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1. Introduction

In numerous fields of mathematical modeling, the partial differential equations
(PDESs) used to model the phenomenon in question respect the basic laws that were
used to derive them, and their solutions satisfy these first principles. For example,
in the modeling of incompressible flows, the PDEs involved provide divergence-free
velocities, the PDEs modeling dissipative systems provide solutions that are energy
stable, and in phase-field modeling the solution has strict global maxima and min-
ima, just to give a few examples. From a numerical approximation perspective, it
is very desirable that the finite element methods used to discretize these PDEs do
respect the respective laws. Unfortunately, in most instances this is not the case.
For example, the most popular finite element methods for incompressible flows are
not pointwise divergence-free (see, e.g. Ref.[20] for a recent review on the topic), and
proving that schemes are energy stable is far from trivial (see, e.g. Refs. [7l and [15]).

In the particular case of bound-preservation, it was understood very early that
the solution of a standard finite element method does not, in general, respect the
physical bounds. This was first formalised in Ref. [9] in the finite element context
where it was shown that the approximation using piecewise linear finite elements
respects such bounds only if the mesh satisfies certain assumptions about its internal
angles, and how refined it is. In addition to the mesh restriction, for conservation
laws finite element methods that respect the physical bounds of the problem can
either be first order accurate, or nonlinear, due to the notorious Godunov order
barrier theorem (see, e.g. Ref. [10).

As a consequence of the above discussion, in the last few decades, numerous
methods that respect global bounds have been proposed. A special attention has
been given, in fact, to a stronger property. Namely, numerous methods respect-
ing the discrete maximum principle (DMP) have been proposed, especially for
convection-dominated problems (see Refs. 3, Bl 24 27 and [30} just to name a few,
and Ref. [ for a recent review). These methods are, for the most part, non-linearly
stabilised methods. That is, methods that add a nonlinear stabilising term to the
Galerkin scheme in a way that diffusion is added locally, thus making the prob-
lem locally diffusion-dominated, and avoiding the spurious oscillations and local
violations of the maximum principle. Interestingly, despite the above-mentioned
discretisations being nonlinear, in most cases the finite element methods proposed
are based on piecewise linear elements. In fact, the extension to higher order ele-
ments imposes even stronger mesh conditions (for example, in Ref. it is proven
that for the Poisson equation in two space dimensions a monotone discretisation
using quadratic elements can be built if the mesh is either equilateral, or consists of
squares divided by arbitrary diagonals), and, on the other hand, there is not much
analysis available for nonlinear schemes using higher order polynomials.

In many situations, the stability of the numerical method does not require the
discrete solution to be devoid of local spurious oscillations, but only needs to satisfy
the global bounds. In such a case, the problem is actually simpler and there are
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several methodologies available. The first option one might think of is simply cutting
off the values that lie outside the admissible range. This approach is perhaps used
in many simulations without being explicitly mentioned, and it has been analysed
for a linear reaction—diffusion equation in Ref. 23] and for parabolic problems in
Ref. A more radical approach consists on reformulating the problem in such a
way that the discrete solution always respects the corresponding bounds (see, e.g.
Ref. [19 for the application to Chemotaxis, or Ref. [I4] for an extremely widely used
reformulation in non-Newtonian fluid mechanics). Alternatively, global bounds can
be enforced by introducing them as inequality constraints and then approximate a
control problem as it has been done, e.g. in Ref.[I3l Similarly, inequality constraints
can be dealt with using Lagrange multipliers and solving an extended system, as
has been recently done in Ref. B, or Ref. 29, where a semi-smooth Newton method
has also been introduced to deal with the non-smoothness.

In the very recent work, Ref. 2| a different strategy was followed to impose
global bounds in the solution. The first step is to define the set, denoted V; , of
admissible finite element functions as those satisfying the global bounds at their
degrees of freedom (nodal values in the case of Lagrangian elements); then, introduce
an algebraic projection onto the admissible set, denote by u;{ the projection of u,
onto V; and write a finite element problem for the projected object. Since this
process introduces a kernel, as the projection is not injective, a stabilising term
is added to remove the singularity. This last step allowed, in particular, to avoid
the introduction of Lagrange multipliers. Moreover, when applied to the linear
reaction—diffusion equation, it turns out that uz is the orthogonal projection onto
V; , and thus is independent of the stabilisation used (this last property is lost when
applied to more complicated problems, such as problems with nonlinear reaction,
also addressed in Ref. 2). So, the purpose of the present work is to extend the
methodology presented in Ref. [2/to the convection—diffusion equation. Although the
driving principles are similar, this work presents significant novelities with respect
to Ref. 2 namely:

(1) the starting point in the construction of the method is not the plain Galerkin
scheme, but a stabilised finite element method instead. The reason for this is
two-fold: first, in regions where the constraint is not active, local oscillations
might still appear (and linear stabilisation helps with this), and second, our
numerical experiments show that the addition of linear stabilisation in u;{ helps
tremendously the good behavior of the nonlinear solver;

(2) the definition of the stabilisation form is different, since it needs to control the
convective term;

(3) the analysis differs greatly from that of Ref. 2. On the one hand, the well-
posedness analysis is very different, as the discretisation is not driven by a
monotone operator. On the other hand, since the problem is non-symmetric
the solution ;" is no longer the orthogonal projection of u onto Vi, and thus
the error analysis follows an alternative path.
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The remainder of the paper is organised as follows. In Sec. [2] we introduce the
notation, the model problem, and all the preliminary material for the setup of the
method (including the choice of linearly stabilised method to be used). In Sec. Bl we
present the finite element method and show its well-posedness. The error analysis
is carried out in Sec. @ and in Sec. B we test the performance of the method
via numerical experiments, comparing also with previously existing alternatives.
Finally, some conclusions and future directions are drawn in Sec.

2. General Setting and the Model Problem

We will adopt standard notations for Sobolev spaces, in line with, e.g. Ref. For
D C R% we denote by || - [|o,p,p the LP(D)-norm; when p = 2 the subscript p will
be omitted and we only write | - ||o,p. In addition, for s > 0, p € [1, c0], we denote
by || - ls,p.0 (| |s,p,p) the norm (seminorm) in W*?(D); when p = 2, we will again
omit the subscript p and only write || - ||ls,p (| - |s,p). In addition, we denote by
H~1(D) the dual of H}(D) while identifying L?*(D) with its dual. Thus, writing
(+,)p for the duality pairing, we have

(f,vyp = /Df(:c)v(:c)d:c Yo GH(:)L(D)7

whenever f € H~1(D) is regular enough. We do not distinguish between inner
product and duality pairing for scalar or vector-valued functions.

2.1. The model problem

Let Q be an open bounded Lipschitz domain in R? (d = 2, 3) with polyhedral bound-
ary 0Q. For a given f € H~'(Q), we consider the following reaction—convection—
diffusion problem:
—div(DVu) + 8- Vu+ pu = f in €,
(2.1)
u=0 on 0,

where D = (d;)f,_, € L=(Q), B = (8;){_, € L>(Q)* and u € RY, respectively,
are the diffusion tensor, the convective field, and the reaction coefficient. We will
assume that div@ = 0, and the diffusion tensor D is symmetric and uniformly
strictly positive definite in £2; in other words, there exists a positive constant dy > 0
such that for almost all x € ), we have

d d
> yidij(x)y; > do Y yP Y(y1.... ya) €RY (2:2)
ij=1 i=1
Remark 2.1. We have assumed div@ = 0 only to avoid technical diversions. The
results presented in this paper remind essentially unchanged under the milder con-
dition g —div@/2 > 0. Moreover, all the results presented below also are applicable
to the case when p € L°°(Q) is a function that is strictly positive in Q.
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The standard weak formulation of (21 reads as follows: find u € H}(Q2), such
that

a(u,v) = (f,v)o Vv e Hy(Q), (2.3)
where a(-,-) is the bilinear form defined by
a(w,v) := (DVw, Vv)q + (B - Vw,v)q + (uw,v)q Yv,w € HY(Q). (2.4)

The bilinear form a(-.-) induces the following “energy” norm in H}(€):

[vlla = Va(v,v),

and thus ([Z3) is well-posed thanks to the Lax-Milgram lemma (see, e.g. Ref. [T1]
Lemma 25.2).

