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A B S T R A C T

Wave energy is a type of abundant and dense renewable energy. Wave force prediction is a critical technology
that influences power absorption efficiency in the real-time control of wave energy converter (WEC). Could
wave elevation be used to predict wave excitation force directly by training artificial neural network? This
method results in rapid and suitable prediction for real-time control. A long short-term memory recurrent
neural network (LSTM RNN) algorithm is introduced to identify characteristics of wave excitation forces based
on wave elevations. In this method, the wave elevations in front of the structure are measured to obtain
sufficient time to actuate the control manipulation. A total of 180 regular wave and 12 irregular wave tests
are conducted, and the LSTM RNN model is trained based on the experimental results. The performance of
the LSTM algorithm is verified. According to the regular cases in the study, the LSTM prediction can identify
high-order harmonic loads, and the anti-noise capability of the LSTM algorithm can filter random noises from
the measure signals. In the irregular cases, the LSTM RNN algorithm performs effectively to predict the wave
force excited on the structure using wave elevations measured by wave probes. The best combinations of the
test setting parameters are determined to guide experimental tests and WEC prototypes.
1. Introduction

Ocean renewable energy receives increasing worldwide attention
for its capability to satisfy the energy demand worldwide. Thus, fossil
fuel saving and reduction of carbon emissions can be achieved simul-
taneously. In addition, it stimulates economic development in coastal
areas. Among various ocean energy sources including wind, wave,
current, tide and thermal, the potential associated with wave energy
is approximately 28,000 TWh per year (Jin, 2019). It can supply 10%
of European electricity requirements or generate the equivalent of up
to 20% of UK electricity.

A wave energy converter (WEC) is a device used to produce elec-
trical energy from wave-induced motion. To harvest the ocean wave
energy, thousands of concepts of wave energy converters have been
proposed. One of the key aspects for maximising the energy yield of
many WECs is the control of the dynamic response of the device to
wave conditions (Korde and Ringwood, 2016). The response control of
the WEC captor or primary converter is to transfer energy from wave to
oscillating body via the power-take off (PTO) system; it is responsible
for further energy conversion, generally to electricity. The control of
WEC from wave energy to electricity is known as the Wave-to-Wire
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(W2 W) system. Although WEC technologies have been developed for
decades, no WEC has reached commercial stage due to its high levelised
cost of energy (LCOE). One way to move forward is improving the
power absorption efficiency with real-time control. The velocity of WEC
can be tuned with the excitation force of incoming wave to achieve the
maximum energy absorption by controlling the force exerted from the
PTO system.

Recent research focuses on types of real-time control of WECs,
including reactive control (Salter, 1979), latching control (Li et al.,
2018a), declutching control (Babarit et al., 2009) and Model Predictive
Control (MPC) (Li and Belmont, 2014). For these power maximisa-
tion control strategies, the future information of excitation force is
compulsory and essential. The two alternative approaches to obtain
the wave excitation force are as follows: (1) the total wave force is
measured using pressure transducers installed on the WEC wet surface;
(2) the excitation force from the wave elevation measurement with
wave probes is calculated. The former requires precise mathematical
description of hydrodynamic distribution, and the latter is a challenging
problem due to its nonlinearity and noncausality. For implementation
of many energy maximising control strategies, two processes require
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future knowledge of the incoming wave experienced by WEC (Garcia-
Abril et al., 2017). Falnes (1995) described the noncausal characteristic
of wave excitation force deduced by wave elevation; information on fu-
ture wave elevation is necessary. Fusco and Ringwood (2012) and Son
and Yeung (2017) assumed that the in-coming wave elevation is known
fully or in the near future. The excitation force is indirectly measurable
for oscillating WECs. Thus, the excitation force estimation with reason-
able accuracy is critical for real-time power maximisation control of
WEC systems. Some researchers realised wave force prediction by using
alternative methods. An LSTM-NARX hybrid network was proposed
to predict wave excitation force based on noncausality (Zhang et al.,
2020), but the accumulation of errors worsens the accuracy of the
simulation results. A linear superposition (Li et al., 2012) and a Kalman
Filter (Ling, 2015) were used in control implementation of WEC. Hillis
et al. (2020) proposed two methods of force estimation based on
Kalman filters with an experimental 1 : 25th scale multiple degree-
of-freedom WEC. Nguyen and Tona (2017) evaluated two methods of
wave force estimation by using actual measurements from a laboratory
scale WEC. One disadvantage of these methods is that they predicted
the future excitation force based on the current force, in which the
performance of prediction decreases with the extension of prediction
horizon. A robust and succinct force estimation, which is insensitive to
the prediction horizon should be applied to real-time control practice.

As an explosive development of Artificial Intelligence and Machine
Learning application in the last decade, more research fields (image
processing, speech recognition, medicine, power grid and automatic
control) introduce some ‘pop-stars’ of machine learning to solve tradi-
tional problems in an unconventional approach. As a tool for time series
prediction and modelling, artificial neural networks (ANNs) have been
successfully used in various application domains, including financial
time series prediction (Zhang, 2014), significant wave forecasting (Deo
and Sridhar Naidu, 1998) and traffic prediction (Duan et al., 2016).
Some researchers attempt to use ANN to optimise power absorption
with control strategy. In Valério et al. (2008), ANN models for the
Archimedes Wave Swing (AWS) prototype are developed. ANNs are
then used together with proven control strategies (phase and amplitude
control, internal model control and switching control) to maximise
energy production. Li et al. (2018a) applied ANN to predict wave
force to improve power efficiency of a heaving point absorber wave
energy converter (HPAWEC) in which only offline simulation was
discussed, but the performance of ANN prediction was not validated
in the experimental test.

With the increase in complexity of application problems, the vanilla
ANN becomes incompetent. Thus, LSTM RNN is introduced to solve the
wave force prediction problem in the real-time control of WECs. As a
branch of RNN architecture used in the field of deep learning (Hochre-
iter and Schmidhuber, 1997), LSTM RNN is first proposed in 1997; it
outperforms the conventional approach. Gradient explosive and gradi-
ent vanishing problems are solved successfully (Greff et al., 2017). The
LSTM model can learn to forget useless information and maintain long-
term memory from the training dataset. LSTM RNN has been applied
to tasks, such as unsegmented, connected handwriting recognition
and speech recognition, because of its excellent performance when
processing time-series information. LSTM algorithm has been applied
to predict the power generation and WEC modelling (Neshat et al.,
2019; Ni, 2021; Mousavi et al., 2021), but it is rarely used in wave
prediction in real-time control of WEC (Rahoor, 2020). Applying an
LSTM algorithm in the energy absorption maximisation of WEC is a
promising solution.

