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Probing scrambling and operator size distributions using random
mixed states and local measurements
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The dynamical spreading of quantum information through a many-body system, typically called scrambling,
is a complex process that has proven to be essential to describe many properties of out-of-equilibrium quantum
systems. Scrambling can, in principle, be fully characterized via the use of out-of-time-ordered correlation
functions, which are notoriously hard to access experimentally. In this work, we put forward an alternative
toolbox of measurement protocols to experimentally probe scrambling by accessing properties of the operator
size probability distribution, which tracks the size of the support of observables in a many-body system over time.
Our measurement protocols require the preparation of separable mixed states together with local operations and
measurements, and combine the tools of randomized operations, a modern development of near-term quantum
algorithms, with the use of mixed states, a standard tool in NMR experiments. We demonstrate how to efficiently
probe the probability-generating function of the operator distribution and discuss the challenges associated with
obtaining the moments of the operator distribution. We further show that manipulating the initial state of the
protocol allows us to directly obtain the individual elements of the distribution for small system sizes.
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I. INTRODUCTION

Understanding how quantum information spreads across
the degrees of freedom of a quantum system is a key part
of developing a comprehensive picture of nonequilibrium
quantum many-body physics. In this context, the notion of
scrambling has attracted much attention over the past years
due to its relevance in the study of closed-system thermal-
ization [1], quantum chaos [2], information retrieval in black
holes [3,4], and quantum algorithms [5]. Scrambling refers to
the dynamical delocalization of quantum information [6] and
can be diagnosed by the generation of entangled states from
initially separable ones, or. from the growth of initially local
operators [7].

An approach to characterizing scrambling from the unitary
evolution of an operator W (t ) in a many-body system is to
analyze the dynamics of so-called operator size distributions
{Pk (t )} [8–10]. These can be obtained by coarse-graining the
expansion of W (t ) in a complete operator basis, the choice of
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which depends on the nature of the system. In the case of sys-
tems of N spin- 1

2 particles, a natural operator basis is the set

of multibody Pauli operators PN = {1, σx, σy, σz}⊗N/
√

2N ,
which has dimension D = 4N and forms an orthonormal basis.
In the Heisenberg picture an operator W may at time t be
written as

W (t ) = U†(t )W U (t ) =
D−1∑
j=0

f [� j ; W (t )]� j, (1)

where U (t ) is the unitary time evolution operator from the
initial time t = 0 to time t and � j ∈ PN . Given this expan-
sion of W (t ), the operator size distribution is constructed by
grouping the elements of the exponentially large Pauli basis
according to their size s(�). Here the operator size corre-
sponds to the number of nonidentity operators in the Pauli
string (i.e., its Hamming weight) and thus 1 � s(�) � N such
that PN = ∪N

k=1Ck , where Ck = {� | s(�) = k}. The resulting
operator size distribution reads

Pk (t ) = 1

Tr[W †W ]

∑
�∈Ck

| f [�; W (t )]|2, (2)

and measures the size of the support of W (t ). It is easy to see
that

∑N
k=1 Pk (t ) = 1 for all times t , and hence the operator size

distribution can be regarded as a coarse-grained probability
distribution in the expansion coefficients of W (t ).

Of particular interest is the case where W (0) is a size-one
(i.e., single-body) Pauli operator such that Pk (0) = δk,1. As
the operator grows and information becomes scrambled, the

2643-1564/2024/6(1)/013309(15) 013309-1 Published by the American Physical Society

https://orcid.org/0000-0001-6302-7567
https://orcid.org/0009-0003-8414-2136
https://orcid.org/0000-0002-6229-7087
https://orcid.org/0000-0002-9035-3090
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.013309&domain=pdf&date_stamp=2024-03-21
https://doi.org/10.1103/PhysRevResearch.6.013309
https://creativecommons.org/licenses/by/4.0/


BLOCHER, CHINNI, OMANAKUTTAN, AND POGGI PHYSICAL REVIEW RESEARCH 6, 013309 (2024)

distribution shifts to higher values of k and grows in variance.
The dynamics of Pk (t ) have been studied for various many-
body models [8,10], and it holds a close connection to the
Krylov picture of operator growth [7,11].

While the scrambling dynamics in the system may be de-
scribed using the operator size distribution, it is not obvious
how to access this distribution experimentally. A complete
characterization of Pk (t ) for all k requires an exponential
amount of resources; this is clearly seen if one reconstructs
Pk (t ) from two-point correlation functions to obtain each of
the coefficients f [�;W (t )] = Tr[�W (t )] in Eq. (1). A partial
workaround is given by considering out-of-time-ordered cor-
relators (OTOCs) which take the form

F (W (t ), R) = 〈W †(t )R†(0)W (t )R(0)〉 . (3)

It has been shown that moments of Pk (t ) can be computed
by constructing averages of OTOCs over appropriate sets of
operators {Ri} [8,10,12,13]. However, accessing even a single
OTOC is often challenging in experiments due to the out-of-
time-ordered nature of Eq. (3) and typically requires the use
of many-body time-reversal operations [14–18] or auxiliary
systems [19]. In cases where OTOCs can be accessed without
these tools (see, for instance, the method in Ref. [20]), recon-
structing the moments of Pk (t ) requires the measurement of a
large number of OTOCs and the task becomes unfeasible for
high-order moments [10].

In this article we propose an alternative set of tools to
experimentally probe the operator size distribution which cir-
cumvents the use of OTOCs completely. We combine the use
of ensembles of initially separable mixed states with local
random operations and local measurements at the final time
in order to access a quantity G(t ) which is explicitly not an
OTOC, and hence we name this quantity a “NOTOC.” We
show that our measurement protocol, depending on the choice
of initial state ensemble, probes either the probability gen-
erating function (PGF) F (x, t ) = ∑

k Pk (t )xk of the operator
size distribution (method A) or its elements {Pk (t )} directly
(method B), as illustrated in Fig. 1. We demonstrate our meth-
ods numerically and show that the operator size distribution
can be accurately probed even when accounting for statistical
noise stemming from averaging over random operations and
from experimental imperfections. In our analysis of method
A, we discuss inherent shortcomings of the problem of invert-
ing the PGF to obtain Pk (t ) such as its sensitivity to noise,
and we show for the case of the Ising model that the PGF can
itself be seen as a good indicator of the presence of scrambling
in the system. For method B we discuss the efficiency of
the method as the system size N increases and show that
individual probabilities Pk (t ) can be reliably obtained as long
as k � N .

Our proposed measurement protocol connects to previous
works which focused on experimental schemes to diagnose
scrambling. In particular, method A recovers a procedure put
forward in Ref. [12] to measure operator growth in the special
case when the initial states are pure. Likewise, the use of
randomized operations to access properties of the operator
size distribution makes this proposal complementary to the
one in Ref. [20], where similar tools were used to measure
OTOCs instead. Finally, the NOTOC proposed here can be
seen as a generalization of the fidelity OTOC [1,14,15], which

FIG. 1. (a) Relationship between the operator size distribution
Pk (t ) of Eq. (2), out-of-time-ordered correlation functions (OTOCs),
and the NOTOC approach proposed in this article using local ex-
pectation values over random mixed states. OTOCs allow (indirect)
access of the moments of the operator distribution, while our pro-
posal allows to probe the probability generating function F (x) or the
individual probabilities directly, depending on the choice of initial
state ρ0. (b) Illustration of the operator evolution (above the dashed
line) and the proposed measurement protocol (below the dashed
line). The operator size distribution Pk (t ) is a property of an oper-
ator in the Heisenberg picture (and thus independent of a choice of
state). Our protocol proposes to access this property by measuring
expectation values 〈W (t )〉 = Tr[ρ(t )W ] after the time evolution of a
suitably chosen set of initial states ρ0.

has been widely studied due to its ease of accessibility in
experiments [21]. Our analysis reveals that this quantity is in-
herently connected to the operator size distribution, although
in a way that is fundamentally different from regular OTOCs
and that had not been revealed up to now to the best of our
knowledge.

The structure of this article is as follows: In Sec. II we
present the main tools to be used to probe the operator size
distribution Pk (t ), including the choice of initial states, ran-
domized operations and local measurements. Sections III and
IV discuss two methods of implementing the necessary state
preparation for our measurement protocol, with the method
of Sec. III using partially polarized qubit states to obtain the
probability-generating function for the operator size distribu-
tion, and the method of Sec. IV tailoring separable states to
obtain the probability distribution elements directly. In Sec. V
we compare our measurement protocol to previous results and
proposals in the literature, extend the NOTOC measurement
protocol to collective spin systems, and provide a general
discussion of the NOTOC toolbox. Finally, we conclude on
our work in Sec. VI and discuss possible future extensions.