As it was mentioned in the introduction, our aim is to look for discrete solutions
that respect the same bounds as the solution of (23]). Thus, we make the following
assumption.

Assumption (A1): We will suppose that the weak solution of ([23)) satisfies
0 <wu(x) <k, foralmost all x €, (2.5)

where x is a known positive constant.

Remark 2.2. Assumption (Al) is, in fact, a re-statement of one of the conse-
quences of the maximum principle for elliptic PDEs, see e.g. Ref. The lower
bound in (Z3]) is not required to be equal to zero, but we set it as zero for clarity of
exposition. In addition, the same results proven in this work hold if k is replaced by
a non-negative continuous function x(x). In general, sharp bounds for the constant
K are not available, but in some cases they can be obtained. For example, as a con-
sequence of maximum and comparison principles (see e.g. Ref. 28, Corollary 4.4)
the following bounds can be proven: for almost all & € Q the solution u of (Z3)
satisfies

_ ||f||0,oo,Q < U((B) < ”fHO,oo,Q. (26)
0 I
Moreover, if f > 0 in © we can sharpen the above bound to
o< ute) < Wlozss .

for almost all € €. Hence, a reasonable estimate for x is 17llo.c0.00 (and this is, in

fact, the estimate we have used in our numerical experiments).

2.2. Triangulations, finite element spaces and preliminary results

Let P be a conforming, shape-regular, quasi-uniform partition of €2 into closed
simplices (or affine quadrilateral/hexahedra). Over P, and for k > 1, we define the
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finite element spaces
Vp = {vp, € C°(Q) : v, |k € R(K) VK € P}, (2.8)
Vp = Vp N HF (), (2.9)

where

R(K) = (2.10)

Py (K), if K is a simplex,
Qk(K), if K is an affine quadrilateral /hexahedral,

with Py (K) denoting the polynomials of total degree k on K and Q(K) denotes
the mapped space of polynomials of degree of at most k in each variable.

Remark 2.3. The results presented below can, in principle, be extended to more
general quadrilateral meshes. Nevertheless, that would require technical diver-
sions due to the need to prove norm-equivalences (that are classical for mapped
elements). To avoid these diversions and keep the presentation focused on the
bound-preservation aspects, we restrict the presentation to affine simplices and
quadrilateral /hexahedral meshes.

For a mesh P, the following notations are used:

o let {xy,x,,...,xy} denote the set of internal nodes, and the usual Lagrangian
basis functions associated to these nodes, spanning the space VJ,, are denoted by
1y PN

e let F; denote the set of internal facets, F, denote the set of boundary facets, and
F, = F; UF, denote the set of all facets of P; for an element K € P the set of
its facets is denoted by F;

o for K € P, F' € F,, and a node x;, we define the following neighborhoods:

wi = {K' € P: KN K’ #0},
wF:U{KGP:FCK},
wi:U{KEP::cieK};

e for a facet F' € Fr, [-] denotes the jump of a function across F.

The diameter of a set G C R? is denoted by hg, and h = max{hy : K € P}
stands for the mesh size. We also define the mesh function h as a continuous,
element-wise linear function defined as a local average of element diameters com-
monly used in finite element analysis Ref. For this, we introduce the set of
vertices of the mesh, v,...,v,,, and define h as the piecewise linear function pre-
scribed by the nodal values

ZK:viEK hK

b(v;) = HEK: v, c K] (2.11)
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In the construction of the method, and its analysis, the following mass-lumped
L?(Q)-inner product will be of importance: for every v, ,w, € Vp, we define

N

(onswi)n = Y Bl@:)Ton (@ )w, (@2), (2.12)

i=1

1
which induces the norm |vy|p= (v, vp); in V. This norm is, in fact, equivalent to
the standard L?(2)-norm. More precisely, the following result, whose proof can be
found in Ref. [T1, Propositions 28.5 and 28.6, will be used repeatedly in our analysis
below: There exist C, ¢ > 0, independent of h, such that
¢ Z hicvn(a;) < ||Uh||0K <C Z hicvi(®;) VK €P, (2.13)

e, €K e, €K
and thus, as a consequence of the shape-regularity of the mesh, the following holds:
2 2 2
clunlp < ||Uh||o,Q < Cloplis (2.14)

for all v, € V.
Next, we recall that the Lagrange interpolation operator is defined by (see, e.g.
Ref. [I0, Chap. 11)

in : CO(Q) N HY(Q) — Vp,

N (2.15)
ViU = Zv(xj)qzﬁj.
j=1
In addition, the L?(2)-orthogonal projection operator (see Ref. 10, Chap. 22) 7
L*(Q) — Vp, is defined as follows:
7 L3(Q) = Vp,
(2.16)
w— w(w) where (m(w),v,)o = (w,vy)q Y, € Vp.
With the above ingredients, we now state some inequalities and properties that
will be useful in what follows:

(a) Inverse inequality: (Ref. [I0, Lemma 12.1) For all m,£ € Ny,0 < m < ¢ and
all p,q € [1, 0], there exists a constant C, independent of h, such that

m— E+d(

[Vplepx < Chy | Vplmg e Vv € Vp. (2.17)

(b) Discrete trace inequality: (Ref. 10, Lemma 2.15) There exists C' > 0 inde-
pendent of h such that, for every v € H'(K) the following holds:

loll§ oxc < Clhig 10l13 x + hiclvli x). (2.18)

(¢) Approximation property of the Lagrange interpolant: (Ref. [I0, Propo-
sition 1.12) Let 1 < ¢ < k and 14j, be the Lagrange interpolant. Then, there exists
C > 0, independent of h, such that for all h and v € H*T1(Q) N H}(2) the following
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holds:

[lv = ipvllo.q + hlv —ipviia < Oh£+1|1}|g+17g. (2.19)
(d) Approximation property of the L?(2)-orthogonal projection oper-
ator: (Ref. [I0, Sec. 22.5) Let 0 < ¢ < k and 7 be the L?()-orthogonal pro-

jection. Then, there exists C' > 0, independent of h, such that for all A and
v € H'THQ) N HL(Q) the following holds:

lo =7 ()llo0 +hlv = 7(0)lo < CHH ulys - (2.20)

2.3. The algebraic projection onto the admaissible set

With Assumption (A1) in mind, we define the following subset of finite element
functions that satisfy the bound (23] at the degrees of freedom:

VA i={vn € Vp:u,(x;) €10, foralli=1,...,N}. (2.21)

Every element v, € Vp can be split as the sum v, = v} + v, , where v} and v,
are given by

N
of =Y max{0, min{vy(z:), }} 1, (2.22)
i=1
and
Uy = Uh =y (2.23)

We refer to v,f and v, as the constrained and complementary parts of vy, respec-
tively. Using this decomposition we define the following algebraic projection:

(Ve = VA, up v (2.24)
Remark 2.4. If « is not a constant value, but a non-negative continuous function,

the only difference in the definition of the projection is that in such a case the
constrained part is given by

N
v = Zmax{(),min{vh(:ci), ro(;)} i

To avoid technical diversions we will not detail such a case, but the results proven
in this paper remain unchanged.

The following results concerning this projection will be used repeatedly.

