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Abstract

The Fokker–Planck equation is a partial differential equation that describes how the probability density function of an object state
varies, when subject to deterministic and random forces. The solution to this equation is crucial in many space applications, such as space
debris trajectory tracking and prediction, guidance navigation and control under uncertainties, space situational awareness, and mission
analysis and planning. However, no general closed-form solutions are known and several methods exist to tackle its solution. In this
work, we use a known technique to transform this equation into a set of linear ordinary differential equations in the context of orbital
dynamics. In particular, we show the advantages of the applied methodology, which allows to decouple the time and state-dependent
components and to retain the entire shape of the probability density function through time, in the presence of both deterministic and
stochastic dynamics. With this approach, the probability density function values at future times and for different initial conditions
can be computed without added costs, provided that some time-independent integrals are solved offline. We showcase the efficacy
and use of this method on some orbital dynamics example, by also leveraging the use of automatic differentiation for efficiently comput-
ing the involved derivatives.
� 2023 The Authors. Published by Elsevier B.V. on behalf of COSPAR. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Uncertainty quantification and propagation of orbital
states plays a pivotal role in Space Situational Awareness
(SSA) in many ways: from orbital object tracking and mon-
itoring to conjunction analysis, maneuver planning, and
anomaly detection. The state of a satellite interacting within
a dynamical system can be influenced by random effects that
span from uncertainty in the initial conditions (e.g. due to
measurement errors) to random fluctuations of the forces
that govern the satellite dynamics (e.g. random fluctuations
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of atmospheric drag). All these effects give rise to stochastic
dynamical systems that are described by either stochastic
differential equations (SDEs), whenever random fluctua-
tions of the dynamical forces exist, or ordinary differential
equations (ODEs), whenever the sole initial conditions are
uncertain. In such cases, the spacecraft state can be studied
through the lenses of probability, by analyzing the time
variation of the probability density function (pdf) of the
state, rather than the state itself. Much work has been car-
ried out in the field of uncertainty propagation for orbital
mechanics problems. The most common approaches are lin-
ear and linearized models (e.g. extended Kalman filters),
simulation-based approaches (e.g. Monte Carlo simula-
tions), and semi-analytic methods (e.g. polynomial chaos
expansion and differential algebra techniques) (Luo and
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Fig. 1. First and second row: mean and square root of the diagonal of the covariance matrix of both the pdfs reconstructed via Monte Carlo and Galerkin
projection using two different sets of basis functions, as a function of time; third row: Hellinger distance and KL-divergence between the pdfs of the two
Galerkin projection approximations and the Monte Carlo reconstruction, as a function of time; third row: on the left, it is displayed the integral of the
approximated pdfs as a function of time, while on the right a 3D plot with 2D projections of the fully reconstructed pdf via the Monte Carlo sampling
approach.
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Yang, 2017; Armellin et al., 2010; Jones and Weisman,
2019; DeMars et al., 2013; Sun and Kumar, 2016;
Servadio et al., 2023). Most of these methods are used for
predicting the first few moments of the pdf (e.g. mean and
standard deviation) and work best for dynamical systems
with small nonlinearities and/or Gaussian assumptions.
For nonlinear dynamical environments, it becomes particu-
larly interesting to study how the pdf evolves through time,
as a result of the forces acting on the object. The Fokker–
Planck partial differential equation accurately describes
the time-evolution of the pdf, for any dynamical system
54
subject to deterministic and/or random forces, with uncer-
tain initial conditions and/or parameters. However, in gen-
eral, this equation is not solvable in a closed form, and its
numerical solution often requires a substantial computa-
tional burden (especially for nonlinear and high-
dimensional dynamical systems). For instance, when finite
element methods are used for solving this partial differential
equation, a spatial mesh has to be generated: for nonlinear
dynamics and high-dimensional systems, the complexity of
the geometric structures grows fast, thus causing the com-
putational time to quickly rise immensely.
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In this work, we propose for the first time the applica-
tion of a method to transform the Fokker–Planck into a
set of ordinary differential equations, which can be solved
in a parallelized fashion with a substantially less computa-
tional burden (Kumar and Narayanan, 2006; Kumar et al.,
2010), in the context of orbital dynamics. To solve the
above-mentioned issues, the pdf is first divided into a
sum of time-varying coefficients and spatial basis, then,
by applying Galerkin projection, then, the computations
of the time coefficients are separated from the spatial sup-
port. As it is known, this approach allows us to compute
the spatial terms in advance and in parallel, while the
time-dependant coefficients can be computed separately,
therefore allowing us to very quickly propagate any initial
condition that can be represented with the chosen basis.
This is a key advantage when the computing time is a bot-
tleneck, and when families of pdf’s must be propagated
(e.g. epistemic uncertainties), which is often the case for
orbital dynamics applications. This work stems from the
authors’ preliminary work on the topic, introducing several
novelties, such as broadening the methodology to stochas-
tic dynamics, mathematically identifying and leveraging the
sparsity of the matrices of the integral in the case of B-
spline basis functions, introducing automatic differentia-
tion to accelerate the computation and exactly compute
the derivatives at specified points, and extending the test
cases to the diffusive case and to higher dimensions
(Acciarini et al., 2020).

