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Abstract

Thousands of offshore oil and gas platforms have been installed throughout the world’s

oceans and more structures are being installed as part of the transition to renewable energy.

These structures increase the availability of ecological niches by providing hard substrate in

midwater and complex 3D habitat on the seafloor. This can lead to ‘hotspots’ of biodiversity,

or increased densities of flora and fauna, which potentially spill over into the local area. How-

ever, the distances over which these higher densities extend (the ‘range of influence’) can

be highly variable. Fish aggregate at such structures, but the range of influence and any

implications for wider fish populations, are unclear. We investigated the relationship

between fish and platform areal densities using high resolution fisheries acoustic data. Data

were collected in the waters surrounding the vessel exclusions zones around 16 oil and gas

platforms in the North Sea, and throughout the wider area. We estimated densities of

schooling fish using echo-integration, and densities of non-schooling fish using echo-count-

ing. At 10 platforms, non-schooling fish densities were elevated near the platform relative to

background levels in the equivalent wider area. The range of influence, defined here as the

range to which fish densities were elevated above background, varied from 0.8 to 23 km. In

areas of high platform density, fish schools were encountered more often, and non-school-

ing fish densities were higher, when controlling for other sources of environmental variation.

This is the first time such long-range effects have been identified; previously, ranges of influ-

ence have been reported in the order of just 10s-100s of metres. These findings suggest

that the environmental impact of these structures may extend further than previously

thought, which may be relevant in the context of upcoming management decisions around

the decommissioning of these structures.

Introduction

The propensity of fish to aggregate around structures and objects is well known. These effects

vary from brief associations with floating objects [1–3] to large scale associations with reef

structures. These behaviours have been exploited commercially through Fish Aggregation
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Devices (FADs) in some fishing industries [4, 5], and artificial reefs for fisheries or productiv-

ity enhancement [6–8].

Fish are also known to associate with man-made marine structures (MMS), such as oil and

gas platforms [9–11]. There are currently thousands of these platforms currently installed glob-

ally, following the expansion of offshore fossil fuel exploration in the mid-20th century [12,

13]; the expansion of offshore renewable energy [14] will add many more MMS in the coming

years. In some regions (e.g. the Gulf of Mexico), oil platforms host such consistently high fish

numbers that they are targeted by both commercial and recreational fishermen, and visited by

recreational SCUBA divers [15, 16]. Furthermore, a study of the oil platforms off California

found them to be the most productive waters per unit area of seafloor of any area for which

similar estimates exist [17].

Much of the global oil and gas infrastructure is now nearing the end of its operational life

and will soon need decommissioning, meaning managers will be required to decide on the

optimal approach to removing much of what was installed. ‘Rigs-to-reefs’ programmes, where

platforms are left in place or are partially dismantled or toppled, but ultimately remain in the

ocean, are in operation in several parts of the world [18, 19]. Benefits of such an approach

include continuing to support the same incidental industries that utilise operational rigs (e.g.

commercial and recreational fishing and other marine tourism in the Gulf of Mexico), reduc-

ing decommissioning costs [20], and lowering the risk to human life during the decommis-

sioning process. However, in some areas, such as the North Sea, current legislation requires

the complete removal of all installed structures, although derogations can be made under cer-

tain conditions on a case-by-case basis. This legislation was established following public outcry

around the Brent Spar decommissioning [21]. However, there is a lack of unequivocal evi-

dence regarding the ecological impact of these structures, and the likely consequences of their

removal.

There is evidence that oil and gas platforms in the North Sea act as artificial reefs supporting

a diversity of taxa and large numbers of a range of species [22–27], and potentially affecting

the local ecology of those species [28]. In addition, the legally enforced 500 m safety zones sur-

rounding North Sea oil and gas platforms allow them to act as de facto marine protected areas

(MPAs), offering protection from certain anthropogenic pressures such as fishing and ship-

ping. While elevated fish densities [25] and significant fish residency times [29] have been

recorded around oil and gas platforms in the North Sea, there is currently little evidence to

suggest that these elevated numbers extend to ranges beyond the edge of these safety zones.

Such ‘spillover’ effects, where the benefits of an MPA extend beyond its boundaries, have been

documented in other areas [30–33]. Commercial fishermen may be opposed to the abandon-

ment of an oil platform due to the lack of access to potential fishing grounds [34], but might be

able to exploit fish outside the safety zone which are present in higher densities than would be

the case if the platform, and its safety zone, were removed.