II. NOTOC MEASUREMENT PROTOCOL

Our measurement protocol draws inspiration from the so-
called fidelity OTOCs, which are OTOCs of the form Eq. (3)
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where one chooses the operator R = ρ0 in Eq. (3) to be
the projector onto the pure initial state ρ0 [1,14,15]. Fidelity
OTOCs are experimentally accessible quantities as [21]

〈W †(t )R†(0)W (t )R(0)〉 ≡ | 〈W (t )〉 |2, (4)

and hence they require only the measurement of a single-time
expectation value. However, this identity holds only for pure
initial states, and the fidelity OTOCs for mixed initial states
takes on a more elaborate form, as discussed in Ref. [21].

Inspired by the simple form of the fidelity OTOC in Eq. (4)
as a squared expectation value of an operator W for a pure
state, we define the quantity of interest for our protocol as

G(t ) := | 〈W (t )〉 |2 = |Tr[ρ0W (t )]|2, (5)

with ρ0 being a generic mixed state. The quantity G(t ) defined
in Eq. (5) is equivalent to an OTOC only for pure states [22],
and to emphasize that G(t ) is related to fidelity OTOCs while
itself being a time-ordered correlation function at all times
and for all initial states, we will refer to G(t ) as a “NOTOC”
throughout this article. In the remainder of this section we will
demonstrate the utility of defining G(t ) of the form Eq. (5),
and in Sec. V we will comment further on its relation to
fidelity OTOCs.

Using Eq. (1) the NOTOC G(t ) may be written as

G(t ) =
∑

i

| f [�i; W (t )]|2 〈�i〉2

+
∑
i 
= j

f [�i; W (t )] f [� j ; W (t )]∗ 〈�i〉 〈� j〉∗ . (6)

We now consider a generic mixed state of the form

ρ0 = 1

d
1 +

∑
i

ri�i, (7)

for which 〈�i〉 = ri. We recall from Sec. I that Ck =
{� | s(�) = k} is the set of Pauli operators of size k. If we
were to engineer an ensemble of initial states {ρ0} of the form
Eq. (7) such that the state coefficients {ri} were independent,
identically distributed random variables with vanishing mean
ri = 0, the second term of Eq. (6) would vanish under av-
eraging over this ensemble. Furthermore, if we require the
state coefficients of the engineered initial state to have finite
variance r2

i = �k for �i ∈ Ck , then the averaged quantity then
reads

G(t ) =
∑

i

| f [�i; W (t )]|2 r2
i

+
∑
i 
= j

f [�i; W (t )] f [� j ; W (t )]∗ rir∗
j (8)

=
N∑

k=1

∑
�i∈Ck

| f [�i; W (t )]|2�k (9)

=
N∑

k=1

�kTr[W †W ]Pk (t ). (10)

Equation (10) reveals that G(t ) is a linear combination of
the elements of the probability distribution {Pk (t )}, with co-
efficients proportional to the variance �k times the 2-norm

Tr[W †W ] = ‖W ‖2
2 of the operator W . The probability distri-

bution {Pk (t )} may be extracted from Eq. (10) using several
methods, and we present two different measurement protocols
for systems of spin- 1

2 particles in the following Secs. III and
IV. Our measurement protocols provide experimental access
to the averaged NOTOC G(t ) and the probability distribution
{Pk} through engineering of the initial state ρ0 and subsequent
measurement of the expectation value 〈W (t )〉 = Tr[ρ(t )W ] at
the final time t . The main challenge thus lies in the preparation
of random initial states ρ0 whose coefficients {ri} must have
appropriate statistics.

The operator size distribution is an operator property in-
dependent of the initial state of the system, and hence the
Heisenberg picture lends itself nicely to the analysis of the
operator size distribution’s evolution in time. However, in the
NOTOC measurement protocol outlined above we probe the
operator size distribution using expectation values 〈W (t )〉ρ0

≡
Tr[ρ0W (t )], which depend on the choice of initial state ρ0. In
this way, the initial state is a control knob used by this protocol
to access properties of the operator. As expectation values
are quantities independent of the choice of picture, it is more
natural to describe our proposed experimental measurement
protocol in the Schrödinger picture as the time evolution of
an initial state ρ0 → ρ(t ), with which we first evaluate the
expectation value 〈W (t )〉ρ0

≡ Tr[ρ(t )W ], subsequently calcu-
late the NOTOC Eq. (5), and finally recover the averaged
NOTOC Eq. (10) by appropriate averaging over initial states.
The NOTOC measurement protocol is thus illustrated in this
way in Fig. 1(b), where the Heisenberg operator evolution is
shown above the dashed line, and our proposed measurement
protocol is illustrated below the dashed line.

III. METHOD A: ACCESSING THE PROBABILITY
GENERATING FUNCTION OF THE PROBABILITY

DISTRIBUTION

In this section we present an experimentally relevant mea-
surement protocol for obtaining the squared expectation value
Eq. (10) using mixed states similar to those used in NMR
together with random local operations [23]. The starting point
of our measurement protocol is the preparation of the product
state

ρini =
(
1 + εσz

2

)⊗N

(11)

= 1

d

⎛⎝1 + ε
∑

i

σ i
z + ε2

∑
i< j

σ i
zσ

j
z + · · ·

⎞⎠ (12)

= 1

d
1 +

N∑
k=1

εk

√
d

∑
�∈Cz

k

�, (13)

where each qubit is in a statistical mixture of being maximally
mixed 1 and polarized along the z axis, with the parame-
ter ε controlling the amount of polarization. In Eq. (13) we
have defined the subset Cz

k ⊂ Ck of size-k Pauli operators that
consist of only σz terms (e.g., 1 ⊗ σz ⊗ 1). The polarization
parameter ε takes values |ε| � 1, and we note that for ε = ±1
the initial state ρini is a pure state.
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To create a random state ρ0 for the experiment whose
expansion coefficients ri in Eq. (7) satisfy the appropriate
statistics for Eq. (10), we apply random local rotations to the
initial state Eq. (13) via the unitary Urot = ⊗N

i=1 U
(i)
rot ,

ρ0 = Urot ρini U†
rot (14)

= 1

d
1 +

N∑
k=1

εk

√
d

⎛⎝Urot

∑
�∈Cz

k

�U†
rot

⎞⎠ (15)

= 1

d
1 +

N∑
k=1

εk

√
d

∑
Q∈Ck

qQ Q, (16)

where U (i)
rot is a random rotation of the ith qubit that we will

discuss momentarily. In the last equality of Eq. (16) we ex-
panded Urot

∑
�∈Cz

k
�U†

rot on the Pauli operators Q ∈ Ck , as
the random local rotations do not change the operator size.
Comparing the form of Eq. (16) to that of Eq. (7), we make
the identification rQ = qQεk/

√
d for s(Q) = k. We choose

the random local rotations Urot such that the coefficients
{qQ} are independent, identically distributed random variables

with vanishing mean qQ = 0 and finite variance q2
Q = �k for

s(Q) = k. This yields rQ = 0 and r2
Q = ε2k�k/d , which is

consistent with the assumptions made in Sec. II. Substituting
this back into Eq. (10)—and choosing W to be a nonidentity
observable with trace Tr[W 2] = d [24]—we thus find aver-
aged squared expectation value,

G(ε, t ) =
N∑

k=1

Pk (t ) �k ε2k . (17)

Equation (17) is an (at-most) N th degree polynomial in ε2

with coefficients proportional to elements Pk (t ) of the prob-
ability distribution of interest. This form is reminiscent of a
PGF of the probability distribution {Pk (t )} [25], and we now
show that Eq. (17) is indeed a PGF by introducing the explicit
form of �k .

To obtain the correct statistics for the coefficients rQ, as
well as to ensure that all operators Q ∈ Ck are sampled for
all k, we propose to take the single-qubit rotation operator
U (i)

rot to be sampled from a uniform distribution over SU(2).
In each random instance the local rotation transforms the ith
site Pauli-Z as

σ i
z → U (i)

rotσ
i
zU

(i)†
rot =

∑
α

n(i)
α σ i

α, (18)

with α = x, y, z, with

n(i) = cos(φi ) sin(θi )x̂ + sin(φi ) sin(θi )ŷ + cos(θi )ẑ. (19)

The polar angle θi and azimuthal angle φi are thus random
variables taking values in the interval [0, π ) and [0, 2π ),
respectively.