The remainder of the paper is structured as follows. In
Section 2, we first discuss the background theory, introduc-
ing the Fokker–Planck equation. Then, in Section 3, we
discuss the methods and key advantages, while in Section 4,
we discuss the implementation details for constructing the
basis functions and computing the derivatives and the inte-
grals. Furthermore, in Section 5, we discuss the obtained
results on some test cases. Finally, in Section 6, we discuss
conclusions and future work. This work is freely available
open-source.1

2. Fokker–Planck Equation

The Fokker–Planck is a partial differential equation that
describes the time evolution of the probability density func-
tion for a stochastic process. Given a dynamical system
governed by a set of differential equations in which at least
one of the terms is a stochastic process, one can write the
set of equations that describe the motion of a particle sub-
ject to deterministic and random forces as (Itô, 1951)

dX t ¼ f ðX t; tÞdt þ rðX t; tÞdW t; ð1Þ
where X t is the n-dimensional random state vector, f is the
deterministic force vector, and W t is an m-dimensional
standard Wiener process. The Fokker–Planck equation
describes how the probability density function of the ran-
1 https://github.com/Sceki/fpe_orbital_dynamics, date of access:
November 2022.
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dom variable X t varies in time, whenever the motion is sub-
ject to drifting and diffusive dynamics. The equation was
first developed by Fokker and Planck to investigate the
Brownian motion of a particle (Risken, 1996). It can be
expressed as (Gardiner, 2009)

@pðx;tÞ
@t ¼ �Pn

i¼1

@
@xi

f iðx; tÞpðx; tÞð Þþ

þPn
i¼1

Pn
t¼1

@2

@xi@xt
Ditðx; tÞpðx; tÞð Þ;

ð2Þ

where f ¼ ½f 1; ::; f n�T is the vector of the deterministic
forces, whereas D ¼ 1=2 rrT is the diffusion tensor, with
r being an n� n matrix which describes the diffusion forces
involved in the dynamics. In this paper, we will discuss
both the case in which only the initial conditions are uncer-
tain and the dynamics is deterministic, as well as the case in
which the initial conditions are uncertain and the dynamics
is stochastic. In all the experiments we perform, we com-
pare our approximated solution with the solution found
by propagating a high number of samples at future times
(which we refer to as Monte Carlo approach) and recon-
structing the probability density function by fitting Gaus-
sian mixture models with 10 components. This was done
using the iterative expectation–maximization algorithm
(McLachlan et al., 2019).

3. Methodology

3.1. Galerkin Projection

The Fokker–Planck differential equation is first trans-
formed into a set of ordinary differential equations, by rep-
resenting the pdf as a sum of time-varying coefficients and
spatial basis. Then, the Galerkin projection is applied to
reduce the Fokker–Planck equation into a set of ordinary
differential equations.