Fish distributions around oil and gas platforms and other infrastructure in the North Sea

have not been studied extensively. One study on a closed-down platform in the Norwegian sec-

tor found elevated fish numbers caught by gillnets in close proximity to the platform (within

150–300 m), but these dropped quickly as distances from the platform increased [25]. Another

study using hydro-acoustic surveys found no increase in fish density near the same platform

[35]. These studies focussed on the immediate vicinity of a single platform, not considering

longer distances, or other platforms. Other work using tagged fish and trawl data in the south-

ern North Sea similarly found a positive association between proximity to structures and fish

density, although this was found to vary temporally, with species, and with structure type [36].

However, there was significant uncertainty associated with the tag-derived fish locations, and
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the resolution of the trawl data and the grid used for data extraction and modelling was rela-

tively coarse.

There remains, therefore, a need for larger-scale, but high-resolution, surveys of fish distri-

butions around multiple platforms throughout the North Sea. Such surveys can be difficult

and expensive over large areas, but fisheries acoustics provide a means to monitor fish at very

fine resolution, rapidly and effectively [37]. Data collection, processing and analysis techniques

are well refined and have been used extensively to study fish abundance, biomass and distribu-

tion at the ecosystem scale [38–40]. Here, we use fisheries acoustics to investigate the distribu-

tions of fish around oil and gas platforms and associated infrastructure throughout the North

Sea.

Our specific aims were to analyse the relationship between fish density and oil and gas

MMS for two types of fish (schooling fish and individuals) by testing three null hypotheses: i)

that fish density showed no trend with distance to the nearest MMS; ii) that fish density close

to MMS was not significantly higher than fish density in equivalent background areas; and iii)

that fish were not associated with oil and gas MMS after accounting for other factors which

may influence fish distribution.

Materials and methods

Acoustic data were collected from the Fisheries Research Vessel Scotia during a North Sea

trawl survey between 23rd July and 11th August 2012. A Simrad EK60 scientific echosounder

collected data at 4 frequencies (18, 38, 120 and 200 kHz), transmitting at 1 Hz using a pulse

duration of 1.024 ms. The 18 kHz transducer had an 11˚ beamwidth, and all other transducers

had beamwidths of 7˚. Raw data were digitized and recorded as time-stamped volume back-

scattering strengths (Sv, dB re. 1 m-1) (Fig 1) along with detected bottom depth and the vessel’s

GPS location for each ping. The echosounder was calibrated using standard protocols prior to

the survey on 1st July 2012 [41].

Acoustic data were processed in Echoview [42]. Standard pre-processing steps were per-

formed: removing bad data and the layer from 0–12 m depth (to account for the depth of the

transducer and nearfield), and correcting the automatically detected seabed and adding a

backstep of 0.5m to ensure no seabed was included in the analysis domain. Two data process-

ing algorithms were then applied to the data to: 1) isolate and quantify backscatter from

schools of swimbladdered fish; and 2) identify and enumerate echoes from individual fish (Sin-

gle Echo Detections, SEDs).

Fish school isolation algorithm

A multifrequency thresholding algorithm (built using Echoview’s ‘virtual variable’ functional-

ity) was used to identify areas of backscatter that were consistently strong across all the fre-

quencies and indicative of schools of fish with swimbladders (such as Clupea harengus,
herring, or Sprattus sprattus, sprat), as described by Fernandes [43]. In some areas, a scattering

layer was present which was particularly strong at 38 kHz, but weaker at other frequencies,

which is not characteristic of fish [44]. Occasionally this was strong enough to be ‘accepted’ by

the initial algorithm as a fish school. To identify and remove the remnants of this layer, candi-

date schools where scattering at 38 kHz was>10dB stronger than at 200 kHz were discarded.

Additionally, swimbladdered fish schools in this area generally have ‘harder’ edges than dense

areas of the scattering layer, due to layers being horizontally extensive and continuous, by defi-

nition [45–47]. To this end, the mean Sv at 38 kHz was also calculated for the area around each

candidate school (using a 7 x 7 dilation filter) and any regions where the difference between

PLOS ONE Elevated fish densities extend kilometres from oil and gas platforms

PLOS ONE | https://doi.org/10.1371/journal.pone.0302738 May 6, 2024 3 / 19

https://doi.org/10.1371/journal.pone.0302738


the mean value for the candidate school and the surrounding water was less than 5 dB were

discarded. This process removed echoes from the scattering layer, leaving only fish schools.