Toward realising the real-time control of WEC in the experimental
test, the present study focuses on the time series prediction of wave
excitation force. The proposed wave force prediction method is eval-
uated using actual measurements from a laboratory scale HPAWEC in
regular and irregular wave conditions. The wave elevations of incident
waves are inputs of the LSTM training process. Based on the measured-
experimental comparison in the time and frequency domains, the per-
2

formance and advantages of the proposed approaches are discussed
in this study. The optimal distribution of wave probes is determined
based on the deviation of predicted excitation force, which guides the
future experimental setting of the proposed method. The highlights of
the present research include the following:

(a) Introducing LSTM RNN machine learning algorithm to wave
excitation force based on the data of experimental tests;

(b) Identifying the high-order harmonic loads of wave force and
decreasing the influence of unexpected noises using LSTM RNN
algorithm;

(c) Determining the optimal number of wave probes and spacing
distance among input wave probes for experimental test of wave
load measurement.

The paper is organised as follows. Section 2 introduces the ex-
perimental test model, including WEC model and experimental test
setting. Section 3 introduces the LSTM prediction algorithm and data
processing. The prediction results of wave force under regular and
irregular waves are discussed in Section 4. Conclusion and future work
are summarised in Section 5.

2. Prediction method of wave excitation force

2.1. Hydrodynamic model of HPAWEC

The linear potential flow theory is adopted to address the wave-
structure interaction of HPAWEC (Li et al., 2018b). The vicious effect is
neglected. The linear dynamic model is applicable without considering
the extreme sea states because a full-scale WEC only works in a moder-
ate sea state. Latching control strategy is used to maximise the power
absorption. Based on the impulse response theory (Cummins, 1962),
the time-domain motion equation of the floating body is expressed as
Cummin’s equation, as follows:

(𝑀 + 𝑚)𝑧̈(𝑡) + ∫ 𝑡0 ℎ (𝑡 − 𝜏) 𝑧̇ (𝜏)𝑑𝜏
+ (𝐶 + 𝑐𝛽 (𝑡)) 𝑧̇(𝑡) +

(

𝐾 + 𝜌𝑔𝜋𝑅2) 𝑧(𝑡) = 𝐹𝑒𝑥(𝑡)
, (1)

here 𝑀 is the mass of the floating body, and 𝑚 is the added mass
orresponding to infinite frequency. 𝑧̈(𝑡), 𝑧̇ (𝜏) and 𝑧(𝑡) are the ac-
eleration, velocity and displacement, respectively. The convolution
ntegral of the second term in the left-hand side is the memory ef-
ect of radiation force, where ℎ is the retardation kernel function.

is the linear damping coefficient of the PTO. 𝑐 is the additional
amping of the latching control strategy. 𝐾 and

(

𝐾 + 𝜌𝑔𝜋𝑅2) are the
estoring coefficients of the PTO and the floating body, respectively.
𝑒𝑥 is the wave excitation force. 𝛽 is the control command calculated
y the latching control strategy, such as MPC. The cost function of
atching control is maximising the average absorption power of PTO, as
ollows:

ax𝑃𝑎𝑣𝑒 =
1
𝑇 ∫

𝑇

0
𝐶𝑧̇2(𝛽, 𝑡)𝑑𝑡. (2)

The memory effect of wave is expressed in a state space representative
by using system identification; thus, implementing the control strategy
becomes convenient.
𝐶𝑢 = ∫ 𝑡0 ℎ (𝑡 − 𝜏) 𝑧̇ (𝜏)𝑑𝜏

𝑢̇ = 𝐴𝑢 + 𝐵⃗𝑧̇
. (3)

herefore, the hydrodynamic equation is rewritten in a state space as
ollows:

𝑥̇ = 𝛾 ⋅ 𝑥 + 𝜂
𝑥 =

[

𝑧 𝑧̇ 𝑢
]𝑇
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Fig. 1. Memory block architecture of LSTM RNN.

The only unknown variable in Eq. 4 is the wave excitation force 𝐹𝑒𝑥.
Once 𝐹𝑒𝑥 is predicted or estimated with a high accuracy, the motion
response of the floating body is controlled by Eq. 4 to optimise the
power capture.

2.2. LSTM RNN model

As shown in the introduction section, the excitation force is de-
rived from the entire information of wave elevation. An LSTM RNN,
whose inputs are wave elevations and outputs are forces, is required to
represent the relationship due to the noncausal relationship between
wave force and wave elevation (Falnes, 1995). The memory block
architecture, which is the core of LSTM RNN, is shown in Fig. 1. 𝐼𝑡 is the
input of the 𝑡th time step. 𝐻𝑡 is the hidden unit of the 𝑡th time step. 𝐶𝑡 is
the state cell of the 𝑡th time step. Constant Error Carousel (CEC), which
can ‘keep memory’ of characteristics in the time series, is in the red
dash rectangle. The input gate, output gate and forget gate are inside
the CEC. Information is transformed through CEC between gates and
state cells. The gates control information flow and transmit information
between short-term memory and long-term memory, and state cell
stores the long-term time-series memory. LSTM RNN is regarded as a
deep learning architecture because of the existing of memory block.
The expression of the memory block is as follows:

𝑓𝑡 = 𝜎(𝑦𝑓 ) = 𝜎(𝜔𝑓 ⋅ 𝑥 + 𝑏𝑓 )
𝑖𝑡 = 𝜎(𝑦𝑖) = 𝜎(𝜔𝑖 ⋅ 𝑥 + 𝑏𝑖)
𝑜𝑡 = 𝜎(𝑦𝑜) = 𝜎(𝜔𝑜 ⋅ 𝑥 + 𝑏𝑜)

𝑐𝑡 = tanh(𝑦𝑐) = tanh(𝜔𝑐 ⋅ 𝑥 + 𝑏𝑐 )
𝑐𝑡 = 𝑓𝑡 × 𝑐𝑡−1 + 𝑖𝑡 × 𝑐𝑡
ℎ𝑡 = 𝑜𝑡 × tanh(𝑐𝑡)

, (5)

where the subscripts 𝑓 , 𝑖 and 𝑜 represent the forget gate, the input gate
and the output gate, respectively. 𝜎 is the sigmoid function as the most
used activation function in different types of neural network, and tanh is
the mathematical operator of hyperbolic tangent function. The operator
× is a multiple operation of matrices (Zhao et al., 2019).

