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A B S T R A C T

Following the Paris agreement, different policy incentives aiming at the reduction of carbon emissions have
been introduced worldwide. Dwellings that benefit from increased renewables penetration, aiming at achieving
net-zero and even net-positive energy balance, are being designed and deployed in different countries. This
article presents a design mixed-methods approach, based on collected quantitative and qualitative data, to
answer the ‘‘what’’, ‘‘why’’ and ‘‘how’’ of energy prosumption in net-positive dwellings. We demonstrate the
strong influence of domestic routines and dynamic energy import and export pricing on explaining energy-
centric deviation from net-positive design ambitions. Findings from net-positive neighbourhood households,
equipped with geothermal heating, solar generation and electric vehicles, in Norway further provide actionable
insights on demand-side reduction and flexibility in energy consumption and how to achieve true energy net-
positive balance. Specifically, our analysis demonstrates a significant gap between actual energy bills and user
expectations, and potential energy cost reduction up to 10% on a per-activity basis through demand side
flexibility in relation to dynamic tariffs as well as a maximum observed bill reduction of up to 50% compared
to the baseline scenario for households not adapting their activities inline with dynamic tariffs.
1. Introduction

As many countries worldwide commit to net-zero goals, different
approaches are being implemented to reduce carbon emissions, includ-
ing the introduction of greener means of transportation such as electric
vehicles (EVs), switching to renewable energy sources (RES) and the
establishment of carbon-neutral communities. Smart districts and local
energy communities deploy housing that attempt to accommodate resi-
dents’ needs while minimising the carbon footprint of living spaces. Be-
sides good thermal insulation in the building design, energy-intensive
routines of residents need to be considered when estimating their
carbon footprint. Net-zero and even net-positive—i.e., the total energy
production exceeds total energy demand annually—neighbourhoods
that benefit from increased penetration of RES at the end-user level,
together with digital smart home technologies (SHT) that can help
implement energy conservation practices [1], are being implemented
in different parts of Europe and UK. In this paper, we focus not on
the design of net-positive residential communities but rather on the
energy-centric evaluation of how truly net-positive a building is when
considering the energy practices of its residents and how these are
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affected by SHTs, low carbon technologies and a dynamic electricity
pricing system.

A range of energy efficiency solutions and policy incentives, tailored
towards energy conservation and mitigating the effects of climate
change and reducing the economic cost to end-users, have been inten-
sified following the Paris agreement in response to the ever increasing
emissions of greenhouse gases (GHGs) in combination with the turmoil
in the energy markets. The impact of these solutions in the European
Union (EU) can be seen in the report of the International Energy
Agency (IEA) [2] where an annual decrease of 3.5%, equivalent to
94.9 teraWatt hours, of energy consumption in the EU was observed
in 2022, leading to a reduction of 202 megatonnes of carbon emis-
sions, compared to the global average increase of 1.9% in total energy
consumption equivalent to 168 megatonnes of carbon emissions. In ad-
dition to the introduction of energy-efficient appliances and incentives,
according to the 2023 Consumer Conditions Scoreboard published by
the European Commission [3], 72% of respondents believe that they
need to personally do more to tackle climate change and 57% are con-
sider their environmental impact when purchasing goods and services.
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List of Abbreviations

ADAM Adaptive moment estimation
CM Coffee machine
DHW Domestic hot water
DW Dishwasher
EU European Union
EV Electric vehicle
FRD Fridge
FRZ Freezer
GAN Generator gradient weight
GDPR General data protection regulation
GHG Greenhouse gases
HB Electric hob
HT Heating appliance
IEA International Energy Agency
IHD In-home displays
KET Kettle
ML Machine learning
MW Microwave
NOK Norsk Krone
OV Electric oven
PED Positive energy districts
PHEV Plug-in hybrid electric vehicle
PV Photovoltaic
REF Fridge-freezer
RES Renewable energy sources
SGD Stochastic gradient descent
SHT Smart home technologies
TD Tumble dryer
WD Washer-dryer
WM Washing machine

Nomenclature

𝛼 The plane incident angle
𝛼𝑝 The solar panel azimuth
𝛼𝑠 The solar azimuth
𝛼𝑡 The solar panel tilt
�̄�ℎ𝑖𝑔ℎ The average electricity price during the exporting

period
�̄�𝑙𝑜𝑤 The average electricity price during the lower tariff

hours
𝑎 The surface albedo
𝑎𝑖 The state of the 𝑖–th appliance
𝐵 The total energy bill
𝑏(𝑡) The energy import price vector per kWh
𝑐 The grid supply compensation
𝐶(𝑡) The energy cost vector
𝐸𝑖 The energy vector of the 𝑖–th appliance
𝐸𝑏𝑎𝑙(𝑡) The energy balance vector
𝐸𝑐 (𝑡) The energy consumption vector
𝐸𝑝(𝑡) The energy production vector
𝐸𝑠ℎ𝑖𝑓 𝑡𝑒𝑑 The energy that is not self-consumed but exported

to the grid during higher energy price periods and
later re-imported during lower energy price periods

𝑔 The grid fees

Furthermore, in the aforementioned report, it was shown that 71% of
the EU population, including Norway and Iceland, changed their habits
to save energy in line with the soaring energy prices, with Norway
2

𝐺𝑎𝑟𝑏 The partial average arbitrage gain
ℎ The angular elevation of the solar disc above the

horizontal plane
𝐼𝑑𝑖𝑓 ,ℎ The global diffuse irradiance
𝐼𝑑𝑖𝑓 ,𝑝 The diffuse plane irradiance
𝐼𝑑𝑖𝑟,ℎ The global direct irradiance
𝐼𝑑𝑖𝑟,𝑝 The direct plane irradiance
𝑙 The length of the smart meter data gap
𝑛 The number of the appliances
𝑝(𝑡) The energy price vector per kWh
𝑄𝐼 Quality Index
𝑠(𝑡) The energy export price vector per kWh
𝑆𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 The total number of samples that are expected
𝑆𝑚𝑖𝑠𝑠𝑖𝑛𝑔 The total number of consecutive samples that are

missing with a duration less than 𝑙
𝑇 The total monitored period
𝑉 𝐴𝑇 The value added tax
𝑤(𝑡) The energy import or export price vector

being one of the countries exceeding the average of the EU. A similar
observation about the engagement of people in climate policy actions
is echoed in [4], where it was concluded that although there was a rise
in negative sentiment following popular policy events such as the Paris
Agreement, positive sentiment was more prominent in social media.

The reduction of CO2 emissions through the rapid electrification of
future urban buildings has been highlighted as an area of paramount
importance for future study in [5] and of equal importance to the
decarbonisation of the power sector with net-zero and even net-positive
buildings being introduced throughout Europe. However, although
these houses are designed to reduce energy usage and carbon emissions,
the actual energy consumption of the households is often higher than
designed. The increased demand for energy services, such as high
indoor temperature, is the direct result of energy efficiency measures,
such as better insulation. Consequently, people can afford to have
higher temperatures due to the efficiency of their living spaces or be-
cause they become less attentive to savings because they are aware that
their household is more efficient. In some more rare cases, the increase
in energy demand can also be said to relate to users’ interaction with
technology, such as the user interface and socio-technical mismatch
effects. The first occurs when households replace their appliance with a
smarter one and do not know how to use it, adjusting the device poorly
and consuming more energy. The second occurs when the technologies
work efficiently only when they are operated as designed; however,
they do not fit with households’ everyday lives. Indeed, the energy
performance gap [6], between actual energy requirements of lived-
in buildings compared to expected energy consumption—according to
standards such as ISO 16343:2013 [7]—has been attributed to different
factors, including unrealistic occupants’ behavioural assumptions and
unpredictable usage habits [8].

