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A B S T R A C T   

Background: Developments in vision-based systems and human pose estimation algorithms have the potential to 
detect, monitor and intervene early on neurodegenerative diseases through gait analysis. However, the gap 
between the technology available and actual clinical practice is evident as most clinicians still rely on subjective 
observational gait analysis or objective marker-based analysis that is time-consuming. 
Research question: This paper aims to examine the main developments of vision-based motion capture and how 
such advances may be integrated into clinical practice. 
Methods: The literature review was conducted in six online databases using Boolean search terms. A commercial 
system search was also included. A predetermined methodological criterion was then used to assess the quality of 
the selected articles. 
Results: A total of seventeen studies were evaluated, with thirteen studies focusing on gait classification systems 
and four studies on gait measurement systems. Of the gait classification systems, nine studies utilized artificial 
intelligence-assisted techniques, while four studies employed statistical techniques. The results revealed high 
correlations of gait features identified by classifier models with existing clinical rating scales. These systems 
demonstrated generally high classification accuracies and were effective in diagnosing disease severity levels. 
Gait measurement systems that extract spatiotemporal and kinematic joint information from video data generally 
found accurate measurements of gait parameters with low mean absolute errors, high intra- and inter-rater 
reliability. 
Significance: Low cost, portable vision-based systems can provide proof of concept for the quantification of gait, 
expansion of gait assessment tools, remote gait analysis of neurodegenerative diseases and a point of care system 
for orthotic evaluation. However, certain challenges, including small sample sizes, occlusion risks, and selection 
bias in training models, need to be addressed. Nevertheless, these systems can serve as complementary tools, 
equipping clinicians with essential gait information to objectively assess disease severity and tailor personalized 
treatment for enhanced patient care.   

1. Introduction 

1.1. Background 

With a rapidly ageing world population, the incidence of neurode
generative diseases has increased, with diseases such as dementia 
affecting over 55 million people [1] and Parkinson’s disease affecting 
over 9.4 million people [2] globally in 2020. Neurodegenerative dis
eases—mainly consisting of Alzheimer’s disease, Parkinson’s disease, 
Multiple Sclerosis, Amyotrophic Lateral Sclerosis, Huntington’s disease, 
and dementia—share characteristics of progressive cognitive decline, 

limited functional ability to conduct activities of daily living, and motor 
deficits affecting gait and balance. Gait impairments which are common 
among patients with neurodegenerative disease are known to adversely 
affect mobility performance and quality of life [3–5]. 

In the clinical setting, the quantitative study of human gait charac
teristics can provide key information for patient-centered diagnosis, 
monitoring, and treatment of neurodegenerative diseases. The regular 
monitoring of mobility performance in patients can help facilitate timely 
diagnosis and allow for pre-emptive intervention before severe com
plications arise. As the disease progresses, gait analysis can help inform 
fall risk assessments and monitor variations in mobility performance, 
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such as decreased gait speed and decreased cadence, to deliver effective 
patient-centered care [6,7]. Several reviews on quantitative gait analysis 
[8–11] have been published in the past, demonstrating significant in
terest in the field. These reviews have highlighted an increasing trend 
towards portable gait analysis systems as indicated by the increasing 
evidence of greater precision, conformability, usability, and trans
portability. However, most existing reviews have studied research 
methodologies using wearable sensors [8,11] or hybrid sensor systems 
[9]. Further research is required to establish a consensus on the use of 
vision-based systems for quantitative gait analysis in patients with 
neurodegenerative diseases. 

1.2. Observational gait analysis and gait scores 

There is a clear gap between the technology available and current 
practices as many clinicians still use subjective observational gait 
analysis and semi-subjective gait scores [12]. These methods are often 
reported to be unreliable due to the difficulty in assessing the position of 
multiple body segments simultaneously, leading to the high probability 
of human error [13,14]. Furthermore, while gait scores have been re
ported to have good intra-rater reliability, there may be poor 
inter-clinician reliability as there may be different interpretations of the 
same scores between clinicians [15]. In addition, many gait scoring 
systems often require specialized technical knowledge and equipment 
that is too time consuming to be applied in the clinical setting. 

In the context of neurodegenerative diseases, clinician rating using 
reference scoring systems remain the standard practice for clinical 
diagnosis [16]. Common examples of clinical reference tests include the 
Movement Disorder Society - Unified Parkinson’s disease Rating Scale 
(MDS-UPDRS) for Parkinson’s disease [17] and Expanded Disability 
Status Scale (EDSS) for Multiple Sclerosis assessment [18]. While many 
of these scales are quantitative, these scoring systems are still considered 
to be semi-subjective, and ratings may differ based on clinician experi
ence [19,20]. 

1.3. Key gait parameters of neurodegenerative diseases 

The most prevalent neurodegenerative diseases include Alzheimer’s 
disease, Parkinson’s disease, Multiple sclerosis, Amyotrophic lateral 
sclerosis, and Huntington’s disease [10,21–24]. The quantitative gait 
analysis of neurodegenerative diseases has been widely studied, 
providing invaluable spatiotemporal and kinematic joint analysis. The 
clinical presentation and key gait parameters of the common neurode
generative diseases have been summarized below:  

(1) Alzheimer’s disease (AD)  
• Clinical Presentation: Alzheimer’s disease is characterized by 

hyperkinesia, apraxia, and abnormalities in walking and trunk 
movements. 

• Key Gait Parameters: Patients with Alzheimer’s disease typi
cally exhibit decreased gait speed, decreased stride length, 
decreased stride frequency, increased support time, increased 
stride-to-stride variability, and decreased cadence in their 
walking patterns [25].  

(2) Parkinson’s disease (PD) 

• Clinical Presentation: Parkinson’s disease is associated with hypo
kinetic movement, bradykinesia, hypotonia, tremor, flexed posture, 
gait festination, loss of postural reflexes, and freezing of gait (FOG).  

• Key Gait Parameters: Individuals with Parkinson’s disease often 
demonstrate decreased gait speed, increased cadence, decreased 
stride length, decreased swing time, and increased double support 
time while walking [26].  

(3) Multiple Sclerosis (MS) 

• Clinical Presentation: Multiple Sclerosis presents with motor weak
ness, spasticity, ataxia, and sensory disturbances.  

• Key Gait Parameters: People with Multiple Sclerosis typically exhibit 
decreased gait speed, decreased step length, decreased cadence, and 
increased double support time in their gait patterns [27].  

(4) Amyotrophic Lateral Sclerosis (ALS) 

• Clinical Presentation: ALS is characterized by perturbations in fluc
tuation dynamics, altered gait rhythm, and muscle weaknesses in the 
legs, feet, or ankles.  

• Key Gait Parameters: ALS patients often display decreased gait 
speed, increased stride time variability, and increased stride time 
while walking [28].  

(5) Huntington’s disease (HD) 

• Clinical Presentation: Huntington’s disease is marked by uncon
trolled movements, emotional problems, psychiatric disorders, and 
loss of cognitive abilities.  

• Key Gait Parameters: Individuals with Huntington’s disease 
commonly show decreased gait speed, decreased step and stride 
length, increased stance and swing phase, and decreased single 
support time during walking [29]. 