In the architecture of the proposed LSTM RNN, the wave heights
recorded by wave probes are system inputs, and the wave excitation
of load cell represents system output. It is a multi-input/single-output
(MISO) system, but the proposed algorithm is also suitable to anal-
yse multi-input/multi-output (MIMO) system for solving multibody
motions or coupled multidegree-of-freedom motion problems. Math-
ematically, to realise the W2EF prediction, the information of wave
excitation force is ahead that of wave elevation in the training and test
dataset. In this extent, the well-trained network reflects the relationship
of current wave and future wave force although the relationship is
noncausal.
3

Table 1
The parameters of the cylindrical buoy.

Parameter Symbol Unit Value

Buoy radius 𝑅 m 0.10
Buoy draught 𝐷 m 0.28
Buoy mass 𝑀 kg 9.00
Hydrostatic stiffness 𝐾 N/m 315.30
Added mass at infinite frequency 𝑚 kg 2.03

2.3. Data processing

Data pre-process is necessary prior to training the network. Normal-
isation is beneficial to the convergence of neural network training. The
weight gradients vary in the same magnitude because all the inputs
are in the same magnitude, thereby eliminating the error caused by
the different parameter ranges. The standardised normalisation is used
to pre-process the measured data.

𝑥𝑤 = 𝑋𝑤−𝜇𝑤
𝜎𝑤

𝑥𝑓 = 𝑋𝑓−𝜇𝑓
𝜎𝑓

, (6)

where 𝑥 represents the standardised value which is distributed as 𝑁 ∼
(0,1). 𝑋 represents the measured value before standardisation, which
is distributed as 𝑁 ∼ (𝜇, 𝜎2). 𝜇 is the expected value, and 𝜎 is the
standard deviation. The subscripts, 𝑤 and 𝑓 , represent wave elevation
and excitation force, respectively. The calculation of predicted forces
requires a denormalised process to restore the magnitude of measured
values. Root mean square error (RMSE) is usually used to express the
deviation of prediction from the measured value.

RMSE =

√

∑𝑁
1 (𝑦 − 𝑦̂)2

𝑁
. (7)

However, the amplitude of the measured value 𝑦 influences the value
of RMSE. To eliminate the impact of the amplitude of 𝑦, a normalised
RMSE (NRMSE) is calculated to evaluate the accuracy of the prediction
results.

NRMSE = RMSE∕(
𝑦max − 𝑦min

2
) , (8)

where 𝑦𝑚𝑎𝑥 is the maximum value, and 𝑦𝑚𝑖𝑛 is the minimum value.
The denominator in Eq. (8) represents a characteristic amplitude of
the measured value. Under the circumstances, the prediction results of
different wave heights can be compared to evaluate the performance
of LSTM prediction algorithm.

3. Experimental test model

3.1. Wave energy converter model

To verify the proposed excitation force modelling approaches, a
1/25 model-scale cylindrical heaving point absorber wave energy con-
verter (HPAWEC) was designed, constructed and tested in the Kelvin
Hydrodynamics Laboratory (KHL) at the University of Strathclyde,
as illustrated in Fig. 2. A fixed type wave structure interaction is
investigated; it neglects the influence of motion response to the wave
elevation. The scale of the wave tank is 6 m × 3.5 m × 1 m. The
buoy dimensions are hydrodynamic coefficients estimated by software
SESAM WADAM, as shown in Table 1. The actual nature frequency of
the buoy structure is slightly lower than the simulated value because
the viscous effect is not considered.

3.2. Experimental test settings

A wide variety of wave tank tests were conducted under regu-
lar wave conditions for verification of the proposed LSTM prediction
method, as shown in Table 2. The variation of the number of WPs
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Fig. 2. Measurement calibration and validation of load cell.

Table 2
Parameter setting of the regular wave tests.

Parameter Symbol Unit Value

Number of WPs 𝑁 1, 2, 3, 4, 5
Spacing of WPs 𝑑 m 0.10, 0.20, 0.30, 0.40
Wave height 𝐻 m 0.01, 0.02, 0.04, 0.06, 0.08
Wave frequency 𝑓𝑤 Hz 0.30 : 0.10 : 1.10

is used to determine the optimal number, 𝑁 . The effective range of
the input WPs is less than 2 m given the finite length of the wave
tank in KHL and the existence of HPAWEC model. The maximum
spacing is determined as 0.4 m with five WPs. The interference between
neighbouring WPs affects the measurement of wave elevations if the
spacing is less than 0.05 m. Therefore, the spacing is 0.10 : 0.10 :
0.40 m. The measurement of the spacing is 𝑑 ± 0.001 m. The wave
height of the regular wave varies from 0.01 m to 0.08 m. The wave
frequency varied in a wide range (0.30 – 1.10 Hz), and the frequency
increment is densified near the natural frequency of the HPAWEC
structure. If 𝐻 > 0.80 m or 𝑓𝑤 > 1.10 Hz, then the wave is deformed
as the nonlinear components. The distance between the centre of the
structure model and the last wave probe (WP5) is fixed at 0.54 m.
Test cases were conducted under irregular wave conditions, as shown
in Table 3. The number of WPs and the spacing between neighbouring
WPs vary, the same as the regular cases. The HPAWEC was scaled down
according to the Froude number. Therefore, the time ratio was 1/5.
The characteristics of ocean waves of sea states 3 and 4 defined by the
Beaufort scale can be represented by a PM spectrum with significant
wave height 𝐻𝑠 and peak frequency 𝑓𝑝. The wave characteristics of
the scaled down PM spectrum are listed in three cases (𝑓𝑝 = 0.65, 0.7,
0.8 Hz) in Table 3. For the sake of simplicity, the wave elevation gen-
erated in wave tank is single directional. The wave elevation satisfies
4

Table 3
Parameter setting of the irregular wave tests.