Therefore, it is imperative to understand and quantify the devia-
tion between actual and predicted energy consumption and to explore
energy efficiency approaches that take into account the practices and
routines of the end user. Such approaches include more accurate pre-
dictions of expected energy consumption and lead to solutions that can
help end-users reduce their energy bills and carbon footprint through
flexibility in their routines. This can take the simple form of shifting
flexible loads to maximise RES generation and decongest the grid at
peak demand, which in turn reduces wholesale prices and dependency
on non-renewable generators to meet demand. Flexible load shifting
curtails the peak demand, avoiding the use of fossil fuels to supplement
renewables; for example, climate change has forced UK emergency coal

power plants to be used with hot [9] and cold [10] temperature, mostly
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led by the extravagance of using heating and cooling appliances even
if the temperature is not extreme [11].

While the understanding and prediction of energy consumption
in households has been the subject of numerous studies [12], these
generally focus on qualitative [13] or quantitative [14] data analysis.
In a review of different approaches for energy research design meth-
ods [15], the importance of bridging qualitative analysis—which can
offer great detail and high explanation but with limited capabilities
in scaling—with quantitative analysis—which can easily scale up but
may lack in explanatory power—is highlighted. Following a critical
review [16] of how building energy efficiency is affected by occupant
behavioural patterns (considering occupational behaviour, energy ef-
ficiency, conservation, and consumption analysis), it was concluded
that in most research, holistic approaches are not employed but tend
to be focused on a singular area of interest such as ventilation and
heating. Similarly, a review of over 200 articles, of which about 83.48%
focused on quantitative data with predominant usage of basic statistical
approaches on energy behaviour of households [17], highlighted the
need for mixed-methods research on building energy consumption to
provide insights not only on ‘‘what’’ is being consumed but also ‘‘how’’
and ‘‘why’’. These review articles make the case that energy-related
mixed-methods approaches are needed but still in their infancy, with
no specific framework in place to better analyse occupant lifestyles
that can lead to better understanding of user profiles and routines, and
hence improved energy efficiency recommendations.

Mixed-methods research, that is, combining quantitative and qual-
itative data collection and analysis in one study, was introduced as a
means to reduce bias—as a result of only quantitative or qualitative
research—and improve the robustness and depth of research findings
by neutralising the weaknesses of each type of data [18], and can
be categorised as: (i) exploratory sequential mixed-methods, where
the research first focuses on the qualitative analysis and the quanti-
tative data are used in order to provide more detailed explanations;
(ii) explanatory sequential mixed-methods, where the research first
focuses on the quantitative analysis and the qualitative research is
used to provide more detailed explanations; (iii) convergent mixed-
methods, where quantitative and qualitative data—that are collected
approximately at the same time—are merged as a way to analyse a
problem; (iv) complex designs with embedded core designs, where a
primarily quantitative or qualitative design can be intersected with
a secondary method, or a mixed-methods can be intersected within
another methodology or within a theoretical framework. This paper
adopts a complex mixed-methods approach to propose a framework
to jointly understand the ‘‘what’’, ‘‘how’’ and ‘‘why’’ of energy con-
sumption in net-positive dwellings. We briefly review mixed-methods
approaches in the literature next and identify gaps that we address via
our proposed framework.

A mixed-methods clustering approach for energy data using quan-
titative survey data—variables related to energy and socioeconomics—
and qualitative codes associated with transcripts from interview data
was proposed in [19], whereby a two-step process was followed. First,
quantitative and qualitative data were clustered separately and sec-
ondly, links between the clusters were identified. Clear links were
identified that can unlock findings that would not have been possible
analysing only quantitative or qualitative data, such as households that
exhibit the same energy consumption but have completely different
socio-economic characteristics and different levels of awareness about
clean energy. In [20], via case studies in Spain and in the Benelux,
a mixed-methods design process was proposed integrating occupant
behaviour and attitudes towards energy use and indoor conditions.
Although quantitative parameters such as temperature, relative humid-
ity, CO2 levels, and parameters such as sound, light, and movement
were used, actual energy consumption was not analysed. Based on
the practices of the occupants, profiles were generated and compared
with the average profiles used in simulations and energy regulations
3

using an embedded design in order to explain and validate quantitative
analysis through qualitative data. The importance of occupant comfort
and ‘‘convenience and time’’ was highlighted as a major parameter that
affects actual energy use in a household.

Different approaches have been proposed in providing activity load
consumption and feedback to end users, with the majority of them
jointly analysing qualitative smart meter/submetered data and quali-
tative socio-demographic data to produce more meaningful feedback
through in-home displays or mobile apps. In [21], a mixed-methods
convergence approach, using qualitative electrical energy measure-
ments from sub-metering devices and smart meters together with de-
mographic data, was proposed to quantify the energy intensity and
temporal routines of occupant activities, leveraging on quantitative
non-intrusive load monitoring research and qualitative practice theory
research. In [22], different methodological approaches including anal-
ysis of large databases, surveys, qualitative interviews, indoor measure-
ments and electricity readings, combined with surveys and qualitative
interviews, showed that people’s intentions are not mandated by the
amount of energy they consume, but by the domestic activities they
engage in, such as regulating indoor climate, cooking and laundry.
An exploratory mixed-methods approach was implemented to under-
stand energy consumption after in-home displays (IHD) installation
in [23], with quantitative analysis performed first with the objective
of quantifying the change in energy consumption before and after IHD
installation. Qualitative analysis was then performed to understand the
reasoning behind the reduced energy consumption identified through
the energy data and, therefore, to explain why energy consumption was
statistically significantly lower than before IHD introduction.

Though previous work reviewed above has demonstrated the value
of mixed-methods approaches to reduce bias in findings of pure quali-
tative or quantitative research for understanding energy demand, there
is still a gap in the literature from explaining energy consumption
patterns in homes to using this understanding to improve energy effi-
ciency measures. Indeed, most prior work reports occupant energy use
patterns, occupant-building interactions, and uncovering relationships
between behaviour and influencing factors, without relating to explain
the ‘‘why’’ and ‘‘how’’. Therefore, in this paper, we hypothesise that
mixed-methods analysis would provide the tools to explain from the
‘‘what’’ to the ‘‘how’’ and ‘‘why’’ of end-user energy consumption to
directly inform energy efficiency initiatives. To this end, the main
contribution of the paper is a complex mixed-methods methodology
intersecting quantitative load disaggregation methods from granular
smart meter data, quantitative cost reduction analysis from dynamic
pricing profiles and qualitative analysis of interviews and questionnaire
data from state-of-the-art net-positive/plus buildings. Specially, the
methodology answers the following:

1. ‘‘what’’ is of the energy gap between energy consumption and
RES production of plus-home living spaces and ‘‘why’’ this gap
arises;

2. ‘‘what’’ is the deviation between actual energy consumption and
net-positive energy balance and ‘‘how’’ this can be explained
through the lens of household routines;

3. ‘‘what’’ is the deviation between actual and expected energy
bills, ‘‘why’’ net-positive houses exposed to dynamic electricity
pricing do not always have a zero bill, and ‘‘how’’ this can
be explained through time of use tariffs in relation to their
energy-intensive activities; and,

4. ‘‘what’’ are the insights gained on user-centric load shifting
potential, ‘‘why’’ they are suited to the user based on their rou-
tines, and ‘‘how’’ load shifting is actionable when aligning with
dynamic energy pricing, as a means to reduce CO2 emissions.

The rest of the manuscript is organised as follows. In Section 2 the
complex mixed-methods approach is explained, comprising quantita-
tive and qualitative data collection process, the estimation of renewable
energy production, the disaggregation of the activities and the exploita-

tion of the energy price information. This is followed by Section 3
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Fig. 1. Mixed-methods approach flowchart showing building blocks of the overall methodology adopted.
where the mixed-methods evaluation approach and the key findings
are presented as per the above four questions. Lastly, in Section 4,
the key conclusions including limitations of the study and future work
directions are discussed.

