
Responsible Composition and Optimization of Integration Processes under Correctness
Preserving Guarantees

Daniel Rittera, Fredrik Nordvall Forsbergb, Stefanie Rinderle-Mac

aSAP, Walldorf (Baden), Germany
bDepartment of Computer and Information Sciences, University of Strathclyde, Glasogw, Scotland

cSchool of Computation, Information and Technology, Technische Universität München, Garching, Germany

Abstract

Enterprise Application Integration deals with the problem of connecting heterogeneous applications, and is the centerpiece of current
on-premise, cloud and device integration scenarios. For integration scenarios, structurally correct composition of patterns into
processes and improvements of integration processes are crucial. In order to achieve this, we formalize compositions of integration
patterns based on their characteristics, and describe optimization strategies that help to reduce the model complexity, and improve the
process execution efficiency using design time techniques. Using the formalism of timed DB-nets — a refinement of Petri nets — we
model integration logic features such as control- and data flow, transactional data storage, compensation and exception handling, and
time aspects that are present in reoccurring solutions as separate integration patterns. We then propose a realization of optimization
strategies using graph rewriting, and prove that the optimizations we consider preserve both structural and functional correctness. We
evaluate the improvements on a real-world catalog of pattern compositions, containing over 900 integration processes, and illustrate
the correctness properties in case studies based on two of these processes.

Keywords: Enterprise application integration, enterprise integration patterns, optimization strategies, pattern compositions, petri nets,
responsible programming, trustworthy application integration

1. Introduction

In a highly digitized and connected world, in which en-
terprises get more and more intertwined with each other, the
integration of applications scattered across on-premises, cloud
and devices is crucial for enabling innovation, improved produc-
tivity, and more accessible information [1]. This is facilitated by
process technology based on integration building blocks called
integration patterns [2, 3, 4, 5]. The composition of these pat-
terns into integration processes can result in complex models that
are often vendor-specific, informal and ad-hoc [5]; optimizing
such integration processes is often desirable, but hard. In most
cases complex process control flows are further complicated by
data flow, transactional data storage, compensation, exception
handling, and time aspects [6].

In previous work [7], we found that already simple inte-
gration processes show improvement potential, e.g., when con-
sidering data dependencies that allow for (sub-)process paral-
lelization. In order to consider such improvements, it is crucial
to also consider data flow in the model, but approaches for
verification and formal analysis of “realistic data-aware” inte-
gration processes are currently missing, as recent surveys on
event data [8, 9], workflow management [10], and in particular
application integration [5] report. Such approaches are needed in

Email addresses: daniel.ritter@sap.com (Daniel Ritter),
fredrik.nordvall-forsberg@strath.ac.uk (Fredrik Nordvall Forsberg),
stefanie.rinderle-ma@tum.de (Stefanie Rinderle-Ma)

order to formally prove the structural and functional correctness
of compositions of patterns and their optimizations, which in
turn is needed to enable a responsible development of integration
scenarios where integration processes behave as intended.

To enable such approaches for the process modeller, we
propose a responsible composition and optimization (ReCO)
process for patterns, that covers the following objectives: (i)
inherently correct structural process representation, (ii) means
for representing and proving functional process execution cor-
rectness, (iii) semantic integration pattern aspects of control and
data flow, transactional data storage, compensation, exception
handling, and time, (iv) automatic identification and applica-
tion of optimizations, and (v) correctness-preserving process
changes. We argue that existing approaches do not fully sup-
port responsible integration pattern composition and optimiza-
tion with correctness preserving guarantees (cf. related work in
Sec. 9).

Figure 1 visualises the challenges that need to be overcome
to enable such a responsible composition and optimization pro-
cess achieving objectives (i)–(v). Integration developers and
experts provide semantically meaningful pattern realizations
in expressive specialised languages such as timed db-nets [6]
(1). However, these languages are cumbersome to use for
process modelers, and makes an automatic identification of im-
provements difficult. Process modelers on the other hand like
higher level languages and notations to specify processes as a
composition of integration patterns [3, 4, 5, 11] (2). While
improvements are conveniently defined on the higher level mod-

Preprint submitted to Elsevier February 20, 2024

?
 1

Content enricher pattern
sketch as timed db-net

Execution
semantics layer

Modeling layer

Process Modeler

Integration Developer /
Expert

translates /
Interprets

 2 models

Verifies
(changes)

specifies
patterns

Integration process
(composition of patterns)

how to compose
patterns?

 5

 6 4

Automatic improvement
proposals / guidance

 3

system

Figure 1: End-to-end perspective from integration process modeling to verifi-
able execution semantics and automatic, correctness-preserving improvements
(current gaps or missing aspects in red color).

eling layer for automatic changes to processes [7] (3) in manual
modeling and automatic improvement cases, it is currently not
possible to verify that the improved process has the same be-
haviour as the original process with respect to the execution
semantics of the composed integration patterns (4). This is
because the composition of pattern definitions is currently not
formally specified (5), and the modeling and execution seman-
tics layers are not connected (6).

This work aims to fill these gaps, based on the following
research questions that guide the design and development of a
responsible composition and optimization process:

Q1 How can the user be supported and guided during pattern
composition and process modeling?

Q2 When are pattern compositions correct?

Q3 How to responsibly determine and apply optimizations?

Question Q1 is related to objective (i), Q2 to objectives (ii)–(iii),
and Q3 to (iv)–(v). In the conference version of this paper [7],
we provided the foundations for Q1 (and partially Q3). Pattern
compositions were represented as typed pattern graphs, based on
pattern characteristics and contracts, which inherently guarantee
structurally correct compositions, and thus guide and support
the user. We could not use existing languages / notations like
BPMN or EIP icon notation [2], since they either structurally or
semantically do not provide the required notions of data flow,
persistence (e.g., [3, 4, 11, 12]) and boundaries for checking
structural correctness (e.g., [5]). Furthermore, the graph-based
representation of integration patterns allows for the realization of
optimizations as graph rewriting rules. Our evaluation showed
that effective improvements could be identified and applied to
real-world integration processes, while structural correctness
was preserved. However, functional correctness was not consid-
ered, meaning that process changes might not be responsible (cf.
objectives (ii)–(iii), (v)).