Significant height Peak frequency
𝐻𝑠 (m) 𝑓𝑝 (Hz)

Case 1 0.93 0.65
Case 2 −0.8 0.7
Case 3 0.063 0.8

Fig. 3. Measurement calibration of load cell.

the assumption of the linear wave theory because the ratio of wave
amplitude to the wave length is 𝐴∕𝜆 ≪ 1.

3.3. Calibration of load cell and wave probes

The measurement calibration of load cell is shown in Fig. 3. The
analogue signal of the load cell is amplified by the amplifier and
converted into digital signal, which is shown in scopes. Normally, the
load in heave direction is used in the study of a HPAWEC, which
is related to power efficiency. However, in the experimental test of
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Fig. 4. Measured uncertainty band and validation of the load cell.

Fig. 5. Measurement calibration of wave probes.

the presented study, the heave excitation force of the model scale (1
: 25) is extremely small and the magnitude is at the same level as
the noise of the measured signal. Fortunately, the load in the surge
direction is sufficiently large because of the large section area. To
illustrate the results clearer and straightforward, the excitation force
is recorded and compared. The weights loaded vary from 100 g to
5000 g to calibrate the accuracy of the load cell. The uncertainty band
of the measurement calibration and the load cell validation are shown
in Fig. 4. The peak values of the excitation force in the test are larger
than 20 N, and the uncertainties of the load cell are smaller than 0.07
N. The calibration setting of wave probes is shown in Fig. 5. The wave
probes are distributed and aligned in the middle of the width, which
reduces the influence of the reflection wave from the side walls. The
measurement calibration and validation of wave probes are shown in
Fig. 6. The largest uncertainty of all the wave probes is 0.7 mm. The
measurement uncertainties of the load cell are acceptable in the series
of model tests. The uncertainties cause unreliability of the prediction
results. The data inside the uncertainty bands are reliable, and the
data outside uncertainty bands are induced by prediction deviation (see
Fig. 7).
5

Table 4
Hyperparameters of the LSTM algorithm for the regular wave cases.

Parameter Symbol Unit Value

Sampling frequency of dataset 𝑓𝑠 Hz 100
Forward time 𝑇𝑓 s 5
Total time 𝑇𝑡𝑜𝑡𝑎𝑙 s 100
Ratio of training data 𝑅𝑡𝑟𝑎𝑖𝑛 0.8
Initial learning rate 𝐿𝑅𝑖𝑛𝑖𝑡𝑖𝑎𝑙 0.01
Drop period of learning rate 𝑁𝑑𝑟𝑜𝑝 50
Number of LSTM hidden units 𝑁ℎ 5
Iteration loops 𝑁𝑙𝑜𝑜𝑝 150

4. Results and discussions

4.1. Performance of the uni-directional regular wave prediction

The normalised wave elevations and excitation forces are shown in
Fig. 8. The signals have been filtered by a low-pass filter of 1.8 Hz
cut-off frequency. An interpolation is carried out to generate training
data (𝑓𝑠 = 100 Hz) from test data collection (𝑓𝑠 = 1000 Hz). Prior
to the training process, the dataset is normalised with mean 0 and
standard deviation 1 (𝜇 = 0, 𝜎 = 1); thus, the training processes
converge fast. The black curves are the inputs of prediction algorithm,
and the red curve is the output. The curves of wave elevations col-
lected from the tests are not the perfect sinusoidal signal. Several
reasons cause these imperfect elevations. Firstly, the wave elevations
are approximately generated by the wave pedals in the wave tank
of finite scales. The waves are influenced by motion deviations of
wave pedals, and the reflection waves deform the incident waves as
well. Once the waves propagate, the measured elevation does not
become the sinusoidal wave. Secondly, measurement uncertainties and
measurement deviation are shown 8. Similar non-harmonic phenomena
is observed in wave excitation forces, as shown in the red curve. The
nonlinearity is more evident in the force curve. This is because the
measured force contains high-order components. In addition, the struc-
ture responses contain components of high-order loads. The measured
signals without curve fitting are used to verify the robustness of the
prediction algorithm because uncertainties and disturbances exist in
actual applications. The measured data show time lag of wave prop-
agation from WP1 to WP5 given that the WPs are placed in different
positions in the wave propagation direction. The same hyperparameters
of LSTM machine learning algorithm can be predefined for all the cases
because the signals have been normalised to eliminate ‘scale effect’ of
amplitude. The hyperparameters are listed in Table 4. The total time
of 100 s contained sufficient wave periods for all frequencies. Even for
cases of 𝑓𝑤 = 1.1 Hz, the training dataset still has more than 70 wave
periods. The signals of regular wave only contain components of one
foundational frequency and corresponding high-order frequency; thus,
the architecture of the LSTM network can be shallow. The network
becomes deeper in irregular wave conditions because of the various
frequency components. Some representative results of the wave force
prediction are shown in Fig. 9 to illustrate the performance of the
LSTM algorithm. NRMSE represents deviations between the predicted
forces by LSTM algorithm and the measured forces of tests. Thus,
results of different wave heights can be compared fairly with the
same magnitude. The low NRSME indicates good performance of the
prediction algorithm. The LSTM algorithm can predict the excitation
forces, which agree with the measured forces when the signals have
high quality. The LSTM algorithm can recognise the one-order load and
the high-order harmonic loads shown in the power density of frequency
domain. Except these specific frequencies, the responses are suppressed
as low magnitudes. The unexpected fluctuations of time history curves
caused by noises are filtered by LSTM algorithm. It is similar to the
LSTM algorithm that trains the network model; remember the dominant
and regular things, and forget all the random and irregular things.
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Fig. 6. Measured uncertainty band and validation of wave probes.
Fig. 7. Measurement deviation of wave probes and load cell.
As shown in Fig. 9(a), when the wave frequency and the wave
height are high, the signal of the measured force has high quality in
the signal-to-noise ratio (SNR). The predicted force is almost regressive
to the measured force in the time domain. Moreover, the trough value
of the predicted force is more stable than that of the measured force.
The subfigure in the frequency domain in Fig. 9(a) shows that the LSTM
algorithm only passes the components of the leading order (0.85 Hz)
and the corresponding high-order frequencies (1.70 and 2.55 Hz). The
force curve in the time domain is similar to a sinusoid curve because the
energy density of the leading order frequency is much larger than that
of corresponding high-order frequencies. If the incident wave frequency
becomes low, then the ratio of the high-order harmonic loads increases,
as shown in Fig. 9(b). The time domain signal is deviated significantly
from the sinusoidal curve. The crests are flattened and the troughs are
sharpened due to the high-order force components. If the wave height
and the incident wave frequency are low, then the SNR is extremely
low to measure the expected signal, as shown in Fig. 9(c). The energy
6

density of noise signal under 1.0 Hz is the same as the magnitude of
the incident wave frequency (0.3 Hz). Thus, the noises have distorted
the measured signal far away from the sinusoidal curve. After the
processing of LSTM prediction, the envelop of the force curve is a
sinusoidal curve with the incident wave frequency, and the crests and
troughs are influenced by high-order components more evidently than
those in Fig. 9(b).