2. Methodology

In order to quantify the energy gap between energy consumption
and production in net-positive dwelling, explain the deviation through
the lens of disaggregated activities and deviation between actual and
expected energy bills, we follow the overall methodology of Fig. 1,
where each of the blocks are described below.

2.1. Data collection

Quantitative and qualitative data were simultaneously collected
from a pilot project within the framework of Positive Energy Districts
(PED) in the region of Eastern Norway (Østlandet) that houses approx-
imately 70 families. The buildings were built between 2018 and 2019
consisting of detached, semi-detached and flat-apartments targeted at
middle-income families. The houses were designed to meet all their
energy demands through electricity and in an environmentally friendly
manner, meeting passive house standards, equipped with solar panels,
ground source heat pumps for space heating and domestic hot water
(DHW), and smart home technology, including a smart energy man-
agement system. In this smart district, in contrast to standard practice,
the solar panel installer buys the energy surplus without deducting the
network tax that is being paid to supply the grid with power. Thus,
each homeowner has their consumption settled against their share of
the production and, therefore, they are getting paid the actual amount
of money that their panels produce. Further to that, all households have
an EV or a plug-in hybrid vehicle (PHEV). Some households have a
dedicated EV fast charger, while others rely on generic 3-pin chargers
due to the additional costs of installing a dedicated chargepoint.

2.1.1. Qualitative & quantitative data
During April 2022, 9 in-depth, semi-structured, face-to-face inter-

views on energy practices assisted by smart home technologies were
conducted with one or more householders—in one specific case includ-
ing the presence of teenagers during the interview. The 9 households
vary in terms of demographic characteristics—i.e., age, sex, educa-
tional background, and occupation. Interviews were recorded, tran-
scribed and analysed through traditional coding and content analysis
4

techniques [24]. As described in [25], which uses the same data as
this paper to explore social practices with respect to energy use, the
recruitment process was carried out through door-to-door canvassing,
in which data saturation was swiftly achieved for three main reasons.
First, semi-structure interviews enable the exploration of the same ques-
tions with all participants. Second, the homogeneity of the sample in
terms of housing characteristics, appliances type, make and availability,
access to smart technologies and EVs as well as prosumer scheme.
Third, the qualitative and quantitative data triangulation strengthen the
reliability and validity of the study. Adhering to the general data pro-
tection regulation (GDPR) guidelines, participants’ consent declaration
was obtained for interviews as well as for the aggregate readings from
smart meters through their energy provider for a period of 2 months,
stretching from mid-February to mid-April 2022.

The monitoring period was selected as it is during spring and spans
almost evenly before and after the northward equinox, with daylight
ranging from approximately 8 to 14 h for the whole monitoring period.
As the district of Eastern Norway is located north from the Tropic of
Cancer and in close proximity to the Arctic Circle, it exhibits very short
days during the winter period—as low as 2 h per day—and on the other
hand, extremely lengthy days during summer—exceeding 18 h.

It is challenging to assess net consumption and solar energy produc-
tion only from a 2-month sample. However, in the monitoring period
the solar irradiation and the temperature are neither extremely low, as
would have been the case around the southern solstice, nor extremely
high, as would have been the case around the northern solstice. As can
be observed in Fig. 2 the monitored period spans in the linear area of
optimal solar production, and the monitored period average deviates
by approx. 5% of the yearly average. Further to that, the temperature
during the two-month period varied between −8 ◦C and 19 ◦C with
the yearly variation being between −15 ◦C and 30 ◦C and the average
temperatures between −4 ◦C and 17 ◦C for the whole year. Therefore,
the temperature range during the monitored period is close to the
yearly average. Since heating and hot water demand are correlated with
outdoor temperature, a monitoring period close to the yearly average,
provides a realistic estimate of the yearly consumption. In addition, the
monitored period contains both periods of normal working days and a
week of school holidays—during February—which usually affects the
energy consumption as people tend to travel during breaks. Therefore,
the monitored period can be considered a representative sample both
for production and consumption.

Three-phase power supply is installed in all households and there-
fore the smart metering data—sampled at 10-second intervals—contain
information about the total active and reactive power as well as the
voltage and the current consumption on a per-phase basis. In addition

to these readings, an hourly sample of the aggregate active and reactive
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Table 1
Summary of households.

ID Type Area Floors Rooms PV [kWp] Occupancy (age)

1 Detached 148 m2 3 4 4.8 2 adults (>60) & 1 dog
3 Detached 193 m2 3 4 6.4 2 adults (≈34) & 1 child
5 Semi-detached 90 m2 2 2/3 14 2 adults (≈30) & 2 children
6 Detached 148 m2 3 4 4.8 2 adults (>60) & 1 teenager
7 Semi-detached 90 m2 2 2/3 14 2 adults (>38) & 2 teenagers
9 Semi-detached 131 m2 2 3 9.6 2 adults (≈32) & 1 child
a

𝐼

Fig. 2. Average maximum solar irradiation on the PV panels located on the roofs of
the buildings of the neighbourhood under study, calculated as described in Section 2.2.
Longitude and latitude considered are limited to satellite data granularity (0.5 × 0.5 km)

ith the coverage of the neighbourhood (0.130 × 0.325 km). PV panels are installed
n a circular pattern with different tilt per house relative to the sun position.

ower was also provided for billing purposes. The hourly price vectors
or the import and export of electricity were also provided by the
nergy provider. Due to technical issues, it was only possible to collect
mart meter data from 6 households. A questionnaire on appliance
ime-of-use, based on [26], was supplied via email to two households,
elected due to extreme cases of ratio of production to consumption.
his detailed information on households’ energy-consuming routines
nd habits in relation to appliances contributed to map hourly usage
atterns and validate load disaggregation results on these households.
he knowledge was then transferred to other households under study.
summary of the houses involved in the study is presented in Table 1.

he description of the occupant profiles is based on the way that
he homeowners self-identified during the aforementioned in-person
nterviews.

.1.2. Cleaning of smart meter readings
Collected meter readings occasionally suffer from gaps, which need

o be filled. To facilitate the interpolation process and estimate the
uality of the data, a Quality Index was calculated based on the length
f the gaps. The Quality Index (𝑄𝐼) is given by:

𝐼(𝑙) =
𝑆𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 − 𝑆𝑚𝑖𝑠𝑠𝑖𝑛𝑔(𝑙)

𝑆𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
, (1)

here 𝑆𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 are the total number of samples expected (10-sec sam-
les for a period of 2 months, i.e., 509,400 samples) in the dataset
nd 𝑆𝑚𝑖𝑠𝑠𝑖𝑛𝑔 are the total number of consecutive samples that are
issing with a duration less than 𝑙, where 𝑙 is the length of the gap.

ig. 3 represents the Quality Index (Eq. (1)) for the 6 households
ith smart metering data. For each household, the number of missing

amples that exceeded a certain duration was calculated. This step is
onsidered necessary as the quality of the activity disaggregation results
5

re related with the quality of the submetered data. Gaps in the data
Fig. 3. Quality index of continuous smart meter data samples for each of the 6
households included in the study, highlighting gap intervals that needed to be filled
before calculating energy consumption.

that spanned less than 1 h were replicated using the nearest-neighbour
interpolation method under the constraint that the total consumption
during that hour should be equal to the difference between the two
billing measurements, i.e., the total energy consumed during that hour.
Gaps that spanned for more than one hour were filled based on average
historical data, i.e., the average of the consumption on the same day of
the previous weeks—using again the constraint that the total energy
consumption per hour should be equal to the billing energy power.