Lemma 2.1. Let the operator ()% be defined in @24)). There exists a constant
C > 0, independent of h, such that

lwf — v llo.o < Cllwn — vhllo,0; (2.25)
vy lo.e < Ck, (2.26)

for all wy,, vy, € Vp.
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Proof. During this proof we drop the subindex h to lighten the notation. Let
w,v € Vp. We start noticing that if w(x;) < v(x;), then vt (z;) —w™ (x;) < v(w;) —
w(zx;), and when v(z;) < w(x;), we have wt (x;) — vt (x;) < —(v(x;) — w(x;)). So,
[vT(x;) — wT ()] < |v(x;) — w(x;)|. Then, using ZI4) we obtain

lv* —w¥[§ o < Clo* —w*lj

< CZ h(wi)d|”(wi) —w(z,)?

i=1
< Cllv —wlf§ o,

concluding the proof. O

2.4. A linear stabilised method

As it was mentioned in the introduction, in the method’s definition, we need to
introduce a linear stabilising term aimed at dampening the oscillations caused by
the dominating convection. In this work, we have chosen to use the continuous
interior penalty (CIP) method originally proposed in Ref. 6. This method adds the
following stabilising term to the Galerkin scheme:

T =7 Y /F 18110 0o 2 [Vun] - [Vonds. (2.27)

FeF,

Here, v > 0 is a non-dimensional constant. Using this stabilising term, the
CIP stabilised method proposed in Ref. [0 reads as follows: find u, € Vp such
that

ay(up,vp) == alup,vn) + J(up,vn) = (fyon)a Vo, € Vp. (2.28)

The bilinear form a;(-,-) induces the following norm on Vp:

[SIE

lonlln == as(vn,vn)% = (ID2Vor|2 o + Iz on )2 o+J (vh, va)) (2.29)

The following result will be of use in the error analysis.

Lemma 2.2. There exists C > 0 such that for v, € Vp, the penalty term 227
satisfies the following property:

— T |h3(B- Vur — (B Vo) Zq < CJ(vh, v)- (2.30)
1Bl

Moreover, the stabilising term Z27) satisfies the following bounds: there exists
C > 0, independent of h and any physical constant, such that for all wp,vy, € Vp
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the following holds:

J (v, wr) < Cvh||Bl0,00,0|vr]1,0]|wr 1,0, (2.31)
1 1
2 2
J(vn, wp) < Cy <Z hl_<1||/3”0,00,K”vh”g,K> <Z hl_<1||/3”0,00,K”wh”(2),K> .
KePp KeP
(2.32)

Proof. The inequality (Z30) is a direct consequence of the result proven in Ref. [6]
Lemma 5. To prove (23] we use the Cauchy—Schwarz inequality, the local trace
result (ZI8)) and the inverse inequality ([2I7) to obtain

Jonwn) = 3 /F Bll0.00.r 2 [Vo,] - [Van]ds

FeF,

A

< | X vlBllo.co. rhE VLTI

FeF,

< D2 NBloco.rhZN[Venlllf
FeF,

-

[N

< Cy <Z ”ﬁ“o,oo,Kh%(”v(vth)”g,aK>

KeP

[N

x < > IIﬁllo,oo,Kh%IIV(thK)II3,3K>

KeP

=

<Cy <Z hK”ﬁ”O,oo,K”vvh”g,K> <Z hKIIBIIo,oo,KIIthH%,K> ;

KeP KeP

which proves (Z31]). The proof of [232)) follows from the last inequality above and
one further the application of the inverse inequality (2I7). O

Remark 2.5. An alternative definition of the CIP stabilising term, that we will
also use in some of our numerical results, is given by penalising the upwind gradient
jumps rather than the normal gradient, that is,

_ B 27143 . .
J(u;“vh)—vF;I/F ||,6||O,oo,FhFHIB Vup][B - Vop]ds, (2.33)

where Yg = 0is a non-dimensional constant. In all our proofs, we have used the
term given by (Z27), but the proofs remain valid if we use (2:33]) instead.
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Remark 2.6. The choice of CIP stabilisation has been made for convenience and
simplicity of the presentation. In the numerical experiments, we will show that the
addition of the linear stabilising term has a positive effect on the performance of the
method, more specifically, it will improve the performance of the nonlinear solver
greatly. From a stability/error estimates point of view, it is also worth mentioning
that the exact same results proven in this work are also valid for other choices of
linear stabilisation, e.g. local projection stabilisation, Ref. or subgrid viscosity,
Ref. [IT for example.

3. The Finite Element Method

The finite element method proposed in this work reads as follows: find u;, € Vp
such that

an(un;vn) = (f,on)a  Von € Vp, (3.1)
where the nonlinear form ay,(-;-) is defined by
an(un;vn) = ay(u),vp) + s(u;, ,vp). (3.2)

Here, a,(-, ) is the bilinear form defined in [Z28), u; and u, are defined in ([222)
and (Z23)). The bilinear form s(-, ) is added in order to control the complementary
part u; , and is defined as follows:

s(vp, wp)

N
=) (1Dllo,00w: (@)% + [1Bllo,00,: (@)™ + (@) )vn (@ )wn (),
i=1
(3.3)
where the parameter « > 0 is a non-dimensional constant. The stabilising form
5(-,-) induces the following norm in V:

[vnlls = v/s(vn, vn). (3.4)

The following result, that appears as a consequence of (Z13)), shows that the
bilinear form s(-,-) indeed controls u, , more specifically it controls the kernel of
the projection (-)7.

Lemma 3.1. There exists a constant C,

equiv > 0, depending only on the shape
reqularity of P, such that

Ce uiv
lonll? < =2 oy |2 oy € Vo, (35)

where || - || is the norm defined in (Z29).

Proof. Using the inverse inequality (ZI7), (ZI3), and the mesh regularity we

obtain
N

1D Voullg o + ez onlf o< € D (I1Pllo,cow: bl@) 2 + ph(@i) Jon(@:)?.  (3.6)
i=1
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Also, (Z32) and 2I3) yield
I(onyon) < Cv Y W 1Bllo,o xlonlld x

Kep
<Oy Y hghlBllosex Y, vnl@:)?
KeP e, € K

N
< Cy Y 1Bllo.cow b)) op ()?.

i=1
Gathering the last two bounds proves (3] with Cequiv = (1 +7)C. m|

Remark 3.1. The result of Lemma [B.I] explains the scaling factors chosen
for defining s(-,-). Additionally, our formula (&3] differs from the one used in
reaction—diffusion equations (as seen in Ref. 2) by including a specific term,
118l0.00.w; ()%~ L. This inclusion is crucial for proving (3.5]), which is important
for both guaranteeing the problem is well-posed and for the error analysis. From
our practical experience, this term also enhances the performance of the nonlin-
ear solver. As for the structure of the stabilisation, we opted for a mass-lumped
approach in defining s(-,-), largely because of the monotonicity established in
Lemma 32

3.1. Well-posedness

In this section, we analyse the existence and uniqueness of solutions for (B1I). The
first step is given by the following monotonicity result, whose proof is identical to
that of Ref. 2, Lemma 3.1.

Lemma 3.2. The bilinear form s(-,-) defined in B3) satisfies the following
inequalities:
s(v;—w;,v?{—w;) >0 Vo, wp € Vp, (3.7)
s(vy, ,wp — ) <0 Yo, € Vp, wy € V4. (3.8)

Despite the fact that s(-,-) is monotone, the discrete problem (B1) is not driven
by a monotone nonlinear mapping. So, the well-posedness of Bl needs to be
proven using different arguments to those used in Ref. [2. We will first prove existence
that will appear as a consequence of Brouwer’s fixed point theorem, and only after
linking any solution u; of (&I to a variational inequality, we will be able to prove
a uniqueness result for u,,.