1.4. Development of vision-based motion capture 

Currently, marker-based optoelectronic systems, such as the VICON 
system, often represent the “gold standard” for quantitative gait analysis 
due to their validated accuracy and precision [30]. However, such sys
tems require a large laboratory space, expensive equipment, and sig
nificant technical knowledge to operate [31]. In addition, marker-based 
systems are susceptible to soft tissue artifacts where soft tissue move
ment between reflective skin markers and underlying bone induces er
rors in gait analysis [32]. Recently, the development of inexpensive, and 
portable marker-less systems, such as Red Green Blue (RGB) cameras in 
smartphones and Microsoft Kinect® devices, provide a promising 
alternative and are gaining interest in gait analysis. Many systems now 
use depth measurement techniques to calculate the spatial position of 
key body segments in the 3D space and form a visual representation of a 
subject’s gait [9]. This may include a graphical or video depiction of the 
spatial temporal and kinematic characteristics of gait, facilitating a 
comprehensive analysis of gait features. Different types of optical 
scanners, such as RGB cameras, time-of-flight cameras, structured light, 
and infrared sensors are now commonplace. 

In addition, advances in computer vision and human pose estimation 
algorithms, such as OpenPose1 and Kinect Tracker application,2 allow 
the tracking of specific body points and the visualization of estimated 
skeleton models. A skeleton model is defined as a set of joints and bones 
with the skeleton parameterized based on the length of bones and 
rotation of each joint. Effectively, these algorithms convert videos into 
sequential body point coordinates, which can be used for further 
mathematical and computational analysis to calculate length of body 
segments and joint angles. 

There are 3 different approaches in marker-less vision-based motion 
capture [33]: 

1 OpenPose is an open-source software library for real-time multi-person key 
point detection and multi-threading written in C++ using the OpenCV and 
Caffe deep learning libraries. It allows the tracking of the human body and its 
limbs, as well as detection of facial landmarks, hand gestures, and poses using 
2D video.  

2 Kinect Tracker is an application in Microsoft Kinect that uses the depth and 
RGB data captured by the Kinect sensor to detect and track the position and 
movement of human body parts, such as the head, torso, arms, and legs 
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1) Chroma keying: where the background of the scene is painted a 
single specific color, allowing the silhouette of the person to be easily 
segmented [34,35]. One common example of chroma keying is the 
use of a green screen background with the subject dressed in suitably 
distinct colors, allowing for silhouette extraction. In environments 
where chroma keying is not suitable, background subtraction algo
rithms [36] may be applied to extract image silhouettes.  

2) Discriminatory algorithms: by mapping directly from image features 
to a description of pose, a machine learning algorithm is “taught” 
how to determine the pose of a simple skeleton model using only 
image data [37,38]. Most common examples are OpenPose and 
Kinect Tracker V.2 application. Alternatively, a database of poses can 
be created then searched to discover the most similar pose.  

3) Generative Algorithms: pose and shape of person is determined by 
fitting the body model to information extracted from the image [39, 
40]. Using cost functions, algorithms can minimize the distances 
between the 3D vertices of the body model to the points of the 3D 
reconstruction, allowing for optimal projection to an image. 

Furthermore, developments in machine learning techniques, such as 
Support Vector Machine (SVM) and Convolutional Neural Networks 
(CNN), allow for the training of machine learning models to recognize 
and classify human gait patterns [41]. This has become increasingly 

important for neurodegenerative diseases as machine learning algo
rithms can facilitate effective diagnosis and classification of severity 
levels [42]. 

Vision-based motion capture systems use one or more optic sensors 
to record data of an individual’s gait pattern, and through digital image 
processing or computer vision algorithms, obtain objective measure
ments of gait parameters [33]. Generally, vision-based gait analysis 
methodologies can be categorized into 1) Gait measurement systems and 
2) Gait classification systems. Gait measurement systems utilize video 
data to extract objective measurements of spatiotemporal and kinematic 
features from human gait. This would aim to facilitate analysis of gait 
features such as walking speed and cadence, enabling a quantitative 
analysis of gait. Gait classification systems share the same processes of 
data collection and gait feature extraction, with the added use of 
extracted gait features to classify the gait patterns of subjects based on 
the onset and progression of the neurodegenerative disease. Gait clas
sification systems can be further subdivided into systems using artificial 
intelligence assisted techniques and systems using statistical techniques. 

Overall, these developments in vision-based systems can make 
objective gait analysis more accessible to clinicians due to the lower 
cost, increased portability, and less technical know-how as many of 
these systems can be automated. 

Fig. 1. PRISMA flow diagram of the methodology.  
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1.5. Objective 

This paper aims to review the main developments of vision-based 
motion capture and how such advances may be integrated into clinical 
practice. This paper would examine how these technologies may be used 
to identify key gait parameters in neurodegenerative diseases, classify 
gait patterns based on disease severity level and provide practical advice 
for clinicians to utilize these technologies effectively. Contributing to 
the existing evidence base, this review seeks to inform the current state 
of vision-based motion capture, bridging the gap between technological 
research and the clinical field. 

2. Methodology 

2.1. Protocol 

The methodology of this review was documented according to the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) statement [43], as shown in Fig. 1. Studies were graded ac
cording to the Critical Appraisal Skills Program (CASP) guidelines for 
diagnostic studies [44]. A second questionnaire, developed by Wen et al. 
[45], was used to quantitatively evaluate AI-assisted technologies. 

2.2. Search strategy 

Relevant research studies were obtained using Boolean searching 
applied to six online databases, namely SCOPUS, PUBMED/MEDLINE, 
Embase (Ovid), CINAHL, SPORTDiscus and the Cochrane Library. The 
database search included key search terms and synonyms related to the 
research aim, such as “gait analysis”, “vision” and “neurodegenerative”, 
joined with AND/OR connectives. As this review focuses on the current 
advances of vision-based motion capture, the search was limited to 
studies published in the last decade, including studies published in 2013. 
The end of the search date was March 2023. Peer-reviewed articles, 
clinical trials and observational studies were considered. Methodologies 
using video cameras, machine learning for gait classification and 
quantitative outcome measures were included. Non-English/abstract 
papers, studies involving animal subjects, children/adolescents (<18 
years) and pharmacological/robotic treatments were excluded. Meth
odologies that involved wearable sensors, included running trials and 
qualitative methods of gait assessment were excluded. As this review 
focuses on gait analysis, methodologies focusing primarily on dual task 
assessments for the comparison of cognitive and motor abilities were 
also excluded. A commercial system search of vision-based motion 
capture technologies, such as DeepMotion [46] and Rokoko Video [47], 
was also taken into consideration. However, most of the research using 
these commercial systems did not have methodologies focused on the 
gait analysis of neurodegenerative diseases and, thus, did not meet the 
selection criteria. 

2.3. Quality assessment 

The methodological quality of papers was assessed using the Critical 
Appraisal Skills Program (CASP) for Diagnostic Test Studies [44]. This 
typically involves 12 questions in 3 sections: 1) Are the results of the 
study valid? 2) What are the results? 3) Will the results help locally? 
However, the third section was deemed as irrelevant as the objective of 
this study is not to apply the findings to a local population. As such, each 
paper was evaluated based on 8 questions from the first 2 sections. 
Secondarily, a questionnaire developed by Wen et al. [45] was used to 
assess the quality of AI-assisted technologies. This questionnaire consists 
of 10 questions that quantitatively evaluate the methodological quality 
of the AI algorithms used. For both quality appraisal tools, the questions 
included have 3 optional answers, “Yes”, “No” and “Partly”. These an
swers scored as follows: “Yes” = 1.0, “Partly” = 0.5 and “No” = 0. The 
total score for each paper was computed by summing the scores for each 

question. Studies with a score of >75 % were rated as high evidence, 
studies with a score of 60–75 % were rated as medium evidence and 
studies with a score of <60 % were rated as low evidence [48]. (CASP 
Scores: <5 = low, 5–6 = medium, >6 =high) (AI questionnaire: <6 =
low, 6–7.5 = medium, >7.5 =high) 

3. Results 

3.1. Overview of selected studies 

The review process yielded seventeen applicable studies. The 
included studies were all published between 2014 [49] and 2022 
[50–52]. These were quality assessed and important study characteris
tics were extracted. Each article was categorized into three main ap
proaches: 1) Gait classification systems using artificial intelligence 
assisted techniques 2) Gait classification systems using statistical tech
niques 3) Gait measurement systems that obtain objective spatiotem
poral and kinematic joint parameters. Tables 1 and 2 show the results of 
the CASP (diagnostic test studies) and AI quality assessments respec
tively. Tables 3, 4, and 5 show the study characteristics, the main clinical 
findings and limitations for gait classification systems using AI-assisted 
techniques, gait classification systems using statistical techniques and 
gait measurement systems respectively. 

