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We study the robustness of the evolution of a quantum system against small uncontrolled variations in pa-
rameters in the Hamiltonian. We show that the fidelity susceptibility, which quantifies the perturbative error to
leading order, can be expressed in superoperator form and use this to derive control pulses which are robust to
any class of systematic unknown errors. The proposed optimal control protocol is equivalent to searching for a
sequence of unitaries that mimics the first-order moments of the Haar distribution, i.e. it constitutes a 1-design.
We highlight the power of our results for error resistant single- and two-qubit gates.

Introduction.– Tremendous advances in the ability to ma-
nipulate states of light and matter are ushering in the new
generation of quantum-enhanced devices. As recently re-
marked [1], it is precisely the ability to develop schemes
to control a system that endows scientific knowledge with
the potential to revolutionise technological landscapes [2, 3].
However, while exquisite levels of control are now routinely
applied in a variety of platforms [4–6], there will always be
systematic errors due to imperfect fabrication and incomplete
knowledge of the parameters, either in relation to the model
itself or the ambient conditions under which it is operating.
Thus, several strategies to explicitly mitigate such errors have
been devised, e.g. shortcuts to adiabaticity [7–9], numerical
optimization [1, 10, 11], geometric space curves [12–14], and
dynamical decoupling [15].

When these systematic errors are important, typically the
control problem is cast in such a way that two, sometimes
implicit, assumptions are made regarding the source of the er-
ror: (i) that it arises from a weak perturbation, and (ii) that
its mathematical structure is exactly known. While the former
is a reasonable working condition to assume (if it were not
then the fundamental description of the system would need to
be adjusted), the latter is arguably less well justified. Indeed,
concerted effort is currently invested in identifying the correct
physical description of noisy intermediate-scale quantum de-
vices, e.g. determining the most relevant noise sources that
they are subject to in order to enhance their efficacy [16]. Ul-
timately there will always be some level of uncertainty in our
knowledge of the precise structure of the noise and therefore
it is highly desirable to develop a framework that allows to
coherently manipulate quantum systems even in the presence
of an unknown (even possibly unknowable) source of error.

In this work we develop such a framework which accounts
for this uncertainty, termed universally robust control (URC).
It provides a straightforward cost function to be minimised to
ensure generic robustness in quantum control problems. It can
also be easily restricted to specific classes of errors, to account
for a limited but useful knowledge of the error type.

Fidelity in the presence of systematic error.–Consider the
full system Hamiltonian Hλ(t)=H0(t)+ λV where H0(t) is the
error-free control Hamiltonian, V is the error operator acting
with unknown strength, λ. We assume a pure initial state, σ,
with no λ dependence.

The time evolution operator of Hλ(t) is given by Uλ(t, 0),
which leads to a state (which is dependent on λ) ρλ =
Uλ(t f , 0)σU†

λ(t f , 0) at the final time t = t f . The fidelity be-
tween the perturbed and ideal evolution is F(λ) = Tr(ρλρ0),
which can be expanded for small λ as

F(λ) ≈ F(0) + F′(0)λ +
1
2

F′′(0)λ2. (1)

By definition F(0) = 1 and from this follows F′(0) = 0.
The second derivative can be calculated by noting that, for

pure states, ∂2
λρλ=2 (∂λρλ)2 +ρλ

(
∂2
λρλ

)
+

(
∂2
λρλ

)
ρλ. Multiply-

ing by ρ0 and evaluating the trace at λ=0 we get

F′′(0) = −2 χS (ρλ), (2)

where χS (ρλ) = Tr
{
ρ0 (∂λρλ)2

∣∣∣
λ=0

}
is the fidelity susceptibil-

ity [17], which quantifies how sensitive the evolution is with
respect to small perturbations, i.e. F(λ) ≃ 1 − χS (ρλ)λ2. It
is clear that χS (ρλ) is simply the quantum Fisher information
(QFI) associated to the family of states {ρλ} [18]. The QFI
quantifies how much information about λ is encoded in the
evolution of the state and, therefore, minimizing the QFI at
λ = 0 is equivalent to increasing the robustness of a control
protocol.

Evaluating explicitly the QFI we find [18]

χS (ρλ) =
t2

f

ℏ2

(
∆V0

)2
, (3)

where

V0 =
1
t f

∫ t f

0
ds U†

0(s, 0)VU0(s, 0), (4)
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is the time average of V in the interaction picture with respect
to the unperturbed evolution and the variance is taken with
respect to the initial state,

(
∆V0

)2
= Tr[σV

2
0] − Tr[σV0]2.

A similar result can be derived for the case of the evolution
of unitaries (instead of states). By defining the corresponding

fidelity as FU(λ) = 1
d2

∣∣∣∣Tr
(
U†

0Uλ
)∣∣∣∣2, we obtain that FU(λ) ≃

1 − χU(Uλ)λ2 [18]. The susceptibility is

χU(Uλ) =
t2

f

ℏ2d
||V0||

2, (5)

where || · || is the norm associated with the Hilbert-Schmidt
inner product (A|B) = Tr(A†B) and d is the Hilbert space di-
mension. Robust control protocols then correspond to finding
a H0(t) such that ρ0 = ρtarget or U0(t f , 0) = Utarget while con-
currently minimizing χS for a known perturbation model V
[19–21]. We now demonstrate that such robust control can be
achieved even without knowledge of V .