In Fig. 9(c), the noises in the frequency domain of the measured
signal have the same magnitude of power density as the signal of
incident wave frequency and its harmonic loads. The force per unit
wave amplitude of the measured force in time domain is influenced
by random noise seriously. After the processing of the LSTM, it extracts
the leading-order load of 𝑓𝑤 and its corresponding harmonic loads. The
fluctuations caused by the unexpected noises are filtered by the LSTM
neural network. This finding indicates that the LSTM algorithm would
be an additional process to improve the SNR of the time–history signal.
When analysing the interaction of a small structure in an extreme
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Fig. 8. Normalised wave elevations and excitation forces of regular wave (𝑁 = 5, 𝑓𝑤
= 0.85 Hz, 𝐻 = 0.08 m, 𝑑 = 0.4 m).

Fig. 9. Predicted force of LSTM algorithm in regular wave (𝑁 = 5, 𝑑 = 0.4 m, left:
force in time domain, middle: force spectral density, right: force spectral density near
incident wave frequency).

environment, the wave height is high and the structure characteristic
dimension is the same as the magnitude of the wave height. When
balancing the limit of wave frequency and wave height in a model-
scaled experimental test, the dimensions of the model-scaled structure
and incident wave frequency have small values. In this condition, the
result of wave excitation force likely has low-quality, as shown in
7

Fig. 10. NRMSEs of the prediction results of regular wave tests against 𝑁 and 𝑓𝑤.

Fig. 9(c). The LSTM can provide a reliable result without spikes caused
by these random noises.

One of the aims of this research is to identify the best number of
wave probe and spacing distance of wave probe for the wave excitation
force prediction based on LSTM algorithm. Thus, the prediction results
of different 𝑁 and 𝑑 combinations are shown as contours to determine
the optimal range. The contours of the NRMSEs of regular wave results
against 𝑁 and 𝑓𝑤 are shown in Fig. 10. For regular wave, if the NRMSE
> 0.25, then the errors are extremely large to represent the measured
data, which have white colour. If NRMSE > 0.03, then the results are
shown as black colour. The NRMSE of each combination of 𝑁 and 𝑓𝑤
is the average value of four spacing distances. The best performance of
LSTM algorithm is 0.0476 when 𝑁 = 4, 𝑓𝑤 = 1.0 Hz and 𝐻 = 0.06 m.
The NRMSE decreases with the significant increases in 𝐻 , which is not
caused by the LSTM algorithm but mainly by the SNR improvement. In
terms of the number of wave probes, increasing 𝑁 from 1 to 2 decreases
the NRMSE significantly under specific wave frequencies (𝑓𝑤 = 0.6 and
1.0 Hz) in most wave height. This drop in NRMSE is not evident under
other wave frequencies. The decrease is caused by different factors.
When 𝑓𝑤 = 1.0 Hz and 𝑑 = 0.3 m, the predicted force of 𝑁 = 1 has a
phase shift compared with the measured force, as shown in Fig. 11(a).
Although only one-step shift exists, the NRMSE increases because the
deviation is accumulated in each time step. When 𝑁 increases to 2, the
phase shift is eliminated, as shown in Fig. 11(b). When 𝑓𝑤 = 0.6 Hz and
𝑑 = 0.4 m, no phase shift occurs, but fluctuation exists at the troughs
for case of 𝑁 = 1, as shown in Fig. 11(c). The fluctuation is eliminated
by increasing 𝑁 to 2 in Fig. 11(d). Thus, at these ranges, the deviations
of predicted forces decrease when 𝑁 rises from 1 to 2, and then it
maintains a stable value when 𝑁 increases to a higher value. Except
these unusual ranges, the performance of LSTM algorithm is improved
slightly with the increase in 𝑁 . The second input of wave elevation
can compensate the inaccuracy, which exists in sole input condition.
More than two inputs of wave elevations contribute slightly to the
improvement of the results in regular wave conditions. The finding
indicates that the performance is insensitive to 𝑁 when 𝑁 > 1. The
performance is improved when the incident wave frequency varies from
0.3 Hz to 0.5 Hz (𝑑 = 0.4 m) mainly caused by SNR improvement, as
shown in Figs. 11(e)–11(g). In each contour of Fig. 10, the decrease in
NRMSE agrees with the force curves of time history.
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Fig. 11. Predicted excitation force in time domain (𝐻 = 0.06 m).

Fig. 12. NRMSEs of the prediction results of regular wave tests against 𝑑 and 𝑓𝑤 (𝑁
= 4).

The contours of the NRMSEs of regular wave results against 𝑑 and
𝑓𝑤 are shown in Fig. 12. Only 𝐻 = 0.06 and 0.08 m are shown here
to determine the best spacing. Different from the average value of four
cases of 𝑑, the lowest value of NRMSE, 0.02805, is simulated when 𝐻
= 0.06 m, 𝑑 = 0.3 m and 𝑓𝑤 = 0.9 Hz, as shown in Fig. 12(a). When 𝑑
= 0.3 m, sub-optimal solutions are obtained when 𝑓𝑤 = 0.4 and 0.6 Hz.
Whether the spacing increases or decreases, the performance is worse
than that of 𝑑 = 0.3 m. Combining the results shown in Figs. 10 and 12,
the best setting of wave probes is 𝑁 = 4 and 𝑑 = 0.3 m. The best setting
for regular wave is a guide for setting the irregular wave discussed in
the following section (see Fig. 13).
8

Fig. 13. NRMSEs of the prediction results of regular wave tests against 𝐻 and 𝑓𝑤 (𝑑
= 0.3 m).