Overall, there were twelve studies [49,51–61] that investigated 
subjects with Parkinson’s disease, two studies [57,62] investigating 
subjects with Dementia, one study [63] investigating subjects with 
Alzheimer’s disease, one study [64] investigating subjects with Multiple 
Sclerosis and one study [50] investigating both Parkinson’s disease and 
Multiple Sclerosis subjects. These studies included subjects with an age 
range from 49 to 85 years old and generally had a higher participation of 
male subjects, except for four studies [58,62–64]. Two studies [52,65] 
did not specify gender participation rates. As these studies investigated 
different conditions, studies report using a wide range of reference tests, 
such as clinician rating using MDS-UPDRS and EDSS. Two studies [52, 
63] mention that patients were identified through clinician diagnosis; 
however, they did not mention what reference system was used in 
diagnosis. Different types of motion capture sensors used: three studies 
used Kinect V.1 sensors [49,54,64], four studies used Kinect V.2 sensors 
[57,61–63], eight studies used Standard RGB Camera [50,52,53,55,56, 
58,59,65], one study used Stereoscopic cameras [51] and one study used 
a VICON® System [60] (only video data was used to build classification 
model). 

3.2. Quality assessment 

As shown in Table 1, two studies [59,62] were rated as high evi
dence, eleven studies [49–51,53–56,58,61,63,64] were rated as medium 
evidence and four studies [52,57,60,65] were rated as low evidence. All 
included studies were found to have an inherent lack of evaluation 
blinding when designing vision-based systems and most studies suffered 
from small sample sizes, limiting the generalizability of findings. 

3.3. AI quality assessment 

A second questionnaire was used to quantitatively evaluate the 
methodological quality of AI-assisted technologies used in nine studies 
[50,52,54–56,59–61,63]. As shown in Table 2, four studies [50,56,59, 
63] were rated as high evidence and five studies [52,54,55,60,61] were 
rated as medium evidence. Most studies provided adequate descriptions 
of the estimation context and all studies had clear reporting of classifi
cation accuracy. However, differences in study characteristics, patient 
condition, reference tests used, and classification labels used make 
inter-study comparison of accuracy difficult. Moreover, there was a lack 
of consistency in reporting machine learning performance evaluation 
metrics with studies often missing key metrics. Three studies [55,61,63] 
did not compare their results to any other algorithm. While most studies 
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reported using sizeable datasets of gait videos, these datasets often 
contained multiple recordings of a small sample of patients, adversely 
affecting the generalizability of findings. 

3.4. Gait classification systems using AI-assisted technologies 

Nine studies [50,52,54–56,59–61,63] utilized gait classification 
systems using AI-assisted technologies. Two studies [52,55] used the 
tracking of image silhouettes, one study [59] used generative algorithms 
(where the human pose was determined by fitting a 3D body model to 
the gait video), and six studies [50,54,56,60,61,63] used Kinect or 
OpenPose pose estimation algorithms to extract spatiotemporal and ki
nematic gait parameters. Overall, a wide range of machine learning 
techniques was used for gait classification; examples include Support 
Vector Machines (SVM), Bayesian Networks and Convolutional Neural 
Networks (CNN). SVM was the most popular technique with its use cited 
in six studies [50,54,55,60,61,63]. 

As presented in Table 3, most studies generally report high gait 
classification accuracies, ranging from 62.1 % to 97.0 %, and high 
correlations of key gait features identified with clinical reference tests. 
However, differences in study characteristics, patient condition, refer
ence tests used, and classification labels make inter-study comparison of 
accuracy difficult. In addition, four studies [50,54,59,61] reported the 

discovery of novel gait features with high discriminatory power, facili
tating a better diagnosis of disease severity levels. These developments 
were attributed to the use of machine learning techniques. By mapping 
multiple gait features into a higher dimensionality space, classification 
systems were reported to recognize non-linear relationships between 
gait features to achieve a better classification of gait between disease 
severity levels. 

Notably, Lu et.al [59] developed a gait classification neural network, 
with the training of network was regularized by using a rater confusion 
estimation (RCE) to avoid bias in training models with subjective scores 
of a single clinician. The proposed method outperformed human raters 
by showing higher levels of agreement with the majority vote of raters 
compared to inter-rater agreement. This was shown by the model’s 
average pairwise value3 being higher (0.49) than that of all human rater 
pairs which are 0.38, 0.39, and 0.30. 

Furthermore, saliency mapping was reported in two studies [56,59] 
showing the identified body joints with the highest discriminating 
power, such as feet and arm features, to differentiate severity levels in 
gait pathology. These saliency maps, in the form of images or visualized 

Table 1 
CASP (diagnostic test studies) quality assessment.  

Bibliographic 
Citation 

1. Was 
there a 
clear 
question for 
the study to 
address? 

2. Was there a 
comparison 
with an 
appropriate 
reference 
standard? 

3. Did all 
patients get 
the diagnostic 
test and 
reference 
standard? 

4. Could the 
results of the 
test have been 
influenced by 
the results of 
the reference 
standard? 

5. Is the 
disease status 
of the tested 
population 
clearly 
described? 

6. Were the 
methods for 
performing the 
test described 
in sufficient 
detail? 

7. Were the 
results 
clearly 
presented? 

8. How 
sure are 
we about 
the 
results? 

Total 
Score 

CASP 
Quality 

Zhu et al., 
2016 [65]  

1  1  1  0  0  0.5  1  0  4.5 Low 

Buongiorno 
et al., 2019  
[61]  

1  1  1  0  0  1  0.5  1  5.5 Medium 

Gholami et al., 
2017 [64]  

1  1  1  0  1  1  1  0  6 Medium 

Khan et al., 
2021 [55]  

1  1  1  0  0  1  1  0  5 Medium 

Kaur et al., 
2022 [50]  

1  1  1  0  1  1  1  0  6 Medium 

Seifallahi 
et al., 2020  
[63]  

1  1  0.5  0  0  1  1  1  5.5 Medium 

Sabo et al., 
2020 [57]  

1  1  1  0  0  0.5  0.5  0  4 Low 

Delval et al., 
2021 [60]  

1  1  1  0  1  0.5  0  0  4.5 Low 

Rocha et al., 
2014 [49]  

1  1  1  0  0.5  1  1  0  5.5 Medium 

Sato et al., 
2019 [58]  

1  1  1  0  0  1  0.5  1  5.5 Medium 

Lu et al., 2021  
[59]  

1  1  1  0  1  1  1  1  7 High 

Stricker et al., 
2021 [53]  

1  1  1  0  0  1  1  0  5 Medium 

Dolatabadi 
et al., 2019  
[62]  

1  1  1  0  1  0.5  1  1  6.5 High 

Zanela et al., 
2022 [51]  

1  1  1  0  1  1  1  0  6 Medium 

Dranca et al., 
2018 [54]  

1  1  1  0  1  0.5  0.5  0  5 Medium 

Bama and 
Jinila, 2022  
[52]  

1  1  1  0  0  1  0  0  4 Low 

Guayacan, 
Martinez, 
2021 [56]  

1  1  1  0  0  1  1  0.5  5.5 Medium  

3 Average pairwise values quantify the consistency or concordance between 
different assessments or predictions, providing a measure of average agreement 
levels across all possible pairs of raters or classifiers 
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skeletons, highlighted the key body joints that contributed the most to 
classification model predictions. For instance, the saliency map used by 
Lu et al. [59] highlighted the heel and ankle region in green, indicating 
that joint angles of heel and ankle were important in classifying between 
Parkinson’s disease MDS-UPDRS stages 1 and 2. This provides a visual 
representation for the clinician to understand the gait features most 
important in gait classification, without any prior technical knowledge. 