Universally robust control.–Our construction is based on a
superoperator picture where the operator

M0[V] ≡ V0, (6)

can be seen as the action of a (linear) superoperator M0 act-
ing on V and we assume that TrV = 0 [22]. To construct it
more explicitly, we go to a doubled Hilbert space. If our orig-
inal Hilbert space H is spanned by the orthonormal basis {|i⟩}
where i = 1, . . . , d, we take

A =
∑

i j

Ai j|i⟩⟨ j| → |A) =
∑

i j

Ai j |i⟩ ⊗ | j⟩ , (7)

where now the vector |A) lives in H ⊗H . Thus, from Eq. (6)
we can define

M0 =
1
t f

∫ t f

0
ds

[
U0(s, 0) ⊗ U0(s, 0)∗

]† . (8)

such that
∣∣∣V0

)
= M0 |V). The fidelity susceptibility of Eq. (5)

can be expressed in terms of the superoperator M0 as

||V0||
2 = (V | M†

0 M0 |V) . (9)

By virtue of Eq. (5) we can increase the robustness of a
unitary control protocol irrespective of V by choosing H0(t)
to minimize the operator norm of M0. This also holds for
state control, c.f. Eq. (3), because ∆V0 is upper bounded by
||M0|| [18].

The trace of any operator V is unitarily invariant. For the
identity operator I, M0 |I) = |I) so the norm of M0 cannot be
arbitrarily reduced. To sidestep this issue, we restrict to the set
of traceless perturbation operators by defining the projector
in the doubled Hilbert space P0 = |I) (I| /d such that P0 |A) =
Tr(A) |I) /d, and redefine the relevant superoperator

M̃0 = M0(I − P0). (10)

For any operator V ′, this acts as

M̃0
∣∣∣V ′) = M0(I − P0)

∣∣∣V ′) = M0 |V) =
∣∣∣V0

)
, (11)

where V is a traceless version of V ′.
The goal of URC is then to minimize the norm of the mod-

ified superoperator M̃0, which is related to the previous norm
as

||M̃0||
2 = ||M0||

2 − Tr(M†

0 M0P0) = ||M0||
2 − 1. (12)

This allows us to find choices of U0 which yield M̃0 ≃0, thus
achieving

∣∣∣V0

)
≃ 0 for any V .

To understand how a single solution for U0(t) can be made
robust to arbitrary perturbations, we note the following con-
nection with unitary designs [23, 24]. Discretizing the integral

in Eq. (4) into L≫1 intervals, we find V0 ∼ 1
L

L∑
k=1

U(k)†
0 VU(k)

0 ,

which has the form of an average of the operator V conjugated
over a discrete set of unitaries, U(k)

0 . If the distribution of such
unitaries is uniform according to the Haar measure [25], then
it is known that the average

E
{U(k)

0 }
[U†VU] =

1
d

Tr(V) (13)

vanishes for all traceless V [25]. A less stringent requirement
is for the distribution to only match the first-order moment of
the uniform distribution, i.e. to be a 1-design. In fact, since
P0 |A) = Tr(A) |I) /d, we see that the requirement M̃0 = 0
immediately implies Eq. (13) for any operator, thus making
the path traced by the unitary evolution operator U0(t) a 1-
design.

Leveraging randomization to increase robustness in quan-
tum processes is routinely done in the context of quantum
computing, particularly by tools like dynamical decoupling
[15, 26], dynamically corrected gates [13, 27, 28] and ran-
domized compiling [29]. Our work shows that, for general
quantum systems, it is possible to translate this connection
into a requirement on a single object, the superoperator M̃0,
leading to robustness to any perturbation to first order. As
we show in the following, this allows us to set up a quantum
optimal control problem to find evolutions that reach a prede-
fined target while at the same time remain robust to arbitrary
perturbations.

Optimal control.–We now demonstrate how URC can be
naturally leveraged in numerical optimizations. A generic
quantum optimal control (QOC) approach considers a se-
ries of control parameters, {ϕk}, which determine the time
dependence of H0(t) and aims to maximize the fidelity be-
tween a target process Utarget and the actual (ideal) evolu-
tion operator U0(t f , 0) by minimizing a cost functional J0 =

1 − FU(Utarget,U0(t f , 0)) with respect to {ϕk}. Additionally,
robust QOC usually aims at achieving resilience to perturba-
tions characterized by a known operator V . For this task, one
can concurrently minimize the fidelity susceptibility given by
the control functional JV =

1
d ||V0||

2 (see for instance [21, 28]).
Our proposed approach of universally robust QOC instead
aims at achieving robustness to an unknown error operator
V . This can be achieved by instead minimizing the functional
JU =

1
d ||M̃0||

2[30].
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We begin with the simple case of a single qubit with re-
stricted controls with Hamiltonian

H0(t) = Ω
[
cos ϕ(t)σx + sin ϕ(t)σy

]
, (14)

where σα are the Pauli operators, and we consider the con-
trol field ϕ(t) to be piecewise constant with time steps ∆t and
values {ϕk}, k = 1, . . . ,NP [31]. The model in Eq. (14) is
fully controllable [32, 33]. We set the target transformation
to be Utarget = exp(−iσzπ/2) and numerically seek the QOC
parameters that minimize either only Jtarget = J0, Jrobust =