4.2. Performance of the uni-directional irregular wave prediction

Each irregular wave elevation is propagated for 2400 s (2/3 h) in
the model test because the model scale is 1 : 25; it is equivalent to a
three-hour sea state in full scale. The normalised wave elevations and
force excited on the structure are shown in Fig. 15. Group velocities
of different frequency components are different due to the dispersion
relation. Thus, the differences between WPs are not only the phases,
but also the amplitudes. For the irregular wave cases, the hyperparam-
eters of the LSTM algorithm shown in Table 5 is mostly larger than
those in the regular wave cases because of the complicated frequency
components. Time duration is set at 2000 s, 90% of the dataset is
used for training, and 10% is used to validate the performance of the
trained network. 𝑁𝑑𝑟𝑜𝑝, 𝑁ℎ and 𝑁𝑙𝑜𝑜𝑝 increase to obtain a more accurate
predicted force for irregular waves. 𝑓𝑠 and 𝑇𝑓 varied to investigate the
sensitivities of prediction algorithm to the sampling frequency and the
forward time. In the legend of Fig. 16(a), 𝑓𝑝 is the peak frequency of
PM spectrum, and mean indicates the average value of different spacing
of wave probes. The lowest NRMSE is achieved when 𝑓𝑠 = 10 Hz. The
LSTM algorithm is insensitive to 𝑓𝑝 because the best performance exists
at the same 𝑓𝑠 when the peak frequency of incident wave varies. If 𝑓𝑠
is extremely high, then excessive local details of the training dataset
cause overfitting of the LSTM network, as shown in Fig. 16(b). On the
contrary, if 𝑓𝑠 is extremely low, high-frequency fluctuations are filtered
in the training dataset. The LSTM network cannot predict the high-
frequency fluctuations if the fluctuations do not exist in the training
dataset because the prediction is based on the trained network learning
from the training dataset. The results of 𝑓𝑠 = 5 Hz cannot capture the
peak of the measured force, as shown in Fig. 16(c). The results of LSTM
prediction in the irregular wave conditions are shown in Fig. 17. The
legend in Fig. 17(a) has the same expression of Fig. 16(a). The best
performance is achieved when 𝑇𝑓 = 2 s regardless of the peak frequency
of the sea state. When the forward time 𝑇𝑓 increases from 0 s to 2 s,
the NRMSE decreases gradually. When 𝑇𝑓 varies from 2 s to 3 s, the
NRMSE increases slightly. The deviation is still acceptable when 𝑇𝑓 =
3 s, as shown in Fig. 17(b). The NRMSE increases dramatically if 𝑇𝑓
> 3 s, indicating that the force curve in the time domain deviates from
the measured force significantly, as shown in Fig. 17(b). The spectral
densities of 𝑇 = 0 s and 𝑇 = 3 s agree with the spectral densities of
𝑓 𝑓
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Fig. 14. Predicted excitation force in time domain against 𝐻 (𝑓𝑤 = 0.5 Hz, 𝑁 = 4, 𝑑
= 0.3 m).

measured force. However, the spectral densities of 𝑇𝑓 = 3.5 s deviates
from that of the measured force (see Fig. 14).

The prediction performance of LSTM algorithm significantly de-
creases when 𝑇𝑓 increases from 3.0 s to 3.5 s. This can be explained by
the signal processing theory. The present wave and force measurement
9

Fig. 15. Normalised wave elevations and excitation forces of irregular wave (𝑁 = 5,
𝑓𝑝 = 0.65 Hz, 𝐻 = 0.105 m, 𝑑 = 0.4 m).

Table 5
Hyperparameters of the LSTM algorithm for the irregular wave cases.

Parameter Symbol Unit Value

Sampling frequency of dataset 𝑓𝑠 Hz 5–50
Forward time 𝑇𝑓 s 1–3.6
Total time 𝑇𝑡𝑜𝑡𝑎𝑙 s 2400
Ratio of training data 𝑅𝑡𝑟𝑎𝑖𝑛 0.9
Initial learning rate 𝐿𝑅𝑖𝑛𝑖𝑡𝑖𝑎𝑙 0.01
Drop period of learning rate 𝑁𝑑𝑟𝑜𝑝 100
Number of LSTM hidden units 𝑁ℎ 100
Iteration loops 𝑁𝑙𝑜𝑜𝑝 400

and processing in the paper is about real-value time-series signals. Thus,
the operation of complex conjugate is not considered. Cross-correlation
coefficient of discrete signals can be expressed by

𝜌𝑋𝑌 (𝑋𝑡1 , 𝑌𝑡2 ) =
𝐸[𝑋𝑡1𝑌𝑡2 ] − 𝐸[𝑋𝑡1 ]𝐸[𝑌𝑡2 ]

√

𝐸[𝑋2
𝑡1
] − (𝐸[𝑋𝑡1 ])

2
√

𝐸[𝑌 2
𝑡2
] − (𝐸[𝑌𝑡2 ])

2
, (9)

where 𝜌𝑋𝑌 is cross-correlation coefficient of two signals (𝑋 and 𝑌 ).
In the present study, 𝑋 is the wave elevation, 𝑌 is the wave force, 𝐸
is the expectation of signals. 𝜌𝑋𝑌 = 1 indicates a positive correlation,
while 𝜌𝑋𝑌 = −1 indicates a negative correlation. Both positive and
negative correlations are beneficial to training the machine learning
model. 𝜌𝑋𝑌 ,max is a statistical value representing the maximum absolute
value of the cross-correlation coefficients, and it can be expressed as
follow,

𝜌𝑋𝑌 ,max = max(|
|

𝜌𝑋𝑌 (𝑊𝑃, 𝑓𝑜𝑟𝑐𝑒)|
|

) (10)

Fig. 17(d) shows the result of 𝜌𝑋𝑌 ,max against 𝑇𝑓 . 𝜌𝑋𝑌 ,max is subject to
a sharp drop at 𝑇𝑓 > 3.2 s in the case of 𝑓𝑝 = 0.65 Hz.