In this work, we extend our user-facing and structural correct-
ness guaranteeing graph-based representation with an execution
semantics using timed DB-nets [6]. To support the same notion
of correctness based on pattern contracts as in [7], we define
a new notion of open timed db-nets that are capable of repre-
senting the data exchange between patterns. We then show how

they can be composed, and specify their execution semantics.
By interpreting pattern compositions in graph representation
as compositions of open timed db-nets, and by proving that
the translation results in structurally correct and semantically
well-behaved nets, we can answer Question Q2. All in all, this
makes automatic optimization of integration processes feasible,
but now also taking functional correctness into account, thus
answering question Q3 fully. Hence this enables the study of
ReCO for the first time.

Methodology. We follow the principles of design science re-
search methodology by Peffers et al. [13] to answer the research
questions above: “Activity 1: Problem identification and mo-
tivation” is based on a literature review and the assessment of
vendor driven solutions [5], as well as quantitative analysis of
integration pattern characteristics of EAI building blocks (exist-
ing catalogs of 166 integration patterns) and process improve-
ments [7], resulting in requirements to a suitable formalism. We
then address “Activity 2: Define the objectives for a solution” by
formulating objectives (i)–(v). For “Activity 3: Design and de-
velopment”, we create several artifacts/contributions to answer
questions Q1–Q3 and realize objectives (i)–(v):

(a) a specification of an extensible structural correctness en-
forcing representation that allows for efficient application
of improvements,

(b) an extension of the definition of the formalism of exe-
cution semantics by inter-pattern data exchange analysis
capabilities based on open timed db-nets (cf. 4 , 5),

(c) an interpretation procedure of graph representation as
open timed db-nets (cf. 6), and

(d) optimization realizations on the graph representation lever-
aging the interpretation to prove their correctness (cf. 3).

Outline. We introduce the ReCO process in Sec. 2, together
with an integration process modeling example. In Sec. 3, we
analyze recurring integration pattern characteristics, which are
relevant for developing our formalisms, and collect optimiza-
tion strategies for integration processes. We also identify eight
requirements for formalizing integration pattern compositions.
In Sec. 4, we describe integration pattern graphs, and use them
to specify pattern compositions with inherent structural correct-
ness. We also give an abstract cost model which can be used to
determine if an optimization is an improvement or not. Section 5
extends the timed DB-net formalism [6] to open nets to intro-
duce compositional aspects, and uses this extended formalism to
capture the dynamics of integration patterns — that is, how data
flows through the system. We also briefly describe an implemen-
tation of simulation of timed DB-nets as an extension of CPN
Tools. In Sec. 6, we combine the two formalisms by showing
how integration pattern graphs can be interpreted as open timed
DB-nets. Next in Sec. 7 we realize optimization strategies as
rewrite rules for integration pattern graphs, and show that these
optimisations preserve the functional correctness of patterns
when interpreted as timed DB-nets. In Sec. 8, we evaluate the

2

Composition
implementation,

correctness

Composition formalization

Compose
patterns

Check composition
structureCheck composition

semantics

Implement in
tool

Simulate

Pattern implementation

Pattern correctness

Pattern formalization

Define
semantics

Formal
representation

Check model

Configure

Instantiation of
solution design

Check
design

Test design

 A

Pattern
formalization

process

Translate single
patterns and compose

Composition
correctness result

C
on

fig
ur

e

Formal
representation

Define
characteristics

Match & apply
rewrite rules

Improve
compositions

Rewrite
compositionAnalyse

improvements Define rewrite rule

Pattern
composition

process

Result

 B

 D
 E

 C

 F

 G

 H

 I

Figure 2: Responsible pattern composition and optimization process (white
colored boxes denote the main steps, grey colored box shows the pattern for-
malization process from [6], to which we bridge through translation of single
patterns and compositions)

optimizations on a large body of integration processes, and ap-
ply the ReCO process to two integration processes. We discuss
related work in Sec. 9 and conclude in Sec. 10.

History of this paper. This paper extends our previous confer-
ence paper [6] with several new contributions. Firstly, this paper
is structured along the ReCO process, whereas the conference
version was not. Secondly, the dynamic semantics in the form of
open timed DB-nets and their implementation as an extension of
CPN Tools (Sec. 5), and the interpretation of integration pattern
graphs into it (Sec. 6) are new, together with the proof that the
optimizations proposed preserve the functional behaviour of the
corresponding timed DB-nets (Sec. 7.7). The case studies of the
ReCO process in Sec. 8.2 are also new in this version.

2. Responsible Composition and Optimization Process for
Patterns

To reason about responsible pattern composition and opti-
mization, one first needs to consider formalizations of patterns,
compositions, and composition improvements. In this section,
we introduce a pattern composition and optimization process
that covers all of these topics, and we describe the process mod-
eling in more detail by an integration process example. Finally,
we specify the problem of responsible pattern composition and
optimization.

2.1. Responsible Composition and Optimization Process
Our approach to a responsible pattern composition and opti-

mization process is described in Fig. 2. We briefly discuss the
main concepts involved.

Patterns The pattern formalization process (cf. A in Fig. 2)
is specified in [6]. For ReCO, patterns are provided as

modeling building blocks by the integration platform. In-
tegration experts and platform developers start developing
patterns by defining their semantics in formal represen-
tation that allows to formally analyze the pattern models.
In addition, the realization of a pattern can be configured
and simulated as well as tested.

Composition In ReCO, a process is modeled and configured by
a user/modeler in a process modeling tool by composing
(cf. B compose patterns) existing, single, semantically
correct, integration patterns, from which the model is then
translated into a formal representation by the integration
platform (cf. C). With a thorough understanding of
pattern characteristics within a process, composition can
be formalized with inherent structural correctness (cf. D
check composition structure). Semantic correctness of the
whole composition of patterns can be checked through a
notion of composition added to the pattern formalization
(cf. E check composition semantics).

Improvements The formal foundation of structurally and se-
mantically correct processes allows for proposed improve-
ments that preserve the processes’ correctness (cf. F
improve compositions). For ReCO, the improvements
could be defined by integration experts, but also users
in a formalism provided by the integration platform that
allows for process rewriting suitable to the underlying for-
malisms (cf. G define rewrite rule). The improvements
are automatically matched (cf. H match & apply rewrite
rules), and if applicable, it leads to the application of an
improvement (cf. I rewrite composition).