(J0 + wJV=σz )/(1 + w) or JURC = (J0 + wJU)/(1 + w), where
w is a non-negative weight which can be changed to improve
the resulting balance between the terms. Note that evaluating
these functionals requires only computing the error-free evo-
lution given by H0(t), and so no numerical simulations of the
perturbed dynamics are required at any stage. In Fig. 1(a) we
plot the optimized functional for each case against the evo-
lution time t f . The curves display behavior reminiscent of
Pareto-fronts [34, 35], indicative of the fact that optimization
always succeeds for sufficiently large t f , with the optimization
failing when the time becomes too constrained. A minimum
control time, tMCT, can be assigned to each process by identi-
fying the minimum value of t f such that the optimization suc-
ceeds (which in this case we take as yielding functional values
below 10−7). For target-only and robust control optimizations,
we find tT

MCT = 2π/Ω and tR
MCT = 4π/Ω which are consistent

with previous analytical and numerical studies [32, 33]. In
contrast, universally robust control demands tU

MCT =5π/Ω (see
also [36]).

To characterize how these longer control waveforms yield
robust control processes, we study how well the evolution un-
der the perturbed Hamiltonian Hλ(t) = H0(t) + λV is able to
achieve the target transformation. Fig. 1 shows the cases for
(b) V = σz and (c) V = n⃗·σ⃗with n⃗ a randomly chosen unit vec-
tor. The gate fidelity is plotted against the uncertainty param-
eter λ for the three types of optimal controls found. All cases
yield high fidelities if λ = 0, but the target-only optimization
results deviate substantially from the ideal value once λ , 0.
In (b), we see that the robust control optimization (blue curve)
is insensitive to perturbations in V =σz, as it was designed to
be. But (c) reveals that the same control is sensitive to generic
perturbations. Remarkably, the URC solution (orange curve)
is insensitive to first order with respect to perturbations along
any direction. This holds true even accounting for the faster
minimal control times required for the other protocols [18].

Generalized robustness.–Building upon the superoperator
in Eq. (10) we can generalize this framework to optimize for
robustness to any desired subset of operators. This is partic-
ularly relevant for systems beyond a single qubit where the
nature of the noise or inhomogeneity is partially known in-
stead of being completely arbitrary. Thus, rather than making
a control protocol robust to all possible operators V , we can
instead focus on achieving robustness to a particular set of per-
turbations, for instance, those generated by local operators. In
this case, we are interested in the action of the superoperator,
M0, only on this reduced set. The advantage of imposing these

FIG. 1. Universal robust control for single-qubit gates. (a) Opti-
mized control functionals as a function of the total evolution time
t f for target-only control (gray, circles), target and robustness to a
known V (blue, squares) and target and robustness to an unknown
V (orange, triangles). (b) and (c) Gate fidelity as a function of per-
turbation strength λ for the cases where V = σz (b) and V = n⃗ · σ⃗
with n⃗ a random unit vector (results shown correspond to the aver-
age fidelity over 20 realizations). Lower panels shows zoomed-in
data of the infidelity 1 − F in logarithmic scale. We choose a tar-
get Utarget = exp(−iσzπ/2), NP = 40 control parameters, a balanced
functional w = 1, and an operation time Ωt f /(2π) = 3.5 for (b) and
(c).

generalized robustness requirements is that the optimization is
less constrained, as effectively less matrix elements are being
minimized. Therefore, it is easier to find good solutions even
with restricted control time. For example, the total number of
operators for N qubits is 4N while for the set of local operators
is only 3N.

Consider a quantum system with Hilbert space dimension,
d, and an orthonormal operator basis

{
Λ j

}
, j= 0, 1, . . . d2 − 1.

We introduce a covering of this basis set, {Ck}, such that
{
Λ j

}
=⋃K

k=1 Ck. The projector onto Ck is Pk(A)=
∑
Λ j∈Ck

Tr(Λ†

j A)Λ j.
In the superoperator picture, this is equivalent to defining Pk=∑
Λ j∈Ck

∣∣∣Λ j

) (
Λ j

∣∣∣. These superoperators are clearly projectors,

as P2
k =Pk and

∑K
k=0 Pk= I. By construction, we takeΛ0= I/

√
d

so that P0 is defined as before. In order to look for controls
which are insensitive to any operator within a given subset we
seek to minimize the norm of

M̃0 = M0

1 −
∑
k∈η

Pk

 , (15)
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where the sum runs over all relevant operator subsets η (typi-
cally including Λ0). Note that Pk corresponds to the operators
we do not need to be robust to. To illustrate the procedure
of imposing generalized robustness requirements into a QOC
problem, consider a model of two-qubits with symmetric con-
trols,

