitly includes all site-local skeleton diagrams in the self-energy
[58]. Especially concerning this combination with DMFT, new computational problems arise.

Despite these outstanding challenges, MBPT-based methods have become established even outside of
their traditional field of computational condensed matter physics, and they are nowadays widely applied in
fields such as materials science or chemistry, for questions of astrophysics or biological processes, matter
under extreme conditions, disordered systems such as liquids, or complex processes such as in
(photo-driven) catalysis, and also become explored in the context of quantum computing. This brings new
hurdles and opportunities, including taking into account parameters of the environment such as
temperature or experimental setups, and in any case, leads to a drastically increased complexity.

Advances in science and technology to meet challenges
The application of GF techniques has become more widespread and has found its way to becoming the de
facto workhorse in materials and computational physics communities. On one hand, this is thanks to the
increasing power and availability of large-scale HPC devices. Simultaneously, numerous algorithmic
advances made the calculations computationally less expensive and numerically more reliable.
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Multiple low-scaling algorithms emerged in the past decade, in particular in the context of equilibrium
GW. In spirit, the methods aim to reduce the complexity via some form of sparse linear algebra, decreasing
the prefactor and reducing the overall scaling to be quadratic with the number of electrons (in combination
with localized bases and/or pair bases for the polarizability). For instance, one of the largest bottlenecks is
associated with the calculations of the screened interactions, which, in turn, require computing the response
functions. These steps have been optimized by numerical compression techniques (e.g. of response functions
in a matrix form) and exploiting the low-rank operator structure. Such techniques have retained relatively
high scaling O(N3 −N4) for GW (or higher for the vertex-corrected methods), but significantly reduced the
scaling prefactor, allowing simulations of large-scale systems [59]. Steady progress comes from
improvements in aspects such as time/frequency Fourier transforms [60, 61] or the use of Resolution of
Identity approximations [62]. Alternatively, random algorithms exploit the information redundancy via
sampling of the single-particle states and lead to linear scaling for large-scale systems in GW [63] and beyond
and for the BSE.

A separate problem arises for finite temperature formulations, in which the self-consistency is typically
implemented in the imaginary time/frequency domain. However, many observables, such as the
single-particle spectra, require real-frequency information. Analytic continuation techniques are constantly
developed further [64] and succeed in determining the energies of well-defined QP states with sufficient
accuracy, whereas it is still difficult to access the rest of the spectral function.

For non-equilibrium problems, the progress is largely lagging behind, but recent time-linear scaling
methods pave the way for realistic simulations in this area. The explicit evolution of one and two-body
GFs [65] and the application of model order reduction techniques have recently emerged as a powerful
scheme for performing non-equilibrium simulations.

The combination of these techniques and their applications in a broader context represents a promising
research direction. Furthermore, the next steps critically hinge upon the development of a transferable
computational implementation that leverages new computational hardware, exhibits scalable parallelization
and is GPU-ready for the most advanced HPC architectures.

Concluding remarks
GF-based MBPT has yielded an important class of first-principles approaches for predicting materials’
excited-state and, sometimes, ground-state properties. In particular, for extended, weakly to moderately
correlated systems, GF-based MBPT methods often provide predictive accuracy for QP band structures and
excitation spectra, including exciton binding energies, for a large variety of materials. Such a performance is
hardly achievable otherwise. Still, further developments of these methods in terms of their theoretical
robustness and practical capability face significant conceptual and computational challenges. In this
roadmap, we have briefly discussed several prominent research directions, as well as the necessary advances
in science and technology to address these challenges. We would like to stress that on top of ongoing
important initiatives, a joint effort of the community is needed to make the theoretical and computational
choices unambiguous and to improve the reproducibility of the results. In spite of all the difficulties, thanks
to the rapid theoretical and algorithmic developments, as well as more efficient and numerically stable
implementations across different hardware platforms, we expect GF-based MBPT methods to become
significantly more powerful and play an indispensable role in future first-principles computational studies of
real materials.
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Status
WFT is concerned with the development of approximate quantum mechanical descriptions of electrons in
molecules and materials that can be systematically improved towards the exact solution. Key
physico-chemical quantities obtained in such approaches are, first and foremost, the energies of ground and
excited stationary electronic states, the energy response to field and other perturbations, and state-to-state
transition probabilities. Altogether these allow for first-principles prediction of molecular structures,
chemical reactivity, and spectroscopy.

The key concept underlying all standard approaches in this field is the expansion of the many-electron
wave function in terms of electronic configurations which are anti-symmetric with respect to the exchange of
any two electrons (the spin–statistics theorem). The configurations can be either anti-symmetrized products
(Slater determinants) of one-electron functions (molecular spin-orbitals, or spinors) or spin-adapted linear
combinations of them (configuration state functions). The molecular orbitals are usually expanded in a basis
of atom-centered Gaussian basis functions. The simplest approximation is to represent the wave function by
a single Slater determinant and to optimize the orbitals by minimizing the energy (HF method, independent
particle model). This forms the basis of molecular orbital theory. The HF approximation recovers the vast
majority (99% or more) of the exact electronic energy. The remainder is denoted as the electron correlation
energy. The magnitude of the correlation energy is (at least) of the same order as chemical energies (e.g.
reaction energies). It is therefore essential to recover 99% or more of the correlation energy in order to make
quantitative predictions of chemical reactivity and molecular properties. Since the correlation energy is an
extensive quantity, i.e. it is proportional to the molecular size, this is particularly difficult in calculations for
large molecules.

The wave function expansion becomes exact for a complete determinantal expansion—FCI, FCI—in a
complete basis of orbitals (a.k.a complete CI). Due to the factorial scaling of the number of determinants
with the number of electrons FCI becomes impractical for more than∼20 electrons. Therefore, practical
applications must deploy approximations by (a) truncating the expansion adaptively (e.g. selected CI) and/or
systematically (e.g. truncated CI [66], MBPT [67]), (b) parametrizing the coefficients in the complete
expansion nonlinearly (e.g. coupled-cluster [67], tensor network methods [68]), or (c) using stochastic
expansions (e.g. determinantal quantumMonte-Carlo [69, 70]). The rich phenomenology of the basic
approximations techniques and their combinations is further compounded by algorithmic and
computational innovations, thereby precluding even a brief enumeration of recent research directions.

Several well-established classes of methods of WFT have been turned into tools for the accurate
determination of properties and energetics for small to medium sized molecular systems that are robust
enough for use by nonspecialists. These tools are usually either based on a single determinant or a linear
combination of determinants as a reference function, i.e. single- and multi-configuration reference methods,
respectively. The single-reference coupled-cluster methods are the primary workhorse of WFT, capable of
predicting chemical energy differences with kJ mol−1 accuracy for small systems [71]. However, they may fail
when the wave function is dominated by more than one Slater determinant. This is for example the case
when molecular bonds are stretched (such as at the TSs) or dissociated, for open-shell ground states (such as
radicals or most transition metal compounds) and for almost all excited states. In such cases multi-reference
methods are usually needed.

Practical application of even the simplest WFT methods still face two fundamental problems, the steep
polynomial scaling of the computational cost with the number of electrons and the large and slowly decaying
basis set errors. The slow basis set convergence results from the poor description of the wave function at
short interelectronic distances by truncated Slater determinant expansions. This is due to the
electron–electron cusps for rij → 0, which cannot be described by products of spin–orbitals. For small
molecules the basis set limit can be estimated using extrapolation approaches, but this is limited by the steep
increase of the computational cost with basis set size. Another more satisfying approach is to include terms in
the wavefunction that depend explicitly on the inter-electronic distances [72], but these methods are
significantly more complicated to implement and also need additional auxiliary basis sets.

The scaling problems with system size can be overcome by local correlation or fragmentation treatments,
combined with explicit correlation approaches. With modern explicitly correlated local correlation methods
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it is currently possible to compute accurate energies for molecules with 100–200 atoms, and to reach
chemical accuracy (below 1 kcalmol−1) for relative energies (e.g. reaction energies, isomerization energies,
conformational energy changes, or intermolecular interactions) [73]. Still, the accuracy of such methods for
large systems is difficult to assess. Local approximations and basis set incompleteness errors can be tested for
medium sized molecules (up to about 30 atoms) by comparison with canonical methods, but it is uncertain
how well the results can be extrapolated to much larger systems, in which other effects such as dispersion
interactions become increasingly important. The errors of the energy are extensive, i.e. they increase with
molecular size, and high accuracy of relative energies can only be achieved if large parts of the errors cancel
in reactants and products. Fortunately, many chemical processes involve local changes in ES, and such error
cancellations seem to work well in most applications. The atomistic surroundings of such molecular
transformations can then be modelled efficiently by environment embedding schemes [74].

Current and future challenges
A severe limitation of wave function approaches, especially for large molecules, is the complexity of their
mathematical formalisms and approximations. This complexity makes extension to higher excitation ranks
and evaluation of energy derivatives with respect to nuclear coordinates or other perturbations technically
challenging.

While single reference coupled-cluster methods can be used in a black-box manner and achieve high
accuracy for ground state properties around the equilibrium structure, qualitative failures are regularly
observed in the simulation of deformative processes which involve the breaking and formation of bonds.
Multi-configurational methods have been developed to address these and other problems of single-reference
methods. However, these methods typically do not yet reach the accuracy of single-reference coupled-cluster
methods.

Yet another challenge is that multi-reference WFT approaches typically require a high degree of expertise
on behalf of the user. However, there are no fundamental limitations that would prevent a high degree of
automatism in actual calculations, which would also make them less error prone. Moreover, computations
that can be used in automated workflows (especially for high throughput virtual screening campaigns)
require a high degree of robustness, which is particularly hard to achieve for multi-configurational schemes
or composite methods that require different approaches for different electron-correlation regimes.

Despite the fact that a hierarchy of WFT approaches exists that allows to reduce errors systematically, this
is limited by the extremely high cost of higher-order calculations. Therefore, the actual error in a specific
calculation is mostly not known. Even if it is supposed to be small, it depends on the molecular system and
the target application whether the error can be tolerated or not. So far, error assessment has been based on
benchmarking, but intrinsic uncertainty quantification and error control for a specific calculation at hand
will be a challenge and a key for predictive work in the future [75]. Essential to this task will be overcoming
the known limitations of the traditional atomic-orbital-based numerical representations that support
modern WFT; the use of alternative numerical representations (e.g. real space grids, finite elements, etc)
could greatly improve the ability to quantify and control the discretization errors of the WFT methods.

The modern set of wave function ansätze are more or less all exclusively based on determinant-based
expansions. Alternative approaches could, for instance, utilize geminals (which describe two explicitly
correlated electrons) as the building blocks; the unique advantages of geminal approaches range from
compact description of certain types of strong electron correlation to supremely accurate calculations of
few-body systems [76].

So far, our focus has been on the electronic energies, on the associated Born–Oppenheimer (BO)
surfaces, and couplings between them. Naturally, there are further challenges for ES models such as (1)
multi-component approaches that also consider quantum nuclei, photons, or polarons [77], (2) response
properties of large molecules with accurate wave functions, and (3) magnetic resonance parameters for
relativistic heavy-atom molecules [79].

Finally, on the hardware side, we face severe challenges that range from compatibility and reproducibility
issues due to software evolution (e.g. brought about by programming language and compiler development)
to hardware constraints (such as disjoint memory spaces, shrinking memory and bandwidth budget per
FLOP, increasing specialization of computing units, etc).

Advances in science and technology to meet challenges
To address these challenges and realize the full potential of WFT for predictive molecular and materials
simulation new scientific advances—concepts, algorithms, and computational infrastructure—will be
needed. While it is futile to try to identify where the next great advances will occur, it is possible to bring such
advances closer to reality by sustaining and accelerating the rate of scientific innovation in this field. We
identify the following technological factors crucial for that.
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• All fields of computational science have benefited crucially from the exponential increase of the classical
computing power over the past 50 years. Continuation of the technological progress that sustained the evol-
ution of classical computation platforms is needed tomake wave function simulations evenmore affordable,
both by reducing the time to solution and by shrinking the required electrical power budget.