To summarise, our vision is that integration experts and
platform developers specify patterns as building blocks of an
integration platform (cf. A), where the aspect of correct com-
position of multiple patterns into processes in terms of structure
and semantics is based on a formalism used by the platform (cf.
B – E). Correctness-preserving process improvements should

be developed and proved to be correct by integration experts,
and automatically applied by the platform (cf. F – I).

2.2. Potential Process Optimization by Example

We now introduce the composition stage by example of an
integration process that could be improved using ReCO.

Many organizations have started to connect their on-premise
applications such as Customer Relationship Management (CRM)
systems with cloud applications such as SAP Cloud for Cus-
tomer (COD) using integration processes similar to the one
shown in Fig. 3. A CRM Material is sent from the CRM system
via EDI (more precisely the SAP IDOC transport protocol) to an
integration process running on SAP Cloud Platform Integration
(CPI) [14]. The integration process enriches the message header
(MSG.HDR) with additional information based on a document
number for reliable messaging (i.e., AppID), which allows rede-
livery of the message in an exactly-once service quality [4]. The
IDOC structure is then mapped to the COD service description
and sent to the COD receiver.

3

Hybris_Cloud_C4C_with_CRM_v2

In
te

gr
at

io
n

Pr
oc

es
si

ng

Enrich for SAP
RM handling

MSG.PL:
CRMXIF_PRODUCT_MATERIAL_SAVE2

(EDI_DC40,
E101COMXIF_PRODUCT_MATERIAL)

Translate using
CRM_COD_Material_

Replicate_Bulk

MSG.PL: Material Mass
Replication Request (Material,

Material Header);
MSG.HDR: MessageHeader

MSG.HDR:
AppID

Remote
Data

CRM SAP COD

SAP IDOC
(EDI)

SOAP
(SAP RM)

Figure 3: Replicate material from SAP Business Suite (a hybrid integration scenario in BPMN)

Composition /
structure Data processing / exchange

Integration Patterns

Channel
cardinality

Message
cardinality

Changes
message content

Message
generatingCondition Program / complex

expression

Data flowControl flow

Ubiquitous

Optional Time Storage

Figure 4: Categorizing integration pattern characteristics according to control and data flow

Already in this simple integration process, an obvious im-
provement can be applied: the data-independent Content En-
richer and Message Translator patterns [2] could be executed in
parallel. Importantly, such a change does not alter the behaviour
of the integration process.

In this paper, we seek to find a mechanism to combine the
inherently, structurally correct pattern composition formalism
from [7] with the work on timed db-nets [6] that allow for seman-
tically correct definitions of integration patterns, and to prove
that improvements are correctness-preserving. The interaction
between the user/modeler and the integration system requires a
ReCO process that addresses the objectives (i)–(v).

3. Background and Requirements

In this section, we give a brief background on application in-
tegration patterns and their optimizations, by analyzing recurring
pattern characteristics as well as collecting existing optimiza-
tions as strategies. We also derive and discuss requirements for
a suitable formalism for pattern compositions in the context of
the optimization strategies.

3.1. Integration Pattern Characteristics
Enterprise integration patterns (EIPs) [2] with recent ad-

ditions [4, 5] form a suitable and important abstraction when
implementing application integration scenarios. Besides their
original differentiation in functional categories such as message
channels, message routers, message transformations, and mes-
saging endpoints among others, there are more subtle means of

classifying patterns by pattern characteristics that consider the
control and data flow within and between integration patterns,
and thus help greatly when formalizing pattern compositions.

We analyzed all patterns from the literature [2, 4, 5] regard-
ing their control and data flow characteristics. Our findings are
summarised in Fig. 4. The characteristics of channel and mes-
sage cardinality (CC and MC, respectively) are ubiquitous and
can be found in every pattern. We also identified a number of
optional and non-exclusive characteristics: if the pattern changes
message contents (CHG), if it is message generating (MG), if
it has conditions (CND), and if it has programs / complex ex-
pressions (PRG). Additionally, time and storage (also found in
[6]) are important requirements, especially for our later consid-
erations on runtime semantics, but on the level of compositions,
they are not very relevant due to their pattern local nature, and
are subsumed under control and data flow.

Together these characteristics summarize all relevant control
and data flow properties of the considered integration patterns.
In this work, composition and structure becomes relevant for
checking structural correctness properties, while data processing
and exchange characteristics are required mostly for a compo-
sition’s semantic correctness. Both notions of correctness are
especially relevant for modeling as well as any improvements to
the composition (e.g., in the form of optimizations).

3.1.1. Ubiquitous Characteristics
Every pattern has both a channel and a message cardinal-

ity, covering control and data flow aspects that are relevant for
composing patterns.

4

Figure 5: Channel and message cardinalities (“zero-to-one” includes “one-to-
zero”)

Channel Cardinality. The channel cardinality specifies the num-
ber of incoming and outgoing message channels of an integration
pattern. It is especially important for the structural correctness
of a pattern composition. The relative number of patterns of
each channel cardinality can be found in Fig. 5. A zero-to-
one or one-to-zero cardinality is exclusively found in start- and
end components of a composition, like message endpoints (e.g.,
commutative endpoint [5]) or integration adapters (e.g., event-
driven consumer [2]). Most of the transformation patterns and
some of the routing patterns are message processors that have
a channel cardinality of one-to-one (e.g., aggregator, splitter
[2]). The remainder of the routing patterns are either forks with
cardinality one-to-many (e.g., multicast), conditional forks with
one-to-many (cond.) (e.g., content-based router [2]), or joins
with cardinality many-to-one (e.g., join router [5]). We found no
many-to-many patterns at all.

Message cardinality. Similar to the channel cardinality, the mes-
sage cardinality specifies the number of incoming and outgoing
messages. However, the message cardinality is relevant for spec-
ifying the data transfer between patterns in a composition. As
summarised in Fig. 5, we found that most of the integration pat-
terns receive or require one and emit one message (e.g., message
translator, message signer). There are also patterns that require
one message and emit several messages (e.g., splitter, multicast)
and similarly receive many and emit only one (e.g., aggrega-
tor). Finally, there are patterns that require zero and emit one or
vice versa (e.g., event-driven consumer or producer). Note that
there are no patterns with a message cardinality of one-to-many
(cond.) or many-to-many.

Figure 6: Further characteristics and configurations

3.1.2. Optional Characteristics
We found that certain data flow characteristics are only

present in some patterns. The number of patterns that have
each identified characteristic can be found in Fig. 6.