H0(t) = Ωx(t)S x + Ωy(t)S y + βS 2
z , (16)

where S α = (σ(1)
α + σ

(2)
α )/2 are collective spin operators and

the interaction strength β > 0 is fixed. The perturbation op-
erator, V , can be either single-body (C1) or two-body (C2).
We thus have a variety of possible optimization functionals
depending on the level of robustness desired. Here we com-
pare three cases: robustness to a single V = S x, robustness to
all single-body operators (V ∈ C1) and universal robustness
(V ∈ C1 ∪ C2). We set the target as a randomly-chosen sym-
metric two-qubit unitary [18]. For this system we find that
choosing an unbalanced optimization functional with w= 0.1
yields a good compromise between the fidelity at zero pertur-
bation (λ = 0) and the degree of robustness achieved [37].
In Fig. 2 we show the performance of the optimization using
the different functionals introduced thus far, in the presence
of various perturbations. As expected, the optimal control
procedure is able to find fields which are robust to arbitrary
single-body perturbations (green curve), which are not nec-
essarily robust to arbitrary perturbations as the URC (orange
curve). On the other hand, the URC solution results in evo-
lutions which are more robust to any type of perturbation, in-
cluding a two-body one of the form V = S 2

x, when compared
to the other methods.

The approach outlined above for designing generalized ro-
bustness requirements can be readily carried over to more
complex systems. In the Supplementary Material [18] we
show additional results that illustrate how this framework can
be used to robustly generate entangled states in many-body
systems.

Conclusion.– We have introduced a versatile method, uni-
versally robust control (URC), to mitigate the effects of un-
known sources of error. By recasting the impact of an arbi-
trary perturbation to the systems in terms of a single object,
here captured by the superoperator in Eq. (8), we showed that
since this superoperator has no explicit dependence on the pre-
cise operator form of the error, it can be efficiently minimized
to provide the necessary, highly robust, control pulses. We
demonstrated the effectiveness of our approach for the realiza-
tion of single- and two-qubit quantum gates, and have shown
that it can be generalized to tackle state control problems or to
the case of classical fluctuations [38]. Furthermore, we have
demonstrated that the URC formalism can exploit partial in-
formation about the source of errors to build arbitrary robust-
ness requirements into the optimal control problem. When
combined with powerful numerical optimization techniques,
we expect this flexible approach to be able to tackle a broad
class of questions in quantum control which are of key impor-
tance for the development of quantum technologies. For in-
stance, what is the fundamental trade-off between robustness

FIG. 2. Universal robust control for two-qubit gates. Plots show
the gate fidelity of the perturbed evolution H0(t) + λV , where H0(t)
is the control Hamiltonian of Eq. (16). Different curves correspond
to different types of optimization procedures: target only (nonrobust,
gray circles); target and robustness to a fixed V0 = S x (blue squares);
target and robustness to all single-body operators (green crosses);
target and universal robustness (orange triangles). The lower row
shows the infidelity 1 − FU for each case. Evolution time in all cases
is βt f /(2π) = 5, and NP = 50 control parameters are used.

and experimental constraints (such as bandwidth or evolution
time)? how much control resources are required to achieve
various levels of robustness in a quantum device? Finally, as
our protocol introduces control pulses which dynamically im-
plement 1-designs, this could be generalized to other t-designs
which can be readily exploited for quantum computing proto-
cols such as randomized benchmarking [39].
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I. PERTURBATIVE APPROXIMATION TO THE FIDELITY

A. Fidelity susceptibility as the quantum Fisher information

We are interested in calculating the quantum Fisher information (QFI) of the state ρλ with respect to the parameter λ. Formally,
the QFI is defined as FQ[ρλ] = (∆L)2, which is the variance ((∆x)2 = ⟨x2⟩ − ⟨x⟩2) of the symmetric logarithmic derivative L
defined implicitly as ∂ρλ

∂λ
= (ρλL + Lρλ) /2 [17]. Note that for pure states we have that

∂ρλ
∂λ
=
∂ρ2
λ

∂λ
(S1)

= ρλ
∂ρλ
∂λ
+
∂ρλ
∂λ
ρλ. (S2)

Clearly then for this case, L = 2 ∂ρλ
∂λ

. The mean is given by

⟨L⟩ = 2Tr
(
ρλ
∂ρλ
∂λ

)
(S3)

= Tr
∂ρ2

λ

∂λ

 (S4)

=
∂

∂λ
Trρ2

λ (S5)

= 0. (S6)

Therefore the QFI can be compactly written as

FQ[ρλ] = 4Tr

ρλ (∂ρλ∂λ
)2 . (S7)

6

Universally robust quantum control



B. Explicit expression for fidelity susceptibility

The derivative of the state can then be expressed as

∂ρλ
∂λ
=
∂Uλ
∂λ
σU†

λ + Uλσ
∂U†

λ

∂λ
. (S8)

We then use the derivative of the unitary time evolution operator as

dUλ(t f , 0)
dλ

= −
i
ℏ

∫ t f

0
dsUλ(t f , s)VUλ(s, 0). (S9)

Inserting in this relation gives us

∂ρλ
∂λ
= −

i
ℏ

∫ t f

0
ds

[
Uλ(t f , s)VUλ(s, 0)σU†

λ(t f , 0) − Uλ(t f , 0)σU†

λ(s, 0)VU†

λ(t f , s)
]

(S10)

= −
i
ℏ

∫ t f

0
ds

[
Uλ(t f , s)VU†

λ(t f , s)Uλ(t f , 0)σU†

λ(t f , 0) − Uλ(t f , 0)σU†

λ(t f , 0)Uλ(t f , s)VU†

λ(t f , s)
]