Theorem 3.1. Suppose that o > Cequiv- Then, there exists up, € Vp that

solves (BI).

Proof. We begin by defining the bilinear form

aj(vn,wn) = (DVop, Vwp)a + p(vn, wp)a + J(vn,wp) Vo, w, € Vp,
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and the mapping
T:Vp — Vp,
up — up = T(up),
where uj, = T'(uy,) solves the following equation:
ag(ul vn) + s(uy, o) = (fyon)e — (B VU ,vn)e Yo, € Vp. (3.9)

We observe that wuy, solves (B1)) if and only if T'(up) = up. So, the proof will consist
on proving that T satisfies the hypotheses of Brouwer’s fixed point theorem (see
Ref. 28, Theorem 10.41).

(i) T is well-defined: To prove that T is well-defined, we see that 3 is a
particular example of the method proposed in Ref. 2L So, using Ref. 2] Theorem 3.2,
there exists a unique solution u;, € Vp of (39), and thus T is well-defined.

(ii) T is continuous: Since we have supposed that « is large enough, we can
use the monotonicity result proven in Ref. 2l Theorem 3.2 and obtain that, for all

Vp, Wh € Vp
=+ + - - 2
aj(v, —wy v —wy) +s(v, —wy, v —wp) > Clloy, — w7,

where C' > 0 is independent of h. Next, suppose that for vy, w; € Vp and let vy, =
T (vp,) and wy, = T'(@wy,). Integrating by parts, using Holder’s inequality, Lemma 2.1]
and ([33]) we obtain

Cllon, —wpll; < @as(v); —wi, v —wp) + s(v, —wy, vy —wp)
= —(B-V(0, — @ ),vn — wn)a
= (0 — Wy, B V(vn —wn))o
< C|Bllo,00,2l10n — Wrlo,0lvn — wrl1,0
< C|Bllo.ccllBh = @nllo.ll D2 llo.00.0] D2V (0 = wr)o.0

,00,82 ||~ ~
< Cwﬂvh — Wplo,0llvn — walln-
0

Therefore

~ —~ ,00,Q ||~ ~

7@ — Tl < cL2loe 5 g0
dg

and thus T is Lipschitz continuous.
(iii) There exists R > 0, such that T(B(0,R)) C B(0, R): Let z;, € Vp be arbi-
trary and 2z, = T'(z),). By using v, = z;7 in (), Cauchy-Schwarz’s and Holder’s
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inequalities, and (Z26) we get

as(zy,a0) +5(z,20) = (fa)a — (B VE 2)q
———

>0

<|Ifllo.ellzi oo+ (Z 8- V2 g
_1 1

< Clflloan™ 212 h + 18llo.00.0llZ lo.0do 2 127 114

I£lloe  IBllo.conk
<C T+ = [EndIF®
p2 dz
and so Z,J{ satisfies
0,Q 18l 00,0 F
Iz s < C ”f”l 4 A0 TR (3.10)
p2 dz

Next, we take v, = 2, in (B3). Integrating by parts and using Holder’s inequality
we get

Ay )+ s(z,2,) = (F2)e = (B V3, 2)a
< | flloellzy lloe + 12 llo2llBllo.s.2l2, [1.0-
Now using (Z26) we have

as(z),2,) + 50z 2,) < Cllflloellzy oo + £l Bllo.c.alz [1.0)

[fllo.e . M8llo.cg ) .~
<C T T K T ”Zh ||h7
n? a2

and applying (BH) and Young’s inequality we get

2
Ifllog | IBllocco ), 5(h:2)
pe dg 2

as(z,z;,) +s(z . 2,) < C’(

M s(z, ,z,
M s(sz)

2 2

Using Young’s and Cauchy-Schwarz’s inequalities for ay(z;,z;, ), and (BI0)
yields

—day(zy,2y) +s(z ,2;) < M +Co tay (2, 2h)

||f||0,Q ||ﬁ||07oo7ﬂ"<‘
T T T ,
n? dz

§M+05_1{

for any § > 0. Then, choosing ¢ small enough, and using Lemma Bl we get

Iz I < C(=0as (2, 2,) + 5(2 5 2, ) < Colf, 1D, B, ),
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where

Bllo,00,0 F
Colf, D, B,) = M+ ¢ Wloa ” ”O’l 2

w2 dg
Hence, z;, = T'(z},) satisfies the following (uniform) bound:

1Bll0,00,0
a3
Therefore, z, = T'(z1) € B(0, R), for every zj, € Vp, which shows that T'(B(0, R)) C
B(0, R).
Hence, using Brouwer’s fixed point theorem, there exists up, € Vp such that
T(up,) = up. In other words, problem (B.I]) has at least one solution. O

11
lnlln < i s + N7 1 < c{ b + Colf. 1, D, B ) = R

The proof of the last result does not imply uniqueness of solutions. The next

two results will close that gap, whilst at the same time providing a very useful

characterisation for u; .

Lemma 3.3. Let uy, € Vp solve B). Then, u;f € VA satisfies
ay(uf, o —ul) > (fyon —uf)a Vo, € VA, (3.11)
where a;(-,-) is defined in Z28). In addition, u, is the unique solution of

s(uy, s on) = (f,vn) —ag(uy, o) Yop € Vp. (3.12)

Proof. Testing B1)) with v, € V; and u; as test functions gives
CL](U;,'U}L) + s(uy, ,vn) = (f,vn)a,
ay(ul,ul) + s(uy ,ul) = (f,u))a.
Subtracting the second equation from the first one we arrive at
aJ(u;mh )—|—s(uh,vh ) (f,vn — uh>g VthVP,

and then, using (38) in Lemma B2 we get that u; € V5 satisfies (310)). Finally,
since s(-,-) is an elliptic bilinear form in Vp, u, is the unique solution of ([BI2]),
thus concluding the proof. O

The last result provides a characterisation of any solution of ([BI]) as the solution
of the two successive problems B11l) and (312).

Corollary 3.1. Problem [BI) has a unique solution.

Proof. If uy,us € Vp satisfy (B1)), then u] and uj satisfy ([BII). But the solu-
tion of ([BIT)) is unique, thanks to Stampacchia’s theorem (see Ref. 21, Chap. II,
Theorem 2.1). So, uf = uj . Therefore, (BI2) holds for u; and uy, but uf = ug
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shows that the right-hand side of both problems are the same, and since s(-,-) is
an elliptic bilinear form, then u; = u; . Thus, u; = u} +u] =uj +u; =up. 0O

Remark 3.2. We finish this section by remarking that the complementary part
u;, of u, has a local support. In fact, we first remark that
() +u) " = (g +un —u)) " =y

This implies that u; (x;) # 0 if and only if u; (z;) = & or u; (x;) = 0. So, the

support of u, is contained in the region where u;” = 0 or u;” = . In other words,

u;, has a localised support, restricted to the regions where the constraint imposed
in the definition of Vi is active.