Message Generating. A pattern is message generating, if it does
not simply pass or alter the received message, but creates a
completely new message (e.g., aggregator, splitter). The new
message might preserve data and structure from a received mes-
sage, but will have a new message identifier. If a newly gener-
ated message is composed out of several received messages, the
lineage to the original messages is preserved by adding a mes-
sage history [2]. We identified only three message generating
patterns.

Changing Message Content. In some cases it might be inter-
esting to distinguish between integration patterns that actually
change the content of received messages (i.e., mostly, but not
exclusively, message transformation patterns) and read-only pat-
terns, which either read data from the message for evaluating
a condition (e.g., content-based router) or do not look into the
message at all (e.g., multicast [5], claim check [2]). We found
29 message changing patterns.

Conditions. A condition is a read-only, user-defined function
that returns a Boolean valuation. Conditions are mostly used in
routing patterns, which decide on route or no-route, when receiv-
ing a message. We found 40 patterns that require a condition to
function.

Program/Complex Expressions. A program or complex expres-
sion is an arbitrary, user-defined function that might change the
content of a message by local or remote program execution (incl.
remote procedure and database calls), which we found in 34 pat-
terns. As can be seen in Fig. 6, there are more patterns requiring

5

an expression than there are patterns changing the content of a
message. Consequently, there is a small number of read-only
patterns that require more complex processing, potentially with
side-effects (e.g., load balancer [5]).

None. Since the identified characteristics are optional and non-
exclusive, there is also a significant number of 36 patterns that
do not have any of the characteristics (e.g., the detour [5], wire
tap [2]).

3.1.3. Summary
Analysing all known application integration patterns from

the literature [2, 4, 5], we identified and categorized several
control and data flow characteristics, relevant for the structural
composition of those patterns and their internal and inter-pattern
data flow. Channel cardinality and message cardinality are rel-
evant to all patterns, but other characteristics are optional and
non-exclusive.

3.2. Static Optimization Strategies

We consider improvements very important in the context
of EAI, and thus we briefly survey recent attempts to optimize
composed EIPs, in order to motivate the need to formalize their
semantics. As a result, we derive so far unexplored prerequisites
for optimizing compositions of EIPs. A more detailed collection
of optimization strategies can be found in a non-mandatory
supplementary material [15].

3.2.1. Identifying Optimization Strategies
Since a formalization of the EAI foundations in the form

of integration patterns for static optimization of “data-aware”
pattern processing is missing [5], we conducted a horizontal
literature search [35] to identify optimization techniques in re-
lated domains. For EAI, the domains of business processes,
workflow management and data integration are of particular in-
terest. The results of our analysis are summarized in Tab. 1. Out
of the resulting 616 hits, we selected 18 papers according to
the search criteria “data-aware processes”, and excluded work
on unrelated aspects. This resulted in the seven papers listed
in Tab. 2. The mapping of techniques from related domains
to EAI was done by for instance taking the idea of projection
push-downs [17, 24, 26, 27, 36] and deriving the early-filter or
early-mapping technique in EAI. We categorized the techniques
according to their impact (e.g., structural or process, data-flow)
in context of the objectives for which they provide solutions.

In the following subsections, we now briefly discuss the
optimization strategies listed in Tab. 2, in order to derive prereq-
uisites needed for optimizing compositions of EIPs. To relate
to their practical relevance and coverage so far (in the form
of evaluations on “real-world” integration scenarios), we also
discuss existing “data-aware” message processing solutions for
each group of strategies.

3.2.2. Process Simplification
We grouped together techniques whose main goal is reducing

model complexity (i.e., number of patterns) under the heading

of process simplification. The cost reduction of these tech-
niques can be measured by pattern processing time (latency, i.e.,
time required per operation) and model complexity metrics [38].
Process simplification can be achieved by removing redundant
patterns like Redundant Subprocess Removal (e.g., removing
one of two identical sub-flows), Combine Sibling Patterns (e.g.,
removing one of two identical patterns), or Unnecessary Con-
ditional Fork (e.g., removing redundant branching). As far as
we know, the only practical study of combining sibling patterns
can be found in Ritter et al. [11], showing moderate throughput
improvements. The simplifications requires a formalization of
patterns as a control graph structure, which helps to identify and
deal with the structural changes. Previous work targeting process
simplification include Böhm et al. [36] and Habib, Anjum and
Rana [24], who use evolutionary search approaches on workflow
graphs, and Vrhovnik et al. [27], who use a rule formalization
on query graphs.

3.2.3. Data Reduction
The reduction of data can be facilitated by pattern push-down

optimizations of message-element-cardinality-reducing patterns,
which we call Early-Filter (for data; e.g., removing elements
from the message content), Early-Mapping (e.g., applying mes-
sage transformations), as well as message-reducing optimization
patterns like Early-Filter (for messages; e.g., removing mes-
sages), Early-Aggregation (e.g., combining multiple messages),
Early-Claim Check (e.g., storing content and claiming it later
without passing it through the pipeline), and Early-Split (e.g.,
cutting one large message into several smaller ones). Measuring
data reduction requires a cost model based on the characteris-
tics of the patterns, as well as the data and element cardinali-
ties. For example, the practical realizations for multimedia [37]
and hardware streaming [11] show improvements especially for
early-filter, split and aggregation, as well as moderate improve-
ments for early-mapping. This requires a formalization that is
able to represent data or element flow. Data reduction optimiza-
tions target message throughput improvements (i.e., processed
messages per time unit), however, some have a negative impact
on the model complexity. Previous work on data reduction in-
clude Getta [26], based on relational algebra, and Niedermann,
Radeschütz and Mitschang [17], who define optimizations algo-
rithmically for a graph-based model.