(S11)

= −
i
ℏ

∫ t f

0
ds

[
Uλ(t f , s)VU†

λ(t f , s)ρλ − ρλUλ(t f , s)VU†

λ(t f , s)
]

(S12)

= −i
[
Gλ, ρλ

]
, (S13)

where Gλ = 1
ℏ

∫ t f

0 dsUλ(t f , s)VU†

λ(t f , s). The QFI is then

FQ[ρλ] = −4 Tr
{
ρλ

[
Gλ, ρλ

]2
}

(S14)

= −4 Tr
{
ρλ

(
GλρλGλρλ − Gλρ2

λGλ − ρλG
2
λρλ + ρλGλρλGλ

)}
(S15)

= 4
(
⟨G2
λ⟩ − ⟨Gλ⟩2

)
(S16)

= 4 (∆Gλ)2 , (S17)

where these steps hold true for pure states. This can be further simplified by noting that

⟨Gλ⟩ = Tr {Gλρλ} (S18)

= Tr
{

1
ℏ

∫ t f

0
dsUλ(t f , s)VU†

λ(t f , s)Uλ(t f , 0)σU†

λ(t f , 0)
}

(S19)

= Tr
{

1
ℏ

∫ t f

0
dsU†

λ(s, 0)VUλ(s, 0)σ
}

(S20)

= t f ⟨Vλ⟩i/ℏ, (S21)

where the average ⟨·⟩i is taken over the initial state σ and we have defined Vλ = 1
t f

∫ t f

0 dsU†

λ(s, 0)VUλ(s, 0) which is the time-
averaged version of the operator V in the interaction picture. Similarly, the other term is given by

⟨G2
λ⟩ = Tr

{
G2
λρλ

}
(S22)

= Tr
{
G2
λUλ(t f , 0)σU†

λ(t f , 0)
}

(S23)

= Tr
{
U†

λ(t f , 0)G2
λUλ(t f , 0)σ

}
(S24)

= Tr
{[

U†

λ(t f , 0)GλUλ(t f , 0)
]2
σ
}

(S25)

= t2
f ⟨V

2
λ⟩i/ℏ

2. (S26)

Putting this all together now, we have that the QFI can be expressed as a variance of the operator Vλ over the initial λ-
independent state σ,

FQ[ρλ] =
4t2

f

ℏ

(
∆Vλ

)2
. (S27)
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C. Fidelity susceptibility for unitaries

The relevant fidelity is FU(λ) = 1
d2

∣∣∣∣Tr
(
U†

0Uλ
)∣∣∣∣2 [33] which we will expand in powers of λ. Again we make use of Eq. (S9)

and start by noting that for any complex scalar z, d
dx (|z|2) = 2Re(z∗ dz

dx ). Therefore

dFU

dλ
=

2
d2 Re

[
Tr(U†

λU0)Tr
(
U†

0
dUλ
dλ

)]
(S28)

=
2

d2ℏ
Im

{
Tr(U†

λU0)
∫ t f

0
ds Tr

[
U†

0Uλ(t f , s)VUλ(s, 0)
]}
. (S29)

Evaluating the first derivative at λ = 0 yields

dFU

dλ

∣∣∣∣∣
λ=0
=

2
dℏ

Im
{∫ t f

0
ds Tr

[
U†

0(s, 0)VU0(s, 0)
]}
=

2
dℏ

Im
[
Tr(V)t f

]
= 0. (S30)

The second derivative reads

d2FU

dλ2 =
2

d2ℏ
Im

Tr

dU†

λ

dλ
U0

 ∫ t f

0
ds Tr

[
U†

0Uλ(t f , s)VUλ(s, 0)
]
+

Tr(U†

λU0)
∫ t f

0
ds Tr

[
U†

0

dUλ(t f , s)
dλ

VUλ(s, 0) + U†

0Uλ(t f , s)V
dUλ(s, 0)

dλ

]}
(S31)

=
2

d2ℏ2

∣∣∣∣∣∣
∫ t f

0
ds Tr

[
U†

0Uλ(t f , s)VUλ(s, 0)
]∣∣∣∣∣∣2 +

−
2

d2ℏ2 Im
{

iTr(U†

λU0)
∫ t f

0
ds Tr

[∫ t f

s
dx U†

0Uλ(t f , x)VUλ(x, s)VUλ(s, 0) +
∫ s

0
dx U†

0Uλ(t f , s)VUλ(s, x)VUλ(x, 0)
]}
.

(S32)

When evaluating it at λ = 0, the first term depends on Tr(V) as before, which vanishes. For the second term, we use the cycle
property of the trace to find that

d2FU

dλ2

∣∣∣∣∣∣
λ=0
= −

2
ℏ2d

Im
[
i
∫ t f

0
ds

{∫ t f

s
dx Tr[V(x)V(s)] +

∫ s

0
dx Tr[V(s)V(x)]

}]
(S33)

= −
2
ℏ2d

Im
[
i Tr

(∫ t f

0
ds V(s)

∫ t f

0
dx V(x)

)]
= −

2t2
f

ℏ2d
Tr

(
V0

2
)
. (S34)

This is exactly the quoted result in Eq.(5).