First, we write the probability density function as

pðx; tÞ ¼
X
j¼1

ajðtÞUjðxÞ; ð3Þ

where x ¼ ½xi; ::; xn�T : Xi ! Rn are the independent state
variables, ajðtÞ : xt ! R are the time-varying coefficients,
and Uj are N basis functions chosen to represent the pdf.
Moreover, the pdf is defined over the domain
X ¼ xt �

Qn
i¼1Xi. In general, using Eq. (3) does not guar-

antee that the approximated pdf maintains the properties
of a probability density function (i.e., nonnegativity every-
where and that the area under the entire curve is one).
While this is something one can use to monitor the good-
ness of the pdf representation (e.g., checking how closely
to one the integral is), it might be a problem if one wants
to sample from the distribution or use the approximated
pdf for other applications. Hence, it is important to have
a method to guarantee both these properties. A way to
have these two properties automatically verified would be
to directly choose a formulation that accounts for these

https://github.com/Sceki/fpe_orbital_dynamics
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constraints by construction. For instance, by selecting the
basis functions and coefficients so that the pdf is always
positive and it is enforced that the integral is one. An exam-
ple is a weighted mixture of Gaussians, whose weights are
imposed to sum to one. Instead, if one does not have these
properties imposed by construction, another option is to
post-process the approximated pdf to match these con-
straints. As we will detail later in Section 4.1, in our case,
we use B-spline basis functions without any added con-
straints: this approach does not enforce by construction
either of those constraints. Hence, to re-establish these
pdf properties, it is necessary to post-process the approxi-
mated pdf, by normalizing (dividing by its integral) the
probability density function and by ensuring that it is never
below zero (e.g. clipping at a certain threshold). While
these procedures would restore the pdf properties, they also
negatively impact the quality of the approximation. In a
broader context, whether a constrained construction of
the basis functions is preferable over a more flexible one,
which might violate the pdf properties, depends on the
specific problem at hand, as well as on factors such as
the number and type of basis functions chosen.

The multivariate basis functions, UjðxÞ, are constructed
via Kronecker product of the monodimensional ones. Once
the number of basis for each dimension is chosen (i.e.,
Ni; 8i), then the jth is computed as

UjðxÞ ¼
Yn
i¼1

/j;iðxiÞ; ð4Þ

where the index of the multivariate basis (j) ranges from 1
to the product of all the monodimensional basis (i.e., N).
Therefore, the total number of multivariate basis can be
found as

N ¼
Yn
i¼1

Ni: ð5Þ

In general, we expect Eq. (3) to be precise only for an infi-
nite number of basis. However, in practice, a finite set of
basis is often enough to represent the pdf at high levels
of accuracy. The choice of basis functions is not a trivial
task, and the chosen basis will be discussed in Section 4.

By leveraging the above-mentioned equations and by
assuming that the diffusion tensor only depends on the
state variables and does not directly depend on time, we
can rewrite the Fokker–Planck equation as follows

XN
j¼1

Uj
daj
dt ¼ �

XN
j¼1

aj
Xn
i¼1

@ðf iUjÞ
@xi

 !
þ

þ
XN
j¼1

aj
Xn
i¼1

Xn
t¼1

@2

@xi@xt
ðDitUjÞ:

ð6Þ

Then, we define the scalar product between two functions u
and v, with respect to a weight function w, as

hu; vi ¼
Z
Xx

uðxÞvðxÞwðxÞdx: ð7Þ
56
Finally, we apply Galerkin projection (Rowley et al., 2004)
on Eq. (6), obtaining

XN
j¼1

Uk;Uj

� � daj
dt ¼ �

XN
j¼1

aj Uk;
Xn
i¼1

@ðf iUjÞ
@xi

* +
þ

þ
XN
j¼1

aj Uk;
Xn
i¼1

XN
t¼1

@2ðDitUjÞ
@xi@xt

* +
;

ð8Þ

for k ¼ 1; . . . ;N . As can be seen, as a result of projecting
both sides of the FPE, we have managed to decouple the
scalar product performed over the spatial support, from
the contribution of the time-varying coefficients. Therefore,
defining the following two ðN � NÞ matrices

Bkj ¼ Uk;Uj

� � ð9Þ

Mkj ¼ Uk;�
Xn
i¼1

@ðf iUjÞ
@xi

þ
Xn
i¼1

Xn
t¼1

@2ðDitUjÞ
@xi@xt

* +
; ð10Þ

Eq. (6) can be transformed into a set of N ordinary differ-
ential equations, where the spatial support and time contri-
butions can be computed separately

B _aðtÞ ¼ M aðtÞ: ð11Þ
This represents a linear system of ordinary differential
equations, whose solution can be computed in closed form
from given initial conditions. For instance, by knowing the
initial probability density function of the state: pð~x; t0Þ, we
can compute the coefficients at the initial time by projecting
the spatial support onto the initial pdf, as follows

a0k ¼ Uk; pðx; t0Þh i 8k ¼ 1; . . . ;N : ð12Þ
Once the initial conditions for the coefficients are com-
puted, the time-varying coefficients at future times can be
found by solving the following exponential matrix

aðtÞ ¼ eB
�1Mta0; ð13Þ

where B�1 is the inverse of the B matrix. In the case of
orthonormal basis functions, the B matrix becomes an
identity matrix. An important aspect to mention is that this
method is only applicable for cases in which both the diffu-
sion tensor and the vector of deterministic forces do not
explicitly depend on time.