• Recent trends in classical computing all makeWFT ansätze far more difficult to program, and the hardware
roadmaps suggest that these trends will continue. Thus, the adoption of GPUs in our field, even for estab-
lished but especially for emerging methods, is poor. New tools/programming models are needed to make
programming modern massively-parallel classical computers, with heterogeneous execution units (GPUs)
and address spaces (clusters, distributed file systems), easier.

• In designing wave function methods we should take greater account for their fitness for hardware. A prom-
inent example of such field-wide co-design is the recent developments of ‘quantum computing’ algorithms
suitable for execution on the universal quantum computing devices [80–82]. It is inevitable that such co-
design will continue to be necessary, not only for the case of rapidly evolving quantum hardware but also
for the modern and emerging classical devices.

• Greater use of domain-specific automation to make scientific innovation easier (e.g. automated derivation
and implementation of complex wave functionmodels and their responses correctly and efficiently), reduce
the amount of code to maintain, and improve performance portability.

Concluding remarks
WFT is at the core of numerous endeavors in theoretical chemistry—such as quantum dynamics, classical
dynamics, mechanistic explorations, property prediction, data generation for ML and physico-chemical
modeling, reference data production, and so forth. By construction, its approaches contain very little bias
and therefore allow for an universal applicability with an option for error assessment by comparison to
results of increasing accuracy. It is for these reasons that the importance of their further development can
hardly be overestimated. The successes of the past decades have clearly demonstrated their value and also
uncovered the avenues to follow in the future, as outlined in this roadmap.
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Status
By reformulating direct numerical approaches, stochastic methods greatly extend the complexity, accuracies,
and scale that can be reached with many-body ES and quantum chemical approaches, in exchange for
introducing a controlled statistical error. Stochastic sampling changes both the power law scaling and the
computational prefactors of methods as compared to using conventional numerical integration. This
transformation can allow application of high-accuracy approaches to system sizes and phenomena that
would otherwise be out of reach. The reformulations also permit more parallelizable implementations and
easier use of supercomputers, reducing the time to solution.

In the case of QMC algorithms [83, 84], solutions of the full many-body Schrödinger equation are
obtained statistically. An input trial wavefunction is typically constructed using the best available mean-field
or many-body approach and then usually decorated with additional physics-motivated terms to describe
additional electron correlation. It is then used either directly, as in VMC, or in a projection scheme to obtain
a systematically better approximation, as in DMC, auxiliary field QMC, and full configuration-interaction
Monte Carlo [69] and stochastic CC theory [85]. The majority of these approaches are general and can be
applied to metals, insulators, molecular systems, and to ground and select excited states within the same
framework. Although exact treatments are possible in simple cases [86], in practice a fixed-node or phase
approximation is employed to treat the Fermion sign-problem. Results are still highly accurate, but this
approximation must be tested. While computationally expensive, system sizes similar to DFT can be studied.
e.g. already in 2016, TiO2 phases with up to 1728 electron supercells were studied [87], and computational
power has increased significantly since then. Therefore, a large range of scientific problems are within reach.

Stochastic orbital or vector techniques have recently been introduced to reduce the scaling of mean-field
based approaches [88–90] as well as for many-body perturbation techniques [63, 91, 92], and provide a
framework for reducing algorithmic complexity and for facilitating efficient parallelization. While stochastic
vector approaches share features with the aforementioned QMC techniques (as further discussed below),
they differ by relying on approximate methods such as DFT and many-body perturbation theories, thereby
targeting much larger system sizes.

Current and future challenges
We have identified four major challenges:

Reducing and controlling the statistical noise and biases: To extend the range of methods studied by these
approaches and broaden their use, the computational costs must be reduced and the biases (approximations)
reduced. This requires fundamental improvements in, e.g. the projection QMC methods, or improvements
in the importance sampling used in stochastic vector approaches. And for any given method, the statistics
and biases must be optimally and automatically controlled to minimize the overall computational cost for a
desired accuracy. For QMC methods, a particular challenge is the consistent and reliably automatable
determination of the trial wavefunction coefficients. Reduced biases—increased physical
accuracy—generally result through use of more complex wavefunction forms with more coefficients, but
their determination through stochastic optimization in turn becomes more difficult. Reducing the noise in
stochastic vector techniques has so far relied on fragmentation and embedding [93], for open [94] and

53 This manuscript has been authored in part by UT-Battelle, LLC, under Contract DE-AC05-00OR22725 with the US Department of
Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US gov-
ernment retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript,
or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in
accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

21

http://energy.gov/downloads/doe-public-access-plan


Electron. Struct. 6 (2024) 042501 V Blum et al

periodic boundary conditions [95, 96]. While the noise can be reduce by two orders of magnitude,
automatization of the noise reduction schemes and the removal of bias remains a challenge.

Stochastic techniques for structural optimization and MD: Forces computed with stochastic methods have
an intrinsic statistical uncertainty in both direction and magnitude, and the magnitude may be non-zero
with finite sampling even at structural minima. Therefore, conventional numerical approaches are not
appropriate, and a naïve MD approach will not conserve energy. Convergence must be handled delicately.
While several approaches have recently been proposed for structural optimization [97–99] and for sampling
the canonical distribution, they have yet to be widely used or demonstrate generality to large, low symmetry
systems.

Stochastic embedding techniques and improved treatment of finite-size effects: Embedding techniques offer
the accuracy of a fully many-body approach and improve scaling by partitioning the system to strong and
weakly correlated regimes, but as-yet are little developed. For example, combining QMC and stochastic
vector techniques, stochastic embedding techniques would offer improved scaling as well as circumvent
approximations introduced in deterministic approaches.

Improved interoperability with other ES methods: To-date the most important QMC results remain the
exact calculations for the homogeneous electron gas [86]. The density-dependent energies were later
parameterized in the local density approximation of DFT. Beside energies and densities, many-body methods
have access numerous many-body quantities such as the XC hole and two-body density matrices. In
principle, these could be used to inform or validate the construction of computationally cheaper ES
methods, which can then be applied more widely.

Advances in science and technology to meet challenges
Reducing and controlling the statistical noise and biases: In QMC, improvements in the trial wavefunction
leads to improved accuracy and reduced intrinsic variance/statistical cost. New forms of wavefunction and
methodologies based on the developments seen in machine-learned force-fields provide an as-yet little
explored route to achieve this. Modifications to the long-established QMC move generation algorithms
could be derived to improve the importance sampling and overall statistical efficiencies. Crucially,
improvements in the biases need to be achieved consistently between different systems so that energy and
property differences are consistently improved. Similarly, in stochastic vector techniques, reference systems
are used to reduce the statistical error but often introduce a bias. The most common reference system relies
on fragmenting the system [96], but the optimal choice of the fragments is still an open area of research and
requires further developing more accurate schemes. Another notable hurdle is the automation of fragment
identification, a task that could potentially benefit from the application of ML and neural networks. In all
cases, a deeper understanding of the sources of error and origins in the statistical variance will aid the design
of improved sampling schemes.

Stochastic techniques for structural optimization and MD: Reliable and efficient structural optimization
requires the development and deployment of algorithms that factor all statistical uncertainties to efficiently
converge to the optimized structures. For dynamics, the requirement are stricter and must ensure
conservation of the desired observables, such as energy, etc. One promising approach is based on the recent
development of highly training-data efficient, ‘second generation’ machine learned interatomic
potentials [100]. Such approaches rely on training data (forces on the nuclei and energies) generated by first
principle techniques. To date, DFT has been the main framework used to generate the training data, often
restricted to a small sub-system due to the computational complexity.

QMC and stochastic vector techniques present more precise frameworks with lower computational
complexity, making them well-suited for generating training data. Despite the statistical nature of the
training procedures, the investigation of the impact of noise arising from force fluctuations calculated using
QMC or stochastic vector techniques has been limited [101]. Therefore, the generalization of training steps
must consider these statistical fluctuations, and the development of noise reduction schemes specifically
tailored for training neural network FFs is imperative.

Stochastic embedding techniques and improved treatment of finite-size effects: QMC provides a formally
exact many-body framework, especially well-suited for strongly correlated systems, whereas stochastic vector
techniques depend on approximations that prove effective for weakly correlated systems. Describing systems
with mixed strong and weak correlations, especially in extended systems, poses a significant challenge. A
promising avenue involves integrating QMC with stochastic vector techniques through quantum embedding
methods.

Embedding methods often rely on many-body GF approaches, but in principle should also be applicable
to wavefunction based techniques. The fusion of stochastic vector techniques with QMC approaches
promises a balance between high accuracy and low computational complexity, broadening the scope of
problems amenable to first-principles analysis. Achieving this entails crafting an embedding framework,
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devising novel algorithms for integrating stochastic realms, and evaluating the accuracy and computational
efficiency of these hybrid techniques.

Improved interoperability with other ES methods: Here we believe that many of the necessary methods are
in place for a bidirectional exchange between different classes of methods, primarily through observables
other than the total energy, e.g. density matrices. However, computing many of the desired observables for a
great many systems is computationally infeasible. A dialog with the broader ES and quantum chemical
communities is required on the preferred systems and quantities to ensure that the efforts are well targeted,
making full use of the trends and uncertainties identified through computational materials and chemical
databases.

Making use of new technology: While stochastic methods are often embarrassingly parallel, the inherent
branching can lead to them not taking full advantage of parallel pipelines such as GPUs. While advances in
compilation and appropriate languages are making such approaches easier to code, the relatively small user
and developer bases have fewer resources to develop on these architectures, though significant increases in
computational efficiency could result.

Concluding remarks
Stochastic methods extend the reach of high-accuracy and many-body approaches, and are well suited to take
advantage of the ongoing increases in available computational power. For greater scientific reach and wider
adoption, technical improvements are desired to reduce both the statistical costs and the remaining biases
and approximations in the algorithms. As the methods become more affordable and in some cases less
artisanal to run, opportunities for both direct application and for validation or improvement of more
scalable approaches are poised to greatly increase.
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Status
In ES theory it is quite common to ignore magnetism and consider only electric interactions. Likewise, one
often dismisses the effects of the relativistic increase of mass at high electron velocities and the SOC. These
three approximations simplify theory considerably as it suffices to solve the non-relativistic Schrödinger
equation, rather than the more complete Dirac equation. For some important technological applications
such a neglect can, however, lead to quantitatively or even qualitatively incorrect results. Three examples
suffice to illustrate this point.

The first example is the accurate prediction of complexation and adsorption free energies of actinide
species. These data are required to model transport properties of these species when evaluating the safety of
long-term storage options for nuclear waste. ES calculations of such materials can only be done if relativistic
effects are included from the outset as they dramatically change the relative energies of the s- and f-bands
[102].

A second example concerns OLEDs. Due to use of phosphorescent emission [103], OLED technology has
become one of the most energy efficient ways of creating colour displays. To further increase this efficiency,
one needs to accurately model and mitigate all undesired energy quenching processes. Being able to model
SOC is thereby essential.

A third example comes from the field of quantum materials. The energetically tiny SOC lifts degeneracies
of electronic states and acts as emergent magnetic fields with important ramifications for the
spin-polarization of the ES in nonmagnetic solids (e.g. even in a relatively light compound like 3R-MoS2
splittings induced by the Rashba effect reach 200meV, see figure 5), the creation of topological matter [104]
(e.g. topological insulators), spintronic functionalities, e.g. spin–orbit torque to manipulate the
magnetization by electrical current, the emergence of orbital magnetic moments, or complex magnetic
interactions (e.g. Dzyaloshinskii–Moriya interaction) in magnets, which can lead to topologically protected
noncollinear spin-textures and magnon excitations [105].

Today, scalar-relativistic approximations to the fully relativistic treatment are realised in many
community ES methods based on DFT as well as in more advanced methods to treat electron correlation
such as MBPT with Hedin’s GW approximation to the self-energy, CC, or density matrix renormalization
group. The SOC is often included as perturbation, but also implementations treating the Dirac equation with
magnetism in a mean field approximation are available, which goes back to early efforts in the mid
sixties [106]. The treatment of non-collinear magnetism becomes increasingly available. While properties
like the magnetic anisotropy or complex magnetic structures induced by relativistic interactions can often be
well predicted, it should be noted that some tiny, but important effects like elemental bulk anisotropies or
orbital polarizations still evade an accurate description [107].