II. ROBUST STATE CONTROL

Coming back to the original state control problem, we now show how the different universal robustness constraints can be
imposed in that case too. Recall the expression of the fidelity susceptibility (or quantum Fisher information) associated with the
perturbation-dependent trajectories ρλ(t), Eq. (3). The relevant variance can be written (for a pure initial state) as(

∆V0

)2
= Tr[V

2
0σ] − Tr[V0σV0σ] (S35)

=
(
V0

∣∣∣ I ⊗ σ∗ ∣∣∣V0

)
−

(
V0

∣∣∣σ ⊗ σ∗
∣∣∣V0

)
(S36)

= (V | M†

0PσM0 |V) , (S37)

where we have defined Pσ = (I − σ) ⊗ σ∗. This is clearly a projector since

P2
σ = (I − σ)2 ⊗ (σ∗)2 (S38)
= (I − σ − σ + σ) ⊗ σ∗ (S39)
= Pσ. (S40)
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We will now simplify this projector further. Its eigenvectors |χn) with eigenvalue one, must satisfy Pσ |χn) → (I − σ)χnσ = χn. 
For pure states this simplifies to [

χn − Tr(σχn)
]
σ = χn. (S41)

Multiplying on the right by σ we can see that the condition reduces to (σ|χ) = 0. The projection operator can be written as

Pσ =
∑

n

|χn) (χn| , (S42)

where the operators χn form an orthogonal basis and which all fulfil (σ|χn) = 0. Written simpler Pσ = I − |σ) (σ|, the latter
expression leads to (

∆V0

)2
=

∥∥∥V0
∥∥∥2

−

∣∣∣∣(σ|V0

)∣∣∣∣2 . (S43)

Note also that by the Cauchy–Schwarz inequality
(
∆V0

)2
= ∥PσM0 |V)∥2 ≤ ∥M0 |V)∥2 =

∥∥∥V0
∥∥∥2

. This connects to the case of
quantum gates since the last term is state independent, c.f. Eq. (5).

To summarise then, we have (
∆V0

)2
= (V | (Mσ0 )†Mσ0 |V) . (S44)

which has the same form as Eq. (9), but introduces the initial-state-dependent superoperator Mσ0 = PσM0. Note that this does
not suffer the same difficulty as before since Mσ0 |I) = PσM0 |I) = Pσ |I) = 0.

III. ANALYTICAL EXPRESSION OF THE URC FUNCTIONAL GRADIENT

In the following, we will derive a closed form approximation to the gradient of the URC cost functional JU, which could be
then used in a variety of gradient based optimization algorithms.

A. Gradient of unitary evolution operator

Let us assume the ideal Hamiltonian to be split as a drift and a time-dependent control part: H(t) = Hd + Hcon(t). The time
evolution operator under this Hamiltonian is formally U(t, 0) = T exp

[
− i
ℏ

∫ t
0 H(s)ds

]
, where T is the time ordering operator. We

assume that the time dependence is piecewise constant, i.e., on the interval [t j, t j+1] we have Hcon(t) = ϕ jW. The time evolution
operator can then be expressed exactly as

U(t, 0) =
∏

j

exp
[
−

i
ℏ

(Hd + ϕ jW)∆t
]

(S45)

=
∏

j

U j, (S46)

where U j is the time evolution operator over constant intervals ∆t = t j+1 − t j. We can define the control vector as
ϕ⃗ = (ϕ1, ϕ2, . . . , ϕNP )T . The kth element of the gradient of the time evolution operator with respect to this control vector can
be expressed as

{∇ϕ⃗U(t, 0)}k =
NP∏

j=k+1

U j

(
∂ϕk Uk

) k−1∏
j=1

U j (S47)

≈

NP∏
j=k+1

U j

(
−

i
ℏ
∆tWUk

) k−1∏
j=1

U j, (S48)

where in the second step we have assumed short time intervals ∆t. The gradient over any interval [ta, tb] on our mesh can be
expressed as

{∇ϕ⃗U(tb, ta)}k ≈

0 tk < [ta, tb]∏b
j=k+1 U j

(
− i
ℏ
∆tWUk

)∏k−1
j=a U j Otherwise

. (S49)
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B. Gradient of the cost functional JU

We now want to find the gradient of the norm (we assume the Frobenius norm for concreteness) of the superoperator. The
norm squared can be first simplified as

dJU = ||M0||
2 − 1 (S50)

=

∥∥∥∥∥∥∥∥∥
1
t f

t f∫
0

dsU(s, 0) ⊗ U(s, 0)∗

∥∥∥∥∥∥∥∥∥
2

− 1 (S51)

=
1
t2

f

Tr


t f∫

0

ds2U(s2, 0) ⊗ U(s2, 0)∗
t f∫

0

ds1
[
U(s1, 0) ⊗ U(s1, 0)∗

]† − 1 (S52)

=
1
t2

f

t f∫
0

ds1

t f∫
0

ds2Tr
[
U(s2, 0)U†(s1, 0) ⊗ U(s2, 0)∗U(s1, 0)T

]
− 1 (S53)

=
1
t2

f

t f∫
0

ds1

t f∫
0

ds2Tr
[
U(s2, s1) ⊗ U(s2, s1)∗

]
− 1 (S54)

=
1
t2

f

t f∫
0

ds1

t f∫
0

ds2Tr [U(s2, s1)] Tr
[
U(s2, s1)∗

]
− 1 (S55)