3.2. Automatic Differentiation

Several ways exist for computing and evaluating deriva-
tives of mathematical functions. Manual differentiation
involves the manual computation and coding of deriva-
tives: this can practically be very time-consuming and
error-prone. On the other hand, numerical differentiation
can be easily implemented, but only offers an approxima-
tion of the derivatives at the chosen points, whose accuracy
is related to truncation and round-off errors. As a valid
alternative to the abovementioned methods, symbolic dif-
ferentiation can be employed. However, due to the deriva-
tive product rule, this technique can result in very complex
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and difficult to handle expressions: something known as
”expression swell” (Corliss, 1988). To balance both accu-
racy and control flow, researchers have developed a power-
ful technique known as automatic differentiation: a set of
numerical techniques to exactly evaluate the derivative of
a function specified through a computer program, at speci-
fic points (Griewank and Walther, 2003). It is important to
stress that this technique does not return a symbolic form
of the derivatives, but only its precise value at the requested
data points.

In our work, the forward mode of automatic differentia-
tion has been used for computing the partial derivatives of
the dynamics arising from Eq. (10). A forward mode algo-
rithm essentially breaks down the mathematical function
as a computational graph, where each node represents an
intermediate step of the computation with its corresponding
derivative value: by applying the chain rule to the interme-
diate results, the corresponding derivative at the point of
interest is generated. This method can easily be generalized
for vector-valued functions, and it can be shown that it can
be used for returning the Jacobian of a function with n inde-
pendent variables, at given points. For a thorough descrip-
tion of these methods, the interested reader is referred to the
literature (Clifford, 1871; Baydin et al., 2018).

The use of automatic differentiation through the JAX
Python library allows us not only to very quickly compute
all the derivatives at the points of interest, even for high-
dimensional cases, but also parallelize the computations
on CPU, GPU, or TPU, according to the user’s preference,
with small coding effort (Bradbury et al., 2018).

In terms of computational complexity, the cost of com-
puting automatic differentiation depends on the chosen
algorithm (e.g. forward or reverse mode), the number of
dimensions of the problem, and the complexity of the func-
tion whose derivatives are taken. For more details on the
computational cost of applying automated differentiation,
the interested reader can refer to Margossian (2019).

4. Implementation

4.1. Basis Functions

As already discussed in Section 2, the basis functions
constitute an important aspect of the proposed method.
Better basis functions could mean a more accurate repre-
sentation of the pdf with less computational cost, as well
as fewer numerical instabilities.

In our case, the B-spline basis functions of order 3 were
selected. This is related to the fact that these bases are semi-
definite positive, which is a fundamental characteristic of
the probability density function. Moreover, increasing the
number of basis functions, in this case, only implies
increasing the number of the same degree polynomials in
a given interval, without actually increasing the degree of
the polynomials. Finally, these basis functions allow for
easily treating both nonperiodic and periodic boundary
conditions (De Vylder, 1978).
57
An order k B-spline can be constructed by joining sev-
eral polynomials of degree k � 1. By choosing N nonde-
scending breaking points and collecting them into a knot

vector: ~t ¼ ðt0; t1; . . . ; tN ÞT , where t0 6 t1 6 t2:: 6 tN , we
can construct the B-spline basis functions as follows

Ni;kðtÞ ¼ t � ti
tiþk�1 � ti

N i;k�1ðtÞ þ tiþk � t
tiþk � tiþ1

Niþ1;k�1ðtÞ; ð14Þ

where

Ni;1ðtÞ ¼
1 for ti 6 t 6 tiþ1

0 otherwise:

�
ð15Þ

The first and second derivatives of the B-spline can also be
analytically computed

dNi;kðtÞ
dt

¼ k � 1

tiþk�1 � ti
N i;k�1ðtÞ � k � 1

tiþk � tiþ1

Niþ1;k�1ðtÞ ð16Þ

d2Ni;kðtÞ
dt2

¼ k � 1

tiþk�1 � ti

k � 1

tiþk�2 � ti
N i;k�2ðtÞþ

� k � 1

tiþk�1 � ti

k � 2

tiþk�1 � tiþ1

Niþ1;k�2ðtÞþ

� k � 1

tiþk � tiþ1

k � 2

tiþk�1 � tiþ1

Niþ1;k�2ðtÞþ

þ k � 1

tiþk � tiþ1

k � 2

tiþk � tiþ2

Niþ2;k�2ðtÞ:

ð17Þ

In our work, we select the basis functions of degree k ¼ 3.
As already discussed, the multivariate case is generated

through tensor products of monodimensional basis func-
tions. As shown in Eq. (4), this means that each basis func-
tion can be constructed as a product of basis functions
associated with each dimension. These basis functions have
a very appealing property that makes the matricesM and B

sparse, and allows less and faster computations. By
expressing the multivariate basis functions Uj and Uk as
shown in Eq. (4), it can be shown that whenever a pair
of indexes of the same basis (i.e., ji and ki) exists, whose dif-
ference is higher than 2, then the product between two basis
functions, or their first or second derivatives, of indexes j

and k is zero, as one can deduct by looking at Eq. (14),
for k ¼ 3. Mathematically, this can be expressed as follows

UkUj ¼ 0

Uk

Xn
i¼1

@Uj

@xi
¼ 0

Uk

Xn
i¼1

Xn
t¼1

@2Uj

@xi@xt
¼ 0

8>>>>>><
>>>>>>:

ifji; ki 9 s:t: jji � kij P 3:

As shown in Eq. (8), when the above terms are zero, the
corresponding Bkj and Mkj matrix elements are zero as well.
This allows us to greatly reduce the number of computa-
tions and avoid the rapid insurgence of the curse of dimen-
sionality. In fact, the relative number of zero elements w.r.
t. non-zero ones increases as the matrix size increases (since
the upper bound of the kxi and jxi indexes enlarges). While
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this is partially alleviated by the increased number of zeros
in the B and M matrices, it is important to point out that
constructing the multivariate basis functions as products
of monovariate basis, causes the number of basis functions
to grow exponentially as the number of dimensions
increases. Therefore, depending on the application and
the number of basis functions required to approximate
the dynamical system of interest, it might be necessary to
change how basis functions are constructed (e.g. selecting
orthogonal basis functions).

4.2. Integrals computation

As shown in Section 8, the Galerkin projection involves
the computation of high-dimensional integrals between the
basis functions and the left and right-hand sides of the FP
equation. The set of integrals to be computed is shown in
Eq. (10): while the ones associated with the B matrix can
easily be reduced to products between one-dimensional inte-
gral (due to the fact that the basis functions are separable),
the ones associated with the Mkj matrix have high-
dimensionality (unless the dynamics of the system is also sep-
arable). Furthermore, these integrals cover the full domain,
which makes their computation even harder. In this work, in
order to perform numerical integration we use a quasi-
Monte Carlo method. Our goal is to approximate a multi-
dimensional integral over an n-dimensional domain

Iðf Þ ¼
Z

X
f ðxÞdX; ð18Þ

While several methods exist for approximating this integral
(e.g., quadrature rule, Monte Carlo methods, sparse grid
methods, etc.), we have opted for a quasi-Monte Carlo
scheme (Dick et al., 2013). This is an equal-weight quadra-
ture rule similar to Monte Carlo methods, where the
above-mentioned integral is approximated as follows

Iðf Þ � V
n

Xn�1

i¼0

f ðxiÞ; ð19Þ

V is the volume of the n-dimensional cube defined by the
intervals of integration. The difference is that in quasi-
Monte Carlo methods, the points x0; x1; ::; xn�1 are chosen
deterministically in order to obtain guaranteed error
bounds and a better convergence speed w.r.t. random
grids. Several possibilities exist for selecting the points such
as the van der Croput sequence, Kronecker sequence, and
Hammersley point set. In this work, the Halton sequence
has been used: this enables us to compute the abovemen-
tioned high-dimensional integrals without using a number
of samples as high as pure Monte Carlo methods.