2.2. Estimation of renewable production per house

As the solar production data was not available from the meter
readings, an estimate of solar energy production was performed using
weather data, as well as building-specific data. Global solar irradiance
in that specific area, measured by [27] was collected every hour. Data
were collected on an hourly basis as market clearance occurs once every
hour. Based on the installed capacity of photovoltaics (PVs), as well as
on the orientation and tilt of the solar panels installed on the rooftop—
assuming a fixed azimuth and tilt angle—an hourly estimate of the
energy produced through the PVs was calculated based on the widely
used and cited Global Solar Energy Estimator (GSEE) simulation model
of [28]. The direct plane irradiance is then given by (as in [28], Eq.
(2)):

𝐼𝑑𝑖𝑟,𝑝 =
𝐼𝑑𝑖𝑟,ℎ × 𝑐𝑜𝑠(𝛼)

𝑐𝑜𝑠
(

𝜋∕2 − 𝛼𝑠
) , (2)

where 𝛼 is the plane incident angle given by (as in [28], Eq. (1)):

𝛼 = 𝑎𝑟𝑐𝑜𝑐𝑜𝑠
[

𝑠𝑖𝑛(ℎ) × 𝑐𝑜𝑠(𝛼𝑡) + 𝑐𝑜𝑠(ℎ) × 𝑠𝑖𝑛(𝛼𝑡) + 𝑐𝑜𝑠(𝛼𝑝 − 𝛼𝑠)
]

, (3)

nd the diffuse plane irradiance by (as in [28], Eq. (3)):

= 𝐼 ×
1 + 𝑐𝑜𝑠(𝛼𝑡) + 𝑎 ×

(

𝐼 + 𝐼
)

×
1 − 𝑐𝑜𝑠(𝛼𝑡) , (4)
𝑑𝑖𝑓 ,𝑝 𝑑𝑖𝑓 ,ℎ 2 𝑑𝑖𝑟,ℎ 𝑑𝑖𝑓 ,ℎ 2
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with 𝐼𝑑𝑖𝑟,ℎ and 𝐼𝑑𝑖𝑓 ,ℎ being the global direct and diffuse irradiance
espectively, 𝑎 being the albedo, ℎ being the angular elevation of the
entre of the solar disc above the horizontal plane, 𝛼𝑝 being the solar
anel azimuth, 𝛼𝑡 being the solar panel tilt and lastly 𝛼𝑠 being the
olar azimuth, i.e., the angle between the projection of Sun’s centre
nto the horizontal plane and due south direction. Lastly, based on the
ork in [28] and the PV performance model presented in [29] panel
fficiency was calculated based on temperature-dependent parameters.

.3. Disaggregation of activities from smart meter readings through transfer
earning

Sub-metering devices used to measure energy consumption at the
ppliance level were not installed in the monitored households. There-
ore, energy consumption on a per-appliance basis is estimated based
n the total energy consumption and validated through soft labels from
he qualitative data analysis—i.e., interviews and surveys—as well as
hrough the quantitative data. For example, Sofie (house 9) discussed
er vehicle’s charging patterns:

I guess it would usually probably be around late af-
ternoon evening is when we would be charging it. When
we are going out for the day. (Sofie, 32-years old, house
9)

fact that was cross-validated from the questionnaire and the actual
oad data. Different machine learning (ML) models have been shown
o perform well for the load disaggregation problem [30]. A sequence-
o-subsequence model [31,32] and a WaveNet model [33] were shown
o effectively perform load disaggregation task by transfer learning
rom publicly available datasets, and are used for disaggregation of
ppliances of the households under study.

As the aforementioned models are based on supervised learning,
raining data are required to develop the models. Therefore, publicly
vailable data sets were used to train load disaggregation models.
ased on the interview data and questionnaires, the installed appliances
ere identified and the most adequate datasets, which contain similar
ppliances, were selected. More specifically, ECO [34], REFIT [35] and
ECAN [36] datasets as well as the EV consumption dataset in [37]
ere used. ECO dataset contains three-phase residential smart meter
ata as well as sub-metering of 6 households for a period of 6 months
ith a sampling frequency of 1 Hz. The ECO dataset was considered
dequate, as it contains similar installations—i.e., three-phased ones—
nd similar appliances to the ones targeted in our research. A summary
f data availability in the ECO dataset is presented in [32]. The REFIT
ataset [38] contains smart meter data as well as sub-metering of 20
ouseholds for a period of 21 months with a sampling frequency of
/8 Hz. As with the ECO dataset, the REFIT dataset was considered
dequate as it contained a variety of different households with several
ifferent appliances that were similar to the ones targeted. PECAN
ataset includes EV loads from several households in Texas and New
ork area with a sampling rate of 1 Hz. Finally, the dataset in [37]
ontains data from one year of a household in Germany where a high-
ower EV charger—i.e. 11kW—is installed with a sampling rate of
/60 Hz, which coincides with the presence of similar EV chargepoints
n the smart neighbourhood that is being studied.

Publicly available datasets were re-sampled at the same sampling
ate as collected data. As the targeted households had a sampling rate
f 1/10 Hz, the other datasets used were down-sampled or up-sampled
o the same rate. As ECO [34] and PECAN [36] were sampled in
-second intervals, downsampling was performed by aggregating the
nergy consumed during each 10-second period. REFIT [38] dataset,
hich had a sampling rate of 1/8 Hz, could not be directly resampled as

he data are required to be down-sampled by a non-integer. Therefore,
ata were resampled at the new lower rate by interpolating the values.
6

inally, the EV dataset in [37], which has a sampling rate of 1/60 Hz, w
was up-sampled by assuming the same power level throughout the
60-sec period.

As EV charging events are generally characterised by relatively high
power and long duration, they can be more easily disaggregated com-
pared to low-power and complex loads. The sequence-to-subsequence
model, which benefits from higher convergence speed when compared
to sequence-to-sequence models—due to the fact that it targets the
middle of a time-series—as well as from lower computational costs
compared to a sequence-to-point model—was used to disaggregate the
EV load. Based on the work in [31], the parameters of the network
were selected as follows: (i) window size: 512 samples; (ii) loss: L1; (iii)
discriminator filter optimiser: Stochastic gradient descent (SGD); (iv)
generator filter optimiser: ADAM; (v) initial learning rate (SGD) 0.001;
(vi) initial learning rate (ADAM): 0.0005; (vii) ADAM momentum term:
0.5; (viii) generator gradient weight (L1): 100; (ix) generator gradient
weight (GAN): 1; (x) number of layers: 7; (xi) discriminator filters (1st
layer): 32; (xii) generator filters (1st layer): 32 and (xiii) epochs: 120.

Based on the interview data, households were split into two cate-
gories, the ones that had a high power EV charger—i.e., a dedicated
charger with a nominal power of 11kW—and the others that used
a portable EV charger (3 kW) that plugs into a standard residential
socket (esp. for PHEV). More specifically, regarding their charging
routines, Brian (house 1) stated that a dedicated charger capable of
being programmed is installed in his household:

Yes! I have programmed my charger to start at 1
o’clock at night because it‘s when the energy is cheaper.
So, I always charge my car at night. (Brian, 61-years old,
house 1)

On the other hand, Sofie (house 9) stated that they have a PHEV:

We have plugin hybrid [. . . ]1 50 Kilometres. Mm-
hmm. And then after that it goes on to gas. But we do
not really use gas that much cause we do not go very far.
(Sofie, 32-years old, house 9)

with a standard 3-pin socket system installed in their property due to
the cost of getting a dedicated charger:

I was looking into that one. The prices were starting
to get expensive, then they became expensive all the time
instead. . . (Sofie, 32-years old, house 9)

Two different models were used for these two groups. The same pro-
cedure as in [31] was followed for the training of the models. The
model used for the disaggregation of high-power EV charger loads
was trained on the household from [37] as it showed a similar load
profile. On the other hand, the disaggregation of the rest of the EVs
was based on a model trained on a selection of households from the
PECAN dataset [36] that exhibited a similar low-power charging level,
i.e., houses 661, 1642, 4373, 6139, 8156 from Austin and house 27
from New York.