The forward time limits the lowest efficiency of the control system.
The control command should be calculated in 3.0 s for each step. On
the contrary, improving computational efficiency of the control system
shortens the forward prediction horizon of the LSTM algorithm, which
is beneficial to the accuracy of the wave prediction.

The performance of LSTM algorithm of the irregular wave cases
are shown in Fig. 18. The performance is sensitive to 𝑁 and d. The
best performance is NRMSE = 0.061 when 𝑁 = 5 and 𝑑 = 0.3 m. The
lowest NRMSE of the irregular wave case is more than twice that of the
regular wave case because the finite number of wave probe 𝑁 cannot
reconstruct the original signal with infinite frequency components. The
LSTM only captures the most dominant ones with limited inputs to
memory the most important things in the learning process.

The performance will drop dramatically if 𝑑 increases from 0.3 m to
0.4 m. This finding indicates that the large spacing is not beneficial to
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Fig. 16. Sensitivity of LSTM algorithm to the sampling frequency in irregular wave
cases.

the performance of LSTM prediction. The force curve shown in Fig. 19
is the result at the black dash line in Fig. 18(c). Some local fluctuations
cannot be captured when 𝑁 = 1 (NRMSE = 0.097) or 2 (NRMSE =
0.079). When 𝑁 = 3, the curve of the predicted force agrees with
that of the measured force (NRMSE = 0.066). The time domain has no
significant improvement of force curve from 𝑁 = 3 (NRMSE = 0.066)
to 5 (NRMSE = 0.061). 𝑁 = 3 is sufficient to gain a good performance
based on the simulation results of irregular waves in this study. 𝑑 =
0.3 m is the best spacing, which agrees with the results of the regular
wave cases.

4.3. Simulation of the multi-directional wave prediction

This subsection will discuss the capability of the adopted LSTM-
based wave prediction for the multi-directional wave conditions. The
feasibility of conducting multi-directional wave experimental tests and
10
Fig. 17. Sensitivity of LSTM algorithm to the forward time in irregular wave cases.

analysis at the Kelvin Hydrodynamics Laboratory of the University of
Strathclyde has been determined to be limited. Consequently, our focus
in the subsequent discussions on multi-directional waves will be on the
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Fig. 18. Performance of the LSTM algorithm for the irregular wave cases.

numerical simulation of wave prediction. It should be noted that the
wave elevation and wave force discussed herein are based solely on
simulation signals.

Multi-directional irregular wave scenarios incorporate the use of a
directional spreading function, 𝛿, to characterise the wave character-
istics and generate time histories of multi-directional irregular wave
elevations (Ji et al., 2015).

𝑆(𝜔, 𝜃) = 𝑆0(𝜔)𝐺(𝜔, 𝜃) (11)

where 𝑆 is the power density of directional spectrum, 𝑆0 is the power
density of frequency spectrum in one direction which is defined as P-M
spectrum as used for the uni-directional irregular wave. 𝐺 is defined
as Mitsuyasu-type spreading function (Goda, 1999; Young, 1994). The
11
Fig. 19. Predicted excitation force in the time domain of the irregular wave (𝑓𝑝 =
0.8 Hz, 𝑇𝑓 = 3 s, 𝑑 = 0.3 m).

integration of 𝐺 with respect to the wave directional 𝛿 is 1 ensuring
the wave energy (wave height) is equivalent to the corresponding uni-
directional wave. The significant heights are different since 𝐺 varies
with 𝛿.

𝐺(𝜃) =
22𝑠−1(cos 𝜃2 )

2𝑠

𝜋(𝛤 (𝑠) + 1)2𝛤 (2𝑠 + 1)
. (12)

where 𝛤 is the gamma function of ordinals in statistics and

𝑠 =

⎧

⎪

⎨

⎪

⎩

𝑠𝑝(
𝜔
𝜔𝑝

)5 𝜔 < 𝜔𝑝
𝑠𝑝(

𝜔
𝜔𝑝

)−2.5 𝜔 > 𝜔𝑝
(13)

𝑠𝑝 = 11.5(
𝑈𝜔𝑝
𝑔

)
−2.5

. (14)

The initial phase is random generated by a random function. 24
wave directions are calculated, and the wave spectrum is specified in
each direction as

𝜂(𝑥, 𝑦, 𝑡) =
𝑀𝑤
∑

𝑚=1

𝑁𝜃
∑

𝑛=1

√

2𝑆(𝜔̄𝑚, 𝜃𝑛)𝑑𝜔𝑑𝜃𝜂̂. (15)

𝜂̂ = cos
[

𝜔𝑚𝑛𝑡 − 𝑘𝑚𝑛(𝑥 cos 𝜃𝑛 + 𝑦 sin 𝜃𝑛) + 𝜀𝑚𝑛
]

. (16)

where

𝜔̄𝑚 =
𝜔𝑚 − 𝜔𝑚−1

2
(17)

𝜔𝑚𝑛 = 𝜔̄𝑚 − 1
2
𝑑𝜔 + (𝑛 − 1 + RAN𝑚𝑛)

𝑑𝜔
𝑁𝜃

(18)

where RAN is a random number in the range of [0, 1]. Table 6
shows the values of critical characteristics of the directional spectrum.
The power density is derived from statistics of a JONSWAP spectrum.
The peak frequency is 6.5 Hz and the frequency varies from 0.1𝑓𝑝
(0.065 Hz) to 2.0𝑓𝑝 (1.3 Hz), since most of wave energy falls in this
range. The increment of wave frequency is 0.05 Hz. There are total
26 frequency components being considered at each wave direction.
The initial phases of wave components are generated randomly. The
quantity of free parameters is 2 × 26 × 24.

A total of eight wave probes are strategically positioned surrounding
the position of floating structure, as depicted in Fig. 20. The distance
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Table 6
Characteristics of the directional spectrum.

Spectrum characteristic Value

𝐻𝑠 (m) 0.105
𝑇𝑝 (s) 1.54
𝛾 3.3
𝑈10 (m/s) 0.4
Spreading component 24 (per 15 degrees)

Fig. 20. Measurement device distribution.

of neighbouring wave probes, 𝑑, is 0.3 m which is the optimal value
for the wave prediction as discussed above. Fig. 21(a) shows the power
density of the directional spectrum. Fig. 21(b) is the time history of
wave elevation at the positions of eight wave probes, as well as wave
force excited on the floating structure. Fig. 21(c) is the multi-directional
wave pattern at the initial moment.