3.5. Gait classification systems using statistical techniques 

Four studies [49,57,62,64] investigated gait classification systems 
that used statistical techniques. As presented in Table 4, all four studies 
extracted spatiotemporal and kinematic data from Kinect skeleton data 
for gait classification. Using the gait data of Multiple Sclerosis subjects, 
Gholami et al. [64] assessed the reliability of eight gait indices obtained 
from the proposed method and found seven out of the eight indices to be 
reliable with intraclass correlation coefficients ranging from 0.61 to 
0.99. This includes the novel dynamic-time warping (DTW) distance 
index which quantifies the degree of dissimilarity between a patient’s 
joint angle pattern compared to a set of control subjects. Seven out of 
eight Multiple Sclerosis gait indices correlated with the clinical refer
ence tests used with a Pearson correlation coefficient of more than 0.40. 
Rocha et. al [49] evaluated 34 spatiotemporal and kinematic gait pa
rameters of 3 Parkinson’s disease patients treated with deep brain 
stimulation. Using the Kruskal-Wallis statistical test, the study found 
that the variance of center shoulder velocity presented with the highest 
discriminative power to distinguish non-PD, PD ON and PD OFF states 
(p= 0.004). In a longitudinal study, Sabo et.al [57] used multivariate 
ordinal logistic regression models that incorporated 2D and 3D gait 
features of dementia patients. The study concluded that vision-based 
systems have the potential to be used as a tool for longitudinal moni
toring of parkinsonism in residential settings. 

In a longitudinal study, Dolatabadi et.al [62] recorded the natural 
walks that occurred in dementia patient’s daily routine and the cued 
walks with a research assistant present. A total of 3843 gait bouts were 
recorded over 6 months in an inpatient setting. However, approximately 
50 % of recordings were unsuccessful primarily because the subject was 
walking away from the camera and the gait could not be tracked from 
behind. Furthermore, the system required a minimum of 2 gait cycles to 
reliably extract spatiotemporal gait features. Out of 3843 gait bouts, 
1171 gait bouts could be used to extract spatiotemporal gait features 
reliably for fall risk classification. Suggesting improvements to the sys
tem, such as installing cameras facing both sagittal and coronal planes, 
the study hypothesized that this might make the long-term monitoring 
of Dementia patient’s gait in an inpatient environment more feasible. 

3.6. Gait measurement systems 

Four studies [51,53,58,65] proposed quantitative measurement 
systems for the feature extraction of gait. Three studies [53,58,65] used 
2D video of Parkinson’s disease patients from standard RGB cameras to 
extract parameters of step length [53], stride length [65] and cadence 
[58]. One study [51] used stereoscopic vision cameras integrated with 
computer vision algorithms to analyze multiple gait parameters of 
Parkinson’s disease patients. As presented in Table 5, these studies 
generally found accurate measurements of gait parameters, with low 
mean absolute errors [65] and high intra- and inter-reliability [53]. 

Using a smartphone and a printed PVC walking mat, Zhu et. al [66] 
developed a computer vision algorithm that was shown to obtain stride 
length measurements of Parkinson’s disease patients with a mean ab
solute error of 0.62 cm. This was found to be robust despite variations in 
environmental lighting conditions, gait abnormalities and with differ
ences in clothing. However, the study also cited challenges, such as 
parallax errors between the shoe and the marker mat, and suggested 
improvements to the algorithm (mapping function) to overcome these 
limitations. Ta
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Table 3 
A summary of gait classification systems using AI-assisted technologies.  

Bibliographic 
Citation 

Study Type Population 
Characteristics 

Motion Analysis System AI-assisted technique Procedure Reference Test 

Buongiorno 
et al., 2019  
[61] 

Cross-sectional 
observational 
study 

16 PD patients and 14 
healthy controls 
Gender:13 M, 3 F. 
Age:63–87 

One Microsoft Kinect v2 
camera in coronal plane 

Classifiers tested: Support 
Vector Machine and Artificial 
Neural Networks 

3 motor exercises examined: 
1) gait - patients walk 
towards Kinect 2) finger 
tapping 3) foot tapping 

MDS-UPDRS 

Khan et al., 2021 
[55] 

Retrospective 
study 

19 PD patients (456 
videos) Gender: 19 M, 
5 F. Age: 50–75 

One RGB camera, 
352×288p at 25 fps, in 
coronal plane 

Support Vector Machine used 
for classification 

Patient asked to rise from 
chair, walk straight to 
camera, turn, and walk back 
to the chair 

UPDRS 

Kaur et al., 2022 
[50] 

Cross-sectional 
observational 
study 

10 MS patients, 9 PD and 
14 healthy controls. 
Gender: 12 M, 21 F. Age: 
61–77 

Two 800 ×448 
resolution RGB cameras 
at 30 fps, in coronal and 
sagittal planes 

4 convolutional Deep 
Learning (DL) models tested 
for feature extraction and 3 
recurrent DL models were 
tested for gait classification 

2 self-paced walking tasks 
on an treadmill: 1) single 
task walking trial and 2) 
walking while talking trial 

EDSS and 
Hoehn and 
Yahr Scale 

Seifallahi et al., 
2020 [63] 

Cross-sectional 
observational 
study 

30 AD patients, 30 
healthy controls. Gender: 
0 M, 60 F. Age: 65–85 

One Microsoft Kinect 
v.2 camera, subject’s 
elliptical walking path 
captures both sagittal 
and coronal planes 

Support Vector Machine to 
build classification model 
based on 7 gait features 

10 m single task walking 
trial designed in an elliptical 
shape 

Clinician 
rating. Rating 
scale not 
specified 

Delval et al., 
2021 [60] 

Retrospective 
study 

174 PD patients Gender: 
106 M, 68 F. Age: 49–73 

VICON® system, at 
100 Hz (only video 
motion system used), 
videos were processed 
with MATLAB® script 

Support Vector Machine used 
for classification: a) clinical 
data only b) both clinical data 
and gait parameters 

10 m indoor walking trial at 
self-regulated pace. Clinical 
data, such as MDS-UPDRS 
scores, age, Levodopa 
equivalent dose taken. 

Fall history 
and clinical 
data 

Lu et al., 2021  
[59] 

Cross-sectional 
observational 
study 

55 participants (PD 
patients and healthy 
controls) Gender: 27F, 
28M. Age: 47-75 

MDS-UPDRS videos 
using RGB camera (gait 
and finger tapping 
videos), in coronal 
plane 

Ordinal focal neural network 
for classification. Rater 
confusion estimation 
regularize network 

MDS-UPDRS videos scored 
by 3 neurologists. 3D 
skeleton extraction and 
motor score estimation. 

MDS-UPDRS 

Dranca et al., 
2018 [54] 

Cross-sectional 
observational 
study 

30 PD: 8 early stages, 11 
mid stages and 11 severe 
stages. Gender: 25 M, 5 F. 
Age: 64–76 

Two Microsoft Kinect 
v.1, in coronal and 
sagittal planes 

10 AI classification methods 
tested. 3 Feature filter 
methods tested 

Patients walk 4.5–5.5 m in 
both directions (with spins) 
4 times for gait recording. 