As the rest of the household appliances exhibit a more complex
signal, a WaveNet network was used to estimate their load. The train-
ing data set consisted of a mixture of different households from the
REFIT [38] and ECO [34] data sets that contained the same appli-
ances. The targeted appliances were the most commonly used high
consumers—as identified through the questionnaire: (i) heating appli-
ances (HT); (ii) washing machines (WM); (iii) tumble-dryers (TD); (iv)
washer-dryers (WD); (v) dishwashers (DW); (vi) electric hobs (HB); (vii)
electric ovens (OV); (viii) coffee machines (CM); (ix) kettles (KET);
(x) microwaves (MW); (xi) fridge (FRD); (xii) freezers (FRZ) and (xiii)

1 Note that [. . . ] is the ellipsis symbol that denotes an intentional omission
f a word, sentence, or whole section from a quotation from interview data
ithout altering its original meaning.
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fridge-freezers (REF). More specifically, from the REFIT dataset the
following houses were used for training the models: house 1 (WM, TD,
DW, HET), house 6 (FRZ, MW, KET, WM, DW), house 8 (FRD, FRZ,
KET, WM, DW), house 9 (MW, KET, WM, WD, DW, HET), house 16
(HET) and house 18 (FRD, FRZ, REF, MW, WM, WD, DW). From the
ECO dataset the following houses were used: house 1 (CM, TD, REF,
FRZ, KET, WM), house 2 (DW, REF, FRZ, KET, HB, OV), house 3 (CM,
REF, FRZ, KET), house 4 (MW), house 5 (CM, KET, MW) and house 6
(CM, KET).

Based on the interviews collected in households, as well as the appli-
ance availability and time-of-use survey, the appliances were grouped
into different routines, taking into account different activation times.
Energy-intensive activities were taken into account and grouped into
the following categories: breakfast, lunch, dinner, laundry, cleaning,
heating, refrigeration, and vehicle charging. Breakfast, lunch, and din-
ner were further grouped into the cooking practices activity, and laun-
dry and cleaning were also grouped into a single category.

The identified routines, with the corresponding time windows and
appliances were: (i) EV charging (EV): all-day; (ii) heating (HT): all-
day; (iii) refrigeration (FRD, FRZ, REF): all-day; (iv) laundry/cleaning
(WM, TD, WD, DW): all-day; (v) breakfast (KET, CM): 05:00–10:00;
(vi) lunch (HB, OV, MW): 10:00–15:00 and (vii) dinner (HB, OV,
MW): 15:00–21:00. Appliances that can be used during different ac-
tivities were grouped based on time-of-use. The amount of energy
consumed in a household that was not a result of the aforementioned
appliances/activities is considered as a non-disaggregated load and pre-
sented as a separate activity, namely ‘‘Other’’. Through the combination
of quantitative data analysis and the interviews energy consumption
on a per-activity basis was further explained. For example, heating
practices of the homeowners were explored, with Brian (house 1),
compared to Sofie & Arthur (house 9), discussed his high thermal
comfort expectations:

In these rooms, the daily living rooms we prefer to
have it around 22/23 degrees, ah, in the winter (empha-
sis), and in the bathroom we prefer around 24/25 (Brian,
61-year-old, house 1).

During the activity-level disaggregation process, electrical heating load
was observed only at some households, as others were able to cover all
of their heating needs through the ground source heat-pump system.
The methodology was validated through the soft labels on houses 1
and 9, and rolled out across all other houses in the study. As time-of-
use surveys were not available for houses 3, 5, 6 & 7, validation of the
disaggregated loads was performed through manual inspection of the
electricity load profiles by an energy expert.

2.4. Exploiting energy price information

In Norway, the energy market is cleared on an hourly basis. The
hourly balance of import minus export is calculated, and then the
customer is either debited or credited the equivalent amount. The
hourly energy price per kWh—import and export—is communicated to
the customer one day in advance. The import cost of energy per kWh—
denoted as 𝑏(𝑡) [NOK/kWh]—is the sum of the price per kWh—denoted
as 𝑝(𝑡) [NOK/kWh], the Value Added Tax (VAT)—denoted as 𝑉 𝐴𝑇 and
currently 25%—, and the grid fees—denoted as 𝑔 [NOK/kWh]—which
were approx. 0.4 NOK/kWh for the monitored period. Therefore, the
hourly import cost in [kWh] is given by:

𝑏(𝑡) = 𝑝(𝑡) × (1 + 𝑉 𝐴𝑇 ) + 𝑔. (5)

On the other hand, the export gain per kWh—denoted by 𝑠(𝑡) [NOK/
kWh]—is the sum of the price per kWh,2 (without the addition of

2 In Norway, during the monitoring period, as already mentioned in Sec-
ion 2.1 the energy produced is sold at the same price as the energy imported
rom the grid (without including VAT).
7

VAT) plus a small compensation for supplying the grid—denoted as 𝑐
[NOK/kWh]—which is approx. 0.1 NOK/kWh. Therefore, the hourly
export gain per kWh is given by:

𝑠(𝑡) = 𝑝(𝑡) + 𝑐. (6)

he energy balance, i.e., the energy exported subtracted from the
nergy imported per time slot and denoted as 𝐸𝑏𝑎𝑙(𝑡) can be expressed
s:

𝑏𝑎𝑙(𝑡) = 𝐸𝑐 (𝑡) − 𝐸𝑝(𝑡), (7)

ith 𝐸𝑐 (𝑡) and 𝐸𝑝(𝑡) being the energy consumed from the appliances
nd the energy produced (from the solar panels) at time 𝑡, respectively.
𝑝(𝑡) was estimated through the solar insolation data and the installed
apacity as described in Section 2.2 through the methodology provided
n [28]. The appliances energy consumption, 𝐸𝑐 (𝑡), can be expressed as:

𝑐 (𝑡) =
𝑛
∑

𝑖=1
𝑎𝑖(𝑡) × 𝐸𝑖 (8)

here 𝑎𝑖 is the state of the 𝑖–th appliance out of a total of 𝑛 appliances
nd 𝐸𝑖 is the energy vector of the 𝑖–th appliance. Therefore the energy
ost per time-slot can be expressed as:

(𝑡) = 𝐸𝑏𝑎𝑙(𝑡) ×𝑤(𝑡) (9)

here 𝑤(𝑡) is set to 𝑏(𝑡) or 𝑠(𝑡) if energy is imported or exported,
espectively. By combining the above equations the energy cost per
ime-slot can be written as:

(𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

( 𝑛
∑

𝑖=1
𝑎𝑖(𝑡) × 𝐸𝑖 − 𝐸𝑝(𝑡)

)

× (𝑝(𝑡) × (1 + 𝑉 𝐴𝑇 ) + 𝑔) 𝐸𝑏𝑎𝑙(𝑡) ≥ 0
( 𝑛
∑

𝑖=1
𝑎𝑖(𝑡) × 𝐸𝑖 − 𝐸𝑝(𝑡)

)

× (𝑝(𝑡) + 𝑐) 𝐸𝑏𝑎𝑙(𝑡) < 0

(10)

nd the total energy bill as:

=
𝑇
∑

𝑡=1
𝐶(𝑡) (11)

here 𝑇 is the total monitoring period.
The financial gain obtained through load shifting is capped by the

aximum amount of flexibility that each user is willing to accept on
per-activity basis. Therefore, the maximum financial gain will be

btained when 𝐵 is minimum, under the constraints that a continuous
vent cannot be split, i.e., an appliance activation cannot be intermitted
nd split into sub-activations, that certain appliance activation are
ounded by the activation of another appliance, i.e., certain appliances’
oads are dependent on previous appliances loads—e.g., the tumble
ryer and the washing machine—and that activation constraints are
mposed by the requirements of the end-users.