The coefficients qQ of Eq. (16) are then expressible as
products of these random numbers n(i)

α , with all factors be-
ing independent of each other thanks to the local rotations
being uncorrelated. Taking each pair of angles (θi, φi ) to be
uniformly distributed over the sphere, one readily obtains that
nα = 0 leading to rQ = 0 as required by our protocol. Due to
symmetry the variance �k is expected to be independent of

α = x, y, z, and hence we can compute it for any component.
We find that

n2
z =

∫
d�P(θ, φ) cos2(θ ) = 1

3
, (20)

and thus we get a factor of a 1/3 for each nonidentity operator
in a given multibody Pauli operator Q. This leads to the
variance �k = 1/3k which in turn implies that

r2
Q = 1

d

ε2k

3k
. (21)

Using the result Eq. (21) and letting x := ε2/3 for nota-
tional convenience, Eq. (17) may be rewritten as

F (x, t ) := G(
√

3x, t ) =
N∑

k=1

Pk (t ) xk, (22)

which is the PGF for the probability distribution {Pk (t )} [25].
From the PGF one may extract information about the corre-
sponding probability distribution, including the elements and
moments of the probability distribution.

We point out that the uniform sampling of the continuous
group SU(2) is not strictly necessary, as it suffices to sample
over a finite set of rotations given the correct first and second
moments. This is equivalent to constructing a unitary 2-design
and sampling the local operations from it and can be done by
choosing Urot such that each qubit takes on one of the values
±X , ±Y , and ±Z in each shot, with a total of 6N unique
rotation unitaries Urot needed to obtain Eq. (17) without ap-
proximation. This shortcut to uniform averaging also results in
�k = 1/3k and ri = 0, and thus Eq. (22) is unchanged when
using this method of averaging over a discrete set of rotations.

A. Application of the measurement protocol

In the remainder of this section we demonstrate via nu-
merical simulations our measurement protocol for the case of
the one-dimensional (1D) tilted field Ising model. We present
results on how to obtain the PGF approximately using a subset
of random rotations and show that the PGF may be used as
an indicator of quantum information scrambling. Finally, we
discuss an experimentally relevant method of extracting the
elements of the probability distribution from the PGF and
discuss its sensitivity to noise.

The Hamiltonian for the 1D tilted field Ising model is given
by

HIsing(θ ) = J
N−1∑
i=1

σ i
zσ

i+1
z + B

N∑
i=1

(
σ i

x cos θ + σ i
z sin θ

)
, (23)

where the operators σ i
α are the usual Pauli operators on site

i with α = x, y, z. The model describes N spin- 1
2 particles

interacting in one dimension via nearest-neighbor interactions
in the presence of an external magnetic field with both a
transverse and longitudinal component which are parameter-
ized by the angle 0 � θ � π/2. This model is a well-known
platform for studies of many-body quantum chaos [10,26]
since it is nonintegrable for generic choices of θ and presents
two integrable limits at θ = 0 (where the model reduces to
the usual transverse field Ising model) and θ = π/2 (where
the Hamiltonian is diagonal in the z basis). The scrambling
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FIG. 2. Exact PGF approximated using a randomized subset of
rotations for W (0) = σ (1)

y . Solid black lines are the exact PGF, while
colored dots denote the PGF obtained using a subset of 1000 random
rotations. Results are shown for several choices of the state parameter
ε [see the legend in (b)] and for both the integrable case θ = 0
(a) and the highly chaotic case θ = π/6 (b). For the case ε = 1 the
blue crosses show the PGF obtained using a subset of 100 random
rotations.

properties of the dynamics generated by the Hamiltonian
Eq. (23) have also been studied in relation to their quantum
chaos characteristics. For instance, it has been established that
even the integrable limit θ = 0 can lead to scrambling, and
in this case the mean operator size typically presents long-
lived oscillations for finite system sizes. The system typically
shows the highest degree of chaoticity for θ � π/6, where the
operator sizes grow quickly and then equilibrate, and temporal
fluctuations are suppressed [10]. Throughout the following we
will consider the case J = B with N = 6 qubits.

In Figs. 2(a) and 2(b) the solid lines behind the colored
dots show the exact PGF F (x, t ) for the edge site operator
W (0) = σ (1)

y ≡ σy ⊗ 1 ⊗ . . . ⊗ 1 for several choices of the
state parameter ε. We consider the integrable case θ = 0 (a)
and the chaotic case θ = π/6 (b) of the tilted field Ising model
Eq. (23). For all t the two limiting cases F (x = 1, t ) = 1 and
F (x = 0, t ) = 0, with x = ε2/3, follow from the definition of
the PGF Eq. (22). We observe in Fig. 2 that the primary effect
of varying the state parameter ε in the considered parameter
range is a change of amplitude of the PGF.

The colored dots (blue crosses) in the two panels of Fig. 2
show the PGF extracted using a random subset of 1000 (100)
rotations from the 6N = 46656 rotations needed for the exact
result. Figure 2 demonstrates that we may obtain the PGF
to very good accuracy using a heavily reduced number of
rotations compared to the exact result both in the integrable
case θ = 0 and the chaotic case θ = π/6. This is encouraging

FIG. 3. Exact PGF F (x, t ) illustrated for several times t and B-
field angles θ as a function of the parameter x. Solid lines are the PGF
for N = 6 qubits and, for comparison, the red dashed line is the PGF
for a Haar-random probability distribution. For θ = π/6 the curves
for Jt = 5 and Jt = 10 coincide.

for the experimental feasibility of implementing the present
protocol. See Appendix C 1 for further details on the error in-
duced by evaluating the PGF for a random subset of rotations.

In Ref. [10] moments of the operator size probability
distribution were used as signatures of quantum information
scrambling in the tilted field Ising model, with the integrable
case θ = 0 leading to oscillatory dynamics of the mean op-
erator size, whereas in the chaotic case θ = π/6 the mean
operator size grew and saturated only after initial oscillations.
When comparing the curves for θ = 0 with the corresponding
curves in θ = π/6 in Fig. 2, we see a clear difference in
behavior for Jt � 4, with θ = 0 curves at later times ex-
hibiting oscillations that are not present for θ = π/6. In the
following we thus explore whether the PGF may be used as
an indicator of scrambling, similar to the mean operator size
used in Ref. [10].

Figure 3 illustrates the PGF F (x, t ) for different B-field
angles θ and times t as a function of the PGF parameter x. For
the initial time t = 0 the PGF is linear in x independent of the
choice of θ ; however, at finite times t the behavior of the PGF
is significantly different across different θs. In the chaotic case
θ = π/6 the PGF F (x, t ) approximately coincides with the
result obtained from a Haar random state (dashed red line)
for all displayed times greater than Jt = 2.52, indicating a
fast equilibration. For θ = π/3 the solid curves have yet to
equilibrate at Jt = 10 (light blue curve). The two integrable
cases θ = 0 and θ = π/2 display oscillatory behavior in the
PGF F (x, t ) for a given x, similarly to what was observed in
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FIG. 4. (a) Time average F (x) and (b) fluctuations �F (x)2 of
the PGF F (x, t ) as a function of the B-field angle θ , plotted for three
values of x corresponding to ε = 1 (red), ε = √

2/3 (blue), and ε =√
1/3 (black curve). The time average and fluctuations are calculated

for 5 � Jt � 80 to exclude the initial transient dynamics from the
results. In (a) we compare the time average F (x) (solid lines) with
the PGF value for a Haar-random probability distribution (dashed
lines).

Fig. 2, e.g., the dark blue Jt = 2.52 curve is below both the
black Jt = 0 curve and the light blue Jt = 10 curve for all x
in both cases. We also do not observe an equilibration of the
PGF to the result for the Haar random state.