Individual fish detection (echo-counting)

‘Echo-counting’, enumerating the echoes from individual fish to produce estimates of the areal

density of non-schooling fish, is rarely used in the marine environment, more commonly

being employed in shallow freshwater systems such as rivers [48–50]. This is, in part, due to

the greater depths under consideration in marine studies, which lead to greater beam volumes,

and a corresponding increase in the likelihood of encountering multiple fish in the same pulse

[51]. The ‘single target detection’ functionality relies on the recognition of the characteristic

shape and properties of the echo from a single isolated scatterer as an SED. However, it is pos-

sible for coincident echoes from multiple scatterers to be wrongly identified as a single echo

(particular in regions of high backscatter). Sawada et al. [52] developed indices (M and Nv)

based on estimated local density of fish which can be used to determine areas where single tar-

gets can be detected reliably.

Here, a 50 x 5 m (horizontal x vertical) grid was used to discretise the data into subsamples

for which these Sawada indices could be calculated. High density areas, identified by the

thresholding algorithm (see 2.1 above) were masked from the raw 38 kHz data (i.e. setting

their pixels values as ‘no data’) before a mean Sv was calculated for each grid cell. To calculate

the Sawada indices, a mean target strength (TS) was required; here, the mean TS of fish caught

in the bottom-trawl survey was used. This was calculated from the catch per unit effort

Fig 1. An echogram collected during the North Sea trawl survey. Acoustic data collected at 4 frequencies, 18, 38, 120 & 200 kHz, showing the seabed

(region of strong scattering at ~140 m depth), fish schools (discrete regions of strong scattering across the four frequencies at ~100 m depth), and

individual fish (areas of more diffuse scattering close to the seabed). These data were collected in proximity (<2 km) to one of the oil platforms

surveyed.

https://doi.org/10.1371/journal.pone.0302738.g001
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(CPUE) data for the four main species of interest; a mean length was calculated for each haul

in the survey, and the overall mean of these values was converted to a TS based on the TS to

length equation for gadoids (TS = 20.log10L-67.5) [37].

For each 50 x 5 m grid cell, the value of M and Nv were calculated, and using the thresholds

suggested by Sawada et al. (1993), cells with M< 0.7 and Nv< 0.04 were considered suffi-

ciently low density for reliable single target detection. The detected single targets were thre-

sholded to remove small targets, below the minimum expected size of the species of interest

(Gadus morhua, cod, Melanogrammus aeglefinus, haddock, Pollachius virens, saithe, and Mer-
langius merlangus, whiting) based on the TS of 2.5th percentile of the length distribution of the

trawl survey data (-50.47 dB).

Data export and other sources

Several datasets were exported from Echoview: 1) the fish school Sv echogram was integrated

over 50 m segments of transect, or elementary distance sampling units (EDSUs), to give values

of the Nautical Area Scattering Coefficient (NASC); 2) the SEDs falling within the areas

retained by the ‘Sawada’ filter (described above) were exported individually, including details

of their TS, depth and time/date stamp; 3) the seabed depth was exported for each ping in the

survey.

The SEDs were assigned to the EDSU in which they were detected based on the time/date

stamp of their record. Survey effort varied between EDSUs because of variation in ping volume

due to changes in seabed depth and the variable number of pings per EDSU due to changes in

vessel speed. To account for this, the total volume of water insonified in each EDSU (including

the ‘double counting’ of overlapping pings), and the corresponding equivalent area of sea-sur-

face was calculated. The height of the cone (Hequ) with the same volume as the sampled portion

of the ping (from 12 m depth, following exclusion of the near-field, to the seabed depth (Dping)

for that ping) was calculated as:

Hequ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dping
3 � 1233

q

ð1Þ

The volume of each ping was then calculated as:

Vping ¼
p

3
:tan

a

2
:tan

b

2
:
ffiffiffiffiffiffiffiffi
Hequ

3
q

ð2Þ

where α and β are the major- and minor-axis beam angles, respectively. Areal fish density (m-

2) in each EDSU was then estimated as:

DensEDSU ¼
SEDsEDSU
nEDSU

:

XnEDSU

i¼1

Hequi

Vpingi

ð3Þ

where SEDsEDSU is the total number of SEDs recorded in the EDSU and nEDSU is the number

of pings in the EDSU. This is equivalent to the methods of Kieser and Mulligan [53], except

calculating fish density per unit area, instead of per unit volume.

Data on the locations of oil and gas platforms were extracted from the 2013 OSPAR inven-

tory of offshore infrastructure (OSPAR, 2013) [54]. A density surface of platforms (Fig 2a) was

created in ArcGIS (using the ‘kernel density’ function), to be used as a better measure of the

local environment than using simple proximity to the nearest platform, due to their highly var-

iable grouping.