As inferred from the empirical study and validated through the
mart meter data, several users selected to export their solar energy
instead of self-consuming) during the solar production hours as the
nergy price was higher and then import energy from the grid during
heaper energy hours. The partial average arbitrage gain through this
trategy can be obtained by combining Eq. (5) & (6) and can be
xpressed for each household as:

𝑎𝑟𝑏 = 𝐸𝑠ℎ𝑖𝑓 𝑡𝑒𝑑 ×
(

𝑝ℎ𝑖𝑔ℎ × (1 + 𝑉 𝐴𝑇 ) − 𝑝𝑙𝑜𝑤 + 𝑔 − 𝑐
)

, (12)

where 𝐸𝑠ℎ𝑖𝑓 𝑡𝑒𝑑 is the amount of energy that is not self-consumed but
exported to the grid during higher energy price periods and later
re-imported during lower energy price periods, 𝑝ℎ𝑖𝑔ℎ is the average
electricity price during the exporting period and 𝑝𝑙𝑜𝑤 is the average
electricity price during the lower tariff hours.
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3. Mixed-methods evaluation approach and key findings

Energy plus-home neighbourhoods are expected to exhibit an en-
ergy net-positive balance, i.e., the total energy produced should exceed
the total energy consumed. Following the qualitative methodology
(empirical study) of the households in this study, it was concluded
that those who moved into this energy-plus neighbourhood had ex-
pectations of close to zero/negative energy bills. However, after about
two years of living in their new homes, the residents agreed during a
community meeting with the real estate and energy supply companies
that their energy bills were much higher than they had anticipated.
Therefore, initial enthusiasm from being able to reduce the bills and
achieve net-positive energy balance was replaced with anger and dis-
appointment in the new builds. This motivated our study to determine a
systematic methodology for evaluating net-positive and net-zero build-
ings in terms of energy consumption taking into account occupant
behaviour such that they are meaningful to the building occupants and
therefore actionable through flexibilities in their domestic routines. We
demonstrate our methodology through a case study on a net-positive
community in Norway from six participating households, summarised
in Table 1, all equipped with a smart meter.

3.1. Explaining the energy gap between energy consumption and production
in net-positive dwellings

We first determine the ratio of estimated solar PV energy production
(see Section 2.2) to measured energy consumption from smart meter
data. A ratio of total production to total consumption greater than 1
indicates true net-positive and the smaller than 1 ratio indicates higher
consumption with respect to production. This is shown for our case
study, monitored over a period of two months, in the third row of
Table 2. Only house 9 is net-positive, followed closely by houses 5 and
7 with a close to 1 ratio.

This can be visualised in Fig. 4, which shows the total energy
consumption and production of each household. As can be observed
in Table 2 and Fig. 4, houses 5, 7 and 9 have a ratio close to 1, with
energy consumption almost matching production. However, houses 1,
3 and 6 have over twice more consumption than production with ratios
much less than 0.5 with houses 1 and 6 consuming approximately
five times the energy produced. Houses 1, 3 and 6 are completely
detached houses, with larger living areas and comparably less pro-
duction capacity—less space for solar panels (see Table 1) on the
rooftop due to a roof patio. On the other hand, houses 5 and 7 are
semi-detached/terraced houses with smaller living area and thus lower
energy consumption, which is almost compensated by the higher PV
production capacity—larger number of solar panels installed on the
rooftops (see Table 1). Therefore, the actual topology of a building
and the limitations that this may introduce in terms of installation
capacity of renewables, greatly affect the net-balance of future home
livings spaces and need to be taken into consideration at design stage.
However, in order to do so, it is important to accurately quantify the
consumption needs of the inhabitants of these dwelling, which can
only be done through the lens of household routines and activities, as
discussed next.

3.2. Explaining the deviation through the lens of disaggregated activities

As shown in [21], understanding households consumption through
the lens of occupant activities or daily routines offers better actionable
insights than aggregate-level smart meter consumption. Following the
proposed quantitative methodology of load disaggregation together
with qualitative empirical research described in Section 2.3 for the
same two-month period, the actual consumption of essential energy-
intensive routines of heating, cooking, laundry/cleaning, EV charging
together with refrigeration consumption are determined and shown in
the fourth to eighth rows of Table 2. We can explain over 50% of
8

the consumption for all households in the study. From the empirical
study, these ‘‘Other’’ loads can be attributed to smart devices that are
running all day, including automation for ventilation/purification of
the household, auto blinds and robot vacuums that are charging all day.

Heating energy consumption corresponds to the additional energy
consumed for space heating when the ground source heat pumps cannot
meet the demand. All detached households (houses 1, 3 and 6) and
only one of the semi-detached households (house 7) do not meet their
heating requirements solely through the ground source heat pumps but
need additional energy to achieve their thermal comfort levels, a fact
that can be attributed to the higher than expected heating expectations
as highlighted by the empirical study. Cooking activities across all
houses are responsible for the same percentage of the total bill (in
the range of 3%–6%) whereas laundry and cleaning activities greatly
vary across the participating households. From the empirical study
and occupation as per Table 1, as expected, households with more
occupants (house 7) and households with young children (houses 3 &
9) tend to consume more energy for their laundry/cleaning practices
due to the increased demand laundry, tumble drying and dishwashing.
An exception to this pattern is house 5, which although occupied by
two adults and 2 children, has a lower laundry/cleaning consumption
due to the reduced usage of the tumble dryer, concluded from load
disaggregation methodology (see Section 2.3). EV charging greatly
varied across the households due to the transportation requirements
of the homeowners. As the data correspond to the post-COVID period,
from interview data, households 3 & 9 mostly work from home and
therefore their transportation needs are lower. On the other hand,
households 1, 5, 6 & 7 commute on a daily basis, charging every
single day, resulting in their EV charging consumption contributing to
almost 60% of their total energy consumption. Lastly, refrigeration also
varied across the different households, with detached houses 1, 3 and
6 having higher consumption than semi-detached houses 5, 7 and 9.
Indeed, refrigeration of house 9 consumes 1.5 times more than that of
house 1. All houses were already furnished with A-rated white goods
when sold—semi-detached house 9 had a fridge-freezer whilst detached
house 1 had two refrigerating appliances.

Finally, all essential cooking, laundry and refrigeration related loads
for all houses are covered by solar PV production. As discussed previ-
ously, additional heating was not expected due to communal ground
source heating provision and explains deviation from net-positive. Al-
though EV charging provision in terms of infrastructure was planned,
expected charging patterns and consumption are much lower than
actual, especially for houses 1, 3 and 6, whose PV capacity can clearly
not meet EV charging together with essential cooking, laundry and
refrigeration. This has serious implications for electrification of trans-
portation as residential charging is growing and planning net-positive
dwelling must take this into account with better models informed from
studies such as ours.

3.3. Explaining deviation between actual and expected energy bills

The estimated electricity balance for each household shown in Ta-
ble 2 was calculated based on Eq. (11), taking into account the hourly
energy consumption and production and the hourly pricing vector. A
key observation from the last row in Table 2 is that, despite being
close to or net-positive, houses 5, 7 and 9, do not have a zero bill,
although production should be meeting consumption costs. We explain
this deviation next through the energy pricing strategy in Norway,
with similar approaches being followed by the majority of countries
participating in the Nord Pool [39], where energy prices vary hourly
and consumers/prosumers are directly exposed to the price variability
for both energy import and export, with billing tied to the day-ahead
market price.