While the PGF F (x, t ) primarily serves as a quantity from
which one may extract information about the corresponding
probability distribution, we now illustrate how the PGF itself
may be used to characterize quantum information scrambling.
We propose to do this by analyzing the time average of the
PGF for a fixed argument x,

F (x) = 1

t f − ti

∫ t f

ti

F (x, t )dt ′, (24)

and the time-averaged temporal fluctuations,

�F (x)2 = 1

t f − ti

∫ t f

ti

[
F (x, t ′) − F (x)

]2
dt ′. (25)

In Ref. [10] we studied analog constructions for the mean
operator size (i.e., the first moment of the operator size distri-
bution) and found that they allowed to distinguish different
scrambling and quantum chaos regimes of this model. In
Fig. 4(a) we show the time average F (x) (solid lines) as a
function of the magnetic field angle θ . For different accessible
values of x we see that that F (x) dips in the highly chaotic
regime and grows near the integrable limits. This behavior
originates in the fact that the chaotic case shows quick scram-
bling and subsequent equilibration to the Haar-random value
(dashed lines), cf. Eq. (35), where the PGF is closer to 0, while
the integrable cases show the largest typical values of the PGF,
as was noted for θ = 0 in the discussion of Fig. 2. A similar
functional form is observed for the time-averaged temporal

fluctuations �F (x)2 which we show in Fig. 4(b). This indi-
cates that temporal fluctuations of the PGF are suppressed in
the chaotic and enhanced in the integrable cases, a behavior
also observed also for the mean operator size in Fig. 3 of
Ref. [10].

Our present findings thus show that it is not necessary
to extract the probability distribution {Pk (t )} from the PGF
F (x, t ) in order to characterize the scrambling of quantum
information for the considered Ising model. Rather, the time
average and time fluctuations of the PGF are themselves good
indicators of the presence of scrambling. As demonstrated
previously in Fig. 2 the PGF can be approximated to good
accuracy using a heavily reduced number of random rotations,
and as the PGF is not itself sensitive to the noise unlike
quantities extracted from the PGF (which we will comment on
in the following Sec. III B), the PGF provides an experimen-
tally relevant quantity for characterizing quantum information
scrambling. The results of Figs. 3 and 4 further emphasize the
utility of the PGF itself as a quantifier of quantum information
scrambling.

B. Extracting probability distribution elements
and moments from the PGF

In the absence of noise on the PGF F (x, t ), e.g., in a
numerical study of the exact PGF, the corresponding proba-
bility distribution {Pk (t )} can be extracted from the PGF using
Eq. (22) in the following way. One first calculates the PGF
F (x, t ) for N different values of x and then inverts the system
of equations Eq. (22) to obtain the elements Pk (t ) of the prob-
ability distribution. However, in the presence of a noisy PGF
due to, e.g., a finite number of sampled rotations or experi-
mental imperfections, we find that the procedure of inverting
Eq. (22) leads to high sensitivity to noise, which we associate
with a poorly conditioned linear system of equations.

For a more systematic approach we can use well-known
properties of the PGF to recover the full probability distribu-
tion. From the definition of the PGF Eq. (22), one finds that
[25]

Pk (t ) = 1

k!

∂

∂x
F (x = 0, t ), (26)

i.e., the elements {Pk (t )} of the probability distribution are
accessible through the evaluation of derivatives of the PGF
with respect to the parameter x at x = 0. Likewise the mo-
ments of the probability distribution may be accessed through
derivatives of the PGF at x = 1:

E[X k (t )] =
(

x
∂

∂x

)k

F (x = 1, t ). (27)

In the following we will focus on the extraction of the ele-
ments of the probability distribution via Eq. (26). We leave the
discussion of the moment extraction for later in this section.

The nth derivative of the PGF F (x, t ) at x = 0 may be
implemented for both numerical studies and in experiments
using a forward-only finite-difference method of the form [27]

F (n)(x = 0, t ) = (�x)−n
n+a−1∑

m=0

c(n,a)
m F (m �x, t ) + O(�xa),

(28)
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FIG. 5. Time-averaged error �Pη

k [see Eq. (30)] for the elements
of the probability distribution {Pk}, averaged over 0 � Jt � 10. We
have used multiplicative noise with strength η = 10−2 (upper panel)
and η = 10−4 (lower panel), added to the PGF F (x, t ) before using
finite-difference derivatives with step size �x and accuracy a = 2 to
extract the noisy probability distribution elements {Pη

k (t )}. In both
panels the curves from top to bottom at �x = 0.02 are the time-
averaged errors �Pη

k for P6 (black dashed), P5 (blue dashed), P4 (red
dashed), P3 (black solid), P2 (blue solid), and P1 (red solid), averaged
over 100 noise realizations.

where a is the accuracy of the finite-difference method. We
leave the details of our implementation of the forward-only
finite-difference method to Appendix A. In practice, apply-
ing this method implies preparing several states of the form
Eq. (13) with various levels of purity (controlled by the param-
eter ε). To explore the experimental feasibility of extracting
the probability distribution elements from the PGF, in the
following we characterize the sensitivity of the method to
noise. The noise may have origin in an approximative PGF
due to choosing a reduced subset of rotations, as discussed
in Sec. III A, or stem from experimental imperfections. We
simulate the effect of the noise in the following way. First,
the exact PGF F (x, t ) is calculated, on top of which we add
noise. The noise is assumed to be Gaussian and multiplicative
in nature [28], and hence we write the noisy PGF as

F η(x, t ) = [1 + δ(η)]F (x, t ), (29)

where δ(η) ∼ N (0, η) is a normal-distributed number with
vanishing mean and variance η2. From the noisy PGF we then
use Eq. (28) to extract the elements {Pη

k (t )} of the probability
distribution in the presence of noise.

We now consider the N = 6 transverse field Ising model
with J = B and θ = 0. In Fig. 5 we show for the operator
W (0) = σ (1)

y the time-averaged error of the extracted proba-
bility distribution elements

�Pη

k = 1

T

∫ T

0
dt

∣∣Pη

k (t ) − P0
k (t )

∣∣, (30)

as a function of the finite-difference step size �x. The error
is calculated by comparing the elements Pη

k (t ) extracted from
the noisy PGF with the exact elements P0

k (t ) and has been av-
eraged over 100 realizations of the Gaussian distributed noise

δ(η). An accuracy of a = 1 was used for the finite-difference
method; see details in Appendix A.

When using finite-difference methods, there are two major
sources of error: truncation errors associated with the accu-
racy a of the method and rounding errors due to uncertainty
on the input function (in the present case the rounding error
is due to the noise added to the PGF) [27]. The former error
prefers �x as small as possible, while the latter prefers larger
�x. Hence, in choosing the step size �x, one has to balance
the contributions from the two errors. We observe for the case
η = 10−2 in Fig. 5 that there exists step sizes �x for which
the first two elements P1 and P2 can be extracted with rea-
sonable errors; for P1 the time-averaged error is much smaller
than unity for all choices of distance �x. For higher k the
errors exceed 10−1 for all choices of �x and is dominated by
rounding errors [27]. We note here that the step size �x is
upper bounded by (1/3)/(n + a − 1), as we need to sample
(n + a − 1) points between x = 0 and x = 1/3.

By decreasing the noise amplitude by two orders of mag-
nitude to η = 10−4, we observe in the lower panel of Fig. 5
that choosing �x � 0.03 yields time-averaged errors smaller
than 10−1 for the k � 3 elements, while the k � 4 elements
of the probability distribution still carry too-large errors to be
usable for the analysis of scrambling. We thus see that the
above derivative-based method [Eq. (26)] of extracting the
elements of the probability distribution becomes increasingly
sensitive to noise with the degree of the derivative one needs
to evaluate, and even for highly precise measurements of the
PGF F (x, t ) the method Eq. (26) of extracting the probability
distribution from the PGF is too sensitive to noise to allow us
access to Pk for k � 4.

As a consequence of the high sensitivity to noise—whether
the noise originates in experimental imperfections or an ap-
proximate PGF due to a finite number of sampled rotations—it
does not seem experimentally feasible to extract the probabil-
ity distribution elements from the PGF. Instead, one should
use a protocol dedicated to the extraction of the probability
distribution elements. To this end we present in Sec. IV an
experimentally relevant protocol that is able to access the
elements of the probability distribution without using the PGF.

Finally, we comment on the extraction of the moments
of the probability distribution using Eq. (27). Accessing
the moments of the probability distribution using the previ-
ously described finite-difference method requires one to create
states with x > 1/3 to approximate the derivative. However,
with the constraint of |ε| � 1, it is impossible to access x >

1/3 through the procedure outlined in this section. If one
could engineer an ensemble of correlated initial states, then
the variance �k could possibly be manipulated sufficiently to
allow access to values of x > 1/3. However, in the present
work we do not investigate this further and leave it for possible
future extensions of this work.