3.2.4. Parallelization
Parallelization of processes can be facilitated through trans-

formations such as Sequence to Parallel (e.g., duplicating a
pattern or sequence of pattern processing), or, if not beneficial,
reverted, e.g., by Merge Parallel. For example, good practical
results have been shown for vectorization [31] and hardware
parallelization [11]. Formalizing such operations again require a
control graph structure. Although the main focus of paralleliza-
tion is message throughput, heterogeneous variants also improve
latency. In both cases, parallelization requires additional pat-
terns, which negatively impacts the model complexity, whereas
merging parallel processes improves the model complexity and
latency. Previous work on pattern parallelization include Zhang

6

Table 1: Optimizations in related domains — horizontal search
Keyword hits selected Selection criteria Selected Papers
Business Process Optimiza-
tion

159 3 data-aware processes survey [16], optimization patterns [17, 18]

Workflow Optimization 396 6 data-aware processes instance scheduling [19, 20, 21], scheduling and partitioning
for interaction [22], scheduling and placement [23], operator
merge [24]

Data Integration Optimiza-
tion

61 2 data-aware processes optimiza-
tion, (no schema-matching)

instance scheduling, parallelization [25], ordering, material-
ization, arguments, algebraic [26]

Added n/a 13 expert knowledge business process [27], workflow survey [10, 28], data inte-
gration [29], distributed applications [30], EAI [4, 5, 11, 31],
placement [32, 33], resilience [34]

Removed - 1 classification only [16]

Overall 616 23

Table 2: Optimization Strategies in the Context of Integration Processes
Strategy Optimization Throughput Latency Complexity Practical Studies
OS-1: Process
Simplification

Redundant Sub-process Removal [36] ↑ ↑ -
Combine Sibling Patterns [24, 36] ↑ ↑ ([11])
Unnecessary conditional fork [27, 36] ↗ ↑ ↑ -

OS-2: Data
Reduction

Early-Filter [17, 24, 26, 27, 36] ↑ [11]
Early-Mapping [24, 26, 36] ↑ [11, 37]
Early-Aggregation [24, 26, 36] ↑ [37]
Claim Check [26, 36] ↑ ↘ -
Early-Split [11] ↑ ↘ [11, 37]

OS-3: Parallelization Sequence to parallel [17, 25, 27, 36] ↑ ↘ [11, 31]
Merge parallel sub-processes [17, 25, 27, 36] ↑ ↑ [11]
Heterogeneous parallelization [23] ↑ ↘ -

OS-4: Pattern
Placement

Pushdown to Endpoint
(extending OS-2)

↑ (↑) [31, 32, 33]

OS-5: Reduce
Interaction

Ignore Failing Endpoints [4, 5, 34] ↑ -
Reduce Requests [27] ↗ ↑ -

↑: improvement,↗: slight improvement,↘: slight deterioration, : no effect

et al. [25], who defines a service composition model, to which
algorithmically defined optimizations are applied.

3.2.5. Pattern Placement
For all of the data reduction optimizations (cf. OS-2) “Push-

down to Endpoint” can be applied by extending the placement
to the message endpoints, which improves message throughput
and reduces the complexity of the integration process, while in-
creasing the complexity at the message endpoints. For example,
good practical results have been shown for vectorization [31]
and cost efficient, security-aware placement [32, 33].

3.2.6. Reduce Interaction
The resilience and robustness of integration processes is

crucial – especially in the cloud. Dependencies to resources
used by an integration process (e.g., database, message queuing)
and the message endpoints (e.g., mobile, cloud) has to be dealt
with during the message processing. Optimizations like Ignore
Failing Endpoints and Reduce Requests help dealing with poten-
tially unreliable network communication, and allow for smart
network usage and reaction to exceptional situations or unavail-
abilities. This requires a formalism that is able to represent data

flow and time. These optimizations target more stable processes,
improved latency and potentially higher throughput.

3.2.7. Summary
We found several optimizations in related domains like data

integration, business process and workflow, and re-interpreted
them in the context of EAI. The optimizations have different
effects regarding relevant categories like throughput, latency
and model complexity, which we used to categorize them into
three disjoint classes of optimization strategies, namely process
simplification, data reduction and parallelization. For most of
the optimizations we identified implementations that report a
successful application to problems in the EAI domain.

3.3. Discussion: Requirements for Formalizing Integration Pat-
tern Compositions

Based on our analyses of characteristics of single patterns
and optimization strategies for pattern compositions, we briefly
discuss requirements for the formalization of pattern composi-
tions and their improvements as optimizations. These require-
ments are listed and set into context to the closest related ap-
proaches known from the application and data integration do-

7

mains in Tab. 3. We also give examples of optimization strategies
(cf. OS-x) that are co-enabled when fulfilling the requirements.

We found that a fundamental support for control flow is
mandatory for pattern compositions, due to the pipes-and-filters
nature of integration scenarios [2, 5] (e.g., co-enabling OS-1).
Hence, a suitable formalism representing pattern compositions
requires a formal representation (REQ-1: Formal represen-
tation of control flow), e.g., as found in first formalization
attempts using Coloured Petri Nets by Fahland and Gierds [39]
and our recent work on timed db-nets [6], which essentially
denotes an improvement of previous work regarding formal
representation and analysis properties like data flow, time, trans-
actional data storage and exceptions. The work by Böhm et al.
[36] stems from the data integration domain, and thus only has
a weak notion of control flow and none of integration patterns.
As also found in [6], the known integration patterns require dif-
ferent aspects of time like timeouts, delays, and time-based rate
limits to be functional (REQ-2: Formal treatment of time),
e.g., co-enabling OS-5.

The concept of pipes-and-filters also requires support for
the flow and processing of messages (REQ-3: Formal repre-
sentation of data flow), which is also supported by the closest
known formalizations, using Coloured Petri nets in [39], plus an
extension to db-nets [40] in [6], and a data dependency tree in
[36] (e.g., co-enabling OS-2).

Another batch of requirements from related work [6] target
properties that were only recently formally represented, and
thus are not considered in [39, 36]. Let us briefly summarize
these pattern-level requirements in the context of this work.
To be operational, some of the patterns like commutative and
idempotent receivers as well as aggregator require the ability to
persistently store data (REQ-4: Formal treatment of databases
and transactions), e.g., co-enabling OS-2. Finally, potential
exceptions have to be handled and compensated for within a
pattern and on a composition level (REQ-5: Formal treatment
of exceptions and compensations).

To represent and reason about pattern compositions, an ad-
equate formalism must include the ability to structurally and
semantically compose patterns (REQ-6: Formalism must be
compositional), co-enabling OS-1–5. This core requirement is
only partially supported in related work: in the work on Petri
nets [39, 6], composition is assumed through the composable
nature of Petri nets, but no formal construction of such composi-
tions is given. Similarly, [36] introduces a composition of data
integration operations, but again without a formal construction.