Current and future challenges
Naturally, a relativistic DFT based on the Dirac equation rather than the Schrödinger equation seems ideal to
address the topics mentioned above, but its formulation and application turns out to be quite
challenging [108]. Some simplification can be gained by the reformulation of the Dirac equation as an
equation for electrons (rather than for electrons and positrons) that is possible with the so-called X2C
approach [109]. In many cases relativistic corrections to electron-electron interactions are omitted, but they
can relatively easily be included in MBPT such as GW or in a mean-field theory such as DFT [110].
Nevertheless, it must be kept in mind that beyond mean-field relativistic theory is needed in many problems,
e.g. for heavy transition metal compounds with strongly correlated electron systems [111] for which already
a qualitatively correct description of the wave function calls for a multi-reference approach. We further note
the study of TD phenomena, where relativistic versions of time-dependent DFT (TD-DFT) have been
developed [112], but where more advanced methods may be needed to fully describe finite temperature
effects and magnetic disorder.

Another challenge arises from the complexity of the material models that need to be constructed. While
heavy elements form the crucial and most difficult to model part of a material, they are typically surrounded
by other materials that can be modelled sufficiently accurately with a cheaper approach. This calls for use of
multilevel and multiscale approaches, but introduces a dependency on the adequacy of the partitioning of
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Figure 5. Spin–orbit splitting of the valence bands in 3R-MoS2: black lines show the band structure without spin–orbit coupling
(SOC), red/blue dots indicate the spin polarization perpendicular to the layers (up/down) of the bands with SOC included. Insets
show the structure (grey/yellow spheres: Mo/S) and the Brillouin zone.

the system to be studied into essential and secondary regions and on the quality of treating the interface
between regions that are described at different levels of theory.

Advances in science and technology to meet challenges
Methods that handle magnetism and other relativistic effects require much more data as the wave function
models do not separate out the spin degrees of freedom. This is also unavoidable if the essence of the
problem lies in strong coupling of spin and spatial parts of the wave function. In addition, many important
quantities are tiny in size and require a high numerical resolution. New computer technology does help here,
with the large memories and enormous processor counts available on modern GPU-based supercomputers it
is possible to store and process the extra data needed to handle the more extended wave function models.
The advent of quantum coprocessors will also help as they can be able to efficiently process the large active
orbital spaces needed to model strongly correlated electrons.

Tackling the second problem mentioned above, the efficient construction of multiscale and multilevel
methods, will require closer interaction of domain scientists with software engineers. The efficient storage
and reuse of data is essential in such methods and while standards for simple data such as molecular and
materials geometric structure have matured, this is not yet the case for ES data such as (excitation) energies,
electron (spin) densities, and molecular orbital coefficients for 2-component wave functions. Another
important aspect is the parallelization of workflows, in many studies one may use conceptually trivial
parallelization over studies of multiple materials or initial conditions that will benefit from automatically
parallelizing workflow engines. Further developing these for the rather heterogenic compute systems (CPUs,
GPUs, QPUs) that will emerge in the future can be viewed as important challenge.

Concluding remarks
While much progress has been made in the past decades toward better understanding and modelling the
implications of magnetic and other relativistic effects in chemistry and material sciences, more work is
certainly needed. The available algorithms and their implementations are typically at least an order of
magnitude more resource consuming than their non-relativistic counterparts and also the methods to
visualize and analyze the resulting feature-rich data still need to mature.
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Status
Semiempirical ES methods reduce the cost of solving the many-body Schrödinger equation by simple models
and approximate solutions and mitigate the resulting errors with parameters fitted to reference data, either
from experiments or higher levels of theory. Typically, they use a minimal atomic orbital basis set,
parameterized multi-center integral approximations, and mean-field calculations based on HF theory or
DFT. The semiempirical Hückel method for π electrons was proposed only a year after HF theory in 1931,
and it inspired more general models based on the ZDO approximation in the 1950s. By the 1980s, this had
been further refined into the NDDO approximation and developed into popular thermochemistry models
such as AM1 and PM3, which are implemented in the MOPAC program [113].

The popularity of DFT in the early 1990s shifted most semiempirical method development from
minimal-basis models to semiempirical density functionals with fitted parameters, and the last few decades
of development has produced hundreds of new semiempirical density functionals but relatively few new
minimal-basis models. While large-basis DFT calculations are typically more accurate than minimal-basis
models, this accuracy comes at a roughly three orders of magnitude increase in computational cost.
Semiempirical methods were also able to reduce the cost of DFT, and extended Hückel theory (EHT) from
the 1960s inspired the development of DFTB in the late 1990s, as implemented in software such as DFTB+
[114].

Even with steady growth in computing power, scientists still have limited computational budgets and
often seek lower-cost methods, particularly when the size or number of systems is large or the required time
to solution is short. Currently, semiempirical models are mainly used for explorations of conformational and
chemical spaces and interactive quantum mechanical studies, which continue to drive semiempirical model
development. As shown in table 1, the GFN family of models in the recent xTB program [115] combines the
DFTB formalism with some design elements from EHT and atomic multipole expansions up to quadrupoles.
There is also progress towards more unified software, with SCINE Sparrow [116] providing implementations
of both NDDO-based and DFTB-based methods.

Current and future challenges
The applicability of semiempirical methods remains constrained for the following reasons: limited
availability of suitable reference data combined with the employed Hamiltonian simplifications hinders their
accuracy and transferability. Linear scaling of parameters with the number of elements has been a very
successful strategy for the PM6/PM7 and the GFN-xTB methods in their Wolfsberg–Helmholz-type
expressions to cover 70 and 86 elements of the periodic table, respectively. In contrast, the original DFTB
models use the pairwise parameterized Slater–Koster tight-binding formalism, which has limited its model
coverage of the periodic table. Nowadays, a plethora of QC packages and powerful computers are available,
enabling the fast generation of theoretical reference data at large scale. With enough data, parameters for
nearly arbitrary elements and, possibly, element combination can be generated.

Additionally, existing approximations in contemporary semiempirical methods may require revision for
improved accuracy, transferability to more diverse chemical environments, or extended applicability to a
broader set of physical properties. One direction is to better understand and systematically improve
established concepts such as the NDDO approximation [117]. Another direction is to incorporate more
information and concepts from first-principles calculations as in done in composite methods such as
PBEh-3c [118] and avoid the approximation of multi-center integrals altogether. Furthermore, the inclusion
of more basis functions or core electrons to minimal-basis models may enable new spectroscopic
applications like NMR or XAS. However, increasing the number of basis functions in semiempirical methods
also increases their cost and thus reduces their computational advantage over first-principles methods.

Lastly, the computational scaling and efficiency of semiempirical models needs to be improved for both
existing and future models. For all semiempirical schemes, the linear algebra necessary to solve for the
density matrix is the rate-determining step. To compete with existing force-field methods, this step needs to
be accelerated. Different schemes relying on fragmentation, sparse linear algebra and highly parallel
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Table 1. Basic features and approximations of several popular semiempirical models.

Model name PM7 GFN2-xTB DFTB3/3OB-D4
Model family MNDO GFN DFTB3
Parent software MOPAC xTB DFTB+
Primary output Heat of formation Total energy Total energy
Reference data Heats, geometries, dipole

moments, ionization
potentials

Geometries, forces,
vibrational frequencies,
non-covalent energies

Energies, geometries,
vibrational frequencies,
barrier heights

Elemental coverage H–La, Lu–Bi H–Rn H, C–F, Na, Mg, Zn, P–Cl,
K, Ca, Br, I

Orbital type Orthogonal Non-orthogonal Non-orthogonal
Hopping integrals Wolfsberg–Helmholz

approximation of
Slater-type orbitals

Generalized
Wolfsberg–Helmholz
approximation of STO-nG
orbitals

Tabulated Slater–Koster
matrix elements from
atomic and diatomic DFT
calculations

Coulomb integrals NDDO approximation Multipole approximation Monopole approximation
Exchange energy Fock exchange Density functional Density functional
Dispersion energy Short-range DH+model Self-consistent D4 model Self-consistent D4 model

computing architectures have been suggested [119], but only a few of them have been successfully applied in
a black-box fashion on commodity computers at large scale [120].

Advances in science and technology to meet challenges
At the core of any model improvement in semiempirical methods will be the availability of more reference
data: well-balanced, in large amounts, and preferably of high quality. The development of semiempirical
methods will greatly benefit from the ongoing efforts to generate large data for ML models. The ML
priorities will likely be different and the resulting data might not be ideally suited for fitting new
semiempirical models. Particularly, semiempirical models are different from purely geometry-based ML
models, especially when extrapolation beyond the reference data space is important, such as in chemical
space exploration and photochemistry. For this, it will be important that semiempirical Hamiltonians can be
applied with appropriate wavefunctions for both the ground and excited states. While some software
implementations of semiempirical methods already include excited-state and multi-determinant
functionality, semiempirical models are primarily fit to reproduce single-determinant calculations of
electronic ground states because that is what the vast majority of reference data is available for.

Even with sufficient data available, it may be challenging to choose between different model ingredients.
ML machinery is effective at high-dimensional interpolation, and it is possible to generate semiempirical
model parameters as the output of ML models, which improves the interpretability of the overall model
relative to black-boxML predictions of total electronic energies [121]. Semiempirical models may also benefit
in other ways from ML developments, particularly in accelerating rate-determining steps: improved initial
guesses for SCF calculations and case-specific semiempirical parameter adjustments can both be aided by ML
schemes. Alternatively, the framework of statistical model selection and tools such as the Akaike Information
Criterion might be useful for selecting between semiempirical models with differing numbers of parameters.
An improved formal understanding of semiempirical methods can also make these choices easier.

Similar to classical FFs, semiempirical models are well-suited to benefit from heterogeneous computing
architectures that can leverage mixed-precision such as commodity GPUs, which enable much faster
calculations than standard computing architectures [122]. This will likely increase the relevance of GPUs in
QC, which correspondingly follows their growth in ML applications.

Concluding remarks
Within ES theory, semiempirical methods remained successful because of their unmatched computational
efficiency. In recent years, models covering most of the periodic table have consolidated their role among
computational chemists and materials scientists alike. Particularly, for chemical and conformational space
exploration, examples of which are highlighted in figure 6, they are in frequent use. With plentiful reference
data within reach, many remaining limitations might be remedied in the near future. Via modular software
implementations, semiempirical Hamiltonians will become more generalizable than existing models or,
alternatively, case-specific reparametrization will be highly simplified. Due to the generally low precision
requirements, semiempirical models are well-suited to be combined with consumer-grade GPUs and linearly
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Figure 6. The low cost of semiempirical models enables novel functionality such as (a) conformer searches using GFN2-xTB and
GBSA implicit water with CREST and (b) protein modeling using PM7 and COSMO implicit water with the MOZYME solver in
MOPAC.

scaling algorithms. This will push the limits of routine applications that are possible with semiempirical
models. Overall, semiempirical methods are as popular as ever and will remain so for the foreseeable future.
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Status
The structure and dynamics of molecules and materials, in all thermodynamic states, are determined by the
laws of quantum mechanics. Solving various problems in this area requires a sufficiently accurate solution of
the TD or time-independent Schrödinger (or Dirac) equation for a system composed of many interacting
electrons and nuclei. Under the much-celebrated BO approximation, the electronic problem has been
addressed by a variety of approaches. Applications of these techniques have been central in the area of
computational ES theory.

Solving the equivalent equations for a system of interacting nuclei, as well as going beyond the BO
approximation and obtaining the coupled dynamics of electrons and nuclei, is significantly more
challenging. Accounting for nuclear quantum and non-BO effects can be far from just a small correction to a
conventional calculation that considers nuclei as clamped point particles or as classical objects. Quantum
nuclei have quantized energy levels, can tunnel through barriers, are delocalized, and can exhibit wave
interference. Such quantum effects can dramatically change thermodynamic phase transitions, stabilize
different crystal structures, influence the response of matter to stimuli, impact rates and equilibrium
constants for chemical reactions, and cause isotope-dependent changes to the thermodynamics and kinetics.
Thus, developing theoretical methods that incorporate quantum effects in nuclear dynamics is critical for
answering many open questions in biology, physics, chemistry, and materials science.