The locations of oil and gas pipelines throughout the region were obtained from the Euro-

pean Marine Observation and Data Network (EMODnet). These were filtered to remove those
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with a listed installation date of 2013 or later, and a similar density surface (Fig 2b) to those

created for platforms (using the ‘kernel density’ functionality in ArcGIS) was produced.

Sea surface temperature (SST) data were obtained from NASA’s OceanColor web portal, as

4 x 4 km resolution netCDF files of Aqua-MODIS satellite data (Fig 2c). For each 50 m EDSU,

mean monthly temperatures for July and August were extracted, and a mean of those values

was used in the subsequent analysis since the survey period spanned the end of July/start of

Fig 2. Maps of fish distributions and environmental data. Maps of the North Sea showing: a) oil and gas platform areal densities, and the locations of

platforms surveyed to within a 1 km range (black crosses); b) oil and gas pipeline areal densities; c) Aqua-MODIS satellited derived Sea Surface

Temperature (˚C) from August 2012; d) fish school density where the area of each circle is proportional to the Nautical Area Scattering Coefficient

(m2nmi-2); e) density of non-schooling fish where the area of each circle is proportional to numbers per m2; and f) acoustically derived seabed habitat

class (labelled 1–8) overlaid on the ship’s cruise track.

https://doi.org/10.1371/journal.pone.0302738.g002
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August. Near-seabed water temperatures were obtained from measurements taken throughout

the survey using a temperature profiler. These data were obtained from the ICES ocean hydro-

chemistry data portal (https://data.ices.dk/). Each EDSU was assigned the temperature value

from the maximum depth of the most proximate temperature profile obtained.

Due to potential diel variation in fish behaviour (e.g. schools dispersing and demersal fish

moving off the seabed at night) solar elevation was calculated for each EDSU using the package

suncalc in R, and represented as a binary variable of day/night signifying the sun being above

(elevation >0) or below (<0) the horizon, respectively.

Echoview’s ‘habitat classification module’ was used to perform unsupervised clustering of

acoustic transmissions (into unnamed seabed ‘classes’) based on acoustically-derived seabed

characteristics [55]. The characteristics used were roughness, hardness, depth, kurtosis, skew-

ness, and length, rise time, and maximum Sv of the bottom echo. (For additional details, see

the Echoview online help for ‘Bottom Classification’). These features were extracted for every

10th ping, and the extracted pings were grouped into arbitrary seabed classes by the clustering

algorithm. In order to avoid unrepresentative seabed classes being assigned to short (in dura-

tion) EDSUs which might only include a single clustered ping, the modal value of seabed class

for clustered pings within the period from one minute before the start to one minute after the

end of the EDSU was assigned as the seabed class for the EDSU.

Data close to structures

Data recorded near platforms were examined on a platform-by-platform basis. 16 platforms

were approached to within 1 km by the survey vessel (Table 1), although data were collected to

a minimum distance of 500 m at 15/16 of these, due to the 500 m safety zones. For each plat-

form, EDSUs were identified to which that platform was the most proximate, up to a maxi-

mum distance of 10 km from the platform. Additionally, for each platform, a ‘baseline’ fish

density dataset was identified. These were the data which were within 10 m depth of the mean

of the data near the platform, within 1˚ latitude of the platform location, but>25 km from any

platform. These data were subset to match the proportional distribution of the near-platform

Table 1. Details of platforms the survey vessel approached to within 1km.

Platform Water depth (m) Platform type Status Product Substructure weight (t) Production start

a 45 Fixed steel Operational Oil 1,976 1981

b 101 Concrete Derogation Gas 386,000 1977

c 45 Fixed steel Operational Oil 3,225 1981

d 109 Fixed steel Operational Oil 5,983 2000

e 45 Fixed steel Operational Oil 1,537 1981

f 146 Fixed steel Operational Oil 22,555 1976

g 144 Fixed steel Decommissioned Oil 14,300 1976

h 54 Fixed steel Operational Gas 1,152 2006

i 66 Fixed steel Operational Oil 13,184 1990

j 40 Fixed steel Operational Oil 950 2009

k 117 Floating steel Operational Oil 0 1981

l 70 Fixed steel Operational Oil 583 1977

m 28 Fixed steel Operational Gas 550 2005

n 62 Fixed steel Operational Gas 2,300 2013

o 45 Fixed steel Operational Oil 730 1981

p 70 Fixed steel Operational Oil 5,275 1978

https://doi.org/10.1371/journal.pone.0302738.t001
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data across seabed classes. To compare near-platform data with this ‘baseline’, the near-plat-

form data were grouped into 500 m distance bins (0–500 m, 500–1000 m, 1000–1500 m etc.,

from the platform), and these were compared to the ‘baseline’ using a Welch test [56] (a modi-

fied t-test suitable for comparing datasets with unequal variances).