4.3. Probability metrics

The solution to the FP equation is a probability density
function. Therefore, any method that attempts to solve this
equation in an approximate way needs to, first of all, have a
ground truth pdf to compare against (since the FP is not
58
solvable in closed form, in general) and, secondly, have
some metrics that evaluate how well the approximated pdf
is representing the underlying distribution. We reconstruct
the ”true” pdf by solving the underlying stochastic differen-
tial equation for many samples, and reconstructing from
them (with a fit of multivariate kernels of Gaussian distribu-
tions) the evolving pdf at each timestamp. However, it is
also necessary to find ways to compare the approximated
and ”true” pdf. One idea could be to use the first k-
moments of the distribution, but the problem is that these
do not fully capture the pdf complexity. Instead, probability
metrics such as distance and divergence metrics allow us to
assess how close two probability density functions are. The
definition and use of distance and divergence metrics are
crucial in many statistics fields that involve assessing how
well a given model approximates the real probability density
function. A probability metric is, by definition, a measure
that quantifies how dissimilar two random quantities (i.e.,
two probability measures) are: this can be quantified in
two ways. The first one is by employing distance measures
(e.g. Hellinger distance, Bhattacharyya distance,
Wasserstein-Kantorovich distance, etc.) that generalize the
general concept of metric spaces to probability distributions.
On the other hand, a weaker but similar concept to distance
measures is divergence, which is a form of distance measure
between probability distributions but does not necessarily
satisfy either the symmetric property or the triangle inequal-
ity. In this work, we use the Hellinger distance and KL-
divergence for quantitatively assessing the proximity of
probability distributions. By denoting as p and q the refer-
ence and approximated discrete density functions, respec-
tively, the Hellinger distance can be defined as

Hðp; qÞ ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
~x2X

ð
ffiffiffiffiffiffiffiffiffi
pðxÞ

p
�

ffiffiffiffiffiffiffiffiffi
qðxÞ

p
Þ2

s
: ð20Þ

Interestingly, the Hellinger distance satisfies the property:
0 6 Hðp; qÞ 6 1, being zero if the two distributions are
identical. On the other hand, the KL divergence can be
computed as (Kullback, 1997)

DKLðpjjqÞ ¼
X
~x2X

pðxÞ log pðxÞ
qðxÞ
� �

: ð21Þ

In order to interpret the values of these metrics, it has to be
ensured that the pdf has the property of a probability den-
sity function (i.e., it is always nonnegative and it integrates
to one). Hence, if these properties are not fulfilled by the
approximated pdf, it is first essential to normalize and
post-process the pdf to meet these requirements.

5. Experiments

5.1. Stochastic dynamics: 2D test case

As a stochastic dynamics test case, we chose the har-
monic oscillator with damping and noise, whose equations
of motion are (Zorzano et al., 1999)
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_x ¼ v

_v ¼ �Kx� cvþ
ffiffiffiffiffiffi
2r

p
gðtÞ;

where gðtÞ is the time derivative of the Wiener process,
which is demonstrated to be a white noise with mean:
E½gðtÞ� ¼ 0 and variance: E½gðtÞgðsÞ� ¼ dðt � sÞ, where d is
the Dirac delta function (Evans, 2012). For this dynamical
system, the FP can be written as