A series of algorithmic developments, along with the increase of computer power has allowed quantum
dynamics simulations of complex systems, triggering, in turn, the discovery of new situations where nuclear
quantum dynamics are essential [128]. Available approaches can be broadly classified as those based on
nuclear or nuclear-electronic wavefunctions, mixed quantum–classical approximations, and PI methods.
Each of these methods has advantages and limitations, as well as software implementations with varying
degrees of accessibility. When choosing a method, one must balance accuracy and feasibility for the
particular process of interest (see figure 7).

Current and future challenges
The ultimate goal of simulation methods is to treat all nuclei and all electrons quantum mechanically. For a
wide range of important processes in chemistry and biology, this means accounting for ZPE, nuclear
tunneling, coherence, decoherence and quantum dissipation, treating the nuclear motion with full
anharmonicity and accounting for changes in the electronic states (non-BO effects) when the nuclei
rearrange.

An obvious difficulty in accounting for nuclear quantum effects in the dynamics of large molecular,
biological, and condensed phase processes is the vast computational resources required to store and
manipulate the quantum mechanical wavefunction. Finite-temperature effects pose an additional challenge
to wavefunction-based methods when there are several low-frequency vibrational modes with many
thermally populated states. Although a fully classical treatment of the nuclei cannot describe quantum effects
such as hydrogen tunneling, in some cases treating (in addition to the coupled BO states) only one or a few
nuclei (usually protons) by quantum mechanics is sufficient. The proper feedback among electronic states,
quantum nuclei, and classical nuclei is important.

Treating the classical nuclei in terms of classical trajectories, which are local, while retaining a quantum
treatment of electronic and/or some nuclear degrees of freedom, is possible through Ehrenfest’s
approximation, where the force on the classical particles is averaged with respect to the quantum
wavefunction. Such a treatment can lead to unphysical results (for example, incorrect branching ratios). A
significant improvement over Ehrenfest’s approximation is achieved through SH [129, 130], which allows
trajectories to hop between quantum states in a probabilistic fashion. Feynman’s PI formulation of quantum
mechanics eliminates the need for delocalized wavefunctions, eliminating storage and allowing a consistent
combination of quantum and classical treatments, but numerical integration of the resulting
high-dimensional oscillatory function generally encounters serious convergence issues. When (as with
normal mode vibrations, or through the validity of linear response) the nuclei can be treated as a harmonic
bath coupled to the quantum system, the PI formulation offers a unique advantage, allowing a fully quantum
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Figure 7. Left panel: schematic illustration of the PI with an influence functional, the iterative QuAPI algorithm and the SMatPI
decomposition. Reprinted (adapted) with permission from [123]. Copyright (2020) American Chemical Society. The image in the
left bottom corner shows a snapshot of a QCPI simulation of electron transfer in the ferrocene-ferrocenium pair in liquid hexane,
showing the solvent delocalization resulting from the superposition of three quantum–classical paths. Reprinted (adapted) with
permission from [124]. Copyright (2015) American Chemical Society. The yellow–brown contours in the right bottom corner of
this panel are snapshots of the electronic density on the excited states of the 24 bacteriochlorophyll molecules in the B800-B850
LH2 complex of Rhodopseudomonas molischianum (with the two-ring structure shown in blue and green), following excitation of
a pigment on the B800 ring. Adapted from with permission from [125]. CC BY-NC 4.0. Upper right panel: real-time
NEO-TDDFT trajectory of excited state intramolecular proton transfer following photoexcitation to the S1 electronic state. The
TD electron density difference relative to the ground state is shown as green (positive) and blue (negative) isosurfaces, and the TD
proton density is shown as a light gray isosurface. Reprinted with permission from [126]. Copyright (2020) American Chemical
Society. Bottom right panel: snapshots of ab initio path-integral molecular dynamics simulations of cyclohexane on Rh(111),
which captures electron-density rearrangements (blue and red regions). Details in Fidanyan et al [127]. Such simulations can be
used to approximate real-time quantum correlation functions and calculate vibrational spectra, as sketched in the upper-right
corner.

mechanical treatment of all harmonic degrees of freedom, at zero or finite temperature, which can be
evaluated using stable, numerically exact algorithms. The PI formulation in imaginary time offers an exact
description of equilibrium processes with arbitrary potential functions, and efficient Monte Carlo and MD
methods are available for such calculations. This approach cannot describe time evolution but provides the
basis for dynamical approximations.

Advances in science and technology to meet challenges
Fully quantum mechanical wavefunction propagation with many coupled degrees of freedom is often
possible using the MCTDHmethodology [131, 132]. This method converges to fully quantum mechanical
results and has found many molecular applications. However, inclusion of a large number of relevant degrees
of freedom and accounting for finite-temperature effects are generally not practical.

In hybrid approaches, specified nuclei are treated quantum mechanically, and the other nuclei are
propagated on vibrational or vibronic surfaces with a nonadiabatic method such as SH. These approaches
are useful for quantizing protons in simulations of proton transfer and proton-coupled electron
transfer [133]. The NEO approach treats specified nuclei, typically protons, quantum mechanically on the
same level as the electrons with wave function or DFT methods [77, 78]. The nuclear delocalization, ZPE,
and tunneling of the quantum nuclei, as well as the anharmonic effects of the entire system, are inherently
included. The nonadiabatic effects between the electrons and quantum nuclei are included without any BO
separation, and the nonadiabatic effects of the classical nuclei with respect to the quantum subsystem can be
included with Ehrenfest or SH dynamics. This approach enables real-time quantum dynamical simulations
of thermal and photoexcited processes but neglects the quantum effects of the heavy nuclei, other than
nonadiabatic effects. The NEO methods are multicomponent extensions of their conventional ES
counterparts and have been implemented in a wide range of software packages, including but not limited to
Q-Chem [134], Chronus Quantum [135], and FHI-aims [136, 137]. These software packages enable both
expert and non-expert users to perform NEO calculations with ease at relatively low computational expense.
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For system-bath Hamiltonians, the QuAPI [138] removes the instabilities arising from the oscillatory
quantum phase, allowing numerically exact propagation. Various developments, including the use of
time-evolving matrix product operators [139] to compress the QuAPI tensors, can be used to increase the
efficiency in various regimes. An analytically derived small matrix decomposition [140] (SMatPI) completely
eliminates tensor storage, allowing calculations with many quantum states. The MPI [141] extends these
methods to large molecular aggregates, where each unit includes electronic states coupled to intramolecular
vibrations. These real-time PI methods, which account for all interference and decoherence effects without
approximation, have been used in many simulations of proton, electron and energy transfer and are
implemented in the software package PATHSUM [142]. The restriction to harmonic bath degrees of freedom is
removed in the QCPI [143], which captures the motion of the nuclei through classical trajectories that
interact rigorously and consistently with the quantum subsystem.

The imaginary-time PI formalism for quantum statistical mechanics leads to useful and efficient (but
mostly ad hoc) quantum dynamical approximations that can be applied to general anharmonic potentials,
with a large number of quantum atoms at given thermodynamic conditions, and can be combined with ES
methods [144]. These methods, based on path-integral molecular dynamics (PIMD), combine quantum
statistics with different types of classical time propagation, and can thus capture ZPE and incoherent
tunneling effects, but completely miss quantum coherence. The recent development of Matsubara dynamics
has exposed the relationship of centroid MD [145] and (thermostatted [146]) ring polymer MD [147] to
quantum dynamics [148], leading to new developments that improve these schemes. While it is
straightforward to use these methods within the BO approximation and at equilibrium, there are many open
challenges related to their extension to nonadiabatic and nonequilibrium situations [149, 150]. Performing
PIMD-based simulations efficiently in HPC architectures requires the parallel evaluation of several replicas
of the system, clever algorithms for the reduction of the number of these replicas and integrators that allow
using large timesteps, among other acceleration techniques. A vast variety of such techniques are available in
the open-source i-Pi code [151], which is interfaced to around 10 ES codes and several other
machine-learned-potential packages, allowing these methods to be broadly applied to many relevant
problems in physical chemistry.

Concluding remarks
This brief description of the challenges and advances for simulating quantum effects in nuclear dynamics
cannot cover the rich history and diversity of this field, but instead focuses on a few successful approaches.
Each approach has advantages and limitations, and methodological developments are underway to address
the specific challenges. Importantly, these methods are currently implemented in code packages broadly
adopted in the community, making them available to users addressing a wide range of problems where
nuclear quantum dynamics plays a key role. Nevertheless, the goal of treating all nuclei and all electrons on
equal footing beyond the BO approximation for realistic systems in a computationally practical way
continues to be one of the most important frontiers in theoretical chemistry. Despite their limitations,
however, the existing approaches enable simulations that provide useful insights into the physical
mechanisms behind chemical and biological processes.
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Status
Real-time ES methods provide an unparalleled view of electron dynamics and ultrafast spectroscopy on the
atto- and femto-second timescales, with vast potential to yield new insights into the complex electronic
behavior of molecules and materials. In parallel, owing to foundational developments in experimental
ultrafast science over the last three decades, culminating in the Nobel Prize in Physics in 2023 [152], the
study of fundamental processes involving the dynamics of electrons on their natural timescales is now
possible at x-ray free electron laser facilities [153] and access to data from these novel experiments offers new
opportunities to validate and improve theoretical descriptions.

In a nutshell, real-time propagation in ES theory explicitly considers the time-dependence of a quantum
electronic system by evolving the TD Schrödinger or Dirac equation in the time domain,

i
∂Ψ(r, t)

∂t
= Ĥ(r, t)Ψ(r, t) . (1)

The Hamiltonian under the influence of an external perturbation results in the time-evolution of the wave
function or the electron density, which forms the basis of all response properties (linear and non-linear) of a
quantum electronic system, which is different from the traditional approach of casting the problem into an
eigenvalue equation, in some form, that describes the system.

Beginning with pioneering developments in the late seventies on the TDHF approximation to TD
correlated wave function methods in the early nineties to RT-TDDFT since the mid-nineties and more recent
scalable implementations of RT-TDDFT for both molecular and condensed phase systems have led to a
broad range of studies including complex relativistic effects. In recent years, there has been renewed interest
in explicit time-propagation of correlated methods such as MCSCF, CI, algebraic diagrammatic
construction, and CC theories. Alternatively, correlated electron dynamics can be modeled through the time
evolution of the one-electron (RDM) or the two-electron RDM, as opposed to the wave function, but such
methods are plagued by N-representability problems resulting from the truncation of the BBGKY hierarchy
of equations of motion for the RDMs.

Applications of real-time ES methods span the field of spectroscopy, including valence-electron UV/Vis
and photoelectron, circular dichroism, core–electron XANES, nonlinear optical response, photoionization,
multidimensional nonlinear spectroscopies, and magnetization dynamics. These methods have also found
utility in studies of molecular electronics, optimal control, coherence, charge-transfer dynamics, and
non-equilibrium dynamics such as electronic stopping and electron transport in condensed phase systems
[154, 155]. To probe chemical processes in complex environments, real-time electronic dynamics have been
coupled to polarizable and non-polarizable molecular mechanical layers, implicit solvation models, quantum
subsystems, and thermal baths within open quantum system formulations. RT-TDDFT has been also
coupled with classical Maxwell equation for propagating electromagnetic fields within extended systems to
simulate nonlinear light-matter interactions and particularly important for simulating intense ultrashort
laser pulses [156]. For an exhaustive overview of real-time ES approaches, we refer the interested reader to
the recent review [157].