As observed in Fig. 5(a), although the electricity price was relatively
stable before the end of February 2022, from that point on the price
exhibits high variability due to the turmoil in the energy market as
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Fig. 4. Differing levels of hourly discrepancy between energy consumption and production, totalled over the monitoring period, for each of the 6 households.
Table 2
Energy breakdown and estimated electricity cost balance.

House 1 House 3 House 5 House 6 House 7 House 9

Consumption [kWh] 2276 1181 1289 2045 1300 762
Production [kWh] 414 552 1208 414 1209 826
Ratio 0.18 0.47 0.93 0.20 0.93 1.09

Heating [kWh] 630 (28%) 149 (13%) 0 (0%) 318 (16%) 134 (10%) 0 (0%)
Cooking [kWh] 90 (4%) 77 (6%) 46 (4%) 53 (3%) 64 (5%) 48 (6%)
Laun./Clean. [kWh] 74 (3%) 174 (15%) 81 (6%) 131 (6%) 178 (14%) 186 (24%)
EV [kWh] 718 (32%) 258 (22%) 799 (62%) 1061 (52%) 627 (48%) 95 (12%)
Refrigeration [kWh] 138 (6%) 159 (13%) 94 (7%) 144 (7%) 91 (7%) 92 (12%)
Other [kWh] 626 (27%) 364 (31%) 267 (21%) 338 (16%) 206 (16%) 341 (43%)

Bill (𝐵) [NOK] 4429 1649 770 3951 785 185
a result of the embargo of Russian fuels in several parts of the world
following Russian invasion of parts of Ukraine [2]. As can also be seen
through the trend line in Fig. 5(a), the price of electricity appears to
be increasing throughout March 2022, with a small decline during
April due to better weather conditions, decreased energy demand,
and stabilisation of the energy market. In Fig. 5(b) the high variance
of hourly electricity prices can be observed (on logarithmic scale),
especially during the peak morning hours. Outliers during the period
from 07:00–09:00 reached 7 NOK/kWh an almost 4-fold increase from
the average. Energy end-users were directly impacted by the hourly
variance of the energy price vector, with our households under study
commenting on their unexpectedly high energy bills.

[. . . ] but we have an extremely expensive energy in
Norway this year. ... we are used to pay under 50 øre
[∼0.047 euro] for a kWh, and this year we have paid 4–
5 krone [∼0.45 euro] for a kWh, so it is extremely. So,
many people in Norway are broke, and the government
9

is going to take some of the bill for us. (Brian, 61-years
old, house 1)

Looking at Figs. 4 and 5(b), we observe that energy production
mostly occurs during 10:00–15:00 when the electricity prices exhibit a
local minimum, whereas the energy consumption occurs mostly during
the early morning hours and the late afternoon/early evening hours
when the average hourly electricity price exhibit two local maxima.
This partially explains the deviation from zero bills for houses 5, 7
and 9, which although close to or net-positive, experience a significant
bill. The bills can partly be compensated by arbitraging—through load
shifting and solar energy exports—due to the energy price model: the
local minimum during the midday, when the majority of the solar
production takes place, has a median export tariff obtained through
Eq. (6) of 1.58 NOK, which is higher than the global minimum during
the night hours, with a median import tariff obtained through Eq. (5)
of 1.53 NOK. On the other hand, the import tariff during early morning
and early evening hours are 1.92 NOK and 1.67 NOK, respectively.
Therefore, by applying Eq. (12), for all households a small gain in
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Fig. 5. High energy price fluctuation during the monitored period with evident spikes after the start of the energy crisis.
he range of approx. 4%–8% is achieved. All houses, except house
, partially consume what they are producing exporting the majority
o the grid, as observed in Fig. 4. House 1, although importing the
ajority of its energy during the night hours when the tariffs are

heaper, due to exceptionally high import (as observed in brown in
ig. 4(a)) relative to export, incurs the largest bill. Houses 3, 6, 7 & 9
mport a significant part of their consumption during evening when, in
eneral, the electricity prices exhibits a local maximum. House 6, like
ouse 1, has a disproportionally higher consumption than production,
ith the majority of the energy consumed being concentrated between

he early morning hours and the late evening hours when the energy
rice exhibit maxima. House 3, although partly self-consuming, exports
significant amount of energy to the grid, which is later re-imported

etween late-afternoon and late-evening when again the energy prices
re higher. Net-positive house 9 has a non-zero bill because is con-
uming the majority of the electricity during the two local maxima
morning and early evening) when the energy prices are highest and
nergy production is low. Similarly, house 7, which is close to net-
ero consumes the majority of energy during evening when the energy
rices are higher. House 5, which although following an arbitrage
trategy (see Eq. (12)) by exporting almost all of the produced energy
nd importing back from the grid during the night hours, still import
significant amount of energy consumption during late evening and

arly morning hours when there is no solar production and the energy
rices are higher.

From the empirical study it was concluded that although the energy
rice was communicated to the end-users in advance, households did
ot engage with the daily fluctuating energy prices (see Fig. 5(a))
ut rather assumed approximate periods when the energy price was
heaper or more expensive based on their past experience and therefore
he actual incurred costs were higher than expected. This is evident for
ouse 1, especially for EV charging, where the household incorrectly
ssumed it was cheaper to always charge at 01:00 and is further
xplored in Section 3.4 in relation to flexibility along the energy price
odel to reduce the energy bill.

.4. Load shifting potential demonstrated by a case study

From the previous findings in Sections 3.2 and 3.3 and the empirical
tudy, it is clear, householders do not fully benefit from different energy
eedback apps and automation systems present in their smart homes
ue to the non-optimal scheduling of the load consumption, mandated
y flexible and non-flexible energy consuming practices, as well as
ue to the inherent complexity of following and scheduling their daily
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ctivities based on the live fluctuating energy prices. In order to further
analyse the energy cost on a per activity basis using the local energy
price, stacked plots of the total hourly cost, broken-down on a per-
activity basis were created to inform household demand flexibilities
taking both time of use and the local fluctuating energy price into
account. Refrigeration, as is the case for the other always-on loads, is
considered non-flexible since it cannot be shifted. Furthermore, based
on the interview data, routines that are mandated due to external
factors, such as the sequence of certain events, e.g., the usage of the
tumble dryer after the washing machine, or transport patterns, e.g., the
requirement to have the EV charged by a certain time in the morning,
and dishwasher followed by cooking, were constraints considered in the
rest of the analysis. We demonstrate how we approach the load shifting
potential of a household, using house 1 as a case study since it had the
smallest production to consumption ratio explained by activities such
as heating and EV charging not covered by production, and it had the
highest energy bill, as discussed in Sections 3.2 and 3.3, despite actively
trying to shift loads to cheaper tariff times:

[. . . ] we charge the car at night, we do not do the
dishwasher in the morning or when we are making food
for dinner, because it is when we have a high price, so
we usually turn on the dishwasher when we go to bed
because it is when the energy is cheaper. (Brian, 61-years
old, house 1)

While Section 3.2 quantified (in Table 2) and discussed the activity-
level energy consumption, it did not show the temporal dimension
of when these activities occur in order to analyse flexibilities. Fig. 6
visualises the relative energy consumption of activities at different
times for house 1. Cooking is a non-flexible activity, as stated by the
household. On the other hand, EV charging occurs between 01:00 and
04:00, and laundry and dishwashing occur during morning and evening
hours—as per the empirical study, these activities are intentionally
carried out to coincide with cheaper energy tariffs and are also flexible.