IV. METHOD B: ACCESSING ELEMENTS
OF THE PROBABILITY DISTRIBUTION FOR SMALL

OPERATOR SIZES

In the previous Sec. III we presented a measurement pro-
tocol that can access the operator size probability distribution
{Pk (t )} by measuring the PGF F (x, t ) in Eq. (22). Here we
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return to the general result in Eq. (10) and develop an alter-
nate NOTOC measurement protocol to access the individual
probabilities. This is achieved by employing a different choice
of initial state that replaces the one in Eq. (13). The protocol
will provide a direct way of obtaining the probabilities and
bypasses the sensitivity issues encountered when trying to
invert the PGF.

In order to directly access Pk for a given 1 � k � N , we
choose a subset Mk of k particles in the system and prepare
them the classically correlated state

ρ
(k)
Z = 1

2k

(
Ik +

k⊗
i=1

Zi

)
, (31)

while the other N − k particles are left in a maximally mixed
state. The resulting state is clearly unentangled as it can be
produced as a statistical mixture of product states in the com-
putational basis. Crucially, it has the desired property of being
written solely in terms of weight-k operators, as discussed in
Sec. II. Thus we may proceed in a similar fashion to method
A: We apply a round of uniformly chosen random rotations on
each of the particles in Mk . The resulting full state takes the
form

ρ0 = 1

d

⎡⎣1 +
∑

Q∈Ck (Mk )

qQQ

⎤⎦, (32)

where the modified set Ck (Mk ) is composed of all k-body
Pauli operators acting on the particles in Mk . The application
of random, local rotations ensures that the coefficients qQ

are independent, identically distributed random variables with
mean qQ = 0 and variance q2

Q = 1/3k . It follows from Eq. (9)
that

G(t )Mk
= 1

3k

∑
Q∈Ck (Mk )

| f [Q;W (t )]|2, (33)

and thus we find

Pk (t ) = 3k
∑
Mk

G(t )Mk
. (34)

In order to obtain Pk (t ) exactly one needs to obtain G(t ) for
all possible subsets of Mk of k particles, thus requiring

(N
k

)
repetitions of the protocol. While this is in general inefficient,
it can be feasible as long as k and N are not too large. In
practice, the number of initial states can be reduced in at
least two ways. One option is to approximate the sum in
Eq. (34) by randomly sampling a reduced number of sets
Mk . Alternatively, one can exploit symmetries of the system.
For instance, the Hamiltonian in Eq. (23) has a reflection
symmetry with respect to the middle of the chain which can
be easily leveraged to reduce the state count by a factor of
2. If the system has a full translational symmetry, then the
state count can be reduced by a factor of N . The procedure to
achieve this is described in the Appendix B.

In the following we present numerical results that demon-
strate this method’s ability to reconstruct Pk (t ) for various
instances of the tilted field Ising model introduced in Sec. III A
with N = 6 particles. We choose the initial operator to be
W (0) = σ (1)

x . Results are obtained by using all possible
choices of Mk for each k and by sampling over Mrot re-

FIG. 6. Application of Method B to obtaining the operator size
distribution {Pk (t )} for the case of the Ising model of Eq. (23) with
N = 6 and J/B = 1. Each panel shows a different value of k =
1, . . . , 6. Full lines correspond exact numerical results obtained by
solving the Heisenberg evolution of the initial operator, here chosen
to be W (0) = σ (1)

x . Symbols correspond to numerical simulations of
Method B (Sec. IV) with different choices of the number of sampled
rotations Mrot = 100 (circles) and Mrot = 500 (crosses). Different
colors denote different regimes of the model: integrable case θ = 0
(blue) and chaotic case (θ = π/6) (red).

alizations of randomized rotations. In Fig. 6 it can be seen
that the dynamics of each size probability Pk (t ) is faithfully
reproduced by the present method, in some cases using as little
as Mrot = 100 rotations. For larger operator sizes k � 4 the ef-
fects of finite sampling are more pronounced; however, this is
to be expected as the typical probabilities are also smaller. The
cases displayed in the figure correspond to θ = 0 (integrable
transverse field model, blue curves and symbols) and θ = π/6
(chaotic model, red curves and symbols), and it can be readily
seen that the protocol accesses the typical features expected
in both cases, namely a fast spread of the operators (as seen
in the decay of P1(t ) at short times), a subsequent oscillatory
behavior for θ = 0, and equilibration for θ = π/6.

We note that the method presented in this section will
not be feasible to obtain the full probability distribution for
large system sizes N � 1, since at some point an exponential
number of the subsets Mk’s would be required to exactly
recover them from Eq. (34). However, this method can be used
to verify whether a system a system has scrambled to k-body
operators as a long as k ∼ O(1). An alternative benchmark
is to compare the values of the obtained Pk’s with the ones
corresponding to Haar-random evolution, i.e.,

PHaar
k =

(
N

k

)
3k

d2 − 1
, (35)
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where d = 2N (see Refs. [10,12] for additional details). We
show these values as gray dashed lines in each of the plots
of Fig. 6, where we observe that the observable tends to
equilibrate to these values in the chaotic regime (θ = π/6)
of the model.

V. COMPARISON AND DISCUSSION

A. Extensions to other systems

In this section we present an extension of the NOTOC
measurement protocol introduced in Sec. II to collective spin
systems, where every spin interacts with every other spin in
the system. This class of systems preserves J2 = J2

x + J2
y +

J2
z , where Ji = ∑

k σ
(k)
i is the collective spin operator. Some

well-known Hamiltonians of this type include p-spin mod-
els (p = 2 case is referred to as the Lipkin-Meshkov-Glick
model) and the quantum kicked top model [29–31]. The dy-
namics of these models is often studied in the symmetric
subspace, the subspace of the whole Hilbert space associated
with J = N/2 quantum number where N is the number of
spins. The dimension of this subspace increases linearly with
the number of spins in the system, dss = 2J + 1 = N + 1.

It is natural to study scrambling in this type of system by
decomposing the time-evolved operators in a basis associated
with the polynomials of collective spin operators, referred to
as the spherical tensor operator basis [10,32]. A spherical ten-
sor operator T (k)

q is an operator that transforms under rotations
in the same manner as spherical harmonics [33],

D(α, β, γ )T (k)
q D†(α, β, γ ) =

k∑
q′=−k

D(k)
q′q(α, β, γ )T (k)

q′ , (36)

where D(α, β, γ ) = e−iJzαe−iJyβe−iJzγ and therefore
D(k)

q′q(α, β, γ ) ≡ 〈k, q′|D(α, β, γ )|k, q〉. The explicit form
of the spherical tensor operators is given by [32]

T (k)
q (J ) =

√
2k + 1

2J + 1

J∑
m,m′=−J

CJ m′
J m;k q|J, m′〉〈J, m|, (37)

where CJ m′
J m;k q = 〈J, m′|J, m; k, q〉 is a Clebsch–Gordan coef-

ficient, and q = {−k,−k + 1, . . . , k} for a given rank of the
tensor operator k = {0, 1, . . . , N}. These operators form an
orthonormal basis Tr[(T (k′ )

q′ )†T (k)
q ] = δk,k′δq,q′ that spans the

Hilbert space associated with the symmetric subspace. Note
that a kth rank tensor operator is simply a kth-order polyno-
mial of collective spin operators, and hence the basis consists
of polynomials of collective spin operators ranging from order
0 to order N . The rank of these operators can be used to con-
struct the operator size distribution for this class of systems,
similarly to the operator size (Hamming weight) used for the
Pauli basis. It is then natural to analyze the dynamics of the
system by considering an operator of a particular rank k at
the initial time and characterizing the scrambling dynamics
of the system by considering for each tensor rank k the time
evolution of the element Pk (t ) of the operator size distribution.