Recent efforts in real-time ES theory have also focused on extensions to multi-component systems, where
additional components include spin degrees of freedom, a quantized electromagnetic field, and/or the
nuclear wave function. For spin-driven electronic dynamics, such as the intersystem crossing events,
spin-couplings, and relativistic effects, variational treatments within the two- or four-component Dirac
framework are needed [158]. The coupling of a molecule to a quantized electromagnetic field, real-time
QED [159], has led to studies of photon absorption and emission and simulations of cavity QED
experiments. For many light-driven dynamic processes in chemical systems, quantum mechanical
representations of proton dynamics has been demonstrated with the NEO approach in the context of
multi-component RT-TDDFT for molecular systems [126].
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Current and future challenges
Despite advances in real-time methodologies and the broad range of natural applications, a key challenge lies
in the time propagation of the wave function or the density matrix. Studies on linear and nonlinear
spectroscopies and dynamical electronic processes on timescales ranging from atto to femto to even
picoseconds requires a large number of steps as part of the time integration. This is because the typical
electronic time step is several orders of magnitude smaller than that required for integrating ion/nuclear
degrees of freedom. Mathematically, the essence of the problem lies in efficiently and accurately solving
nonlinear differential equations. In addition, the correspondence between quantum Hamiltonians and
unitary time propagators also imposes strict requirements on time-propagation algorithms. Another key
component in real-time approaches is the construction of the Hamiltonian. While reduced scaling
approaches [160], fragment-, and embedding-based methods [161], together with hardware advancements
like GPU, have led to faster Hamiltonian construction approaches, all real-time propagation schemes still
necessarily rely on sequential time-propagation. Time-acceleration approaches are still a major obstacle that
greatly limits the applications of quantum electronic dynamics in practice across all real-time methodologies
to date.

For investigations of condensed phase systems, RT-TDDFT largely remains the method of choice. An
accurate description of excitonic effects, especially those of charge-transfer type, is a particularly important
scientific challenge. While hybrid XC approximations are promising and have been extensively used in
molecular applications, the computational cost associated with evaluation of the exact exchange presents a
computational bottleneck in extended systems due to the itinerant nature of orbitals. Gauge transformations
techniques are increasingly pursued to reduce the large computational cost [162, 163]. Alternatively,
modeling long-range screening of the electron–hole interaction using the XC vector potential has also
become a promising avenue [164]. Extending the RT-NEO-TDDFT approach [126] for condensed phase
systems using the periodic boundary conditions and the Brillouin zone integration enables simulation of the
coupled quantum dynamics of protons and electrons in complex heterogeneous systems, opening up exciting
frontiers for exploration [165].

Although QED-enabled real-time methods have emerged as a useful tool to study novel photon-driven
chemical processes [166, 167], a complete theory requires a full first-principles QED ES theory treatment
with photon-mediated coupling between electrons and positrons and treatment of retardation with the
frequency-dependent Breit Hamiltonian.

Advances in science and technology to meet challenges
GPUs are increasingly incorporated into the next generation of high performance computers in recent years.
Real-time ES codes would do well to take advantage of this recent advance. The INQ code [168], which is a
new RT-TDDFT implementation based on the plane-wave pseudopotential formalism, is an example of such
an effort. MD simulations have tremendously benefited from recent advances in ML techniques. ML
approaches like artificial neural networks have been demonstrated for efficiently estimating the quantum
dynamics propagator for some simple model systems [169], and such new advances might translate also to
first-principles ES theories in the future. Recent quantum dynamics developments with tensor-train/matrix
product state representations have also been encouraging [170]. Looking further ahead, the emerging area of
quantum computing may also play an important for advancing real-time propagation approaches. For
simple model systems like the spin-boson Hamiltonian, quantum algorithms for performing quantum
dynamics simulation have been demonstrated [171].

Concluding remarks
Over the last few decades, methodological developments and computing hardware advancements have
greatly contributed to the increasing popularity of real-time propagation approaches in ES theory. These
recent developments have made it possible for researchers to investigate non-equilibrium electron dynamics
beyond the usual linear response theory formalism. In addition to continued efforts in achieving greater
accuracy for increasingly complex systems, our view is that describing the quantum-mechanical coupling of
electron dynamics with other degrees of freedom like quantum nuclei and photons presents an important
challenge and also an opportunity for the community.
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Status
ES calculations are an essential complement to experimental spectroscopy in its many forms because they
can provide detailed understanding of the links between observed spectroscopic parameters/features and
underlying chemical structure, bonding, environmental perturbations, and dynamics. Ab initio ES theory
can provide such links for a broad array of spectroscopic probes for both molecules and materials. Beyond
the energy spectrum itself, most spectroscopic properties can be defined via perturbation theory as
derivatives of a stationary energy or the time-averaged quasi-energy [172, 173]—a molecular or material
response, in other words, which is accessible via derivative techniques or via suitable Fourier transforms in
TD simulations [157].

In the molecular domain, which includes gas-phase as well as solvated or encapsulated species, properties
that feature prominently in current research include spectra across a wide range of energies (e.g., in the X-ray,
ultraviolet-visible, or infrared regimes), electric and magnetic multipole moments and transition moments
(electric and magnetic field derivatives), field gradients, NMR magnetic shielding and spin–spin coupling
(derivatives with respect to external and nuclear spin magnetic field amplitudes), vibrational frequencies and
corresponding IR and Raman intensities (involving electric field and nuclear position derivatives), or
chiroptical properties (mixed electric/magnetic/nuclear position derivatives). In higher orders, a ‘zoo of
properties’ [174] is accessible, including nonlinear susceptibilities, multi-photon transition moments,
magnetic field-induced optical activity, etc. Calculations tend to be based on DFT, TD-DFT, or some flavor of
wavefunction theory (WFT), although semi-empirical methods remain in use in some sub-fields.

For condensed-matter systems, there is a large variety of spectroscopic techniques, including ARPES,
optical absorption, second-harmonic generation, XANES, photoluminescence, RIXS, resonant Raman
scattering, electron energy loss spectroscopy (EELS), and more. They probe the various interactions taking
place in a material on the same energy scale, i.e. electron–electron interaction, electron–hole correlation,
electron–phonon coupling [40] as well as magnetic effects and SOC. The light–matter interaction is very
often treated in the LR regime, where the methods of choice [35] are Green-function based approaches as
realized in MBPT or TD-DFT. The latter also allows for going beyond LR, propagating the excited system in
time. What method is most appropriate also depends on the nature of the material.

Current and future challenges
The challenges faced by the field of computational spectroscopy include both formulating and predicting
spectroscopic responses—getting the right answer for the right reason. However, in practice, researchers
must often settle for ‘decent results for good reasons’, although even this can be elusive for more challenging
systems or properties that are difficult to calculate. In the molecular domain, predictions of spectroscopic
properties are often sensitive to (i) the treatment of electron correlation, (ii) basis set quality, (iii)
environmental interactions, and (iv) dynamic effects. The polynomial computational scaling of the most
accurate and robust theoretical methods, such as CC theory [175], present a substantial obstacle for
convergent simulations, and, as a result, conventional implementations of such methods are currently
limited to fewer than 50 atoms (and even smaller systems for response properties). DFT-based methods are
able to treat larger systems, but the development of suitable functional approximations remains a formidable
challenge. There are additional complexities in TD-DFT [176], such as memory effects in the XC potential
and the associated response kernels. At present, the vast majority calculations rely on the adiabatic
approximation. For systems with heavy elements, or in very high-accuracy calculations, the level at which
Einstein relativity is treated is another dimension in which calculations must converge [177]. For open-shell
species, electron-spin angular momentum presents special challenges for magnetic-field responses, a
problem that is further exacerbated by spin contamination/ill-defined spin-states for DFT-based methods.
Multi-configurational states in general pose challenges for the calculation of (response) properties, be it in
DFT, WFT, or some combination of the two approaches, because of the need to both treat static and dynamic
correlation.
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Related problems exist for solid-state systems. While DFT calculations can nowadays be carried out for
1000 atoms and more, depending on the employed basis set and functional, for excited-state properties, it is
typically an order of magnitude less. Just to name one example, the GW method of MBPT suffers, besides the
formally quartic scaling with system size, from slow convergence with the number of empty states and the
starting-point dependence, i.e. the underlying DFT functional, if carried out in a perturbative (‘single-shot’)
manner. On the methodology side, there are several ways of tackling self-consistency; other issues may come
from the various implementations and algorithms used in different codes. All this hampers fair comparison
and the assessment of what the result of a given method for a certain material should be. Similar arguments
hold for the Bethe–Salpeter equation or TDDFT. Most forward-looking approaches concern the description
of TD phenomena to tackle, for instance, the evolution of charge excitations, the build-up and decay of
electron–hole pairs—also considering exciton–phonon coupling. These are particularly challenging as
methodological and algorithmic complexity comes also with tremendous computational costs.

Advances in science and technology to meet challenges
While advances in computing hardware have significantly extended the reach of computational methods to
larger and more complex systems, only substantial improvements in the formulation of accurate models and
their algorithmic implementations will ultimately overcome the polynomial scaling wall of ES theory. To that
end, for WFT approaches such as CC theory, continued progress in localization, fragmentation, and other
reduced-scaling techniques will prove to be vital for modeling the spectroscopic responses of molecular
systems containing hundreds to thousands of atoms, including explicit simulations of dynamic solvent
effects. There is also a pressing need for practical approaches to deal with the combination of static and
dynamic correlation in the wavefunctions as well as in their response. On the DFT/TD-DFT front, practical
approaches with widespread adoption that go beyond the adiabatic approximation have yet to emerge, and
the treatment of multi-configurational states and their response remains a challenge.

In order for theoretical approaches to meet the rapidly increasing resolution and capabilities on the
experimental side and to going substantially beyond currently accessible system sizes, progress is required on
all levels: (i) novel methodology, (ii) adequate approximations, (iii) highly-performant algorithms, (iv)
exascale compute power, as well as (v) collaborative efforts by the community. Point (i) concerns processes
involving—speaking in the language of Green’s functions, going beyond 2- and 4-point functions that are
currently state of the art for condensed matter—and ways for efficiently describing non-equilibrium
dynamics. Here, point (ii) comes into play where clever strategies need to be found that may be very much
tailored to a specific excitation processes of interest. On the computational side (iii), only proper algorithms
that scale on hundred thousands of processors will allow the community to make use of exascale computers
(iv), the first of which have been launched. Regarding (v), first steps towards reaching the ambitious goals,
are for instance the EU centers of excellence on exascale computing (see, e.g. NOMAD, MAX, and TREX)
[178] and related initiatives in the US, such as the Molecular Sciences Software Institute. The NOMAD CoE
is particularly dedicated to advanced methods, including CC theory and excited states.

Concluding remarks
As experimental techniques advance at a rapid pace, theory and computation must continue to evolve.
Different spectroscopic properties of a system probe the ES in different ways, which means that they likely
expose the approximations in a calculation to different degrees. There is no single computational approach
available, emerging, or even conceivable at present, that would be able to treat a large variety of spectroscopic
parameters at the same level of accuracy, applicable to fairly large molecular systems or complex materials,
and be sufficiently accurate for most intended applications. In other words, there is exciting and important
research to be done.
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12. Tools for exploring potential energy surfaces
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Status
Structures and reactivities of molecules and materials are governed by PESs [179, 180]. Tools for exploring
PESs thus are vital for analysing and predicting the behaviour of these systems. The PES is a function of
electronic energy with structural parameters as variables. Figure 8(a) shows a schematic of a model PES. On
a PES, there are local minima corresponding to stable structures. They are connected by reaction paths
passing over first-order saddles representing TSs.

In many theoretical studies, identifying stable structures is the first step. This can be done routinely for a
wide range of system sizes thanks to efficient and robust geometry optimization techniques such as
quasi-Newton algorithms [179, 180]. In complex systems, an experimentally observed compound can be an
ensemble of many conformers. Structural sampling methods such as MD simulation, genetic algorithms and
Monte Carlo Basin Hopping are useful for finding relevant conformers and isomers systematically [179].

Exploring PES to characterise molecular reactivity involves finding TSs and reaction paths connecting
stable structures. This provides an energy profile as illustrated in figure 8(b). TSs are often difficult to
optimize and require a good initial guess. NEB and related string methods, coordinate driving and the AFIR
method are robust techniques for getting close to TSs [181, 182]. The mechanisms of reactions of many
types, such as organic reactions, organometallic catalysis, organocatalysis and heterogeneous catalysis, have
been elucidated based on energy profiles. MD is also useful in simulating ultrafast processes such as those
with low barriers or triggered by photoabsorption, but running MD simulations longer than a microsecond
is often impractical.