@p
@t

¼ � @v
@x

� �
p þ @

@v
ðcvþ KxÞ þ r

@2

@v2

� �
p ð22Þ

@p
@t

¼ � @ðvpÞ
@x

� �
þ @

@v
ðcvþ KxÞp½ � þ r

@2p
@v2

� �
ð23Þ

We solved the Fokker–Planck equation with two sets of
basis (36 and 40 for each dimension) and by choosing the
following parameters: K ¼ 1; c ¼ 2:1; r ¼ 0:08; x0 ¼ �4;
v0 ¼ 0:001; t0 ¼ 0:95; tf ¼ 3; the results are shown in
Fig. 1 and compared against a Monte Carlo run with 500
thousand samples (considered as ground truth). In the
top row, we show the time evolution of the first moments
of position (on the left) and velocity (on the right) for both
cases. While on the second row, the evolution of the second
moments of the distribution is reported. Then, in the third
row, the Hellinger and KL-divergence evolution are dis-
played (computed w.r.t. the MC solution) and in the forth
row both the time evolution of the integral of the probabil-
ity density function and the 3D plot of the initial and final
pdf’s are plotted. As we can observe, the method manages
to capture both the drift and diffusive behavior of the
dynamics, while accurately representing the first two
moments of the distributions. Moreover, the Hellinger dis-
tance, KL divergence, and the integral of the probability
density function show that the method is able to represent
the pdf across time, although, in this case, the accuracy
degrades as time passes. As observed, the approximated
pdf does not integrate perfectly to one: hence, as explained
already in Section 4.3, it is first essential to normalize the
pdf, before computing the Hellinger distance and KL-
divergence. We performed this post-processing step in this
and all the other experiments performed in this work. The
degradation of the quality of the pdf as a function of time
can be alleviated by increasing the number of basis func-
tions: 40 basis functions maintain the error at lower levels
than 36. Finally, in the plot on the bottom-right part, we
show the initial (in red) and final (in blue) probability den-
sity functions. As can be seen, the final distribution has
drifted away from the initial one, while the velocity stan-
dard deviation has evidently increased.

5.2. Deterministic dynamics with uncertain initial conditions

Having already introduced this approach for determinis-
tic dynamics on one and two-dimensional cases in our pre-
vious work, we here focus on a three-dimensional case
(Acciarini et al., 2020). We consider the motion of a satel-
lite in LEO, expressed in terms of averaged equations of
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motion in modified equinoctial elements. These equations
allow us to express the average variation of the orbital ele-
ments for long periods of time when the satellite motion is
affected by the central gravity term and various distur-
bances. In this case, we consider that the drag term is the
only disturbing force acting on the satellite, and we assume
that its component is only directed along the radial and
along-track components of the satellite motion. With these
assumptions, the following equations of motion apply

da
dt ¼ 1

2p

R p
�p

ð1�P2
1
�P2

2
Þ2

ð1þP 2 sin LþP 1 cos LÞ2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2
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where the following relations hold

p
r
¼ 1þ P 1 sin Lþ P 2 cos L

r
h
¼ h

lð1þ P 1 sin Lþ P 2 cos LÞ
h ¼ nab

b ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� P 2

1 � P 2
2

q
:

Furthermore, ar and ah are the radial and transverse (i.e.,
perpendicular to r and in the orbital plane) components
of the perturbing acceleration. As shown in (Carlo et al.,
2017), by assuming a zero wind velocity and that the aero-
dynamic forces only act in the orbital plane and in the
opposite direction w.r.t. the velocity vector of the space-
craft, then drag acceleration can be written as

ar ¼ 1

2
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ah ¼ 0; ð27Þ
where

U ¼ 1þ P 1 sin Lþ P 2 cos L

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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1 þ P 2
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q
:

We assumed uncertainty in the initial conditions expressed
as a multivariate Gaussian distribution with mean:
lðt0Þ ¼ ½laðt0Þ; lP1ðt0Þ; lP2ðt0Þ� ¼ ½6665:15km; 0rad; 0rad�



Fig. 2. First, second and third rows: comparison between mean and diagonal elements of the square root of the diagonal terms of the covariance matrix
using Monte Carlo and approximated via Galerkin projection of the FP; fourth row: Hellinger distance between the two distributions and integral of the
approximated pdf via Galerkin projection as a function of time.
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and a diagonal covariance matrix with values

raaðt0Þ ¼ 3:189 km, rP1P1ðt0Þ ¼ 10�4 rad, rP2P2ðt0Þ ¼ 10�4

rad. We used 22 basis functions for each of the three
dimensions, and we then propagated the dynamics, for

50 years, with a qCdA=m value of 10�6m�1. In the first three
rows of Fig. 2, we show the evolution of the first and sec-
ond moments of the distribution (i.e., mean values and
diagonal terms of covariance matrix). We compare the
results against a Monte Carlo run with one and a half mil-
lion samples. As we can see, the method manages to accu-
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rately capture both the trend and values. For instance, in
the case of the semi-major axis, at the end of the propaga-
tion, there is an error of fewer than 200 meters on the esti-
mated mean and less than 15 meters in the estimated
covariance. Finally, in the fourth row of Fig. 2, we show
the Hellinger distance and the integral of the approximated
distribution as a function of time. As we can observe, the
integral of the distribution is always maintained within
0.2% of its true value (i.e., 1). An interesting aspect is that
the integral value improves over time and that the Hellin-



Fig. 3. First row and left figure of second row: square root of the diagonal elements of the covariance matrix for the pdf reconstructed via Monte Carlo
sampling and Galerkin projection, as a function of time; right figure of second row: KL-divergence of the two pdfs as a function of time; third row: Hellinger
distance between the two pdfs and integral of the approximated pdf via Galerkin projection as a function of time.