Once patterns are composed, the compositions will be sub-
ject to frequent changes such as extensions, adaptation due to
changing legal requirements, or improvements and optimiza-
tions. In this work we focus on optimizations representing a
comprehensive set of change operations that introduce change to
pattern compositions. For a formal analysis of such changes, the
optimizations themselves shall be represented in a formal way,
such that compositions and their change operations can be for-
mally analyzed (REQ-7: Formal treatment of improvements
(of control and data flow)), co-enabling OS-1–5. The notion

of change is partially considered in data integration by [36], but
not in recent application integration work [39, 6].

Finally, a suitable formal representation of pattern compo-
sitions shall allow for a structural and semantic analysis of the
correctness of a composition. This requirement also contains
the notion of remaining correct after applying changes to the
compositions, e.g., in the form of optimizations (REQ-8: For-
mal specification of preserving correctness (structurally and
semantically) of compositions), co-enabling OS-1–5. In the
context of structural composition correctness, we identified the
channel cardinality characteristic as decisive correctness criteria
based on the control flow. For example, a content-based router
with a cardinality of 1:n channels, can only be connected to 1
input and n output channels, otherwise the composition is struc-
turally incorrect. The semantic correctness has to go deeper into
the fundamental execution semantics of integration patterns as
defined in [6], and thus we build on top of that formalism. How-
ever, neither of the current approaches [39, 6, 36] addresses the
requirement of structural and semantic correctness for compo-
sitions, nor do they guarantee a general correctness-preserving
property when changing compositions.

4. Graph-based Pattern Compositions

We now introduce a formalization of pattern compositions,
and an abstract cost model for them. This is needed in order to
rigorously reason about optimizations.

4.1. Integration Pattern Graphs

Taking requirement REQ-1 of having a formal representation
of control flow from Sec. 3.3 into account, it is natural to model
pattern compositions as extended control flow graphs [41], as we
do in Definition 1. This gives a high level modelling language
that is easy to use and understand, and is close to informal nota-
tion used by practitioners [4, 5]. To take requirement REQ-3 of
having a formal representation of data flow into account, we will
further enrich the vertices of the graph with additional informa-
tion in Definitions 2 and 3. Requirements REQ-2, REQ-4 and
REQ-5 are pattern local [6], and thus not relevant at the abstrac-
tion level of pattern compositions. They will become important
when we consider the runtime semantics of compositions later
in Sec. 5 and 6. Control flow graphs can easily be composed into
larger graphs, and hence requirement REQ-6 of composability
is fulfilled. Requirements REQ-7 and REQ-8 will be addressed
in Sec. 7, of course building on the definitions in this section.

Compared to for example colored Petri Nets, integration pat-
tern graphs represents pattern compositions at a higher and more
specialised level of abstraction, which is more easily understood
also for non-technical users.

Before we get to the definition of the kind of graph we
need to model pattern compositions, let us fix some notation: a
directed graph is given by a set of nodes P and a set of edges E ⊆
P×P. For a node p ∈ P, we write •p = {p′ ∈ P | (p′, p) ∈ E} for
the set of direct predecessors of p, and p• = {p′′ ∈ P | (p, p′′) ∈
E} for the set of direct successors of p.

8

Table 3: Formalization requirements
ID Requirement Fahland et al. [39] Ritter et al. [6] Böhm et al. [36]
REQ-1 Control flow (pipes and filter) ✓ ✓ (✓)
REQ-2 Time ✓
REQ-3 Data flow ✓ ✓ ✓

REQ-4 Database, Transactions ✓
REQ-5 Exceptions, Compensations ✓
REQ-6 Compositional (✓) (✓) (✓)
REQ-7 Improvements (control and data flow) (✓)
REQ-8 Preserving correctness

✓: covered, (✓): partially covered, : not covered or out of scope

Definition 1 (Integration pattern type graph). An integration
pattern typed graph (IPTG) is a directed graph with set of
nodes P and set of edges E ⊆ P × P, together with a func-
tion type : P → T, where T = {start, end, message processor,
fork, structural join, condition, merge, external call}. An IPTG
(P, E, type) is correct if

• there exists p1, p2 ∈ P with type(p1) = start and type(p2)
= end;

• if type(p) = start then | • p| = 0, and if type(p) = end then
|p • | = 0.

• if type(p) ∈ {fork, condition} then | • p| = 1 and |p • | > 1,
and if type(p) = join then | • p| > 1 and |p • | = 1;

• if type(p) ∈ {message processor, merge} then | • p| = 1 and
|p • | = 1;

• if type(p) ∈ {external call} then | • p| = 2 and |p • | = 2;

• The graph (P, E) is connected and acyclic. □

In the definition, we think of P as a set of extended integra-
tion patterns that are connected by message channels represented
as edges in E, as in a pipes and filter architecture. The function
type records what type of pattern each node represents. The
first correctness condition says that an integration pattern has
at least one source and one target, while the next three states
the cardinality of the involved patterns coincide with the in- and
out-degrees of the nodes in the graph representing them. The
last condition states that the graph represents one integration
pattern, not multiple unrelated ones, and that messages do not
loop back to previous patterns.

To represent the data flow, i.e., the basis for the optimizations
and requirement REQ-3, the control flow has to be enhanced
with (a) the data that is processed by each pattern, and (b) the
data exchanged between the patterns in the composition. The
data processed by each pattern (a) is described as a set of pattern
characteristics:

Definition 2 (Pattern characteristics). A pattern characteris-
tic assignment for a graph (P, E) is a function char : P→ 2PC,

assigning to each vertex a subset of the set

PC = ({MC} × N2) ∪ ({ACC} × {ro, rw}) ∪ ({MG} × B) ∪

({CND} × 2BExp) ∪ ({PRG} × Exp) ∪

({S} × Exp) ∪ ({QRY} × 2Exp) ∪ ({ACTN} × 2Exp) ∪

({TM} × (Q≥0 × (Q≥0 ∪ {∞})) ,

where B is the set of Booleans, BExp and Exp the sets of
Boolean and program expressions, respectively, and MC, ACC,
MG, CND, PRG, S, QRY, ACTN, TM some distinct symbols. □

The property and value domains in Definition 2 are based
on the pattern characteristics identified in Sec. 3.1, and could of
course be be extended if future patterns required it. We briefly
explain the intuition behind the characteristics: the characteris-
tic (MC, n, k) represents a message cardinality of n:k, (ACC, x)
the message access, depending on if x is read-only ro or read-
write rw, and the characteristic (MG, y) represents whether the
pattern is message generating depending on the Boolean y. A
(CND, {c1, ..., cn}) represents the conditions c1, . . . , cn used by
the pattern to route messages, and (PRG, p) represents a pro-
gram p used by the pattern (e.g., for message translation). The
storage aspects are denoted by a schema (S, (ps)) created by a
program ps, expressions (QRY, {q1, ..., qn}) denoting a set of dis-
tinct queries q1, . . . , qn, and a set of actions (ACTN, {a1, ..., an})
with distinct a1, . . . , an. Finally, (TM, (τs, τe)) represents a
timing window from τs to τe.