As systems increase in size, numerous conformations of the TSs need to be considered. Structural
sampling of TSs is therefore necessary for probing stereoselectivity in organo and organometallic catalysis.
Construction of global reaction path networks as in figure 8(c) provides ab initio predictions of chemical
reactivity including kinetics of competing paths and formation of by-products [179, 181–183]. Therefore,
further developments in this area will contribute to improving the accuracy, efficiency, and robustness of
chemical structure and reactivity predictions.

Current and future challenges
While current methods are practical for individual reaction steps, the ultimate goal is to predict the reactivity
for an entire system such as the Strecker synthesis illustrated in figure 9. Typical reaction networks involve
hundreds of intermediate and thousands of individual reaction steps [181–183]. There are three major
difficulties in exploring reaction networks: the combinatorial explosion of the structural space, the cost of ES
calculations in large systems, and the reliability of the methods for characterizing individual reaction steps.

The example in figure 9 contains many paths leading to energetically unstable compounds. To establish
the physically relevant paths connecting the reactants to the major product, one must show that all other
paths are less reactive and determine all potential by-products. In principle, it is necessary to systematically
explore all intermediates and reactions connecting them. This leads to a combinatorial explosion as the size
of the reactive system increases.

To provide chemically useful predictions of reaction networks, suitably accurate ES calculations are
required. Semi-empirical methods are usually not sufficient for calculating barrier heights. DFT has a much
wider range of applicability. Highly correlated methods like CC and CASSCF methods may be required for
more accurate calculations of rates. While individual calculations may be affordable, computing thousands
of elementary reactions that comprise a reaction network can be very costly. Furthermore, the ES
calculations must account for the environment—solvent for reactions in solution, protein embedding for
enzymatic reactions and surfaces for heterogeneous catalysis.

Clearly, with thousands of individual reactions to explore for a reaction network, automated workflows
are needed. In manual exploration of an individual reaction step, if one calculation fails, there are numerous
methods to try until one achieves success. By contrast, in an automated workflow, the calculations for
exploring a PES to characterize individual reaction step (ES computations, optimization techniques, etc)
need to be nearly 100% successful. In addition, GUIs are needed to make the exploration of reaction networks
accessible to the general chemistry community and not just to the computational chemistry specialist.
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Figure 8. (a) A schematic of a two-dimensional PES, (b) an energy profile representation of (a), and (c) a reaction path network
representation of (a). MINs and TSs correspond to local minima and transition states, respectively.

Figure 9. An example illustrating how complex a network describing a chemical reaction can be, even for a simple organic
reaction, in this case the condensation step of the Strecker amino acid synthesis indicated in the chemical equation. Nodes and
edges represent different chemical species and elementary steps, respectively. The network comprehensively includes not only the
most feasible route to the major product, α-aminonitrile, highlighted by the white arrows, but also minor paths that cross the
boundary between kinetically accessible and inaccessible regions from reactant’s node, thus proving that the reaction yields
α-aminonitrile. Reproduced from [184]. CC BY 4.0.

Advances in science and technology to meet challenges
Computer codes to meet some of the challenges are already being developed [181–183] but more advances in
software are needed. Automated workflows are essential since it is not practical to explore the thousands of
reaction steps in a network by manual methods. One example is the AFIR method that systematically
explores paths and minima by inducing various chemical transformations by applying an artificial force to
different fragment pairs of various local minima [181]. Alternatively, double ended and growing string
methods can be used to obtain reaction paths followed by TS optimization [182]. Another approach is to use
MD at a high temperature to explore the PES [185], but this is typically limited to modest levels of ES theory.

The biggest challenge is the combinatorial explosion associated with an exhaustive search of a reaction
network. Limiting the search of reaction networks to desired pathways can be done based on kinetic criteria,
thermodynamic criteria, structural criteria, and/or computational cost-related criteria [181, 183]. When the
truncation is done based on a kinetics simulation under reaction time and temperature, the exploration
could be regarded as an on-the-fly kinetics simulation. Heuristic rules (like ‘arrow pushing’) can be used to
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limit the network to more feasible reactions [186]. With a large enough database, artificial intelligence and
ML can be trained to identify the most probable reaction paths [187].

Reaction path databases will also help reduce the cost of exploring PESs. ML can improve the accuracy of
ES calculations thereby producing higher quality PESs at lower cost [188]. Databases and ML can provide
better starting estimates of TSs and reaction paths [187]. Gaussian process regression can improve the
efficiency of optimizing intermediates, TSs and reaction paths [189]. Since the many individual reaction
steps in a large network are independent, they can be explored in parallel. Libraries of algorithms for the
many different tasks involved in exploring PESs will speed the development of more robust, reliable and
efficient codes for calculating reaction path networks.

Concluding remarks
Geometry optimization has grown into a tool that anyone in the chemistry community can use practically to
investigate a wide range of chemical systems. In recent years, various techniques have been developed to
explore and analyse global reaction pathway networks, enabling the prediction of the whole picture of a
chemical reaction, taking into account not only the energy profile for the major product but also the paths
for side reactions. Further development, however, is needed to apply these techniques to complex systems.
Taming combinatorial explosions in the chemical space to be explored is one of the major difficulties. For
accurate and effective exploration of reaction networks, it is also essential to employ state-of-the-art ES
calculations, environment modelling techniques, and informatics methods involving databases and ML.
Solving these problems and enabling the prediction of chemical reaction networks routinely and reliably is
one of the grand challenges of computational chemistry.
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Status
The development and use of formal workflows in computational materials science, and in particular DFT
calculations, is a relatively recent trend. Workflow frameworks, initially rudimentary, became necessary
about 15 years ago to perform high-throughput calculations. Their further development resulted in the
ecosystem of frameworks nowadays available to the community and their applications towards creating large
online databases of materials properties. Today, workflows enable researchers to perform large numbers of
calculations (with a single workflow potentially defining hundreds of individual simulations), standardize
calculation procedures, reduce errors, make it simpler to perform multiple simulations, increase
reproducibility, and make calculation techniques available to non-experts.

At its core, a workflow is a specification of multiple computational processing steps as a dependency
graph, see figure 10. A workflow framework helps coordinate and execute simulation codes over computing
resources, potentially interacting with a queue manager to obtain and distribute those computing resources.
Additionally, workflow frameworks for computational material science must define and manage complex
workflows, execute jobs on various HPC platforms, support long-running jobs and facilitate rerunning and
fixing calculation errors, record provenance, and assist in data management. The currently dominant
programming language for such frameworks is Python, which facilitates integration with common materials
analysis libraries such as ASE [190] and pymatgen [191]. Available workflow frameworks include AFLOW
[192], used to create the AFLOWlib database [193], AiiDA [194], used to create the databases on Materials
Cloud [195], ASR+ASE+myqueue [196, 197], used to create the C2DB database [198], atomate+FireWorks
[199, 200], used to create the Materials Project database [201], httk [202], used to create the Open Materials
Database [203], MISPR [204], pyiron [205] and qmpy [206], used to develop the OQMD database [207],
among others. Commercial offerings such as Materials Studio [208], MedeA [209], and SimStack [210] are
also available; these generally emphasize and facilitate GUI-based interaction. With the many options
available, workflow frameworks are now standard tools for tens of thousands of materials researchers
worldwide. More details on some of these frameworks and how they are used, particularly in the context of
the Battery2030+ initiative, can be found in [211].

Current and future challenges and advances to meet them
FAIR and reproducible data
In the past few years, the field has seen a strong increase of awareness for the need of ensuring FAIR
(Findable, Accessible, Interoperable and Reusable) [212] access to research data. In addition, a fifth principle
should also be considered: Reproducibility, a cornerstone of the scientific method. Due to the extremely large
number of simulations (and the huge amount of resulting data) that can be managed automatically by
current complex computational workflows, the need for generating FAIR and reproducible data is
particularly relevant, and workflow frameworks will need to embed FAIR concepts natively into their design
to make the process simple and straightforward for researchers. This can be achieved by ensuring a detailed
tracking of the history of data and simulations, to guarantee reproducibility not only of individual
simulations but of the full computational workflow; and by providing native functionalities to export data
adopting ontologies and interoperable data and metadata formats recognised by the scientific domain (e.g.
the OPTIMADE API for sharing molecules and crystal structures [213]).

Beyond FAIR data
FAIR concepts should be pushed beyond just data, towards providing also FAIR access to simulations,
workflows, and analysis tools. It will be crucial to democratize simulations, making current and future
advanced workflows accessible also to non-experts: e.g. experimentalists who might want to use them to
interpret experimental results or guide the design of new experiments. This goal can be achieved by a
concerted combination of the following ingredients: (1) automatic selection of numerical (non-physical)
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Figure 10. Typical elements of a materials workflow. Processing steps are represented by ellipses while input and output data is
represented by boxes. Some inputs are chosen directly by the user whereas others may be taken from the output of previous
processing steps. Longer multi-step computations like relaxations may be automatically continued or restarted if a run fails due to
walltime limit. Another common feature is the ability to recover from failures by switching to more stable algorithms as a fallback.
A workflow framework takes care of storing and organizing input and output data in files or databases.

parameters of simulation codes; (2) robust workflows able to recover from failures of the simulation codes
(such as non-convergence) or, even better, by implementing more robust algorithms directly into the codes
(e.g. switching to slower but more robust variational minimization methods, rather than iterative ones, when
the latter do not converge); (3) making workflows interoperable and code-agnostic by using a common
language for workflow inputs and outputs, only specific to a given simulation task [196, 199, 214, 215], thus
enabling transparent swapping of simulation codes; (4) GUIs to assist non-experts in preparing the inputs,
submitting and monitoring the workflows, and analyzing the results.

A further outstanding challenge is making workflows independent of the managing workflow framework
(and not only of the DFT code). This goal is extremely relevant for workflow implementers, who can thus
develop high-level workflows for advanced materials properties without having to limit themselves to one
specific workflow framework. This remains a challenging task because of the different design approaches and
concepts of each workflow framework, even when these are implemented in the same programming language
(e.g. Python). These challenges are summarized in figure 11.

Software ecosystem and platforms
Additional challenges include developing an ecosystem where both commercial and open-source packages
can coexist and interoperate, leveraging the strengths of each of them (e.g. selecting them based on available
simulation features, their FAIR-sharing capabilities, or their GUI and accessibility). On the technical side, it
will be critical for workflow frameworks to become fully independent of the computing infrastructure, e.g. to
support running simulations directly on the cloud, rapidly gaining attractiveness as an effective alternative to
standard HPC supercomputers. A further technical challenge is to ensure that the HPC-center access models
(currently designed for humans directly interacting with systems via input and output files) can support
seamless integration with database-driven workflows. These are indeed often difficult to integrate due to
security issues (e.g. multi-factor authentication in the case of workflow frameworks pushing jobs) or network
and firewall issues (e.g. HPC compute nodes restricted from accessing or sending data to a database).

Sustainable software: funding and careers
The challenges discussed here relate more to software development than physics. Data formats, compatibility,
and portability are central, as is the long-term maintenance of the software necessary to solve the tasks. By
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Figure 11. Core challenges and desired functionalities in realizing flexible workflows for materials science. Ideally, creation of the
the central workflow object could be performed using either a programmatic application programming interface (API) or a
graphical user interface. Such workflow objects could be serialized, shared, and examined and modified by others. Furthermore,
workflow specifications should ideally be inter-convertible so that they are independent of the particular simulation software
being used to perform the core calculations. Finally, execution of the workflows should be flexible to computing hardware,
including cloud computing options.

contrast, funding opportunities are overwhelmingly centered on science and publication metrics rather than
the development and maintenance of tools and infrastructure. Since long-term options to fund qualified
software developers are scarce, research groups have to deal with large amounts of code and data developed
during short-term projects, and are forced to maintain these by borrowing time from researchers who are
neither funded nor particularly specialized in that line of work. This model is not particularly sustainable; to
address it, there must exist realistic career paths to attract qualified software engineers in the long term.
Universities and funding agencies should reassess funding priorities and increase focus on sustainable
software infrastructure.