Table 1; ‘Platform’ is an arbitrary identifier, and specifies the corresponding subplot in Fig

3. Note, the substructure weight of 0 for platform k is indicative of it being a floating platform,

and while the production start date of platform n is after the survey was conducted, the plat-

form was installed in 2011. Details were obtained from OSPAR’s 2013 Inventory of Offshore

Installations.

For each platform dataset, a linear model of individual fish density against distance from

platform was fitted. This linear model was used to estimate the horizontal range of influence

(HRI) for each platform, which we define similarly to Stanley and Wilson’s [57, 58] ‘area of

influence’, as the distance to which fish densities are higher than at greater distances.

The mean HRI of platforms was calculated as the mean distance at which modelled fish

density equalled the median of their respective baselines (for platforms where the linear model

had a negative slope). To ensure this distance was not influenced by the subsampling for the

baselines (to match the proportional distribution of the platform data across seabed habitat

classes), the subsampling was repeated 30 times, and an overall mean distance was calculated.

Non-linear modelling of fish density with explanatory variables

The relationships between recorded fish densities and the various explanatory variables were

investigated using generalised additive modelling (GAM) and generalised additive mixed

modelling (GAMM), implemented in the mgcv package for R. Due to the extreme zero infla-

tion and skew of the fish school acoustic density (NASC) data, a two-stage modelling process

was used. First, school presence/absence was modelled using a binomial error distribution and

then log-transformed fish school NASC, where >0, was modelled using a Gaussian error dis-

tribution. Individual fish (SEDs) were modelled as counts per EDSU using a negative-binomial

error distribution, and using the total equivalent sampled area of the pings in the EDSU as an

offset. Continuous explanatory variables were included in the models as smooth terms (thin-

plate regression splines), limited to 6 basis dimensions to avoid over-fitting and ensure the bio-

logical interpretability of the resulting curves. For models of fish school presence/absence and

density, SST was used, whereas for models of non-schooling fish, sea bottom temperature was

used. Day/night, acoustically derived seabed ‘class’, and the type [59] of the nearest oil and gas

platform to the EDSU mid-point (floating steel, fixed steel or gravity-based concrete) were

included in models as factor variables. Only data within 25 km of oil and gas platforms were

included in the non-linear modelling analyses.

Three models (fish school presence/absence, fish school NASC where>0, and SED density)

were calculated; to avoid a type I error when fitting multiple models, a threshold (alpha) of

0.01 was used to determine significance (as opposed to the more standard 0.05) of model

terms.

Results

Over 5,000 km of active acoustic data collection was completed, which was broken down into

106,020 50 m EDSUs. Acoustic densities of schooling fish were recorded up to a maximum

NASC (in a single EDSU) of 526,262 m2nmi-2 (Fig 2d), and the maximum number of individ-

ual fish detected in an EDSU was 781 (Fig 2e). Acoustic characterisation of the seabed using

Echoview’s ‘habitat classification’ module classified the seabed into 8 distinct classes (Fig 2f)

based on the extracted acoustic properties.
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Fig 3. Boxplots of densities of individual fish (i.e. non-schooling) vs distance from platform. Each subplot shows data closest to each of the 16

platforms surveyed at ranges<1 km. Data are binned to 500 m intervals; the x-axis values are the upper limit of bins (i.e. the box plotted at 1 km

represents the data in 500–1000 m bin). Box colour represents the modal seabed class of the data for that box (see legend). Black lines are the lines of

best fit of linear models, shown only where the relationship was significant (i.e. p<0.05). Plots are ordered by the model fit (R2 value). Boxes to the right

of each subplot (marked * on x-axis) represent the equivalent ‘baseline’ fish density data; these are>25 km from any platform, from water depths within

10 m of the mean for each subplot, with the proportional distribution across seabed classes, and within 1˚ latitude of the mean of the data. The result of

Welch tests for differences between the data in each box and the relevant ‘baseline’ are shown above the x-axis (with + and—signifying a significantly

higher or lower mean than the baseline, respectively). Details of each platform (including water depth and platform type) are given in Table 1.

https://doi.org/10.1371/journal.pone.0302738.g003
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Data close to structures

The data at each platform that was visited to within a 1 km range (details in Table 1) revealed a

large degree of inter-platform variability in the gradient of individual fish density (Fig 3). At

most platforms, a significant negative relationship was found between individual fish density

and distance from platform. This simple analytic approach was not possible with the fish

school NASC data, due to the extreme zero-inflation and skew of data. At 10 of the 16 plat-

forms, fish densities close to the platform were elevated above the baseline level. At these plat-

forms, the mean HRI was 7.2 km with a range from 0.8 to 23.2 km.