Example 1. The characteristics of a content-based router CBR
is char(CBR) ={(MC, 1:1), (ACC, ro), (MG, false), (CND,{cnd1,
. . . , cndn−1}), (PRG,null), (S, null), (QRY, ∅), (ACTN, ∅), (TM,
(0, 0))}, because of the workflow of the router: it receives exactly
one message, then evaluates up to n − 1 routing conditions cnd1
up to cndn−1 (one for each outgoing channel), until a condition
matches. The original message is then rerouted read-only (in
particular, the router is not message generating) on the selected
output channel, or forwarded to the default channel, if no condi-
tion matches. The router does not require programs, storage or
time configurations. ■

The data exchange between the patterns (b) is based on input
and output contracts (similar to data parallelization contracts
in [42]). These contracts specify how the data is exchanged in
terms of required message properties of a pattern during the data
exchange:

9

Definition 3 (Pattern contract). A pattern contract assignment
for a graph (P, E) is a function contr : P→ CPT×2EL, assigning
to each vertex a function of type

CPT = {signed, encrypted, encoded} → {yes, no, any}

and a subset of the set

EL = ({HDR} × 2D) ∪ ({PL} × 2D) ∪ ({ATTCH} × 2D) ,

where D is a set of data elements (the concrete elements of D will
vary with the application domain). We represent the function of
type CPT by its graph, leaving out the attributes that are sent to
any, when convenient. □

The set CPT in a contract represents integration concepts,
while the set EL represents data elements and the structure of
the message: its headers (HDR,H), its payload (PL,Y) and its
attachments (ATTCH, A). Each pattern will have an inbound and
an outbound pattern contract, describing the format of the data
it is able to receive and send respectively — the role of pattern
contracts is to make sure that adjacent inbound and outbound
contracts match.

Example 2. A content-based router is not able to process en-
crypted messages. Recall that its pattern characteristics in-
cluded a collection of routing conditions: these might require
read-only access to message elements such as certain headers
h1 or payload elements e1, e2. Hence the input contract for a
router mentioning these message elements is

inContr(CBR) = ({(encrypted, no)}, {(HDR, {h1}),
(PL, {e1, e2})}) .

Since the router forwards the original message, the output con-
tract is the same as the input contract. ■

Definition 4. Let (C, E) ∈ CPT × 2EL be a pattern contract,
and X ⊆ CPT × 2EL a set of pattern contracts. Write XCPT =

{C′ | (∃E′) (C′, E′) ∈ X} and XEL = {E′ | (∃C′) (C′, E′) ∈ X}.
We say that (C, E) matches X, in symbols match((C, E), X), if
following condition holds:

(∀x)
(
C(x) , any =⇒

(∀C′ ∈ XCPT)(C′(x) = C(x) ∨C′(x) = any)
)
∧

(∀(m,Z) ∈ E)
(
Z =

⋃
(m,Z′)∈∪XEL

Z′
)
.

□

We are interested in an inbound contract Kin matching the
outbound contracts K1, . . . ,Kn of its predecessors. In words, this
is the case if (i) for all integration concepts that are important
to Kin, all contracts Ki either agree, or at least one of Kin or
Ki accepts any value (concept correctness); and (ii) together,
K1, . . . ,Kn supply all the message elements that Kin needs (data
element correctness).

Since pattern contracts can refer to arbitrary message el-
ements, a formalization of an integration pattern can be quite

precise. On the other hand, unless care is taken, the formalization
can easily become specific to a particular pattern composition.
In practice, it is often possible to restrict attention to a small
number of important message elements (see Example 3 below),
which makes the formalization manageable.

Putting everything together, we formalize pattern compo-
sitions as integration pattern typed graphs with pattern charac-
teristics and inbound and outbound pattern contracts for each
pattern:

Definition 5. An integration pattern contract graph (IPCG) is a
tuple

(P, E, type, char, inContr, outContr)

where (P, E, type) is an IPTG, char : P → 2PC is a pattern
characteristics assignment, and inContr :

∏
p∈P(CPT × 2EL)|•p|

and outContr :
∏

p∈P(CPT × 2EL)|p•| are pattern contract as-
signments — one for each incoming and outgoing edge of the
pattern, respectively — called the inbound and outbound con-
tract assignment respectively. It is correct, if the underlying
IPTG (P, E, type) is correct, and inbound contracts matches the
outbound contracts of the patterns’ predecessors, i.e. if for every
p ∈ P

type(p) = start∨match(inContr(p), {outContr(p′) | p′ ∈ •p}) .

Two IPCGs are isomorphic if there is a bijective function be-
tween their patterns that preserves edges, types, characteristics
and contracts. □

Example 3. Figures 7(a) and 7(b) show IPCGs representing an
excerpt of the motivating example from the introduction. Fig-
ure 7(a) represents the IPCG of the original scenario with a
focus on the contracts, and Fig. 7(b) denotes an already im-
proved composition showing the characteristics and giving an
indication on the pattern latency. In Fig. 7(a), the input contract
inContr(CE) of the content enricher pattern CE requires a non-
encrypted message and a payload element DOCNUM. The content
enricher makes a query to get an application ID AppID from an
external system, and appends it to the message header. Hence the
output contract outContr(CE) contains (HDR, {AppID}). The
content enricher then emits a message that is not encrypted or
signed. A subsequent message translator MT requires the same
message payload, but does not care about the appended header.
It adds another payload RcvID to the message. Comparing in-
bound and outbound pattern contracts for adjacent patterns, we
see that this is a correct IPCG.