In the following we describe the details of a NOTOC mea-
surement protocol for collective spin systems that can access
the elements Pk (t ) of the operator size distribution for small
operator sizes. As in Sec. II we require the initial state to be

prepared from an ensemble that satisfies ri = 0 and r2
i = �k

in Eq. (7). The nonzero coefficients ri are here associated with
a particular rank k in the expansion of the density operator in
the spherical tensor operator basis {T (k)

q }. To obtain states that
satisfy these properties for the expansion coefficients, we start
with a mixed state given by

ρ̃0 = 1

dss

[
1 + 1

e0
T (k)

0

]
, (38)

where k > 0; e0 is the absolute value of the smallest eigen-
value of T (k)

0 , which is used to ensure the semidefiniteness of
the density operator. Note that T (k)

0 is a kth-order polynomial
in Jz. For instance, T (1)

0 = c(1)
0 Jz and T (2)

0 = c(0)
2 [3J2

z − J (J +
1)] where c(1)

0 and c(2)
0 are normalization coefficients. For

k = 1 the state ρ̃0 is a thermal equilibrium state of a system
placed in an external magnetic field at high temperatures,
ρ = 1

d (1 + εJz ) where ε � 1 [34]. Higher-order states could
potentially be prepared as equilibrium states of a system with
Hamiltonian consisting of higher-order Jz terms.

Applying global rotations of the form D(φ, θ ) = D(α =
φ, β = θ, γ = 0) = e−iJzφe−iJyθ on the state ρ̃0 leads to

ρ0 = D(φ, θ ) ρ̃0 D†(φ, θ )

= 1

dss

[
1 + 1

e0

k∑
q′=−k

〈k, q′|D(φ, θ )|k, 0〉 T (k)
q′

]

≡ 1

dss
1 +

k∑
q′=−k

rk,q′ T (k)
q′ , (39)

where rk,q′ = (e0dss)−1〈k, q′|D(φ, θ )|k, 0〉, and the angles θ

and φ are sampled randomly from a uniform distribution on
the surface of a sphere. This state has zero mean and nonzero
variance [35] as expected,

rk,q′ =
∫

d� rk,q′ (φ, θ ) = 1

e0dss
〈k, q′|D(φ, θ )|k, 0〉 = 0,

(40)

r2
k,q′ =

∫
d� r2

k,q′ (φ, θ ) = 1

e2
0d2

ss

|〈k, q′|D(φ, θ )|k, 0〉|2

= 1

e2
0d2

ss

4π

2k + 1
, (41)

where d� = sin θdθdφ. Equation (41) is analogous to
Eq. (21) in that the expression for the variance depends only
on a coarse-grained property of the operator basis element,
namely the operator size for the Pauli basis and the operator
rank for the spherical tensor basis. Hence we have

Pk (t ) = 1

‖W ‖2
2 r2

k,q′
| 〈W (t )〉 |2, (42)

where W is the operator of interest. This result shows that
method B of Sec. IV can be naturally adapted to collective
spin systems. In general, the procedure shown in this sec-
tion illustrates how to choose a combination of initial states
and randomized operations tailored to the choice of operator
basis such that the average NOTOC connects to operator size
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distributions. Notice that N + 1 repetitions of the above proto-
col for different k will provide us probabilities associated with
all operator sizes. However, the state in Eq. (38) is not easily
accessible for higher values of k, so this protocol might only
be suitable for small system sizes.

B. Relation to previous proposals

The toolbox presented in Sec. II presents some noteworthy
connections with previous works which have studied how to
diagnose complex many-body dynamics in different settings.
For instance, Qi et al. [12] proposed a method to probe the
growth of an operator O in quantum quench experiments
using pure product states of qudits (of local dimension dL)
followed by random local operations. The authors showed that
the variance δO(t )2 of the expectation value 〈O(t )〉 over the
random realizations yields

δO(t )2 = Tr(O2)

dN
L

F

(
x = 1

dL + 1
, t

)
, (43)

where F (x, t ) is the probability-generating function associ-
ated with the operator size distribution of O(t ). For qubits
dL = 2 and so the method probes the PGF at x = 1/3. This
is exactly the case for the NOTOC when choosing states of
the form proposed in method A (Sec. III) using pure states
(ε = 1), see Eq. (22). Therefore, our proposed method A
recovers the protocol of Ref. [12] for the case of pure states
and generalizes it by showing that the PGF can be sampled
in a continuum of values x � 1/3 by using mixed states of
qubits. It remains to be studied whether this generalization
carries over to the case of qudits with dL > 2. Additionally,
these methods do not allow one to access x > 1/3 directly
and it is unclear whether the toolbox of Sec. II provides a way
around this by using a clever choice of initial states. Regard-
ing this aspect, we point out that a recent work proposes an
alternative method to access the PGF F (x, t ) (in principle for
any x) using a single-particle mixed states [similar in form
to Eq. (31) when k = 1] and resorting to forward U (t ) and
backward U †(t ) evolution. Importantly, the analysis we pre-
sented in Sec. III B concerning the large sensitivity to noise of
the process of obtaining the operator distribution {Pk (t )} from
its PGF F (x, t ) applies to all methods that aim at obtaining
the PGF. Our findings indicate that obtaining the distribution
from the PGF might be unfeasible in experiments, but also
show that properties of the PGF itself could be used a probe
for scrambling directly. More detailed work should be carried
out to explore this further.

The idea of using mixed states to probe properties of opera-
tor evolution was also used recently by Peng et al. in Ref. [23],
where the goal was to measure single-site two-time correla-
tion functions of the form

∑
i Tr[σ (i)

z (0) σ (i)
z (t )] in an NMR

experiment. This measurement was carried out by first prepar-
ing the weakly polarized initial state ρ0 ∝ [1 + ε

∑
i σ

(i)
z ],

then allowing this initial state to become locally randomized
by the effect of on-site disorder, and ultimately measuring a
tunable observable using inductive measurements, rotations,
and on-site disorder. An analogous method for measuring
two-site two-time correlation functions was also proposed by
the authors. The measurement protocol proposed in Sec. III
of the present work shares significant overlap in methodol-

ogy with that of Ref. [23], however the goals of the two
measurement protocols differ and thus the prepared random
mixed states and ultimate measurements are also different.
For the purpose of extracting the operator size distribution, we
note that by using the two-time correlation function studied in
Ref. [23] one will have to extend the method of Ref. [23] to
all m-site correlation functions, with m � N . This will likely
not be feasible due to the nonlocal nature of the operators
to be measured, as well as the issue of the exponentially
growing number of operators one needs to measure which was
discussed in Sec. IV for our proposed measurement protocol.

Finally, we comment on the connection between our pro-
posal and that of Vermersch et al. [20], where the authors
propose a way to measure OTOCs without using time-reversal
operations or auxiliary systems. Instead, their proposal is
based on performing randomized unitaries on a set of initial
states and extracting the OTOCs from the statistical corre-
lations between the measurement results. In principle, this
method allows one to reconstruct the operator size distribution
if one repeats the procedure for (exponentially many) choices
of the operator R in Eq. (3). This can be achieved by using
averages of OTOCs to obtain the moments of the {Pk (t )}
distribution, as outlined in Sec. VI of Ref. [10]. In contrast,
our method can be seen as a way of using similar tools (i.e.,
preparation of product states, randomized local operations,
and local measurements) to probe the operator size distribu-
tion directly, thus bypassing the calculation of OTOCs.

C. Relation to fidelity OTOCs

Finally, we discuss the physical interpretation of the dif-
ferent tools and quantities used to study quantum information
scrambling. The first aspect is related to the fidelity OTOCs,
introduced in Sec. II, which are a class of correlation functions
obtained from the usual OTOCs of the form in Eq. (3) by
choosing the early-time operator R to be the projector onto
the initial state R = ρ0. The use of fidelity OTOCs attracted
widespread attention in the community because they are tech-
nically an OTOC but can be measured as a single expectation
value of a (often) local operator W when the initial state is
pure, ρ0 = |ψ0〉 〈ψ0| [21]. Fidelity OTOCs have interesting
connections to quantities like the quantum Fisher information
[1] and the Loschmidt echo [36].

The fact that typically ρ0 is a nonlocal operator makes the
fidelity OTOC relinquish the usual interpretation of OTOCs as
measures of information scrambling. In particular, the relation
between OTOCs involving Pauli operators and moments of
the operator size distributions [6,10] does not apply to fi-
delity OTOCs. However, our present work shows that fidelity
OTOCs are indeed connected fundamentally to operator size
distributions if one takes the initial pure state |ψ0〉 to be a
product state and then considers the average fidelity OTOC
over many realizations of local random rotations on the initial
state.