For comparison purposes, we also consider net-positive house 9.
House 9, while open to doing their bit for the environment, they are not
convinced load shifting will make a difference, as per their interview
when asked about load shifting:

No, and like I know that a lot of people, or I think
some people will maybe wait to do laundry or something,
but to be honest, I do not want to do that. [. . . ] I do
not wanna change what, any daily activities according
to energy prices or energy usage because, well, I mean,
these houses are great with energy, with the solar panels

and everything, but I guess with home and my comforts,
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Fig. 6. House 1: Total energy consumption breakdown of heating, cooking, laundry/cleaning, EV charging and refrigeration over the monitoring period.
I do not wanna change anything because I just wanna be
comfortable so, and maybe it is selfish. [. . . ] So if I could
do some things to save energy and, you know, every,
you hear every 10 min of how global warming in the
environment we need to do our part and to, and things
like that. but I do not think, not doing laundry at six in
the evening is going to really make a major change with
anything. (Sofie, 32-years old, house 9)

As can be observed through Figs. 7(b), 7(c) and 7(d) and from
the empirical study, energy-intensive activities occur primarily during
evening hours, after work for house 9. As expected, house 9 with an
infant, has higher laundry and dishwashing needs, with over twice
the energy consumption compared to house 1, and contributes to 24%
of their consumption, as observed in Figs. 7(a) and 7(c). Qualitative
analysis of the interview data indicated that house 9 uses their washing
machine more often than dishwasher, tends to do laundry both in the
morning and evening, but dishwashing is mostly in the evening after
dinner.

Figs. 8(a) & 8(b) present the total hourly costs on a per-activity
basis for houses 1 & 9, respectively. This is in agreement with the
previous observation that EV charging is the main contributor to energy
bills, followed by heating. Similarly, in house 9, the main contributor
is laundry activity and EV charging to a lesser extent at relatively ex-
pensive import tariff periods. Potential for load shifting was estimated
per activity, the results of which are presented in terms of total cost
reduction and savings per-activity given a certain level of maximum
accepted flexibility under the constraints imposed either by end-users’
practices or intangible loads. A graph that correlates the accepted
flexibility by end-users and the resulting reduction of the cost on a per-
activity basis is presented. In addition to the cost reduction graph, a
separate graph is produced that enables end-users to understand their
per-activity savings when accepting a certain level of flexibility.

Flexibility analysis was performed in house 1 for heating, though
not specified as flexible by the occupant, as the inherent inertia of the
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building materials can compensate the temperature drop that would
occur by moving a heating load. Figs. 8(c) & 8(e) depict the maximum
possible cost reduction, and therefore savings, per activity for house 1.
As can be seen, laundry has the highest potential for cost reduction (up
to 10%) in terms of percentage compared to the rest of the activities.
However, since laundry routines are not responsible for a high share
of the total energy bill (see Fig. 8(b)) the total savings of laundry are
marginal, that is, up to 30 NOK. Cooking activities also demonstrate a
very low capability for cost reduction and savings, mainly due to their
low participation in the total bill and their non-flexible nature. On the
other hand, EV and heating, which are the most consuming loads (see
Fig. 6(a)), have a high load shifting potential. Although Brian (house
1) can monitor the energy price through the energy price app and
subsequently schedule his vehicle charger, he does not use it as he does
not find that convenient and because he believes that he has already
understood—more or less—the price fluctuation. According to Fig. 8(c)
although the maximum cost reduction achievable by following the
energy prices is approx. 2%, due to the fact that the EV is responsible
for a considerable amount of the bill, this reduction can be translated
into savings of more than 60 NOK. Lastly, taking into account the
inertia of the building materials, heating can be shifted out of the main
peak hours—i.e., 07:00–09:00 and 17:00–19:00 and therefore achieve
the maximum possible savings—up to 150 NOK—without sacrificing
comfort levels.

Although house 9 did not state that their laundry practices are
flexible, flexibility analysis was performed in order to investigate the
potential savings. Results for house 9, differ from those of house 1,
mainly due to the lower amount of energy used, as well as due to the
fact that Sofie and Arthur (house 9) are not actively monitoring and
shifting their activities based on energy prices. Unlike house 1, where
EV shifting has a very low percentage of improvement, in house 9,
EV charging scheduling can lead to a reduction of up to 3.9% of the
total costs of the EV. Furthermore, cooking activities can also greatly
benefit from load shifting, even for low levels of accepted flexibility
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Fig. 7. House 9: Total energy consumption breakdown of cooking, laundry/cleaning, EV charging and refrigeration over the monitoring period.
with a maximum possible reduction of up to 3.4%. Lastly, laundry
practices, which represent a considerable amount of the total energy
used in house 9 as shown in Fig. 7, can greatly benefit from load shifting
with cost reduction of up to 5.5%, i.e. approx 60 NOK. Although house
9 does not expect to make any difference by shifting their activities
throughout the day, the flexibility analysis combining Table 2 and
Fig. 8(f), demonstrated that a reduction of more than 50% of the total
bill (and reduced pressure on the grid, and overall more eco-friendly)
can be achieved by shifting the daily activities and therefore almost
achieving a net-zero utility bill balance.

4. Conclusion

The proposed approach to evaluating the net-positive lived-in hous-
ing stock is especially timely given the construction of several, de-
signed, net-zero and even net-positive developments throughout the
world to reduce the carbon footprint. The built environment is being
developed to comply with regulation and not necessarily for actual per-
formance. Jointly considering qualitative data and methods in relation
to end-users routines as well as dynamic energy pricing and measured
consumption and renewable production during design and modelling of
the housing stock to inform policy and regulation should be prioritised
as assumptions being made during the construction of a building do not
always represent the reality. As a consequence, designed ‘‘plus’’ homes,
during their usage, fail to achieve their goal. This was demonstrated
in this study through evaluation of a smart neighbourhood in Norway
where, although all houses were designed based on current net-positive
standards, they actually failed to achieve that goal. Furthermore, as
highlighted through the actual data gathered, in dwellings where the
end-user has little understanding of energy production from on-site
renewables and dynamic pricing models, end-users who are actively
flexible with their energy consumption or expect zero bills are disap-
pointed. We propose a mixed-methods approach-based evaluation of
the housing stock that helps pinpoint where assumptions do not meet
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reality taking into account household routines and dynamic energy
pricing. These insights can action additional PV panel installation as
well as load shifting potential of households to achieve net-zero.

The proposed mixed-methods approach bridges the gap between
social science qualitative analyses—which can offer great detail and
high explanation but with limited scope in scaling and high cost—
with engineering quantitative analyses—which can scale up but can
lack explanatory power through abstraction and generalisation of tra-
ditional energy data analysis design methods. Although our proposed
mixed-methods methodology is shown to more accurately evaluate and
explain energy demand of net-positive dwellings by incorporating the
diversity of occupants and their practices, the reliance on qualitative
data—that could lack accuracy—and the subsequent errors in load
disaggregation that embed this qualitative data could affect the accu-
racy of the overall methodology. Therefore, the main key limitations
of the study would lie in the scalability due to the reliance on qual-
itative data and the accuracy of the methodology due to occupants
not providing, intentionally (due to privacy concerns) or not (they
can genuinely forget some aspects of their energy-intensive activities),
accurate responses in home surveys and interviews. The latter is miti-
gated in our study through the triangulation and the cross-validation of
the qualitative and quantitative data as proposed in the Methodology
section. The proposed methodology can directly be applied to other
net-positive dwellings where required quantitative and qualitative data
can be collected (smart meter data, PV size and orientation, tariff
information, participation in the interviews). Absence of some of the
data used in this study could limit the accuracy and type of findings.
Different mixed-methods approaches can be compared by using a dif-
ferent method for one of more of the building blocks of our overall
proposed methodology, showing in Fig. 1. For example, these could be
different NILM approaches for the estimation of the load consumption
of individual activities, different PV and solar models for the calculation
of the energy production and different models for estimating energy

cost based on user feedback or appliance sub-metering.
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Fig. 8. Total actual hourly cost and potential cost reduction and savings over the monitoring period, per activity, given different levels of demand flexibility.
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