G. Acciarini et al. Advances in Space Research 73 (2024) 53–63
ger distance does not steadily increase (as would happen
for most uncertainty propagation methods, where the error
grows with time). This is because, in this method, the qual-
ity of the propagation does not depend on the time, but
only on the basis functions’ ability to approximate the
evolved distribution.

5.3. Stochastic dynamics with uncertain initial conditions

As a final experiment, we also investigate the same
dynamical system presented in Section 5.2, but with a dif-
fusive term in the second equation of motion

dP 1

dt
¼ dP 1

dt
jd þ

ffiffiffiffiffiffi
2r

p
gðtÞ;

where
ffiffiffiffiffiffi
2r

p ¼ 1:25� 10�6; dP 1=dtjdrefers to the expression
of the derivative term in the deterministic system shown
in Eq. (24), and gðtÞ refers to the white noise with zero
mean, as already explained for the 2D case in Section 5.2.
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We use the same basis functions, parameters, and initial
conditions as the ones used in Section 5.2, increasing the
number of Monte Carlo samples to one million (to better
represent the introduced diffusive behavior). Similarly to
what has been done for the other experiments, we compare
the approximated results with the pdf reconstructed via
Monte Carlo. In Fig. 3, we show the results in terms of
the square root of the diagonal elements of the covariance
matrix as a function of time, as well as the Hellinger dis-
tance, KL-divergence, and integral of the pdf as a function
of time. As we can see, also in this case the approximated
pdf manages to approximate well the underlying ground
truth pdf, also maintaining an approximation of the inte-
gral within 0.2% of the true value. Finally, as we would
expect, the diffusive term triggers an increase in the covari-
ance element associated with the P 1 variable, which is the
variable directly affected by diffusion (this was not happen-
ing in Section 5.2 without the diffusive term, where the
covariance was instead decreasing).
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6. Conclusions

In this work, we have applied a known method to solve
the Fokker–Planck equation for the time propagation of
probability density functions that quantify the uncertainty
of the state and/or the dynamics in nonlinear dynamical
systems, with a focus on orbital dynamics. We have showed
that the discussed method has several advantages, which
can be pivotal in many orbital dynamics applications.

First of all, once the number of basis functions is estab-
lished and several matrices of integrals are computed, one
can propagate any initial probability density function at
any given future time, without added computational costs.
The only requirement for the propagation to maintain its
accuracy is that the given basis can approximate well the
pdf at future times, in the prescribed spatial domain. This
means that one can pre-compute the matrix of integrals
once, and then store those values and use them for real-
time uncertainty propagation applications, for approxi-
mating the pdf evolution at future times, with very little
computational costs. This is fundamentally different from
most of the numerical and simulation-based techniques,
which force users to perform from scratch most of the com-
putations, for different initial conditions and whose com-
putation time is proportional to the time horizon of the
simulation (the longer the propagation time, the slower
the computational time). Secondly, we discussed that B-
spline basis functions have the interesting property of mak-
ing the matrix of the integrals highly sparse, therefore con-
sistently reducing the computational burden. Moreover,
such sparsity increases as the number of basis functions
are increased, therefore allowing to delay the insurgence
of the curse of dimensionality. Then, from the implementa-
tion perspective, we formulated the problem dynamics in
terms of differentiable expressions and made use of auto-
matic differentiation, which allows to quickly and exactly
compute first and high order partial derivatives. Finally,
we extended our previous preliminary work by presenting
results for nonlinear diffusive dynamics and nonlinear
three-dimensional deterministic dynamics with uncertain
initial conditions, in the context of orbital mechanics.
The results show that this method can successfully be used
to solve the Fokker–Planck equation and propagate the
full probability density function of the state (and not only
the first two moments). The work is available open-source
at https://github.com/Sceki/fpe_orbital_dynamics and we
encourage more practitioners and researchers in the field
of astrodynamics and celestial mechanics to consider and
improve upon this method (especially for high dimensional
cases).
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