VI. CONCLUSION

In this article we have proposed a measurement protocol
for probing quantum information scrambling by measuring
operator size distributions. Our measurement protocol re-
quires the preparation of separable mixed states followed by
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local operations and final-time measurements of local oper-
ators, and circumvents the typical use of OTOCs to probe
scrambling properties [37,38]. We have demonstrated that the
choice of initial separable mixed states in our measurement
protocol provides multiple ways to access the operator size
distribution, and we comment on the experimental feasibility
for two particular methods, one based on first extracting the
probability-generating function for the operator size distribu-
tion, and the other focused on obtaining the elements of the
operator size distribution directly.

The application of our measurement protocol is illustrated
in detail for the 1D tilted field Ising model, a well-known
platform for studying many-body quantum chaos [26,39,40].
We numerically demonstrate the characterization of quantum
information scrambling for this model using our proposed
measurement protocol. We have related our proposed protocol
with well-established methods of characterizing scrambling,
including those based on OTOCs, and were able to establish
connections between the well-established fidelity OTOC and
operator size distributions using our results presented in this
article. Finally, we have exemplified the extension of our
measurement protocol to other types of quantum systems by
considering our protocol for the case of collective spin sys-
tems. The collective spin case emphasizes further the role that
state preparation plays in our measurement protocol.

In the discussion of our proposed measurement protocol’s
connection to the PGF, we found that the extraction of mo-
ments of the operator size distribution was not possible due
to constraints on the prepared initial states that prevent us
from accessing x > 1/3 in the probability-generating function
F (x). From preliminary numerical results we expect that the
extraction of the first and second moments of the operator size
distribution would be both resilient to noise and reasonable to
implement in experiment if one could obtain values of x >

1/3, hence finding a way to prepare initial states allowing the
extraction of moments of the operator size distribution would
be an obvious extension of the present work. This potential
extension should be compared to the proposal in Ref. [9]
where the probability-generating function can be accessed for
any x, but at the expense of requiring the implementation of
time-reversal of the many-body evolution.

In Sec. V A we presented the extension of our NOTOC
measurement protocol to collective spin systems. The exten-
sion of the measurement protocol to many-body qudit systems
and other systems of interest for studying the nature of scram-
bling would be an interesting task that we leave for future
work. We point out that studies of operator size distributions
for many-body systems beyond qubits are also scarce, with
some exceptions [6,41]. In particular, we note the case where
the system of interest interacts with the environment, thus
forcing one to probe scrambling and the operator size dis-
tribution in the presence of decoherence [9]. The NOTOC
measurement protocol may be extended to open quantum
systems using the analysis presented in Sec. II B of Ref. [21],
from which a detailed analysis of the effect of decoherence
may be carried out. Crucially one should revisit the definition
of the coarse-grained operator size distribution Eq. (2) and
consider the effect of decoherence on, e.g., the normalization
of this distribution. Additionally, the relationship between the
fidelity OTOC Eq. (4) and the NOTOC Eq. (5) becomes more
complicated for open quantum systems [21].

Finally, we remark that the choice of measurement proto-
col is informed by the quantity of interest. For the operator
size distribution there are three main types of quantities of
interest, as illustrated in Fig. 1(a): elements of the distribution,
moments of the distribution, and the probability-generating
function. The elements of the distribution present the most
fine-grained information about the operator size distribution,
while the probability-generating function contains the least
fine-grained information. Even so, our analysis indicates that
the probability-generating function may be sufficient for di-
agnosing scrambling and quantum chaos. Method B of our
proposed measurement protocol is able to obtain the ele-
ments of the distribution directly, while method A provides
access to the probability-generating function. Complimentary
to our proposed measurement protocol, in Ref. [10] we dis-
cussed how to obtain moments of the operator size distribution
through appropriate averaging over multibody OTOCs. For a
given physical system, one of these approaches may prove
advantageous in exploring the properties of the operator size
distribution. Thus, one should let the choice of measurement
protocol be informed by the physical system, the task at hand,
and the experimental capabilities.

ACKNOWLEDGMENTS

The authors acknowledge Ivan H. Deutsch, Lorenza Viola,
and Andrew Zhao for insightful discussions. This work is
supported by a collaboration between the U.S. DOE and other
agencies. This work is based upon work supported by the U.S.
Department of Energy, Office of Science, National Quantum
Information Science Research Centers, Quantum Systems
Accelerator. P.D.B. acknowledges support from the U.S. Na-
tional Science Foundation through the FRHTP Grant No.
PHY-2116246. K.C. acknowledges support from Ministère
de l’Économie et de l’Innovation du Québec and the Natural
Sciences and Engineering Research Council of Canada. Work
at the University of Strathclyde was supported by AFOSR
Grant No. FA9550-181-1-0064.

APPENDIX A: FINITE-DIFFERENCE METHOD
DETAILS FOR METHOD A

The nth derivative at x = 0 of the probability-generating
function F (x, t ) defined in Eq. (22) is implemented in the
present work as a forward-only finite-difference method [27],
which takes the form Eq. (28) and is repeated here for
convenience:

F (n)(x = 0, t ) = (�x)−n
n+a−1∑

m=0

c(n,a)
m F (m �x, t ) + O(�xa).

(A1)

Here a is the accuracy of the finite-difference method, and
the step size �x is the distance between the n + a points
{x = m�x}n+a−1

m=0 used to approximate the derivative. The
forward-only finite-difference coefficients c(n,a)

m are given in
Table I for a = 1 and in Table II for a = 2 and were obtained
using Ref. [42]. Figure 5 in Sec. III B was created using
the forward-only finite-difference method Eq. (28) with the
coefficients of Table I.
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TABLE I. Forward-only finite-difference coefficients c(n,a)
m for

derivatives of degree n � 6 using accuracy a = 1. The finite-size-
difference coefficients were obtained using Ref. [42].

n c(n,1)
0 c(n,1)

1 c(n,1)
2 c(n,1)

3 c(n,1)
4 c(n,1)

5 c(n,1)
6

1 −1 1 – – – – –
2 1 −2 1 – – – –
3 −1 3 −3 1 – – –
4 1 −4 6 −4 1 – –
5 −1 5 −10 10 −5 1 –
6 1 −6 15 −20 15 −6 1

While in theory one can increase the accuracy a arbitrarily
to minimize the error O(�xa) of the approximation for any
�x � 1, in practice the method becomes increasingly sensi-
tive to noise as we increase the accuracy a. This increased
sensitivity to noise is due to the number of points sampled
n + a limiting the values that �x can take, and in the vicinity
of vanishing �x the dominant error is not the approximation
of the derivative in Eq. (A1), but rather rounding errors due to
the presence of the noise [27].

Figure 7 displays a comparison between the extraction
of the elements of the probability distribution for accuracies
a = 1 (solid curves) and a = 2 (dashed curves). Plotted is the
time-averaged error �Pη

k as defined in Eq. (30), averaged over
times Jt ∈ [0, 10] for each realization of the noise Eq. (29)
and subsequently averaged over 100 noise realizations. We
are considering the same system parameters and operator as
in Sec. III B. We observe for the higher noise amplitude η =
10−2 (upper panel) that the lower accuracy method generally
outperforms the higher accuracy method for the considered
step sizes �x, the exception being for P1 when consider-
ing �x � 0.02. The crossover between the a = 1 and a = 2
curves at �x ≈ 0.02 for P1 indicates a transition from being
dominated by the sensitivity of the method to the added noise
Eq. (29) for smaller �x values, to being dominated by the
error due to the finite-difference method’s approximations for
larger �x values.

For the case of η = 10−4 (lower panel in Fig. 7) we clearly
see that the a = 2 method outperforms the a = 1 method for
P1, and a clear crossover point is also observed for P2. There-
fore, when working with a sufficient small noise amplitude
such as η = 10−4, it may be beneficial to use a higher accuracy
for the finite-difference method.

TABLE II. Forward-only finite-difference coefficients c(n,a)
m for

derivatives of degree n � 6, using accuracy a = 2. The finite-size-
difference coefficients were obtained using Ref. [42].

n c(n,2)
0 c(n,2)

1 c(n,2)
2 c(n,2)

3 c(n,2)
4 c(n,2)

5 c(n,2)
6 c(n,2)

7

1 −3/2 2 −1/2 – – – – –
2 2 −5 4 −1 – – – –
3 −5/2 9 −12 7 −3/2 – – –
4 3 −14 26 −24 11 −2 – –
5 −7/2 20 −95/2 60 −85/2 16 −5/2 –
6 4 −27 78 −125 120 −69 22 −3

FIG. 7. Comparison of time-averaged error �Pη

k [Eq. (30)] for
accuracy a = 1 (solid curves) and a = 2 (dashed curves). The used
parameters are identical to those used for Fig. 5. Shown are the time-
averaged errors for P1 (red), P2 (blue), and P3 (black curves), for noise
amplitude η = 10−2 (upper panel) and η = 10−4 (lower panel).