4. Error Analysis

This section is devoted to the error analysis of the method ([B). Since our interest
in this work is to provide a discrete solution that respects the bounds given by the
continuous problem, error estimates will be proven for the constrained part u;{

Theorem 4.1. Let u € H* 1 (Q) N HE(Q) be the solution of @) and up, € Vp be
the solution of (BI)). Then, there exists C' > 0 independent of D, u, B and h, such
that

1 _1 1 1 1
= I < CHF DI oo + 1 H 1Bl + B 1B o0 + hied) ulesr 0
(4.1)
Proof. As usual we decompose the error u — u; as follows:
u—uf = (u—m(u)+ (m(u) —ul) = n4 +en, (4.2)

where 7 is the L?(Q)-orthogonal projection defined in (ZI6).
The bound for 7, is a direct consequence of [220)) and ([Z3T)). In fact, using the
Young inequality, we get

I = as(nsmn) = (DY, Vin)a + w(ns nw)e + J (n, nn)
< C(||D||o,oo,n|77h|?,n + /J||77h||37sz + h||/6||0,oo,ﬂ|77h|?,ﬂ)
< CR?*(|Dllo,so.2 + 2lIBll0.00,02 + R 1) [ulf i1 -
Next, to bound ||ep||n, we use the ellipticity of a,(-,-) to get
lenllf, = —a;(nn, en) +a;(u —wf, mw(u) — uj) = T+IL (4.3)
We start decomposing I as follows:
I = (DVnn, Ven)a + (B - Vin, en)a + p(nn, en)a + J(1n; en)
=: (a) 4 (b) + (¢) + (d), (4.4)
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and bound each one of the above terms separately. First, using Cauchy—Schwarz
inequality and (Z20) we have

(2) < IDIE  alml.o D Verllon < CREIDIS o glulssiollenln.  (45)
To bound (b) we first integrate by parts, use the orthogonality of 7, and Lemma 22
(b) = (w(u) —u,B-Ven)a
= (m(u) —u,B-Ver —m(B - Ven))a
< llmnlloallB- Ven = (B - Ven)lo.a
< O3B s alulirs el (46)

The term (c) is handled analogously to (a)

hk+1

1 1 1
(c) < p2mnlloallpzenlloo < CR™ u2|ulkrrallenl|n- (4.7)

Finally, for (d), since J(-,-) is semi-positive definite and symmetric we apply
Cauchy—Schwarz’s inequality followed by Lemma and (Z20):

(d) < J(nhvnh)%‘](ehveh)%
1
< P2 8)13 o alulirr,ollenl|n- (4.8)

Substituting (@H)-ER) into @4) we obtain the following bound for I:

1< OB (ID)E o + h2IBIIE o+ h®)lulirallenln (4.9)
To bound IT we first recall that (7(u))™ = m(u) — (7(u))T and then
I = ay(u—uf, en) = asu—uf, (w(w)" = wf) +as(u—uf, (x(w)).
Thanks to the regularity of u, we note that J(u, (m(u))™ — u;’) = 0. Hence, using

that u) solves BI1]), we have

ay(u—uy, (w(w) " —uy) = ay(u, (7(W)* —wy) — as(u], (7(w)" —uy)

= (f, (m(W)" —wy)a — as(uy, (7(w)" —u)) <0.

Therefore,

I =ay(u—ul,en) <ajlu—u,(m(u)").
The term in the right-hand side of the above inequality is, in essence, a consistency
error, and will require special treatment. Let i, be the Lagrange interpolant defined
in (ZI8). Since u(z) € [0, x] a.e. in Q, then in(u) € V3. So, in(u) = (in(u)* € Vg,
which implies (ip(u))” = 0. Therefore,

ay(u—uy, (7(w)”) = as(u—uy, (7(w)” = (in(w)").
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So, using the definition of a,(-,-) we bound II as follows:
I < ay(u—uy, (m(u)” = (in(u)7)
= (DV(u —uy,), V((r(w))” = (in(w)) 7))o
+ (B V(u—uy), (m(w)” = (in(w) e + plu =y, (7(w) ™ = (in(u) o
+ I (u =y, (w(w)” = (in(w))”)
= (e)+ (f) + (g) + (h). (4.10)

We begin with (e), which can be bounded using the Cauchy—Schwarz inequality
1 1 _ . _
(€) < IDlIg 0,0l D2 V(e = u) 0.l (7(w) ™ = (in(w)~ |10
_ i 1 _ . _
< Ch DI oo 0llP2 V(u = wi)lo.ll(m(w) ™ = (in(w) " llog0,  (4.11)

where we have used an inverse inequality. Then, as (-)~ is Lipschitz continuous by
Lemma 2.T]

_ B 1 .
() <Ch YDI§ o o P2V (u = w)loallm(u) = in(u)loa
1
< CH¥|D|3 o altlksrollu — i |,

by the approximation properties for iy, and 7 given in (ZI9) and 220). For (f) we
begin by integrating by parts

(f) = —(u—wl, B-V((x(u)” = (in(u)"))a

< |1Bllo,c0.0ll = wf ool (m(w) ™ = (in(u))~ |1 q;

using the Cauchy—Schwarz. inequality Then again, by an inverse estimate
(f) < Ch™H|Bllo,co.0llt = ujf llo.all (7 (1)~ = (in(w)~ oo

_1
< Ch*|1Bllo,co.n™ 2 ulksr.allu — wif |, (4.12)

A

again using the Lipschitz continuity of ()~ and the approximation properties for i,
and 7. Now (g) is controlled in the same way using the Cauchy—Schwarz inequality

1 1 _ . _
(g) < n2llu2 (u—uf)oall(m(w)™ — (in(w) [lo0
< CRF s ulp o lu — uf |15, (4.13)

and by Lipschitz continuity of (-)~ and the approximation properties for i;, and .
Finally for (h) the Cauchy—Schwarz inequality yields

(h) < J(u—wf,u—uf)2J((w(w)” = (in(w)”, (w(w) " = (in(w)")

< CIBIIG so0h ? ()™ = (in () |10 (u—uf,u —wf)2,

=
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using Lemma Now by an inverse inequality
1 _1 _ . _ 1
(h) < ClBIG so,0h ™ 2 (W)™ = (in(w) " llo,0f (u — uf,u —w))*

1 1
< CR*F21Bll§ o 0lulisr.llu — wif [, (4.14)

through the approximability of i;, and 7 and the Lipschitz continuity of (-)~.
Combining (II)-EI4) we arrive to the following bound for II:

1 _1 1 1 1
1< CHE(DII§ o0 + 17 2 1Bll0.00.2 + 21815 o0 + hte®) 1w — i [lnlulisr,0.
(4.15)

Hence, inserting ([L9) and [(@IH) into (£3), and using Young’s inequality, we
obtain the following bound for |le||n:

k 1 1 1 _1 1
lenlls < Ch*(IDIIG w00 + h2IBIIG 000 + 17 2 1Bll0,00,00 + A |uliy1 0

1 1
+ 5 llenl + gl — i 1.
Finally, collecting the bounds that have been obtained for ||ey||s, and ||nn||n yields

K 3 1
lu—willn < llenlln + Inalln < CR*(IDIG s + 17 2 11Bll0,00,0

1 1
+h2(1B1 e 0+ it ulir + g llw — it [,

and ([{J) follows rearranging terms. |

4.1. The extension to problems with non-homogeneous
boundary conditions

Although the presentation of the method and its analysis had been done assum-
ing that the Dirichlet boundary conditions are homogeneous, many problems of
practical interest involve non-homogeneous boundary conditions. So, in this section
we briefly describe the method for a non-homogeneous Dirichlet problem. Let us
assume that, instead of (ZII) we are interested in solving
—div(DVu) + 8- Vu+ pu = f in Q,
(4.16)
u=g¢g on 0f),

where g € H2(89), g > 0 on d9Q. Thanks to the definition of  and the maximum
and comparison principles for PDEs, > [|g[|y , oo For simplicity, we will assume
that ¢ is the trace of a function belonging to f/p.