MDS-UPDRS 

Bama and Jinila, 
2022 [52] 

Retrospective 
study 

14 subjects (PD and 
hemiplegia patients, 
controls) Numbers for 
each gender not specified. 
Age: 50–85 

Rasbery Pi-3 and 
camera module. VPIDS 
cloud computing layer 
(plane not specified) 

3 AI classification methods 
tested. 3 feature selection 
methods tested 

Walking frames transformed 
into binary silhouettes for 
feature extraction and gait 
classification 

Clinician 
rating. Rating 
scale not 
specified 

Guayacan and 
Martinez, 
2021 [56] 

Retrospective 
study 

11 PD patients and 11 
controls. Gender: 9 M, 2 F. 
Age: 65–79 

One RGB camera, Nikon 
D3200 at 60 Fps, in 
sagittal plane 

3D convolutional neural 
network for feature selection. 
CNN applied to raw videos 
and optical flow fields for 
comparison 

Walking at a self-regulated 
pace, 4 times to the left and 
4 times to the right. 

Hoeh and 
Yarh Scale  

Author Classlabels Accuracy1 

(%) 
Precision2 

(%) 
Recall3 

(%) 
Specificity4 

(%) 
Area 
Under 
Curve5 

Key gait 
features 

Main Clinical Benefits Limitations 

Buongiorno 
et al., 2019  
[61] 

1) PD vs non- 
PD 2) Mild 
PD vs 
moderate PD 

89.4 % 
(using 9 
features) 

- 87.0 % 91.8 % - Postural 
features (e.g., 
Trunk and neck 
flexion angles) 

Identification of novel postural 
features useful for 
distinguishing between PD 
severity levels. Able to identify 
subtle gait differences difficult 
to observe by clinician 

Small sample 
sizes. Lack of 
integrated 
analysis for the 3 
exercises. 

Khan et al., 
2021 [55] 

UPDRS 
integer 
scores from 
0 to 2 

70.8 % - - - 0.81 Step shuffling 
and gait 
festination 

Key gait features identified as 
most significant for 
classification have high 
correlations with clinical rating 
scale 

Small sample size 

Kaur et al., 
2022 [50] 

MS, PD vs 
healthy 
controls 

78.1 % 79.0 % 76.7 % - 0.87 Stride length, 
feet, and knee 
features 

Feet and knee features are 
found to be important in 
distinguishing between MS, 
PD, and healthy controlsStride 
wise classification allows single 
stride trial for easier procedure 

Small sample size 
Gender 
imbalances 
between groups 

Seifallahi 
et al., 2020  
[63] 

AD vs non- 
AD 

92.3 % 88.6 % 96.3 % 90.8 % - Walking speed, 
step length, 
stride length 
and mean stride 
velocity 

Key gait features identified as 
most significant for 
classification matched the 
features identified by previous 
validated studiesEarly 
detection of AD using skeleton 
data from Kinect camera 

Small sample size 
Study conducted 
on an all women 
population. 

Delval et al., 
2021 [60] 

Fallers vs 
non-fallers 

97.0 % - 94.0 % 70.0 % 0.97 Walking speed, 
stride length, 
stride time, 

Foot clearance height during 
swing phase useful for 
distinguishing between fallers 

Risk of selection 
bias as most 
patients recruited 

(continued on next page) 

D.S.Y. Vun et al.                                                                                                                                                                                                                                



Gait & Posture 112 (2024) 95–107

102

Stricker et. al [53]conducted a study evaluating the reliability of step 
length measurements from two-dimensional (2D) video in individuals 
with Parkinson’s disease, comparing the step lengths of individuals with 
and without a recent history of falls. Intra- and inter-rater reliability of 
step length measurements were reported to be high, with mean intra
class correlation coefficient (ICC) of 0.988 (range: 0.986–0.991) and 
0.987 (0.985–0.990) respectively, demonstrating excellent reliability. 
Stricker et. al [53] hypothesized that this system would be useful in fall 
risk classification of Parkinson’s disease patient, citing that shorter step 
length is associated with increased fall risk in Parkinson’s disease. 

In a retrospective study, Sato et.al [58] proposed an unsupervised 
method of analyzing frontal gait videos recorded in clinical practice for 
estimation of cadence in Parkinson disease patients. Using a statistical 
distance-based approach, the system was shown to identify the timing of 
gait steps that were distinguishable between FOG steps and involuntary 
leg oscillations, allowing a more accurate estimation of cadence. 

4. Discussion 

The purpose of this literature review was to report on the main de
velopments of vision-based motion capture and how such advances can 
be integrated into clinical practice. This section aims to cover how these 

technologies may be used to identify key gait parameters in neurode
generative diseases, classify gait patterns based on disease severity level 
and provide practical advice for clinicians to utilize these technologies 
effectively. In addition, this paper seeks to elucidate how these advances 
can inform the further development and optimization of orthotic man
agement strategies as a point-of-care system. 

Improvements in vision-based motion capture technology have 
increased the potential for data-driven objective quantification of the 
gait analysis in neurodegenerative diseases. Previously, quantification 
of gait was limited to expensive optoelectronic systems that required the 
use of specialized equipment and a large laboratory space. Currently, 
gait measurement systems that use low-cost vision technology have been 
shown to effectively extract spatiotemporal gait features [51,53,58,65]. 
For instance, using a smartphone camera and printed PVC walking mat, 
Zhu et.al [65] was able to extract stride length measurements of Par
kinson’s disease patients with low mean absolute errors, comparable to 
the validated walking mat GAITRite system. Furthermore, the 
advancement of human pose estimation algorithms, such as OpenPose 
and Kinect Tracker applications, allows the tracking of 3D body seg
ments, which can be used for the spatiotemporal and kinematic joint 
analysis of gait. The gait features identified with the most discriminative 
power for classification were shown to have high levels of agreement 

Table 3 (continued ) 

Author Classlabels Accuracy1 

(%) 
Precision2 

(%) 
Recall3 

(%) 
Specificity4 

(%) 
Area 
Under 
Curve5 

Key gait 
features 

Main Clinical Benefits Limitations 

minimum foot 
clearance 
height 

and non-fallersIncorporating 
kinematic gait data into 
prediction models can improve 
fall risk assessment- 97 % 
accuracy compared to 94 % 
accuracy using clinical data 
only 

were not 
demented. Self- 
reporting of falls 
may not be 
accurate 

Lu et al., 
2021 [59] 

MDS-UPDRS 
integer 
scores from 
0–3 

72.0 % 50.0 % 52.0 % - 0.82 Joint angles of 
heels, ankles, 
and toes 

Saliency mapping highlighted 
key gait features most 
significant in diagnosing PD 
severity 
RCE reduced inter-rater 
variabilities, improved 
classification performance 

Lack of objective 
"ground-truth" 
scores 
Small sample size 

Dranca et al., 
2018 [54] 

1) PD vs non- 
PD 
2) MDS- 
UPDRS 
integer 
scores from 
1–3 

93.4 % 
(using 7 
features) 

- - - - Movement and 
position of left 
arm, trunk 
posture and left 
shin angles 

Identification of novel gait 
features that were shown to 
improve accuracy of 
diagnosing PD severity 
Feature discretization has been 
shown to improve 
classification performance 

Small sample size. 
Sample consisted 
of mostly right- 
handed patients 

Bama and 
Jinila, 
2022 [52] 

PD, Hemi- 
plegia vs 
control 

93.6 % - - - - Spatial variance 
between joints 
(e.g., variance 
between hip 
center and 
shoulder center) 

Model that incorporates 
patient history, real-time gait 
videos and AI assisted 
techniques shown to diagnose 
PD severity 
Improvements in prediction 
time (10.69 %) and accuracy 
(7.83 %) compared to 
statistical techniques 
Remote gait analysis in real 
time 

Small sample size 
Risk of occlusions 
Low resolution 
and frame rate of 
camera 

Guayacan 
and 
Martinez, 
2021 [56] 

PD vs non- 
PD 

94.9 % 91.0 % 100.0 % - 0.95 Step length and 
gait speed. 
Head and trunk 
posture. 