Concluding remarks
The development of materials-science workflows is still relatively young, but has already enabled research
and discovery in the past 15 years in ways that we would not have imagined. Workflows have helped
formalize code that researchers have written over the past decades, making research more reproducible and
allowing scientists to focus less on technicalities and more on scientific discovery. In the same way as the
development of DFT codes has moved from self-written, in-house codes towards today’s large-scale,
accessible and efficiently hardware-accelerated codes, we expect that also the existing challenges for
managing computational workflows will be addressed effectively in the near future.
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14. Current and future computer architectures

Jeff R Hammond1, William Dawson2 and Takahito Nakajima2
1 NVIDIA Helsinki Oy, Helsinki, Finland
2 RIKEN Center for Computational Science, Kobe, Japan

Status
Computational chemistry applications have been heavy users of the most advanced computer architectures
for decades now, with algorithms and software adapting to technological shifts at every level of HPC systems.
For example, when in early machines compute capability outpaced storage it became expedient to develop
‘direct’ algorithms that reduced storage requirements by recomputing atomic integrals repeatedly [216].
When large-scale computing resources transitioned from shared-memory to interconnected
distributed-memory architectures, codes like NWChem [217] were designed from scratch to take advantage
of these systems and, in due course, new software techniques for managing their complexity and diversity
were developed.

As distributed computing became the norm and essentially all software began to assume MPI and
POSIX-compatible operating systems as a common foundation, stagnation in the growth of processor
frequencies led to significant changes in processor architecture (figure 12). The number of independent
processing units (cores) grew rapidly, and were often combined with fine-grained parallelism in the form of
vector, or SIMD, instructions. Massively parallel processors, especially GPUs, carried this trend even further.
Around the year 2000, a processor was a single core running at∼1GHz, and could do 1–2 arithmetic
operations per cycle. In the year 2022, server processors with as many as 128 cores running at∼3GHz, each
capable of 64 arithmetic operations per cycle, are common. The most powerful HPC systems have multiple
GPUs per node, each capable of more than 1014 arithmetic operations per second. As with prior paradigm
shifts, novel algorithms and software were developed to address new technologies, such as GPUs [219].

Current and future challenges
While increasingly powerful computer hardware can unlock larger system sizes or higher accuracy methods,
more efficient algorithms can deliver increased scientific capability using the same or fewer resources. For
example, the development of reduced-scaling methods for DFT has made possible orders of magnitude
larger simulations than is possible with conventional O(N3) algorithms [220]. Unfortunately, algorithmic
developments can not easily displace highly tuned implementations of baseline algorithms: systems are
co-designed for performance on standard implementations, reduction in scaling leads to a lower FLOPs/byte
ratio, and the software skills associated with the new algorithms are often quite different. This challenge is
not unique to chemistry, and the pursuit of multiple Ps—performance, portability, productivity—is a major
initiative in HPC [221].

There is no simple solution to this challenge. Some developers have chosen to adopt programming
languages and environments more friendly to novice programmers (e.g. PySCF, Fermi.jl), which is a major
shift from the long tradition of building large codes using Fortran without modern features for abstraction.
While code that is easier to write may run slower than more laborious implementations, it is always faster
than that which is never written at all. One generally applicable method for addressing the aforementioned
tension in software development is to shift away from monolithic applications—each with its own atomic
integral package, SCF solver, etc—towards designs that can bring together the best components, which are
themselves written by performance and numerical experts. This approach has been common in engineering
disciplines for years, but is slowly gaining traction in chemistry. Additionally, recent developments in using
Artificial Intelligence for code generation may provide wholly new kinds of solutions.

Advances in science and technology to meet challenges
The massive increase in node counts and the inadequacy of using only coarse-grained parallelism (e.g. MPI)
for supporting these architectures requires a dramatic shift in how chemists develop software. Support for
threading and vectorization requires redesigning and rewriting critical portions of applications such as
atomic integrals, Exc evaluations, and tensor computations. The composition of high-performance libraries
requires chemists to think about memory management and synchronization, or to depend on a qualified
programming framework. At the same time, most reduced-scaling algorithms require a shift away from large
array-based data structures to sparse containers, which are both more complicated to reason about and lack a
simple parallelization strategy.
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Figure 12. Computer processor capability trends over the past 50 years. Reproduced from [218]. CC BY 4.0. Since 2005,
frequencies are flat and growth in sequential performance has slowed dramatically. Processor parallelism has increased to utilize
still-growing transistor counts.

Figure 13. Calculation time required for a converged Hartree–Fock calculation of the 1CRN protein in a NaCl solution using 1024
nodes of Fugaku. With the largest basis set there are 8539 atoms and 69 413 basis functions. Strong scaling is measured for a single
Fock matrix build at the HIGH level of accuracy using the converged density.

Because these challenges are not unique to chemistry, there is substantial progress in support for
parallelism in the general purpose programming environments. For example, since C++17, the ensemble of
standard template library algorithms support parallelism where possible, and the ubiquitous Python NumPy
framework now supports parallelism up to and including multi-node, multi-GPU systems [222]. A key
difference between C++ standard parallelism and previous approaches is the availability of multiple
product-grade implementations, which provide the greatest chance of long-term support over the multiple
decades that chemistry applications are expected to live.

In figure 13 we present an example of multiple levels of parallelism and algorithm optimization
combined in the context of state-of-the-art hardware: RIKEN’s Fugaku Supercomputer, which was the fastest
machine in the world as of 2021. A new version of the NTChem code that uses reduced-scaling algorithms
based on sparse data structures with adaptive precision [223] and an optimized atomic integral library [224]
has been developed which can run on thousands of nodes. These calculations were driven from a Jupyter
virtual notebook using the PyBigDFT library [225]; the ease of programming in Python enabled the creation
of a workflow incorporating automatic generation of a fragment guess and composition of multiple levels of
accuracy.

Concluding remarks
Rapid changes in computer architecture and major shifts in mainstream programming methodologies
present significant challenges to the production computational chemistry codes in use today. Any new code
developed must be capable of parallel execution across a range of processors—either directly or via
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libraries—to be considered high performance. At the same time, scientific creativity in algorithms and
simulations should not be limited by tedious programming models. The tension between performance and
productivity will drive rapid changes in the computational chemistry software ecosystem, and require
significant investment in new ideas by developers.
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15. Electronic structure software engineering
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Status
ES theory research groups have historically coalesced around one of the few tens of software suites that
collected the large body of support code needed by developers to implement new methods and by users to
serve as general-purpose research tools. The difficulties of distributing even one software project with HPC
requirements, the broad competencies of developers, and the reassurance of correctness from method
implementations in multiple suites led to high-performing code and science but served to reinforce the
monolithic ES suite approach. Some background in hardware, software, and paradigms in QC is reviewed at
[226], and the state of scientific software in general is discussed at [227].

However, libraries as specialty tasked and even specially named collections of code have long been part of
ES suites. Accompanying general growth over the past decade in open-source software and tooling (e.g.
GITHUB and Cloud services), independent repository ES libraries (see citations in [228, 229]) have been newly
written (e.g. CHEMPS2, LIBEFP, ELSI, and WANNIER90), extracted (e.g. LIBXC and PSOLVER), and congregated
around (e.g. LIBXC and LIBINT). Among broadest use are integrals libraries (half-a-dozen major QC suite
users), DFT libraries (>4 dozen), and, as resources for humans, the basis set library, BSE [230], and the
norm-conserving pseudopotentials PSEUDODOJO library [231]. A compilation and discussion of open-source
software in QC is at [228] and a survey of software libraries and their usage in physics packages can be found
in [229]; some present and future roles for libraries are shown in figure 14. As domain experts become more
specialized, there are advantages in letting them focus on independent library development that may be
shared among ES suites to avoid excessive re-implementation and promote an ecosystem of loosely coupled
but highly cohesive software projects. As niches fill with libraries, it is worth seekingmodularity, the
additional step of standardizing API or data interface to facilitate interchangability. Modularity has been
tackled before through the CCA project [232, 233], which designed conventions still in use today. Successors
assembling modular ecosystems include NWCHEMEX [234], CECAM [229], and MolSSI [215].

Current and future challenges
Software libraries bring many advantages to software developers and users, but their increasing use in ES
codes over the last decade has revealed some issues and challenges. Foremost is designing the library’s
internal structure and API so as to keep it cohesive and broadly useful. For example, APIs require some
degree of standardization and stability, which partially conflicts with the flexibility necessary for open-ended
research. Designating a clear and/or optimal division of tasks between the library and the caller is also often
challenging, especially for parallelism and error handling.

Other challenges in the concrete interface and interfacing infrastructure are worth mentioning:

• As stand-alone packages, libraries require their own build systems, test suites, examples, and documentation,
all of which present a shifting maintenance burden upon their developers.

• Many libraries provide poor or outdated documentation, making it hard to properly use their API or to
build and install them.

• The proliferation of languages used for scientific computing places strain on providing maximal interfacing
routes, not only for C or for FORTRAN and PYTHON, but for RUST, JULIA and other emerging languages.

• Additional tension arises from the desirability for the library itself to be written in low-level languages for
broad call-ability and tominimize required dependencies, while still taking full advantage of flexible existing
code like PYTHON’s SCIPY for optimization.

• Most intimidating, the proliferation of hardware for cutting-edge speed places considerable stress on library
developers whose expertise is likely in an ES domain, not computer science.

Finally, we would like to mention the challenge of packaging and distributing the libraries. For end users, the
monolithic codes offered the advantage of a single software package to install, however difficult, with the
assurance of implicit integration testing and version compatibility among its components. This is no longer
the case when dealing with loose collections of libraries. Additionally, it is becoming more common that
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Figure 14. Existing and potential libraries and modules for electronic structure. See also figure 1 of [229].

users want to deploy ES suites in workflows or install many in the same environment. In this scenario, strict
requirements, like specific dependency versions and build options, present obstacles.

Advances in science and technology to meet challenges
Introduction of various ‘cross’ tools assists in mitigating hardware and language proliferation problems. For
example, build systems like modern-style CMAKE considerably smooth transitions between operating
systems, compiler families, source languages, CPU/GPU targets, compile parameters, and developer versus
user build environments. Hardware abstractions such as Intel ONEAPI and NVIDIA CUDA allow
cross-architecture and cross-accelerator (CPU, GPU, FPGA, etc) access from a single implementation.
Cross-platform and cross-language package managers like CONDA, SPACK or EASYBUILD provide homogeneous
specification for full heterogeneous software stacks, reducing variant hassle for users and packagers.
Additionally, compiler options in Intel and projects like HPY can reduce the number of build variants while
still allowing high performance and lenient pins.

As libraries maintain their development and repository independence, affiliations with generic, scientific,
and CMS umbrella projects can help with software engineering standards and duties. For example, Linux
packagers impose file layout, license, versioning, and library characteristics requirements. Similarly,
CONDA-FORGE provides guidance and demands explicit dependency version management as well as nudges
projects into compatibility with newer compilers and dependency versions and onto new hardware
architectures. CECAM provides integration testing for their affiliated libraries in order to produce release
bundles. PSI4 provides periodic CMAKE and Windows build help as well as integration testing. MolSSI
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provides a cookiecutter template with software engineering tools for PYTHON projects and communication
standardization and testing through the QCARCHIVE stack.

Overall, while affiliations, update bots, and the gradual polishing of tumbling through the open-source
software ecosystem can aid in external management aspects, the lack of hardware expertise continues to be
largely unaddressed. Whether GPU or parallelism challenges can be met by traveling experts or affiliations
that lint projects for best practices remains to be seen.

Concluding remarks
Over the years, there has been an increasing trend towards development of separate modules, libraries, and
tools. These packages often implement seemingly small but important and often delicate pieces required for
computation. In addition, adoption of industry best practices has also improved software stability and ease
of distribution and installation. Use of these libraries allow researchers to focus on new science and
capabilities while offloading other concerns to specialists. Overall, this should be viewed as a positive trend.
However, with the explosion of packages, and an increasing diversity of programming languages and
hardware, challenges emerge with respect to the interfaces between these packages. While these challenges are
being tackled by the broader computational science and general programming communities, development
and adoption of standards within the ES community should also help to alleviate these obstacles.
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Status
Experts building software for ES based simulations in chemistry and materials are becoming a rare breed.
The decline in the number of chemists and materials scientists with strong fundamentals in mathematics, ES
theory, and programming complex computer hardware is driven by the current undergraduate
curriculum [235], and by students seeing limited career opportunities beyond their college education with
the acquired skills.