Let us consider the set of nodes of the triangulation (including boundary
nodes): «,,...,Tp, and, as earlier in this paper, we denote the interior ones by
Ty,...,Z5N, N < P. Let us define the following extension of g into €: Uy, € VP
defined as follows:

(4.17)

g(x,) fie{N+1,...,P},
uh,g(xi) =
0 else.
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With these ingredients the analogue of BI) for the non-homogeneous boundary
datum is: Find @, € V) such that

ay (g, 4wy )" o) + (@, +up )" v,) = (fon)g Yo, € Vp.  (4.18)

The fundamental reason for choosing uy, , as extension of g, rather than any
other, is that at each node of P either @, or w, , are zero, and then the following
important property holds:

(T, +up )" =y +up g, (4.19)
and, as a consequence (i, +u;, )~ = @, . Thus, (ZI8) can be rewritten as: Find
@, € Vp such that

az (@, vy) + sy ,v) = (fon)0 — a;(uy, g,0) Yo, € Vp. (4.20)

Now the proof of Theorem Bl remains unchanged, and thus ([£20) has a solution.
For the uniqueness result, the same arguments used in the proof of Lemma[3.3 lead
to the fact that u; solves the following variational inequality: 11; € V; , and

ay (@), v, —ay) = (f,o, =)o — ay(tp, g, 0p — ay) Vv, €Vp. (421)

Since ([@ZI) has a unique solution thanks to Stampacchia’s theorem, the exis-
tence and uniqueness of solution for ([@I8]) follows using exactly the same arguments
as those for ([B)). Finally, to analyse the error we note that, assuming enough
regularity for the exact solution we get

aJ(uﬂ Up — ﬂ;{) = <f, Up — U;>Q,
for all v, € V5. So, the following variational inequality holds:
ay((ay, +uy o)t —u, v, — uf)>0 VYo, €Vy, (4.22)

which is instrumental in the bound for the bound of II in the proof of Theorem F11
Hence, the error analysis follows very similar arguments as those presented in the
proof of Theorem E.I1

5. Numerical Experiments

In this section, we present three series of numerical results testing the performance
of the finite element method (BIl). In all numerical experiments in this section
Q2 = (0,1)%, and we have used the value a = 1 in the stabilising bilinear form
s(+,-). We have selected four different types of meshes, the coarsest level of them are
depicted in Fig. [l While the family depicted in Figs. [I{a) and [i(b) are symmetric
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(a) A symmetric, (b) A  symmetric, (¢) A non-symmetric, (d) A simple quadri-
Delaunay mesh. Delaunay mesh. non-Delaunay mesh. lateral mesh.

Fig. 1. Three coarse level indicative meshes used in the experiments all with N = 5.

and Delaunay, the mesh depicted in Fig. [[l(c) is a non-Delaunay one, and the one
depicted in [[i(d) is quadrilateral. The mesh represented by [[l(c) is generated by
displacing some interior nodes of the mesh in[Il(b) to the right, thus creating obtuse
angles. The reason for this choice is motivated by the fact that the DMP fails to
hold for most finite element methods in such meshes (see, e.g. Ref.4). In particular,
the initial datum u defined below will not, in general, belong to V; .

To solve the nonlinear system associated to ([B2) we use the following
Richardson-like iterative method: Set u € Vp such that

aJ(ug,Uh) = (f,vn)a Vo, € Vp. (5.1)

Then, for n =0,1,2,..., find u}'*" € Vp such that

a'J(u;LL+17 Uh) = CLJ(UZ, Uh) + W(<f7 Uh>Q - aJ((UZ)+, Uh) - S((“’Z)ia Uh))a (52)
Yop, € Vp, where w € (0,1] is a damping parameter. The iterations are terminated
when

||uZ+1 —upllo.o < 1078, (5.3)

In all figures, N — 1 represents the number of divisions in the z and y directions,
so the total number of vertices (including the boundary) is N2. We test the per-
formance of the method asymptotically in IV, where we use EOC as the estimated
order of convergence, and also examine the convergence of the iterative method.
We have used P;,P, and P elements in the triangular meshes, and Q; and Q,
elements in the quadrilateral mesh.

Example 5.1. (Convergence of a problem with smooth solution) We consider 1 =
1, D= e[cc:)LsO((:)r) ™ (e = 107), B = (2,1), and set f such that the function
u(z,y) = 100sin(mx)sin(wy) is the analytical solution of (Z1]). Note that u(z) €
[0,100], and thus we choose k = 100. The CIP stabilisation parameter is vy = 0.025

in the penalty term (227)), and we have used w = 1 in the iterative method ([&.2).
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Table 1. Numerical results for Example [51] using P; elements and mesh [Ic).

N Ttr. Hu—quO@ EOC HU—Uth EOC [y, [Is EOC
5 2 8.57e+0 — 4.55e+1 — 0 —
9 7 2.12e40 2.37 1.95e+1 1.44 3.05e—1 —
17 6 5.05e—1 2.26 7.71e+0 1.46 2.74e—1 0.17
33 7 1.23e—1 2.12 2.89e+0 1.47 6.64e—2 2.13
65 7 3.09e—2 2.03 1.06e+0 1.47 1.27e—2 2.44
129 6 7.80e—3 2.00 3.82e—1 1.49 2.29e—3 2.50

Table 2. Numerical results for Example [5.1] using Q1 elements and mesh [I[(d).

N Ttr. Hu—quO@ EOC HU—Uth EOC [y, [Is EOC
5 15 5.51e4-0 — 2.73e+1 — 4.43e4-0 —
9 15 8.03e—1 3.27 9.79e+0 1.74 8.43e—1 2.82
17 13 1.38e—1 2.76 3.47e4-0 1.63 1.67e—1 2.54
33 12 2.86e—2 2.37 1.23e+0 1.56 3.12e—2 2.52
65 10 6.62e—3 2.15 4.37e—1 1.53 5.70e—3 2.50
129 9 1.61le—3 2.06 1.56e—1 1.50 1.02e—3 2.51

Table 3. Numerical results for Example [51] using P2 elements and mesh [I[c).

N Ttr. Hu—quO@ EOC HU—Uth EOC [y, [Is EOC
5 15 2.51e4-0 — 8.14e4-0 — 1.37e+0 —
9 2 3.02e—1 3.60 1.52e+0 2.85 0 —
17 2 3.72e—2 3.29 3.03e—1 2.53 0 —
33 2 4.44e—3 3.20 5.78e—2 2.50 0 —
65 2 5.37e—4 3.11 1.07e—2 2.48 0 —
129 2 6.57e—5 3.03 1.97e—3 2.44 0 —

Table 4. Numerical results for Example [51] using Q2 elements and mesh [I[(d).

N Ttr. Hu—quO@ EOC HU—Uth EOC [y, [Is EOC
5 2 3.77e—1 — 6.22e—1 — 0 —
9 58 4.26e—2 3.70 9.79e—2 3.14 1.85e—2 4.06
17 44 5.18e—3 3.31 1.7le—2 2.74 2.44e—3 3.18
33 28 6.36e—4 3.16 3.21e—3 2.52 2.45e—4 3.46
65 2 7.75e—5 3.10 6.43e—4 2.37 5.28e—6 5.66
129 2 9.20e—6 3.10 1.37e—4 2.25 4.35e—T7 3.62

In Tables[IH5lwe report the convergence results in both the ||-||0.q and ||-||, norms
for u—u;, and the || -[|s-norm for u, , as well as the number of iterations needed to
reach convergence for the nonlinear system. The results show an optimal order of
convergence for the constrained part uz, thus confirming the results from Sec. [l In
addition, they show a higher order of convergence (to zero) for the complementary
part uy, .

Example 5.2. (A problem with two inner layers) For this test case and the follow-
ing one the diffusion in ([Z1) is given by D = €Z, where € > 0. We now approximate
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Table 5. Numerical results for Example [5.1] using P3 elements and mesh [I}c).