Relationship between fish density, platform density and other variables

Of the 106,020 total 50 m EDSUs, ~36,000 were within 25 km of oil and gas platforms; these

data were used to build models to investigate the relationships between fish densities and the

potential explanatory variables of interest. Based on the mean HRI calculated from the near

platform data, the density kernels of platform and pipeline density were produced using a

‘search radius’ (the range at which a single platform or pipe’s influence drops to zero) of 7.2

km.

The GAM modelling fish school presence/absence exhibited a degree of spatial autocorrela-

tion in the residuals. Visual inspection of the variogram showed the range of this autocorrela-

tion to be ~1500 m (S1 Fig); to avoid the underestimation of errors around coefficient

estimates, the data were aggregated to a support of 1500 m (i.e. the data from adjacent 50 m

EDSUs were averaged, either as a modal or mean value, in sets of up to 30) and the model was

re-fitted. In the aggregated model, the likelihood of fish schools being encountered was found

to be higher with increasing platform density, in areas of increased water depth and increased

SST (Fig 4a–4c), and in daylight hours (S1 Table). No relationship was found with pipeline

density, and the only difference identified between platform types was that fish schools were

less likely to be detected in EDSUs closest to floating platforms than in those closest to the

other two types (fixed steel or gravity-based concrete) (S1 Table).

Spatial autocorrelation was also identified in the residuals of the GAM modelling the acous-

tic density of fish in schools (where present) (S1 Fig). Because the fish density data was contin-

uous, a GAMM was used, and was fitted to include a spatial correlation structure (using a

spherical model with a nugget effect, deemed appropriate from inspection of the variogram).

The only significant effect identified by this model was that school density was found to be

higher in the daytime than at night (S2 Table). It was notable that this model fitted the data rel-

atively poorly (explaining just 3% of the variation in the data).

The GAM modelling individual (non-schooling) fish density also displayed spatial autocor-

relation in the residuals (S1 Fig), with a similar structure to that of the fish school presence/

absence model, so the model was re-fitted using the same 1500 m aggregated data. This model

showed that the density of non-schooling fish increased with increasing platform density, was

higher in deeper areas and of intermediate bottom water temperature (Fig 4d–4f), and during

daylight hours (S3 Table). No relationship was found with pipeline density, or with platform

type.

The fish school presence/absence and the non-schooling fish models also showed some sig-

nificant effects between seabed habitat classes (S1 & S3 Tables), however these are difficult to

interpret as the classes are not defined beyond their arbitrary numeric labels. These significant

relationships do, however, reinforce the value of the inclusion of seabed habitat in the models

(and so controlling for differences between the seabed type).
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Discussion

We found strong evidence that fish, both schooling and non-schooling, associate with oil and

gas platforms in the North Sea. The densities of non-schooling fish were found to be higher,

and fish schools were more likely to be encountered, in areas of high platform density. Further-

more, the evidence suggests that these associations exist over long ranges, up to the order of

several kilometres, extending well beyond the 500 m safety zones in place around North Sea

platforms. Previous work in the North Sea and elsewhere found similar elevated densities of

fish in close proximity to platforms [25, 60], but reported that fish numbers dropped rapidly as

distance from the platform increased beyond just 10s or 100s of metres. Here however, the

horizontal range of influence ranged between 0.8 and 23.2 km (although it must be noted that

Fig 4. Modelled relationships between fish density and explanatory variables. Plots showing the shape of fitted explanatory terms found to be

significant (at α = 0.01) during the generalised additive modelling process. Boxes a-c are terms from the model of fish school presence/absence, showing

the relationship with a) platform density, b) depth and c) sea surface temperature (SST), and d-f are terms from the model of non-schooling fish

density, showing the relationship with d) platform density, e) depth and f) bottom water temperature.

https://doi.org/10.1371/journal.pone.0302738.g004
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most of the data was collected>500 m from a platform). This wide range emphasises how vari-

able this relationship is between individual platforms.