Until the early 1990s programming was part of the undergraduate curriculum. To run an ES simulation
on a computer required one to have a good understanding of the programming environment and hardware.
While basic programming skills were taught, many computational chemistry, materials and physics
researchers were self-taught advanced programmers learning the latest programming languages and parallel
computing.

Nowadays, most undergraduate degrees do not require a course in programming. Instead, the priority is
given to using ES software to teach chemistry and physics. ES-based simulations are used as virtual
experiments.

This transition from teaching students to write programs to using programs started in the mid 1990s
when many ES software packages and high-level tools (think Python) started to become readily available.

This transition has led to the chemistry, materials, and physics community losing expertise in
programming and the fundamentals of the methods underpinning ES simulations. Push button ES
simulations allow practitioners to get away with not understanding the principles behind basis sets,
pseudopotentials, XC functionals in DFT, or electron correlation. All of this has led to issues with
reproducibility and coding crisis [236].

These days, most groups developing ES software teach their students limited programming skills to get
the job done. The result is poor software coding practices. Many ES software are developed over decades,
with programming languages that were current at the time for hardware that existed at that time. With
languages changing, few learn FORTRAN anymore and instead focus on C++ and Python, new hardware
technologies that have been appearing, for example the GPU and increased parallel complexity, maintaining
and expanding ES software with new methods is becoming an increasingly daunting task for research groups.

More recently, efforts have been started to address the current state of affairs, with various efforts
underway to address the challenges educating our next generation of ES software developers and
practitioners.

Current and future challenges
The main current challenge in the field of education regards the abundance of skills to learn. Traditionally,
scientists in the field have had a solid background in mathematics, theory of ES, and computer science. The
set of skills is however expanding, as the theory is becoming more sophisticated, just as hardware and
software. In the ES theory, developments regard e.g. wavefunction topology and geometry, requesting access
to mathematical concepts that are not traditionally in the toolbox of the practitioner in the field. On the side
of computer skills, architectures used for computing are changing nature, shifting towards GPU and
cloud-based computing. These issues are likely to become more pressing in the near future, also due to the
rise of ML and quantum computing. On top of that, the success of ES methods means that they are now
employed in a variety of fields from molecular biology to functional materials, each requiring its own set of
competencies.

As a result of the issues described above, nowadays the average scientist has become mostly a user of
existing codes, leading to an employment of codes as black boxes in the worst cases. While the software has
reached maturity allowing for semi-automatic usage, limitations of the methods make it however necessary
for the user to have a deep understanding of theory and algorithms to interpret correctly the simulation
results.

Finally, the impact of these problems is dampened in environments where students are in close contacts
with experts in the field. On the contrary, problems are exacerbated when this environment is not present, as
it is often the case in disadvantaged locations in developing countries [237]. It may then happen that people
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access to the codes and to on-line teaching material, but fail to reach the needed level of control on the
simulations. Recent increase in on-line interactions due to the pandemic have been useful, but they cannot
substitute sustained direct interaction. In this context, initiatives that foster direct interaction are crucial; in
Africa, this role is taken by the ASESMA [238].

Advances in science and technology to meet challenges
Though education in ES software faces the many challenges outlined in the previous paragraphs, educators
and researchers are innovating to meet these needs. The ES community, and the wider computational
molecular sciences community, are developing specialized training programs, utilizing open-source software,
and increasing students’ computational skills by integrating programming into the science curriculum. The
field is also shifting to recognize research software development as its own scientific sub-discipline. Overall,
many steps are being taken to improve computational competency.

A path the programming and computational proficiency can be established during the undergraduate
career by integrating programming into existing science classes. Some examples of the incorporation of
programming skills in chemistry classrooms were recently highlighted in the American Chemical Society
Symposium Series book ‘Teaching Programming across the Chemistry Curriculum’ [239].

Outside the formal curriculum, training efforts also occur through institutions, educational
organizations, and specialized programs such as workshops and summer schools. One effort in this area is
The MolSSI [240]. To meet its goal of educating early-career researchers in programming and software
development, MolSSI develops tutorials in programming, software design, and HPC and holds workshops
and summer schools. Other community efforts such as Psi4Education [241] provide educators with
ready-made ES and programming educational materials for classroom use. Resources like these are usually
available online, making them accessible to a broad audience.

Learning materials and scientific communities are continually becoming more interconnected and
accessible. Recent increases in the computing power of the average personal computer, coupled with the
prevalence of free and open-source software in computational chemistry, make ES education using personal
computers possible [228]. Additionally, web-based computational platforms allow access to educational
materials and computing resources and only require a computer with a web browser. Examples of cloud
computing platforms for computational chemistry include chemcompute [242] and nanoHUB [243]. Both
provide browser-based programming and computational environments and have several lessons introducing
chemical concepts.

Within the scientific community, there is increasing recognition of software development as a scientific
career. In Europe and the United States, there are organizations for Research Software Engineers,
professionals who primarily write and maintain scientific software. A growing number of degrees also focus
on HPC or scientific software specifically.

More work may be needed, particularly at the undergraduate level, to establish core programming and
computational competency. Programming and data analytics are increasingly a skill need by all scientists, not
only computational scientists. Transformative change may only come through large scale efforts and
continued shifts in educational culture and practices. However, the current developments and practices
described in this section represent steps in the right direction toward increased programming and scientific
competency.

Concluding remarks
While the community has dealt for decades with a shortage of scientists with the broad, but much needed,
expertise in mathematics, ES theory, and the ability to program the latest computer highly parallel
technologies able to build software for ES-based simulations in chemistry and materials, the tides are
changing. Academic institutions are recognizing the need to develop students that are ready for the
multidisciplinary world that combines HPC, software engineering, ES, and data analytics, and are developing
new ways to teach students the essential skills needed. In addition to formal educational degree programs,
many organizations are taking full advantage of online training technologies to build broadly accessible
curricula. The growing need for graduates with strong computational and analytical backgrounds in
academia, national laboratories, and industry are making software development as a career an increasingly
appealing choice for new students. In short, things are looking up.
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Status
Modelling and simulation at the atomistic level are well-recognized tools in materials research to understand
microscopic and macroscopic phenomena, as well as to guide the design of new molecules and materials.
Among them, first-principles techniques based on DFT, have become the norm thanks to their success to
reproduce experimental observations in a broad range of systems and thanks to their transferability. The
rapid developments of computational power and algorithms in the recent years have allowed a systematic
investigation of different materials, input parameters, and environmental factors leading to efficient
optimization and device refinement that cannot be obtained through experimentation alone. Furthermore,
these developments have permitted the calculations of computationally intensive properties like
electron–phonon-limited electrical conductivity and to push simulated system sizes towards the mesoscopic
scale (see schematic representation of figure 15).

Current and future challenges
Accurate, versatile, and transferable atomistic simulation methods like DFT typically come at the expense of
high computational cost as compared to simpler analytical descriptions. Computationally-accessible
simulation size (∼100–10 000 atoms from regular DFT [244] to linear scaling methods [245]) and simulated
time (≲100 ps) limit its applicability to the description of simple qualitative problems (well-defined surface
reactions or the prediction of crystal phases). Therefore, predicting the evolution of extensive and complex
physical/chemical/photoexcitation processes remains challenging with current state-of-the-art simulations.

As an additional layer of complexity, functional materials are multi-layered, macromolecular,
multi-phasic, polycrystalline, alloyed, amorphous, or a combination thereof. Their descriptions require the
development of accurate, but computationally low-cost methodologies to account for entropy and efficient
statistical sampling. Furthermore, interfacial aspects matter, in which strain, diffusion, and electrostatics
need to be included to model the overall macroscopic properties. These aspects are conditioned by the
chemical and thermal history and by the absence of explicit chemical reservoirs to allow degassing in
materials, the introduction of stabilizing chemical reactants, or the activation of dislocation, etc in
simulations. Even when these problems are addressed, the translation of material properties into macroscopic
observables remains challenging. Atomistic structures must be currently coupled to continuum formalisms,
(semi-)classical condensed matter transport, or mesoscopic physics to enable multi-scale/physics modelling.

In recent years, MI have been gaining momentum by applying ML to molecular/materials research. For
such a data-driven exploration to be effective, systematic and extensive collection of research data is
necessary. Due to the limited available experimental data, the use of DFT calculations is extremely effective
for data generation. In that regard, several initiatives have led to the development of global standard open
repositories [201, 246], that give one access to considerable amount of data to perform ML and screening.
However, neither experimental nor computational data are sufficient for data-driven material exploration.
Here, open/closed data strategies are being explored between academia and industry to alleviate intellectual
property access limitations. The challenge is to enable a federated ML platform [247] with enough incentives
and/or beneficial services for this to happen. The ML development would help in the development of
intuitive workflow, a streamlined industry-leading predictive model with iterative data retrieval and transfer
to achieve program objectives for early material candidates.

Advances in science and technology to meet challenges
Addressing the listed challenges requires the development of new algorithms and numerical approaches to
reduce the computational cost. Algorithmics combined with alternative basis sets (local or mixed, like in the
projector augmented-wave method), low cut-off pseudopotentials, software profiling and/or direct
minimization scheme of the wavefunction have been paving the way to unlock these challenges, but should
not come at the expense of transferability and accuracy. In that regard, recent initiatives have pushed for a
more systematic assessment of the transferability of pseudopotentials with respect to all-electron
computations [28, 248].

Next, the DFT accurate description of physical properties relies heavily on the choice of Exc functional.
Though being the object of intense investigations, Exc functionals that can accurately describe all properties
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Figure 15. State-of-the-art atomistic simulations with current limitations and future directions as already observed by employing
the machine learning potential (MLP). Note that QMC, CC, CI, HSE, AIMD, and FF represent QuantumMonte Carlo, Coupled
Cluster, Configuration Interaction, Hybrid Functional, AIMD, and Force Field, respectively.

of technological interest (electronic gap, mobilities, non-colinear spins coupled with magnetism. . .) have not
been identified yet [16]. The same considerations hold for the TD DFT kernel. In parallel, extending DFT to
treat new perturbations, like external magnetic or chemical gradient, as well as considering the lattice
temperature (electron–phonon and phonon–phonon coupling), would help driving numerous technological
progresses.

In parallel, the introduction of ML is having a significant impact on enabling multiscale/large-scale
simulations. The DFT data can be learned by ML to construct force-field (or ML potentials) with a
minimum of DFT calculations, which flexibly adopt to the target model [100]. Once trained, a ML potential
enables the evaluation of physical properties with a computational efficiency close to that of classical FFs, but
with accuracy comparable to first-principles calculations. The ML algorithm could also be applied to
generate efficient high-level quantum-mechanical calculations such as the coupled-clulster method and the
random phase approximation by training on the difference from the DFT level [249, 250]. As an example of
application in industry, first-principles computations have recently been combined with ML to drive the
discovery of new ovonic threshold switching materials for non-volatile resistive random-access
memories [251, 252]. The most-promising identified materials are then synthesized and tested internally to
drive technological progresses.

Finally, the inherent errors related to low-cost computational techniques can be improved with the
development of computational methods. A more recent approach is the use of data assimilation, which
combines simulation and experimental data and was used originally in meteorology to improve the accuracy
of simulations by using measured data. This technique is now being applied to the field of materials science
to find correlations between simulations and experimental data, as well as for prediction [253].

Concluding remarks
Software has become increasingly complex with the evolution of materials science and the dramatic changes
in societal needs. To continue the development, it is necessary to have a platform that allows subject matter
experts to participate on a global scale rather than conventional development on an individual basis. Here it
will also become increasingly important to develop human resources with knowledge of informatics in
addition to fundamental physics and chemistry in materials science.
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