N Ttr. Hu—quO@ EOC HU—Uth EOC [l [l EOC
5 2 2.85e—1 — 8.75e—1 — 0 —
9 137 2.69e—2 4.01 9.75e—2 3.73 6.62e—3 —
17 71 2.40e—3 4.16 1.18e—2 3.32 3.75e—4 4.51
33 2 1.70e—4 3.99 1.25e—3 3.38 8.77e—T7 9.13
65 2 9.66e—6 4.23 1.17e—4 3.49 0 —
129 2 5.03e—7 4.26 1.02e—5 3.51 0 —

the solution of @) for f =0, u = 0, ¢ = 10~° and B = (—y, r). Homogeneous
Neumann boundary conditions are imposed on exit (that is, at the lines x = 0 and
y = 1), while the following (discontinuous) Dirichlet datum is imposed on entry
(r=1and y =0):

1
0 ifxggandy—(),
glr,y) =<1 . 1 2 B (5.4)
5 1fx€<3,3 and y = 0,
1 otherwise.

The goal of this numerical experiment is two-fold. First, we aim at testing the
capabilities of the current bound preserving method (BPM) (3] to suppress over-
and under-shoots in regions where the constraint is not needed. In fact, for this
example £ = 1 in the whole domain, while there are two inner layers inside the
domain where the solution varies rapidly from 0 to approximately 0.5, and a second
one where it does from 0.5 to 1. Now, around those layers the BPM will control
the undershoot at uz = 0, but there is no explicit control on the region where the
solution is approximately 0.5. Our intent is to assess the capability of the current
method to suppress the possible overshoot at that region, even if the nonlinear
stabilisation is not active in it. The second goal of this numerical experiment is to
provide numerical evidence that the addition of the (linear) CIP stabilisation on
u; has a positive impact on the performance of the method.

We start addressing the latter of our objectives. In Tables [6l and [1 we report
the number of iterations required by the nonlinear solver. In all our simulations, we
have set a maximum number of iterations to 3,000, and whenever we have reached
this value, the solver stops and we report “NC” which represents non-convergence.
As can be seen in Tables[6] and [7 if the linear CIP stabilisation is not added to the
formulation then the nonlinear iteration process is more prone to non-convergence,
thus giving one more argument in favor of adding linear stabilisation to (B1I). For
this particular example we have chosen to use the stabilising term (Z33]) with
stabilising parameter yg = 0.05, as it is the one that has provided the best numerical
results in terms of sharpness of the interior layers.
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Table 6. Number of iterations for the fixed point linearization (52)) needed to
reach convergence using P1 elements and the meshes given in Figs.[I(a) and[[(c).

N 5 9 17 33 65 129

Mesh [(a) vs = 0.05 82 96 122 124 113 98
v =10 228 1702 NC NC NC NC

Mesh [Iic) vg = 0.05 140 148 174 137 123 111
3 =0 126 NC NC NC NC NC

Table 7. Number of iterations for the fixed point linearization (&2
needed to reach convergence using Q1 and Q2 elements and the mesh
given in Fig. [Id).

N 5 9 17 33 65 129

Q1 vg = 0.05 72 128 136 151 159 190
Y3 =0 1901 NC NC NC NC NC

Q2 vg = 0.05 283 243 360 315 339 258
Y8 =0 2034 NC NC NC NC NC

We have run the experiments using meshes from Figs. [{a), Ii(c), and @ld) for
a variety of values for N. For these experiments, for P, Q; and Q2 we have used
w = 0.1 in (&2)) for the BPM and w = 0.05 if CIP is removed, that is, choosing
~vg = 0 (it is worth mentioning that making w smaller makes the convergence of
the iterative solver more likely).

We next address the sharpness in the approximation of the interior layers. In
Figs. 2HAl we depict the approximate solution for the meshes from Figs.[Il(a) and [ c)
and observe the lack of significant oscillations in the vicinity of the layers, even for
mesh [i(c), which is non-Delaunay.

For comparison purposes, we have also approximated the same problem using
the (linear) CIP method (with the stabilising term ([Z33)) and v = 0.05), and
the algebraic flux correction (AFC) scheme, as written in Ref. [I (the latter only
for the case of P; elements). For this last method it is known that it respects the
DMP (at least in Delaunay meshes in two space dimensions), and thus the results
are expected to lie within the bounds, at least for the mesh from Fig. [[l(a). In our
experiments we have used the values p = 8 and vy = 0.75, (see Ref. [1l for details
on the formulation of the method). We have carried out the comparison by taking
a cross-section along the line y = x. We focus our attention in two main points,
namely, suppression of over and undershoots in the numerical solution, and in how
diffused the interior layers are. We depict zooms of the cross-sections at the onset
of the layers. We observe that, as expected, the CIP method by itself presents over-
and under-shoots, while the BPM and AFC method do not. In fact, the function
u;{ presents significantly smaller oscillations than CIP, while showing an accuracy
comparable to that of the AFC method regarding the sharpness of the layers.
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r

0.0 0.50 1.0 0.0 0.50 1.0
(a) Approximation using mesh [I}a) (b) Approximation using mesh [Ic)
053 1.03 0535 1.03
1.0 P 1.0 '._
+0.50 <=1.00 i 1.00
0.8 0.8 9.30 r/
0.47 0.97 oh7 0.97
0.6 —CP 0.6 1 —_CP
— AFC — AFC
0.4 1 = BPM 0.4 s BPM
0.03 0.03
0.2 0.2
Ho.00 Ho.oo
oo II | | . L9003 0T l | | . —]-0.03
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(c) Cross-section using mesh [Tf(a) (d) Cross-section using mesh [I[c)

Fig. 2. The approximation of the solution of Example 5.2 by the BPM, using P; elements and
the meshes given in Figs.[I{a) and [[l(c) with N = 129. Cross-sections taken about y = x plane of
the solution of the BPM, CIP and AFC. For AFC p = 8 and for BPM and CIP the penalty (233)
vg = 0.05 and w = 0.1 has been used.

The same comparison has been carried out using the non-Delaunay mesh from
Fig. l(c), and very similar conclusions are drawn. Interestingly, when employing
the BPM method for P,, @, and higher-order elements, even if the bounds are
only imposed at the nodes, no noticeable undershoots (in terms of violations of the
physical bounds) have been observed in the numerical solution.

Example 5.3. (A problem with an inner and a boundary layer) For this last
example, we consider f = 0, u = 0, e = 107°, 3 = (cos(%)sin(%))T, and the
Dirichlet boundary condition u = g on I', where ¢ is given by

1 ife=0o0ry=1,

z,Y) = 5.0
9(.y) 0 otherwise. (5:5)

The problem consists of propagating a discontinuous entry condition to the interior,
thus generating an interior layer that meets a boundary layer at y = 1. We have
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0.0 0.50 1.0 0.0 0.50 1.0
(a) Approximation using Pz elements and (b) Approximation using P3 elements and
mesh [Tic) mesh [I{c)
055 1.05 0.555 1.03
1.01 — 1.0 [\
- 1.00
0.8 1 0.8 !v
0.50 1.00 L 0.500 0.98
0.6 1 0.8 0:98 0.6 1 0.480
—— BPM —— BPM
— cp — cp
0.4 4 0.030 0.4
0.03
0.2 1 Ho.000 o>
Ho.oo
0.0 { —— 0.0 ——
T T T T T T _0'045 T T T T T T _0'03
0.0 02 0.4 06 08 1.0 0.0 02 0.4 06 08 1.0

(c) Cross-section using Pz elements and (d) Cross-section using P3 elements and

mesh [Iic) mesh [I[(c)

Fig. 3. The approximation of the solution of Example 52 by the BPM, using P2 and P3 elements
and the meshes given in Fig. [[[c) with N = 129. Cross-sections taken along the line y = .
For both methods the penalty (Z33) with v3 = 0.05 was used (w = 0.05). For plotting these
cross-sections, 10,000 equidistant points were chosen along the line y = x, and the values of the
approximated solution have been plotted at these points.

approximated this problem using the meshes depicted in Figs. [[l(a){Id). For this
experiment, especially the approximation of the outflow layer, the best results were
provided by the method enhanced with the CIP stabilising term (Z271) and v = 0.01.
So, we only report the results obtained for this choice. For the iterative method (&.2l)
we use w = 0.1. In Tables [ and [0 we report the number of fixed-point iterations
needed to reach convergence.