=
1
t2

f

t f∫
0

ds1

t f∫
0

ds2 |Tr [U(s2, s1)]|2 − 1. (S56)

Note that by the Cauchy-Schwartz inequality and the fact that the time evolution operator is unitary we get that JU ≤ d − 1/d.
The kth component of the gradient is then

∂ϕk JU =
1

dt2
f

t f∫
0

ds1

t f∫
0

ds2∂ϕk |Tr [U(s2, s1)]|2 (S57)

=
2

dt2
f

t f∫
0

ds1

t f∫
0

ds2Re
{
Tr [U(s2, s1)] ∂ϕk Tr [U(s2, s1)]∗

}
(S58)

=
2

dt2
f

t f∫
0

ds1

t f∫
0

ds2Re
{
Tr [U(s2, s1)] Tr

[
∂ϕk U(s2, s1)

]∗}
. (S59)

This could be computed numerically using the following steps. First compute all U j for a given vector ϕ⃗. Then, the derivative
can be approximated as

∂ϕk JU ≈
2(∆t)2

dt2
f

NP−1∑
n,m=1

Re
{
Tr [U(tm, tn)] Tr

[
∂ϕk U(tm, tn)

]∗}
(S60)

where U(tm, tn) = Um . . .Un and each component of the gradient of U is approximated by Eq. (S49).
In order to reduce the computation time in calculating U j, one could use the Baker-Campbell-Hausdorff approximation as

U j ≈ exp
[
−

i
ℏ

(∆t)Hd

]
exp

[
−

i
ℏ

(∆t)ϕ jW
]

exp
[

1
2ℏ2 (∆t)2ϕ j[Hd,W]

]
, (S61)

provided that ∆t was sufficiently small. Precomputing the spectrum of Hd, W and [Hd,W] would make the repeated matrix
exponentiation much faster.
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IV. EXTENSION TO CLASSICAL FLUCTUATIONS

Consider now the Hamiltonian H(t) = H0(t) + λξ(t)V . The noise averaged state fidelity is given to second order in λ as

⟨Fξ⟩ ≈ 1 −
λ2

ℏ2

∫ τ

0
dt

∫ τ

0
dsC(t, s) [⟨VI(t)VI(s)⟩ − ⟨VI(t)⟩⟨VI(s)⟩] , (S62)

where VI(t) = U†

0(t, 0)VU0(t, 0) is the noise operator V in the interaction picture and the noise ξ(t) has zero mean and correlation

function C(t, s) = ⟨ξ(t)ξ(s)⟩. We can define a superoperator Nt =
[
U0(t, 0) ⊗ U∗

0(t, 0)
]†

, such that |VI(t)) = Nt |V). The first term
in the operator Hilbert space can then be expressed as

⟨VI(t)VI(s)⟩ = (V | N†
t I ⊗ σ

∗Ns |V) . (S63)

Similarly the product of averages becomes

⟨VI(t)⟩⟨VI(s)⟩ = Tr[VI(t)σVI(s)σ] (S64)
= (V | N†

t σ ⊗ σ∗Ns |V) . (S65)

All together then, this can be written as

⟨Fξ⟩ ≈ 1 −
λ2

ℏ2

∫ τ

0
dt

∫ τ

0
ds C(t, s) (V | N†

t PσNs |V) . (S66)

Thus, to minimise the impact of the noise regardless of the operator V , one must minimise the operator∫ τ

0
dt

∫ τ

0
ds C(t, s)N†

t PσNs. (S67)

V. ADDITIONAL NUMERICAL RESULTS

In this section, we present additional numerical results. These include further applications of the URC framework and more
detailed descriptions of the problems analyzed in the main text.

A. Generation of many-body entangled states

Eq. (S44) allows us to carry over the optimal control procedure discussed in the main text for unitary control to the problem
of robust state control. The only adaptation needed is to replace M0 with Mσ0 . We illustrate this procedure by analyzing the
problem of generating entangled states in a system of N = 4 qubits with global controls and all-to-all interactions. We consider
a Hamiltonian having the exact same form as (16) where now S = N/2 is the total angular momentum associated with the
symmetric subspace of the N particles. We point out that this problem is fully controllable for any N [40]. We consider the
problem of driving the system from the state |0000⟩ to the Dicke-0 state, i.e. the eigenstate of S z composed of a symmetric
superposition of states with equal number of qubits in 0 and in 1. Because this is a four-body system, there many possible
choices of robustness setups that could be pursued. Here we demonstrate the flexibility of our approach by showing results
corresponding to robustness to either all single-body or all two-body operators in Fig. S1. In all plots we show four curves,
corresponding to four functionals being optimized. These are

Jtarget = J0 (S68)

J
(V)
robust = (J0 + wJV )/(1 + w), where V = S x (S69)

Jη = (J0 + wJ(η)
U )/(1 + w), where η = 1B, 2B (S70)

The URC functionals J(η)
U = ||M̃0

(η)
||2/d differ in the case of seeking robustness to just 1-body operators (1B) or just 2-body
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FIG. S1. Universal robust control for four-qubit state-control problem. Top panels show the state fidelity F, bottom panels show a zoomed-in
view of the infidelity 1− F. In all cases data is plotted against the perturbation strength λ for the evolution H0(t)+ λVx where (a) Va = V = S x,
(b) Vb = S z, (c) Vc = S 2

x. The four curves correspond to the four optimization functionals described in the text, c.f. Eqns. (S68)-(S70).