APPENDIX B: REDUCING STATE COUNTS IN METHOD B
BY EXPLOITING SYMMETRIES

Here we show how to reduce the number of states required
to produce in Method B of Sec. IV by exploiting symmetries.
In many cases, we are interested in the operator size distri-
bution of an operator W which is a single site Pauli operator.
For concreteness, let us assume this operator acts on site 1,
W ≡ W1. The NOTOC of Eq. (17) is constructed by measur-
ing the expectation value of W1 at the end of the protocol. In
principle, however, there is no cost associated to measuring
expectation values on different sites and using those get more
refined information about the operator dynamics. Suppose the
system has a translational invariance described by an operator
Tl ,

T †
l

⎛⎝⊗
j

q j

⎞⎠Tl =
⊗

j

q( j+l mod N ), (B1)

such that, for instance, T †
1 (A ⊗ B ⊗ C)T1 = C ⊗ A ⊗ B, etc.

Consider our system’s evolution given by U (t ) such that
T †

l U (t )Tl = U (t ). Then we have

W1(t ) =
∑

Q

f [Q;W1(t )]Q, (B2)

T †
l U (t )†W1U (t )Tl =

∑
Q

f [Q;W1(t )]T †
l QTl , (B3)

W1+l (t ) =
∑

Q

f
[
TlQlT

†
l ,W1(t )

]
Ql , (B4)

when we have defined Ql ≡ T †
l QTl and used the translation

invariance property. By definition, the LHS of the last equa-
tion equals

W1+l (t ) =
∑

Q′
f
[
Q′,W1+l (t )

]
Q′, (B5)
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and so we have that

f [Q,W1+l (t )] = f [TlQT †
l ,W1(t )]. (B6)

Suppose we start from a fixed initial state ρ1 = 1
d (I +∑′

Q∈Ck
rQQ), where the sum is over only a subset of operators

of weight k, starting at position 1 up to k. If we measure
〈W1+l (t )〉 for l = 0, . . . , N − 1, then

〈W1+l (t )〉 =
∑

Q

f [Q;W1+l ]〈Q〉ρ1 (B7)

=
∑

Q

f
[
TlQT †

l ;W1(t )
]
Tr(ρ1Q) =

∑
Q

f
[
Tl QT †

l ;W1(t )
]
Tr

(
Tlρ1T †

l TlQT †
l

)
(B8)

=
∑

Q̃

f
[
Q̃;W1(t )

]〈Q̃〉Tl ρ1T †
l
. (B9)

In conclusion, that means that measuring 〈W1+l (t )〉 yields
the same result as having done the protocol starting from
Tlρ1T †

l , thus reducing the state count by a factor of N provided
one can measure expectation values in all sites in the case of
full translational invariance. The procedure works similarly
if one only has a reflection symmetry (i.e., open boundary
conditions).

APPENDIX C: APPROXIMATING PROPERTIES
OF OPERATOR DISTRIBUTIONS WITH LIMITED

NUMBER OF ROTATIONS

1. Method A: PGF

In Sec. III A we studied method A, the NOTOC measure-
ment protocol aiming to access the PGF of the operator size
distribution. In particular, in Fig. 2 we illustrated the PGF
as a function of time for several values of the polarization
parameter ε and for both the integrable case with magnetic
field angle θ = 0 and the chaotic case with θ = π/6. For each
choice of ε in Fig. 2, we calculated the exact PGF (the solid
black curves) as well as an approximate PGF obtained using
a subset of Mrot = 1000 randomly selected rotations (solid
dots). Furthermore, for the case ε = 1 we also plotted the
approximate PGF obtained using a subset of only Mrot = 100
randomly selected rotations (blue crosses). Figure 2 demon-
strates that the PGF is well approximated using a small subset
of rotations compared to the 6N = 46 656 rotations needed to
obtain the exact PGF.

In this Appendix we provide an in-depth study of the error
introduced by sampling only a subset of the 6N possible rota-
tions, complimentary to the results found in the main text. Due
to limitations on simulating larger system sizes exactly, we
focus on errors for small system sizes 4 � N � 6 for which
the exact PGF is readily simulable. We quantify the error
between the exact PGF F and the approximate PGF F̃ by
calculating the root-mean-squared error

�FRMS =
√

1

t f − ti

∫ t f

ti

dt[F (x, t ) − F̃ (x, t )]2

≈
√√√√ 1

K

K∑
j=1

[F (x, t j ) − F̃ (x, t j )]2, (C1)

between the exact and approximate PGF over the K timesteps
t j in the interval 0 � Jt � 10 (the time interval shown in
Fig. 2). Here the approximate PGF F̃ is obtained by sam-
pling only a limited number of rotations Mrot � 6N . Figure 8
displays the error as a function of the number of rotations
Mrot sampled, where the rotations in each subset are chosen
uniformly at random. We have here focused on the case ε = 1,
corresponding to x = 1/3, which is the PGF with the highest
visibility in Fig. 2. Three system sizes are plotted, with the
black dashed N = 6 curve being representative of the case
studied in the main text.

For all system sizes we observe an overall trend of the
error decreasing with the number of rotations included in the
sampling, with errors typically being an order of magnitude
smaller than the PGF value. There is no discernible depen-
dence of the error on the system size for the sizes considered
here. We note that the case N = 4 requires 64 = 1296 rota-
tions to obtain the exact PGF, hence the Mrot = 1000 rotations
considered for the right-most N = 4 datapoint constitutes a
majority of the rotations needed for the exact result.

The nonmonotonicity observed in the error as a function
of the number of rotations sampled is to be expected, as
the error for each datapoint in Fig. 8 is calculated for one
particular randomly selected subset of rotations. One could
average the error over different randomly selected subsets
to alleviate the nonmonotonic behavior; however, the results
presented in Fig. 8 are sufficient to draw conclusions about
the errors induced by choosing only a subset of rotations in
approximating the PGF.

2. Method B: Elements of the probability distribution

Along similar lines, we analyze the effect of reconstructing
each element of Pk with a limited number Mrot of rotations. In
Fig. 6 we showed that for a system size N = 6, using Mrot =
100 already gives qualitative agreement with the exact result.
In order to systematically study this aspect, we consider the
total variational distance (TVD) which is defined as

DTV(P, Q) = sup
k

|Pk − Qk|, (C2)

between the ideal probability distribution {Pk (t )} and the one
reconstructed with our method {P̃k (t )}. We choose to quantify
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FIG. 8. Root-mean-square error �FRMS between the exact PGF
Fexact(x, t j ) and the approximate PGF Fapprox., as a function of the
number of rotations used for the approximation. The upper panel
shows results for the integrable case θ = 0, whereas the lower panel
shows results for the chaotic case θ = π/6. In both cases we see a
general trend of the error decreasing with the number of rotations
sampled for all system sizes N considered, although some nonmono-
tonic behavior is present. This nonmonotonicity is due to the random
selection of rotations for each datapoint.

the error via the time-averaged TVD,

�TVD = 1

t f − ti

∫ t f

ti

dt DTV(P(t ), P̃(t )) (C3)

� 1

K

K∑
j=1

DTV(P(t j ), P̃(t j )), (C4)

FIG. 9. Time-averaged total variational distance, defined in
Eq. (C4), between the exact operator size distribution {Pk (t )} and
the approximate one obtained by Method B {P̃k}, as a function of
the number of rotations used by the method, Mrot. Panel (a) shows
results for the integrable Ising model θ = 0, while (b) corresponds to
the chaotic case θ = π/6. We observe that the error in reconstructing
the full probability distribution decays with Mrot, with no strong
dependence on system size N . General evolution parameters are the
same as used in Fig. 6.

where again t j is in the interval 0 � Jt � 10 and we consider
the cases N = 4, 5, 6. We show results for the time-averaged
TVD as a function of the number of rotations in Fig. 9. It is
clearly seen that the error in reconstructing the full probability
distribution decreases with the number of rotations used, and
that deviations of 0.02–0.05 are readily available with a few
hundred rotations. We observe also that the overall behavior
does not depend strongly on system size for the cases studied.
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