The time history of the wave elevations and excitation force covers
a simulation of 2400 s under multi-directional irregular waves. The
hyperparameters of the LSTM algorithm are shown in Table 7. It is
assumed that the optimal parameters of the machine learning model,
which are determined for the uni-directional wave cases, are also appli-
cable to the multi-directional wave cases. Thus, the sampling frequency
forward time can be determined.

Fig. 22 presents the prediction results of the LSTM network for
the multi-directional wave case. Similar to the results observed in the
uni-directional cases, the predicted wave fails to accurately capture
the peaks. However, the results still demonstrate the capability of
the proposed LSTM-based wave prediction method when estimating
multi-directional irregular waves.

4.4. Comparison with Fourier-based wave prediction approach

Fourier-based method is a classical technique, which is widely
used to predict, analyse and describe the ocean waves in frequency
12
Fig. 21. Simulation scenario of multi-directional irregular wave.

Table 7
Hyperparameters of the LSTM algorithm for the irregular wave cases.

Parameter Symbol Unit Value

Sampling frequency of dataset 𝑓𝑠 Hz 20
Forward time 𝑇𝑓 s 3
Total time 𝑇𝑡𝑜𝑡𝑎𝑙 s 2400
Ratio of training data 𝑅𝑡𝑟𝑎𝑖𝑛 0.9
Initial learning rate 𝐿𝑅𝑖𝑛𝑖𝑡𝑖𝑎𝑙 0.01
Drop period of learning rate 𝑁𝑑𝑟𝑜𝑝 100
Number of LSTM hidden units 𝑁ℎ 100
Iteration loops 𝑁𝑙𝑜𝑜𝑝 400
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Fig. 22. Predicted excitation force in time domain of the multi-directional irregular
wave.

Fig. 23. Predicted wave elevation of Fourier-based method.

domain. It relies on the Fourier Transform (FT) and Invert Fourier
Transform (IFT), which is a mathematical tool that decomposes a
complex waveform into its constituent sinusoidal components with
different frequencies, amplitudes, and phases (Falnes and Kurniawan,
2020). An extended maximum likelihood method is employed to de-
termine the directional wave spreading, while the initial phases of
directional free-wave components are determined using a least-square
fitting scheme (Zhang et al., 1999). The Fourier-based method proposed
in Halliday et al. (2011) and Duan et al. (2020) is adopted in the present
study. The predicted wave elevation is satisfactory, as shown in Fig. 23.

The surge force transfer function, 𝜓3, is obtained by using a poten-
tial flow method. The time-domain forces are obtained by using the
transformation as shown in Eq. (19).

𝐹𝑤(𝑡) = Re

[ 𝑁
∑

𝑗=1
𝜓3

(

𝜔𝑗
)

𝐴𝑗𝑒
𝑖
(

𝜔𝑗 𝑡+𝜀𝑗
)

]

(19)

The simulation result is adopted in the Fourier-based prediction, how-
ever, the LSTM-based consider the transfer function implicitly. LSTM
can directly figure out the relationship between wave elevation and
excitation forces from the measured data. Interpolation of surge force
transfer function is illustrated in Fig. 24.

The predicted surge forces are shown in Fig. 25. While the phases
of frequency components are accurately estimated, the amplitudes or
peak values of the surge forces are not satisfactory. This discrepancy in
amplitude is attributed to the linear assumption made in the potential
flow calculation within the study. The calculation of the transfer func-
tion only accounts for the linear components of the wave force, whereas
the measured force contains nonlinear components.

The perdition performance and computational cost of LSTM-based
and Fourier-based methods are listed in Table 8. The prediction time
horizon is determined as 24 s. The Fourier-based method has a fast
computational speed. The Fourier-based method presents a higher com-
putational speed, since it only needs to calculate the summation of the
13
Fig. 24. Predicted surge force based on Fourier method.

Fig. 25. Predicted surge force of Fourier-based method.

Table 8
Perdition performance and computational cost by LSTM-based and Fourier-based
methods.

Prediction method LSTM-based Fourier-based

Actual predicted time (s) 24 24
Computational cost (s) 21.5 5.9
NMRSE of force prediction (–) 0.032 0.209

wave components. The LSTM-based method need to update the state
cells of LSTM neural network at every step. It should be noted that the
LSTM can deal with the nonlinear problems, which could potentially
improve the prediction accuracy.

5. Conclusions

Prediction of wave excitation force is a key factor to influence power
absorption efficiency in the real-time control of WEC. The present study
introduces a LSTM RNN algorithm to identify the characteristics of
wave excitation forces based on wave elevations. A total of 180 regular
wave and 12 irregular wave tests are conducted initially. Compared
with the results of experimental tests, the accuracy of the prediction
results is verified, and the best parameters of the experimental setting
are determined to guide the future tests. For the regular cases, one
advantage of the proposed prediction method is that it can recognise
high-order harmonic loads. In addition, the anti-noise capability of the
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LSTM algorithm can filter random noises from the measured signals.
This anti-noise characteristic is beneficial to small-scale model test.
When the number of wave probes 𝑁 increases from 1 to 2, the phase
hift and peak fluctuation are eliminated. The proposed method is
nsensitive to 𝑁 when 𝑁 > 2. The increase in NRMSE in low frequency
anges is caused by the increase in SNR. The optimal setting of wave
robes is 𝑁 = 4 and 𝑑 = 0.3 m for the regular cases. For the irregular
ases in the study, the optimal sampling frequency is 20 Hz, and the
ptimal forward time is 3 s. The best NRMSE exists when 𝑁 = 4
nd 𝑑 = 0.3 m for the irregular cases. 𝑁 = 3 is also acceptable.

The LSTM-based wave prediction method has potential to be used
for multi-directional irregular waves. The predictive capacity of the
LSTM-based wave prediction method has been demonstrated through
numerical simulations. In order to further validate its performance,
experimental tests will be conducted in a multi-directional wave tank
to assess the accuracy and effectiveness of the prediction method. For
further research, the results guide the experimental test of the real-
time control using the same method. The performance of the method
is validated in practical real-time control. The recognised high-order
harmonic loads need to be quantified.
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