Saliency mapping highlighted 
key gait features most 
significant in diagnosing PD 
severity 
Fully automated feature 
extraction and classification 
allows ease of use and efficient 
diagnosis 

Lack of baseline 
comparison  

1 Accuracy measures the percentage of correctly classified instances out of all instances 
2 Precision measures the percentage of correctly labelled positive instances out of all positively labelled instances 
3 Recall measures the percentage of correctly labelled positive instances out of all instances 
4 Specificity measures the percentage of correctly labelled negative instances out of all negatively labelled instances 
5 Area under curve provides an aggregate measure of performance across all possible classification thresholds 
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with the features used in clinical rating scales. This is important for 
neurodegenerative diseases as the objective quantification of gait could 
be used to develop useful clinical predictors, such as disease severity 
classification, prognosis and fall risk assessment. In the context of or
thotic management, this can allow clinicians to evaluate the effective
ness of the orthotic prescription and make fine-tuning adjustments to 
optimize fit and function. Overall, vision-based motion capture may thus 
provide clinicians with objective gait data to inform timely clinical 
diagnosis and tailor personalized treatment for patients with neurode
generative diseases. 

However, while vision-based systems can quantify gait features of 
neurodegenerative diseases, this review does not support the complete 
replacement of existing clinical tests with these technologies. In fact, the 
included studies cite existing challenges, such as parallax error [65], 
occlusions [51,52] and small sample sizes, that affect the accuracy and 
generalizability of measurements. As cited by Zhu et.al [65], parallax 
errors occur when the camera or sensor used to capture the motion is not 

positioned correctly or there is a shift in perspective between the camera 
and the object being tracked. This can result in inaccurate measurements 
of the movement and position of the object. Two studies [51,52] 
mentioned that the risk of occlusion, which occurs when a body segment 
is blocked from view of the camera results in the missing gait data, 
adversely affects accurate motion analysis. Furthermore, most of the 
included studies reported having relatively small sample sizes of pa
tients, ranging from 3 [49] to 174 [60] patients, affecting the general
izability of clinical findings on the patient population. Despite small 
sample sizes, these vision-based systems often generated large datasets 
of videos (due to multiple views and frequency of walks), presenting 
challenges with scaling up such technologies. The increased volume of 
video data would require substantial storage facilities and computa
tional resources, which would be important cost considerations for 
widespread clinical implementation. Therefore, the developments of 
vision-based motion capture should be viewed with cautious optimism 
and serve as a complementary observational tool to be integrated with 

Table 4 
A summary of the gait classification systems using statistical methods.  

Author Study 
Type 

Population 
Characteristics 

Motion 
Analysis 
System 

Statistical 
Technique 

Procedure Key gait 
features 

Main Clinical Findings Limitations 

Gholami 
et al., 
2017  
[64] 

Cross- 
sectional 
study 

10 MS patients 
and 10 healthy 
controls. Gender: 
9 F, 1 M. Age: 
41–79. 

A Microsoft 
Kinect sensor, 
facing 
coronal 
plane. 

a) Reliability and 
validity 
assessment of 8 
gait indices 
b) Principal 
component 
analysis and Linear 
discriminant 
analysis to classify 
MS severity levels. 

Patients walk 
facing Kinect 
camera for 
5–10 trials 

Gait velocity, 
stride length, 
double support 
percentage, 
knee, and hip 
range of motion 

7 out of 8 gait indices 
were found to be 
reliable, valid and have 
high correlations with 
clinical reference tests 
Novel DTW gait index 
allows optimal 
comparison of complete 
sequences of subject’s 
gait compared to a 
healthy control 

Small sample size. 
Lack of validation 
using marker-based 
capture system. 
Limited range of 
view 

Rocha et al., 
2014  
[49] 

Cross- 
sectional 
study 

3 PD patients with 
deep brain 
stimulator 
implants and 3 
healthy controls. 
Gender: 2 M, 1 F 
Age:47–59 

Microsoft 
Kinect sensor 
facing 
coronal plane 
view of 
subject 

Kruskal-Wallis 
statistical test to 
identify 
statistically 
significant gait 
features between 
groups 

Walking trial 
with turn at 
the end: with 
the stimulator 
on (ON) and 
with the 
stimulator off 
(OFF). 

Center 
shoulder 
velocity 

The variance of center 
shoulder velocity had 
the highest 
discriminatory power 
and was statistically 
significant in 
distinguishing PD 
groups 
Depth images and 
skeleton data based on 
infrared light allows 
less controlled 
environment 

Small sample size. 
Lack of validation 
using marker-based 
capture system 

Dolatabadi 
et al., 
2019  
[62] 

Long- 
itudinal 
study 

20 Dementia 
patients. Gender: 
10 M, 10 F. Age: 
70–83 

AMBIENT set- 
up: Microsoft 
Kinect for 
Windows 
version 2, 
facing sagittal 
plane of 
patient 

Descriptive 
statistics, 
including mean, 
median, standard 
deviation, and 
variability 
measures, to 
compare gait 
features between 
fallers and non- 
fallers 

1) Natural 
walks detected 
during day and 
night in 
inpatient 
settings. 2) 
Cued walking 
trials with 
assistant 

Step length, 
step time, 
cadence, step 
length 
symmetry, step 
time symmetry 
and gait 
velocity 

Potential for the long- 
term monitoring of 
Dementia patient’s gait 
in an inpatient 
environment 
Despite the high rate of 
unsuccessful 
recordings, half of the 
gait bouts provided 
valuable data for fall 
risk classification. 
Improvements to the 
sensor positioning and 
the motion analysis 
system may make 
system more feasible 

Approximately 
50 % unsuccessful 
recordings, 
primarily due to 
poor positioning of 
subject relative to 
sensors 
Requires manual 
processing prior to 
data extraction. 

Sabo et al., 
2020  
[57] 

Long- 
itudinal 
study 

14 Dementia 
patients with 
varying PD 
severity. Gender: 
8 M 6 F Age: 
67–85 

Microsoft 
Kinect v2 
sensor in 
coronal plane 

Multivariate 
ordinal logistical 
regression model 
to classify PD 
severity levels 

Single task 
walking, 
recordings 
collected over 
the course of 
several weeks 

Stride length, 
gait velocity 
and bilateral 
asymmetry 

Spatiotemporal, 
variability and 
symmetry measures of 
gait extracted from 2D, 
and 3D videos had high 
correlations with 
clinical reference test 
measures 
Potential for 
longitudinal and 
remote gait analysis 

Regression models 
not well suited for 
predictions as they 
could only identify 
linear relationships 
between the gait 
features  
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existing clinical diagnostics tests for effective patient care. 
Besides the quantification of gait, vision-based motion capture 

technologies have the potential to expand current gait assessment tools 
for neurodegenerative diseases in a clinician interpretable manner. 
Advances in vision-based systems have been shown to identify newly 
discovered discriminating gait features between different severity levels 
of neurodegenerative diseases. The reasons for this are two-fold: a) 
computer vision algorithms can simultaneously process multiple gait 
indices, such as spatiotemporal, kinematic joint parameters and even the 
novel DTW index. This allows optimal comparison of complete phases of 
a subject gait cycle compared to a healthy control. b) with greater 
pattern recognition and learning capabilities, gait classification systems 
can train machine learning models to identify patterns to classify gait 
using multiple gait dimensions. For instance, using AI-assisted classifi
cation techniques, such as Support Vector Machine (SVM), classification 
models can plot and achieve an optimal classification of gait data on a 
higher dimensionality feature space. Importantly, these discriminating 
features can extend beyond the linear relationships that humans observe 
and factor in multiple gait parameters simultaneously to capture the 
nuances of gait. Two studies [56,59] advocate the use of saliency 
mapping to make results more clinically interpretable. Saliency mapping 
can help clinicians visually understand which body joints contributed 
the most to model predictions for the classification of disease severity 
levels, without any prior technical knowledge. Overall, the studies in 
this review can provide proof of concept for the expansion of gait 
assessment tools for neurodegenerative diseases in a clinician inter
pretable manner. 