We now validate the statement made in Remark B2 by depicting in Fig.
elevations of u, using P; elements. In Fig. Bl we depict a zoom near the boundary of
the cross-section along the line x = 0.9 of u,, for different levels of refinement. We
can observe that as the mesh gets refined, the magnitude of u, decreases slowly,
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0.0 0.50 1.0 0.0 0.50 1.0
(a) Approximation using Q1 elements (b) Approximation using Q2 elements
053 1.03 053 1.035
1.0 1.0
t 0,50 < 1.00 r\/-— 050 A
08 I\/‘ / 0 1.000
0.47 0.97 0.47 0,970
0.6 1 0.6
— P — BPM
— BPM — cp
0.4+ 0.4
0.03 0.03
0.21 0.2
Ho.00 Ho.00
R R e — 0.0 —
T T T T T T —0.03 T T T T T T —0.03
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

(c) Cross-section taken using Qi elements  (d) Cross-section taken using Q2 elements

Fig. 4. The approximation of the solution of Example[52l1by the BPM, using Q; and Q2 elements
and the mesh given in Fig.[I(d) with N = 129. Cross-sections of the discrete solution of the BPM
and CIP methods taken about the line y = 2. For BPM and CIP the penalty (Z33) v3 = 0.05
was used (w = 0.1). For plotting the cross-sections with Q2 elements, 10,000 equidistant points
were chosen along the line y = x, and the values of the approximated solution have been plotted
at these points.

Table 8. Iterations needed to reach convergence using
P; elements and the meshes given in Figs.[I{a){Iic), and
the penalty term ([Z27) with v = 0.01 (w = 0.1).

N 5 9 17 33 65 129

Mesh[I(a) TItr. 109 143 177 212 249 249
Mesh[(c) Ttr. 123 152 186 218 245 240

and the support of u, gets more and more localised, confirming what is stated in
Remark

Finally, in Figs. [6H8 we depict the approximate solutions using BPM, AFC and
CIP methods for this problem as well as cross sections showing the nature of the
interior layer. We also present cross-sections of u; across y = 1—x for mesh[Ila), and
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Table 9. Iterations needed to reach convergence using
Q1 and Q2 elements and the mesh given in Fig.[I(d), and
the penalty term ([233) with y3 = 0.01 (w = 0.1).

N 5 9 17 33 65 129

Q1 Itr. 156 226 225 308 310 322
Q2 Itr. 375 299 291 270 236 217

~0.11

—0.2 { === N=33
m— N=65
= N=130
—-0.3

-0.4

T

0.8 0.9 1.0
(a) Cross-section taken of u, along x = 0.9.

Fig. 5. Cross-sections of u; for Example illustrating the behavior at the boundary layers
using P elements and the mesh given in Fig. [I(a).

00 0.50 10

——

0.0 0.5 1.0
—— —

(a) AFC approximation using mesh [T|(a) (b) CIP approximation using mesh[I(a)

Fig. 6. The approximation of the solution of Example [5.3] by the BPM, using P; elements and
the meshes given in Figs. [[[a) and [(c) with N = 129. Cross-sections of the discrete solution of
the BPM, CIP and AFC methods taken about the line y = . For AFC p = 8 and for BPM and
CIP the penalty Z33) vg = 0.01 was used (w = 0.1). For plotting the cross-sections we used
linear interpolation between the nodes.
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1.0

———

(c) BPM approximation using mesh [I[a)

1.045

r(1.000

0.970

0.045

1.0 _1 A
0.8 \
061 — cip

m— AFC
0.44 = BPM
0.2 1
0.0+

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 7.

(e) Cross-section using mesh [T[a)

Fig.

———

(a) CIP approximation using mesh [I[a)

0.000

—-0.055

0.0

——

(d) BPM approximation using mesh [I(c)

0.50

1.0

1.06
1.04 —4
0.8
1.00
0.6 — C|P 0.97
= BPM 0.045
0.4
0.2 Ho.000
0.0
T T T T T T —0.04¢
0.0 0.2 0.4 0.6 0.8 1.0

(f) Cross-section using mesh [Iic)

6. (Continued)

bd—

0.0 0.50 1.0 0.0 0.50 1.0

(b) CIP approximation using mesh [Ii(c)

The approximation of the solution of Example .3 by the BPM, using Py elements and
the meshes given in Figs.[I(a) and [[(c) with NV = 129. Cross-sections around the line y = z of the
solution of the BPM and CIP methods. For both methods the penalty ([233) with vg = 0.01 was
used (w = 0.1). For plotting these cross-sections, 10,000 equidistant points were chosen along the
line y = x, and the values of the approximated solution have been plotted at these points.
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0.50 1.0 0.50 1.0

h—td h—id

(c) BPM approximation using mesh [I(a) (d) BPM approximation using mesh [I(c)

1.04 1.04
1.0 1 — 1.0 _1
0.8- —-\q H1.00 0.8 H1.00
0.6 0.97 0.6 0-97
—— BPM —— BPM 0.045
— ap 0.045 — cp
0.4 0.4 1
\e=—10.000
0.2 Ho.ooo 027
0.0 0.01
T T T ¥ T T —0.040 T T T T T T —0.060
0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
(e) Cross-section using mesh [Ifa) (f) Cross-section using mesh [Iic)

Fig. 7. (Continued)

0.50 1.0 0.50 1.0

hdd hdd

(a) CIP approximation using mesh [I(d) (b) BPM approximation using mesh [I(d)

Fig. 8. The approximation of the solution of Example [5:3] by the BPM, using Q2 elements and
the mesh given in Fig. [[[d) with N = 129. Cross-sections of the solution of the BPM and CIP
taken about the line y = z. For BPM and CIP the penalty (Z33) vg = 0.01 was used (w = 0.1).
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1.04
10{ —
081 H1.00
0.97
0.6
— BPM
— cr 0.045
0.41
021 \~ 0.000
0.0
T T T T T T _0'040
0.0 0.2 0.4 0.6 0.8 1.0

(c) Cross-section taken using mesh [I(d)

Fig. 8. (Continued)

N =129. Once again, we have performed comparisons with the linear CIP method
(with the stabilising term ([Z27]) and v = 0.01), and the AFC scheme as described
in the last example. The results are depicted in Figs. BH8 Similar comments can
be made about both sets of results, namely, that the current method removes the
oscillations from the CIP solution successfully, while presenting a similar behavior
to AFC in terms of sharpness of the layers.

6. Conclusions and Outlook

The method proposed in this work constitutes an inexpensive and simple way
to impose global bounds in the numerical solution to convection—diffusion equa-
tions (at least at the nodes of the triangulation, and globally for the lowest
order case k = 1). Other than its well-posedness, we proved optimal order error
estimates for the constrained part ut. It is worth stressing that optimal-order
error estimates are not common for this type of method (even in the piece-
wise linear case, see Ref. 4 for more details), so we believe this result consti-
tutes a highlight of this paper. The numerical experiments presented show that
the method provides an approximation that respects the global bounds of the
continuous solution, while the inner and boundary layers are not excessively
smeared.

Looking forward, the complementary part u, has a localized support. This has
been checked numerically, but the important question about whether this fact can
be exploited in a posteriori error analysis remains open. In addition, the general-
ity of this approach makes the applications of the method to unsteady nonlinear
fluids problems, for example of porous media and Allen—Cahn type, quite natural.
These, amongst other areas, are topics of ongoing research that shall be reported
in upcoming publications.
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