This new evidence is timely and relevant in the context of the upcoming challenges associ-

ated with the decommissioning of a large portion of the North Sea’s oil and gas infrastructure

as it reaches the end of its operational lifespan. Of particular importance is the evidence that

the range of influence of many of these structures is significantly greater than their immediate

physical footprint, and even the safety zones in place around them. While current legislative

decommissioning requirements for platforms necessitate complete removal, there is a lack of

evidence regarding the ecological impacts these structures, and their potential removal, may

have on the ecosystem [61, 62]. Evidence that fish associate with these structures, especially

across such large scales, highlights the possibility that there may be measurable benefit pro-

vided by these structures, and that their complete removal may actually be detrimental to the

environment [62] and to the interests of relevant stakeholders. However, further work is

needed to investigate the mechanistic causes of the relationships found in this work. Impor-

tantly, it must be considered whether there is evidence of enhanced productivity at these struc-

tures [6, 17], or if the observed trends in fish density with distance (and the elevated fish

densities in close proximity to the structures) are simply due to the attraction and aggregation

of the local fish population. Either way, the evidence presented here suggests that fish associat-

ing with these platforms are not always confined to the immediate proximity of the structure

themselves.

That pipeline density appears to have little effect on the density of both schooling and non-

schooling is somewhat contrary to findings from some other studies, but may be due to the dif-

ferent survey techniques used. Work using video surveys from remotely operated vehicles [63]

and visual surveys from manned submersibles [10] have found increased fish densities around

pipelines compared to the surrounding seafloor. However, in particular they noted that it was

pipeline spans (i.e. pipeline sections elevated off the seabed), or where a pipeline was undercut,

where the highest densities of fish were found. These fish would be unavailable for detection

by the methods used in our study. Fisheries acoustics deployed from a vessel at the surface can

only detect fish to which the echosounder has a clear line of ‘sight’. Furthermore, due to the

curvature of the leading edge of the acoustic beam, an acoustic ‘dead-zone’ exists where objects

in very close proximity to the seabed or other hard structure, cannot be detected [64, 65].

These factors in combination mean that elevated densities of fish in very close proximity to

pipelines would not be detected, if present.

There are some considerations which limit the extent to which further conclusions can be

drawn from this work. Importantly, with the available data, the detected fish could only be

divided into ‘schooling’ and ‘non-schooling’ fish, rather than by species. In order to attribute

acoustic backscatter or counts of single echo detections to species, precise proportions of each

species present and accurate length distributions are needed, but were unavailable for this

work. In particular, for the individual fish, treating all fish as a single group will make interpre-

tation of some results difficult. The relationship with sea-bottom temperature will, for exam-

ple, be a compound relationship of the species-specific relationships which might exist, and

have been documented elsewhere [66–68]. Although information on species composition was

available from the accompanying bottom-trawl survey, the trawl samples were not taken close

to the oil and gas platforms. However, further inspection of the two datasets may provide

some evidence for species composition, particularly when combined with detected fish

lengths.

Additionally, the use of data on fish sizes (during the filtering of the SEDs throughout the

water column) obtained with a bottom-trawl may bias the calculation of mean target strengths

due to the non-random vertical distribution of different size classes of the species of interest.
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Juvenile gadoids are known to spend a larger proportion of the time in the water column than

larger adults [69, 70], and so the length data used may be biased towards larger individuals. It

is possible that this caused the underestimation of local fish density, and the subsequent inclu-

sion of grid cells which erroneously passed through the filtering process [52]. Here, the bottom

trawl data was the only alternative evidence for fish sizes available, and its use was necessary to

avoid circularity in the filtering process [52]; ideally, pelagic trawling would have provided

data on the size distribution of fish in the water column to complement the data collected with

the bottom-trawl. Future work seeking to use the combination of echo-integration and echo-

counting applied here, should set out to collect data on all fish ‘groups’ recorded; schooling

fish, fish on or near the seabed, and individual fish found in midwater.

Further work could also consider the vertical distributions of fish in the context of proxim-

ity to oil and gas platforms. Several gadoid species are found in midwater as well as near the

seabed, but oil platforms provide hard substrate throughout the vertical extent of the water col-

umn, and may thus alter the vertical distributions of nearby fish, although evidence for this

may be limited. For example, saithe have a semi-demersal distribution [71], frequently forag-

ing in midwater, and have been recorded throughout the water column at a North Sea oil plat-

form [27]. In the same study, however, cod were only found in the deepest depth-stratum

sampled, suggesting the oil platform may not cause predominantly demersal fish to move

higher into the water column. It is noteworthy though, that the study used a relatively large

mesh size for sampling, and so small fish, and any changes to their vertical distribution, may

have gone undetected. Elsewhere, a study of fish production at oil rigs of the coast of California

found that average production per unit area seafloor at the base of platforms (the bottom 2 m

vertically) was more than double that of the midwater portion, despite the much greater extent

of the latter [17], suggesting the majority of fish remain bottom-associated, even in the pres-

ence of the vertical platform structure. Despite these studies, it would nonetheless be valuable

to investigate the impacts of oil platforms on the vertical distribution of fish in more detail,

particularly to consider these effects over a broader horizontal scale than has been previously,

in light of the long-range influence of oil platforms on fish densities reported here.