Another challenge of integrating semi-subjective clinical rating sys
tems into machine learning models, as mentioned by Lu et.al [59], is the 
handling of inter-rater variabilities in training data. By training machine 
learning algorithms based on the scores of a single rater, classification 
models may become biased toward the subjective opinions of the rater, 
reducing the generalizability of findings. To solve this issue, Lu et.al 
concluded that the use of a RCE can help account for inter-rater vari
abilities, avoid bias in training models and even outperform human 
raters when compared to a majority-vote ground truth score. In future 
work, classification systems using AI-assisted technologies should 
consider using the scores of multiple raters for the training of machine 

learning models to avoid bias. 
Lower cost, lower technical barriers, and increased portability of 

vision-based motion capture also opens opportunities for real-time 
remote gait monitoring of neurodegenerative disease. This is impor
tant as it allows continuous and objective monitoring of disease pro
gression over time, without the need for frequent visits to the clinic or 
hospital. Most of the studies used low-cost vision systems, such as 
smartphones, home video cameras and Kinect sensors, which are much 
less expensive, easier to set up and more portable than existing gait 
laboratory systems. Bama and Jinila [52] proposed a cloud-based 
vision-system that integrates clinical patient data with a remote 
vision-based system capable of providing real-time remote gait analysis 
insights to clinicians. In a longitudinal study, Dolatabadi et.al [62] hy
pothesized with future improvements to the sensor positioning, that 
vision-based systems have the potential to be used as a tool for the 
long-term monitoring of fall risk for Dementia patients in an inpatient 
setting. These studies, thus, support real-time remote gait analysis which 
can provide useful insights to clinicians, such as fall risk assessments and 
gait data. Ultimately, these insights may be used for the early detection 
of gait changes and to tailor personalized treatment for effective care for 
neurodegenerative diseases. 

5. Limitations 

It should be noted that differences in study characteristics, patient 
condition and reference tests used make objective meta-analysis of ac
curacy, reliability, and validity of these systems challenging. Moreover, 
a lack of consistency in reporting classification performance metrics was 
found, making inter-study comparisons difficult. 

This literature search and review was done by only one author, only 
considering studies that were written in English. This may have resulted 
in possible oversight of other studies written in another language. While 
the included studies involved patients with Parkinson’s disease, Alz
heimer’s disease, dementia and Multiple Sclerosis, no studies involving 
Huntington’s disease and Amyotrophic Lateral Sclerosis were found. 
Most of the studies included also cited small sample sizes of patients as 
limitations. Hence, the findings from this review may not be fully 
representative of the patient population with neurodegenerative 

Table 5 
A summary of gait measurement systems.  

Author Study 
Type 

Population 
Characteristics 

Motion Analysis 
System 

Procedure Key gait features Main Clinical Benefits Limitations 

Zhu et al., 
2016  
[65] 

Cross- 
sectional 
study 

44 PD patients and 
11 healthy controls. 
Gender: not 
specified. Age: 
50–75 

A smartphone 
camera, at 1080p 
and 30fps, facing 
sagittal plane and a 
printed PVC 
walking mat 

Walks from left to 
right with turns at 
end and walking 
back over the PVC 
matt 

Stride length Stride length measurement 
having a mean absolute 
error of 0.62 cm, 
comparable to the 
validated GAITRite system. 
Supports various 
environmental conditions 

Limited field of view of the 
camera and refresh rate of 
camera. Parallax error 
between shoe and markers. 
Limited use of ground truth 
measurements 

Sato 
et al., 
2019  
[58] 

Retro- 
spective 
study 

2 PD patients and 
117 healthy 
controls. Gender: 
2 F. Age: 60–70 

Home video 
cameras, at 
320×240 at 25 fps. 
Coronal and sagittal 
plane videos. 

Gait sequences of 
2–4 gait cycles 
recorded. Feature 
extraction, 
calculation of 
cadence. 

Cadence Extract sequential gait 
features to calculate 
cadence. Quantify gait 
steps periodicity to 
improve reliability of 
calculated cadence. 

Lack of ground truth 
measurements. The sample 
size of PD patients was very 
small. Technical limitations 
of system. 

Stricker 
et al., 
2021  
[53] 

Retro- 
spective 
study 

24 PD patients. 
Gender: 17 M and 
7 F. Age: 58–80 

HDR-CX 240 Sony 
Corp camera (RGB) 
at 30 Hz, facing 
sagittal plane 

3 walking trials of 
a 10 m. Patient’s 
history of falls was 
recorded. 

Step length Quantify step length with 
minimal measurement 
error, good intra- and inter- 
rater reliability. Aids fall 
risk assessment 

Lack of comparison to “gold 
standard” optoelectronic 
system. Sample size 
consisted mostly of early PD 
patients. Self-reporting of 
falls may not be accurate 

Zanela 
et al., 
2022  
[51] 

Cross- 
sectional 
study 

5 PD patients and 5 
healthy controls. 
Gender: 3 M, 2 F. 
Age:49–75 

A Stereolabs ZED2 
stereoscopic 
cameras, facing 
coronal and sagittal 
planes at 2560×720 
and 60 fps. 

1) standing 
position to walk 
with turn at end 2) 
walking with 
obstacles to avoid 
and turn at end. 

Stride speed, 
stride length, 
height of feet 
clearance, 
turning time and 
time avoiding 
obstacles 

3D reconstruction of gait. 
High level of agreement 
with MDS-UPDRS features. 
Quantification of gait 
corrects human error and 
increasing degree of 
objectivity 

Risk of occlusion and non- 
univocal correspondence 
with image pixels, result in 
missing video data.  

D.S.Y. Vun et al.                                                                                                                                                                                                                                



Gait & Posture 112 (2024) 95–107

105

diseases. Attempts at organizing the studies into subgroups for the 
context of this review may also have discounted some details that each 
vision-based motion capture approach presents. 

6. Recommendations for future work 

In the context of orthotic rehabilitation, future research can be 
focused on implementing vision-based motion capture as a point-of-care 
system to evaluate the effectiveness of orthotic treatment. Vision-based 
systems could be installed in the walkways of a clinic or over telecom
munication platforms, providing clinicians with real-time objective gait 
parameters of the patient even before the appointment. As a standard 
point-of-care system, this may ease the burden of clinicians having to 
react to patient needs through observational gait analysis, and instead 
provide real-time objective gait parameters to proactively address pa
tient needs. This is supported by the recommendations of existing 
literature for gait scoring systems [67]. At the same time, patients can 
monitor their own progress over time, providing a sense of engagement 
and empowerment in rehabilitation. Moving forward, further real-world 
testing and validation of these vision-based systems would be essential 
in ensuring their accuracy and reliability in diverse clinical settings. 
Overall, future implementation of vision-based motion capture as a 
point-of-care system has the potential to improve the gait assessment of 
orthotic rehabilitation, while also empowering patients to monitor their 
own progress over time. 