operators (2B):

M1B
0 = M0

1 −
∑
k,1

Pk

 , (S71)

M2B
0 = M0

1 −
∑
k,2

Pk

 , (S72)

where P denotes the projector onto k−body operators. Fig. S1 shows the fidelity as a function of perturbation strength λ for every
solution in the presence of three different perturbations; in other words we calculate the state fidelity achieved by the dynamics
H0(t) + λVx where x = a, b, c labels the different panels in the figure: (a) Va = V = S x, (b) Vb = S z, (c) Vc = S 2

x (these are the
same choices used for the two-qubit case of Fig. 2). The results show that every optimization delivers the expected results: the
usual robust control is only insensitive to the predefined choice of V , but remains sensitive to other perturbations. On the other
hand, the URC waveforms designed to be insensitive to all single-body perturbations (1B) shows robustness in both cases (a)
and (b). Likewise, the URC waveforms 2B are only robust to the case where the noise is on a two-body operator (c).

B. Comparison of timescales

In Fig. 1, we demonstrated how the URC waveforms leads to enhanced robustness with respect to perturbations when com-
pared outperform the other controls analyzed. These correspond to the output of optimizing either Jtarget or Jrobust. The evo-
lutions studied in Fig. 1 correspond to all waveforms of the same duration Ωt f /(2π) = 3.5π. A fair critique of this analysis is
that nonrobust or standard robust waveforms can be achieved with shorter operation times. Therefore we compare in Fig. S2
the performance of waveforms of different durations, which now scale with their respective minimal control time (indicated in
the main text). While not as striking, it is still clearly from these results that the URC method still provides additional stability
overall, despite needing extra time to do so.
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FIG. S2. Performance of Universal Robust Control when compared to other approaches and restricting the evolution time. The parameters
are as in Fig. 1, with the exception that for URC (orange triangles) ΩtU

f /(2π) = 3.5; for the standard robust control ΩtR
f /(2π) = 2.1, for the

nonrobust control ΩtT
f /(2π) = 1.1.

FIG. S3. Universal robust control for two-qubit gates. Plots show the gate fidelity of the perturbed evolution H0(t) + λV , where H0(t) is
the control Hamiltonian of Eq. (16). Different curves correspond to different types of optimization procedures: target only (nonrobust, gray
circles); target and robustness to a fixed V0 = S x (blue squares); target and robustness to all single-body operators (green crosses); target and
universal robustness (orange triangles). Lower row shows the infidelity 1 − F for each case.

C. Other target states

In the analysis of two-qubit unitary control, we set as a target transformation a single, randomly-chosen, two-qubit symmetric
gate. When written in the symmetric basis {|00⟩ , (|01⟩ + |10⟩)/

√
2, |11⟩}, such gate has the form

Urandom =

 0.51762131 + 0.11456864i −0.5988566 − 0.16086483i −0.57589678 + 0.05271048i
−0.22709248 + 0.22335233i 0.30541094 + 0.57529237i −0.6568961 − 0.20686492i
−0.75950102 + 0.20160146i −0.40091574 − 0.17470746i −0.13888378 + 0.41469292i

 . (S73)

A more physically-inspired choice could be the XX Mølmer-Sørensen (MS) gate,

UMS = exp
[
−i
π

2

(
S 2

x −
1
2

S x

)]
. (S74)

In Fig. S3 we show results which are completely analogous to Fig. 2, but now setting as a target the MS gate. As is evident
from the data, the URC framework works irrespectively of the choice of target gate.
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D. Further details on the numerical optimization

FIG. S4. Analysis of the weight w between targets in the numerical optimization, see Eq. (S75). Gate infidelity 1 − FU as a function of
the perturbation strength. Results are shown for optimal control of two qubit gates (same case as shown in the main text) for the cases of (a)
Universally robust and (b) Robust to single-body perturbations. Here V = S z and βt f = 5. See text for further details.

Finally we comment on the choice of the weight parameter w in the optimization functional, i.e.,

JURC= (J0 + wJU)/(1 + w). (S75)

For any w, the global minima is JURC = 0 which happens if and only if J0 = 0 and JU = 0. When any other solution is found,
we would like that both targets are equally well achieved. We find that the straightforward choice of w = 1 can put too much
weight on the robustness requirement, in such a way that the ideal target fidelity found by the optimizer can be too high. This
is seen in Fig. S4 (a), where we show the infidelity for the case of two-qubit gates (and random target unitary) when searching
for gates that are universally robust. From the data, it can be seen that the fidelity at zero perturbation λ = 0 can be quite high
for relatively high values of w. This is because the optimizer is not able to get JU down to values which are of the order of the
required infidelities. We expect that this can be improved by allowing more control time, but we leave a more detailed analysis
for future work. For a fixed control time, this behavior can be adjusted by lowering the value of w. We point out that easier
cases, for example the two-qubit case with robustness to only single-body operator, typically don’t have a strong dependence on
the value of w, see Fig. S4 (b).
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