The differences in fish densities associated with each seabed habitat are also difficult to

interpret. The unsupervised clustering performed by Echoview’s ‘habitat classification’ module

groups data based on the acoustic properties of the seabed, but makes no inference or assertion

about what seabed type is represented by each assigned class. While some acoustic seabed

properties are easily interpretable (e.g. seabed hardness or roughness), the classification is

highly multi-dimensional, and the separate classes cannot be defined from the data available.

More detailed work on this, involving drop-camera and/or grab sampling, and reconciliation

with existing habitat maps [72], would allow the assigned seabed classes to be ground-truthed,

defined, and validated.

More work is also needed to fully understand the causes of the inter-platform variability in

the trends of fish density and distance from platform. While the modelling results presented

here demonstrate a general trend of fish density increasing with the local density of platforms,

the inspection of the platform-by-platform data demonstrates strong variability. Differences in

platform design and size, and the habitat (depth, substrate, and hydrodynamic conditions) in

which a platform is located may determine the influence any given platform has on the local

fish population. Focussed studies of fish around platforms across the range of these variables

will allow the determination of those factors which control the relationships described here.

It is also important to understand the influence of man-made structures on fish migratory

and spawning behaviour. The data used in this work were collected in late summer, outside of

the periods of either migration or spawning in any of the most likely species to have made up

the demersal fish assemblage encountered [73]. However, the data collection period did
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overlap with the start of the autumn spawning period of North Sea herring, likely the main

constituent of the fish schools detected here, which may have affected the strength of associa-

tions observed. Herring are demersal spawners, returning repeatedly to traditional spawning

grounds around the Scottish coast. These broad areas have relatively low overlap with those

areas of high densities of oil and gas platforms, which are generally further offshore in the

northern North Sea [59, 74]; as such, the associations between fish schools and oil platforms

observed here may in fact be stronger at other times of year when fish are not associating with,

or moving towards, spawning grounds in other areas.

The effects of increased availability of hard substrate (due to the presence of oil platforms),

as well as locally increased densities of fish, may also have an effect on spawning or migration

behaviour. These effects may be particularly important for those species, e.g. saithe [73], with

distinct spawning areas which overlap with, or are in close proximity to, areas with high densi-

ties of oil and gas infrastructure. To examine these possible effects, as well as to support the

findings of this work, similar studies with data collected at other times of year, particularly dur-

ing spawning or migration of key demersal species (generally the first two quarters of the

year), as well as investigations into evidence of spawning at these sites, would be invaluable.

An additional factor to be considered when investigating the influence of structures on fish

densities and distributions is fish size, and whether the horizontal trends in fish density

reported here are consistent across fish sizes, or if, for example, larger fish are more likely to

associate with platforms than smaller fish. Target strength data (when combined with appro-

priate target strength-length relationships, the selection of which is ideally informed by data

from trawling) provide information about fish size, and so could be used to examine any

trends in fish size relating to proximity to oil platforms. These trends may in turn vary with

seasonal changes in spawning and migratory behaviour, which are themselves age/size depen-

dant. More work is needed to investigate these potential effects, and better understand the

influence platforms have on the life history of local fish populations.

Studies of spawning activity at oil platforms, and a better understanding of the demography

of fish associating with platforms, would also contribute to addressing the key area of uncer-

tainty remaining for managers who must decide the fate of these oil and gas platforms. This

uncertainty is around whether the increased numbers of fish recorded at and in the vicinity of

platforms is due to increased local production, or simply due to aggregation of the surround-

ing fish population [6, 75–77]. Elsewhere, similar platforms have been found to have the high-

est secondary production per unit area of seafloor of any measured system [17]; the data

presented here, and other datasets currently being collected, will allow progress to be made

towards answering this key question.

Conclusions

The work described here provides evidence that both schooling and non-schooling fish associ-

ate with oil and gas platforms in the North Sea over long distances. Where previously fish den-

sities were only thought to be elevated in very close proximity (less than a few 100s of metres)

to platforms, here they were often found to remain above baseline levels for several kilometres,

well beyond the 500 m safety zones in place around active platforms. Uncertainty remains

around whether these trends are due to aggregation of fish or increased local production, and

around the causes of the inter-platform variability seen in the observed trends, but this work

presents the first suggestion that the ecological impact of these structures, particularly on fish

populations, may be wider ranging that previously thought.
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