Future work may also consider integrating vision-based motion 
capture with wearable inertial sensor technologies to improve the ac
curacy of these systems. This can help resolve challenges that vision- 
based methodologies face, such as occlusion and parallax errors, as 
these sensors do not rely on the field of view or resolution of the camera. 
At the same time, it can address current challenges that wearable inertial 
sensors face, such as motion artefacts and sensor placement variabilities 
[68], as the broader field of view (video data) can provide context for 
better spatial tracking of sensor location. Future studies may also 
include larger sample sizes of patients to increase the generalizability of 
findings. At the same time, future studies should seek to address the 
scalability challenges associated with increased video data volume, 
enabling widespread clinical adoption. Finally, this review recommends 
that future studies can adopt a more standardized approach to report key 
machine learning evaluation performance metrics, such as accuracy, 
precision, specificity, recall and area under the curve. This can enable 
better inter-study comparison of gait classification performance. 

7. Conclusion 

This review examined the available scientific evidence for the de
velopments in vision-based motion capture systems for the gait analysis 
of neurodegenerative diseases and its relevance to the clinical setting. 
Limited evidence with vision-based methodologies was found, with few 
studies providing high quality evidence. The greatest challenges with 
these studies are the use of small sample sizes and the inherent lack of 
evaluation blinding when designing computer vision algorithms. 
Nevertheless, this review contributes to the evidence base and aims to 
bridge the gap between clinical practice and the technology available. 
This review found that vision-based motion capture technology has the 
potential to provide quantification of gait, allow the expansion of gait 
assessment tools, remote gait monitoring and implementation as a point 
of care system. However, challenges, such as parallax errors, occlusion 
and small sample sizes affect the accuracy and validity of these studies. 
Moreover, a lack of consistency in reporting classification performance 
was found, making inter-study comparisons difficult. Moving forward, 
future studies using vision-based systems can consider using larger 
sample sizes and further real-world testing in clinical settings to improve 
the quality and generalizability of findings on the patient population. A 
standardized means of reporting classification performance metrics 
would also be a step in the right direction. Ultimately, vision-based 

motion can serve as a complementary tool to effectively provide key 
gait information and appropriate gait classification. This allows clini
cians to make informed decisions about the disease severity and tailor 
personalized treatment for effective care\ 
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M. Kruel, L.A. Peyré-Tartaruga, Gait parameters of Parkinson’s disease compared 
with healthy controls: a systematic review and meta-analysis, Sci. Rep. 11 (2021), 
https://doi.org/10.1038/s41598-020-80768-2. 

[27] J.N. Chee, B. Ye, S. Gregor, D. Berbrayer, A. Mihailidis, K.K. Patterson, Influence of 
multiple sclerosis on spatiotemporal gait parameters: a systematic review and 
meta-regression, Arch. Phys. Med Rehabil. 102 (2021) 1801–1815, https://doi. 
org/10.1016/j.apmr.2020.12.013. 

[28] J.M. Hausdorff, A. Lertratanakul, M.E. Cudkowicz, A.L. Peterson, D. Kaliton, A. 
L. Goldberger, Dynamic markers of altered gait rhythm in amyotrophic lateral 
sclerosis, J. Appl. Physiol. 88 (2000) 2045–2053, https://doi.org/10.1152/ 
jappl.2000.88.6.2045. 

[29] S.J. Pyo, H. Kim, I.S. Kim, Y.-M. Park, M.-J. Kim, H.M. Lee, S.-B. Koh, Quantitative 
gait analysis in patients with Huntington’s disease, J. Mov. Disord. 10 (2017) 
140–144, https://doi.org/10.14802/jmd.17041. 

[30] R. Summan, S.G. Pierce, C.N. Macleod, G. Dobie, T. Gears, W. Lester, P. Pritchett, 
P. Smyth, Spatial calibration of large volume photogrammetry based metrology 
systems, Measurement 68 (2015) 189–200, https://doi.org/10.1016/j. 
measurement.2015.02.054. 

[31] A. Patrizi, E. Pennestrì, P.P. Valentini, Comparison between low-cost marker-less 
and high-end marker-based motion capture systems for the computer-aided 
assessment of working ergonomics, Ergonomics 59 (2016) 155–162, https://doi. 
org/10.1080/00140139.2015.1057238. 

[32] N.M. Fiorentino, P.R. Atkins, M.J. Kutschke, J.M. Goebel, K.B. Foreman, A. 
E. Anderson, Soft tissue artifact causes significant errors in the calculation of joint 
angles and range of motion at the hip, Gait Posture 55 (2017) 184–190, https:// 
doi.org/10.1016/j.gaitpost.2017.03.033. 

[33] S.L. Colyer, M. Evans, D.P. Cosker, A.I.T. Salo, A review of the evolution of vision- 
based motion analysis and the integration of advanced computer vision methods 
towards developing a markerless system, Sports Med Open 4 (2018) 24, https:// 
doi.org/10.1186/s40798-018-0139-y. 

[34] L. Wang, T. Tan, H. Ning, W. Hu, Silhouette analysis-based gait recognition for 
human identification, IEEE Trans. Pattern Anal. Mach. Intell. 25 (2003) 
1505–1518, https://doi.org/10.1109/TPAMI.2003.1251144. 

[35] R.T. Collins, R. Gross, Jianbo Shi, Silhouette-based human identification from body 
shape and gait, Proc. Fifth IEEE Int. Conf. Autom. Face Gesture Recognit., IEEE 
(2002) 366–371, https://doi.org/10.1109/AFGR.2002.1004181. 

[36] T. Bouwmans, Traditional and recent approaches in background modeling for 
foreground detection: An overview, Comput. Sci. Rev. 11– 12 (2014) 31–66, 
https://doi.org/10.1016/j.cosrev.2014.04.001. 

[37] A. Agarwal, B. Triggs, Recovering 3D human pose from monocular images, IEEE 
Trans. Pattern Anal. Mach. Intell. 28 (2006) 44–58, https://doi.org/10.1109/ 
TPAMI.2006.21. 

[38] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, Y. Sheikh, OpenPose: Realtime Multi- 
Person 2D Pose Estimation using Part Affinity Fields, (2018). 

[39] S. Corazza, L. Mündermann, A.M. Chaudhari, T. Demattio, C. Cobelli, T. 
P. Andriacchi, A markerless motion capture system to study musculoskeletal 
biomechanics: visual hull and simulated annealing approach, Ann. Biomed. Eng. 
34 (2006) 1019–1029, https://doi.org/10.1007/s10439-006-9122-8. 

[40] S. Corazza, L. Mündermann, E. Gambaretto, G. Ferrigno, T.P. Andriacchi, 
Markerless motion capture through visual hull, articulated ICP and subject specific 
model generation, Int J. Comput. Vis. 87 (2010) 156–169, https://doi.org/ 
10.1007/s11263-009-0284-3. 

[41] P. Khera, N. Kumar, Role of machine learning in gait analysis: a review, J. Med. 
Eng. Technol. 44 (2020) 441–467, https://doi.org/10.1080/ 
03091902.2020.1822940. 

[42] J. Mei, C. Desrosiers, J. Frasnelli, Machine learning for the diagnosis of Parkinson’s 
disease: a review of literature, Front Aging Neurosci. 13 (2021), https://doi.org/ 
10.3389/fnagi.2021.633752. 

[43] M.J. Page, J.E. McKenzie, P.M. Bossuyt, I. Boutron, T.C. Hoffmann, C.D. Mulrow, 
L. Shamseer, J.M. Tetzlaff, E.A. Akl, S.E. Brennan, R. Chou, J. Glanville, J. 
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