One improvement of this composition is depicted in Fig. 7(b),
where the independent patterns CE and MT have been paral-
lelized. To achieve this, a read-only structural fork with channel
cardinality 1:n in the form of a multicast MC has been added.
The inbound and outbound contracts of MC are adapted to fit
into the composition. After the concurrent execution of CE and
MT, a join router JR brings the messages back together again
and feeds the result into an aggregator AGG that restores the
format that ADPTr expects. We see that the resulting IPCG is
still correct, so this would be a sound optimization. ■

10

(a) IPCG from the motivating example (b) IPCG after “sequence to parallel” optimization

Figure 7: An IPCG of an excerpt of the motivating example

4.2. Abstract Cost Model
In order to decide if an optimization is an improvement or

not, we want to associate abstract costs to integration patterns.
We do this on the pattern level, similar to the work on data inte-
gration operators [43]. The cost of the overall integration pattern
can then be computed as the sum of the cost of its constituent
patterns. Costs are considered parametrized by the cardinality of
data inputs |dini | (1 ≤ i ≤ n, if the pattern has in-degree n), data
outputs |dout j | (1 ≤ j ≤ m, if the pattern has out-degree m), and
external resource data sets |dr |. The costs can also refer to the
pattern characteristics.

Definition 6 (Cost model). A cost assignment for an IPCG G =

(P, E, type, char, inContr, outContr) is an function cost(p) : Nn×

Nk×Nr → Q for each p ∈ P, where p has in-degree n, out-degree
k and r external connections. The cost cost(G) : NN×NK×NR →

Q of the IPCG pattern graph G, where N is the sum of the in-
degrees of its patterns, K the sum of their out-degrees, and R the
sum of their external connections, is defined to be the sum of the
costs of its constituent patterns:

cost(G)(din, dout, dr) =∑
p∈P

cost(p)(|din(p)|, |dout(p)|, |dr(p)|) ,

where we suggestively have written |din(p)| for the projection
from the tuple din corresponding to p, similarly for |dout(p)| and
|dr(p)|. ■

We have defined the abstract costs of the patterns discussed
in this work in Tab. 4 — these will be used in the subsequent
evaluation. We now explain the reasoning behind them. Rout-
ing patterns such as content based routers, message filters and
aggregators mostly operate on the input message, and thus have
an abstract cost related to its element cardinality |din|. For ex-
ample, the abstract cost of the CBR is cost(CBR) =

∑n−1
i=0 |din,i |

2 ,

since it evaluates on average n−1
2 routing conditions on the input

message. More complex routing patterns such as aggregators
evaluate correlation and completion conditions, as well as an ag-
gregation function on the input message, and also on sequences
of messages of a certain length from an external resource. Hence
the cost of an aggregator is cost(AGG) = 2 × |din| +

|din |+|dr |

avg(len(seq)) ,
where len(seq) denotes the length of a Message Sequence [2] as
for example used by an aggregator pattern. In contrast, message
transformation patterns like content filters and enrichers mainly
construct an output message, hence their costs are determined
by the output cardinality |dout|. For example, content enrichers
create a request message from the input message with cost |din|,
conducts an optional resource query |dr |, and creates and en-
riches the response with cost |dout|. Finally, the cost of message
creation patterns such as external calls, receivers, and senders
arise from costs for transport, protocol handling, and format
conversion, as well as decompression. Hence the cost depends
on the element cardinalities of input and output messages |din|,
|dout|.

Example 4. We return to the claimed improved composition
in Example 3. The latency of the composition G1 in Fig. 7(a),
calculated from the constituent pattern latencies, is cost(G1) =
tCE+tMT with latency tp and pattern p. The latency improvement
potential given by switching to the composition G2 in Fig. 7(b) is
given by cost(G2) = max(tCE , tMT)+ tMC + tJR + tAGG. Obviously
it is only beneficial to switch if cost(G2) < cost(G1), and this
condition depends on the concrete values involved. At the same
time, the model complexity increases by three nodes and edges.
■

5. A Semantics Using Timed DB-nets

Integration pattern graphs model the structural composition
of integration patterns, but not their dynamics, i.e. how data

11

Table 4: Abstract costs of relevant patterns
Pattern p Abstract Cost cost(p) Factors

Content-based Router [2]
∑n−1

i=0 |din,i |

2 n=#channel conditions, half of them evaluated on average
Message Filter [2] |din| input data condition |din|

Aggregator [2] 2 × |din| +
|din |+|dr |

avg(len(seq)) correlation, and completion conditions |din|, aggregation function |din |+|dr |

avg(len(seq)) and
length of a sequence length(seq) >= 2, and (transacted) resource dr

Claim Check [2] 2 × |dr | resource insert and get |dr |

Splitter [2] |dout| output data condition |dout|

Multicast, Join Router [5]
∑n

i=0 cost(procuniti) costs of processing units cost(procuniti), e.g., threading in software, for n chan-
nels

Content Filter [2] |dout| output data creation |dout|

Mapping [2] |din| + |dout| output data creation |dout| from input data |din|

Content Enricher [2] |din|+|dr |+|dout| request message creation on |din|, resource query |dr |, response data enrich |dout|

External
Call [5]

|dout| + |din| request |dout| and reply data |din|

Receive [2] |din| input data |din|

Send [2] |dout| output data |dout|

actually flow through the system. To model this, we use timed
db-nets [6], an extension of db-nets [40] with an explicit notion
of time (addressing REQ-2). The formalism of db-nets in turn is
a refinement of colored Petri nets [44] with primitives for the net
to query and update persistent data stores (addressing REQ-4).
Exceptions are built into the framework in the form of rollbacks
(addressing REQ-5).

We choose to work with timed db-nets rather than just col-
ored Petri nets because they meet the mentioned requirements
of integration processes that we have identified, and balances
the dimensions of persistence, data logic and control layer of a
Petri net. Avoiding the heavier encoding of colored Petri nets,
timed db-nets make the modeling more concise and tractable for
the interpretation procedure defined in Sec. 6.

To make the definition compositional, we have to extend the
notion of timed db-nets to timed db-nets with boundaries that
can be reasoned about separately, and then plugged together to
form larger timed db-nets.

5.1. Open Timed DB-nets

In this section, we formally define the mathematical structure
we use to give a runtime semantics to pattern graphs. We first re-
call the definition of timed db-nets, and then extend them to open
timed db-nets, in order to make the definition compositional.

5.1.1. Ordinary Timed DB-nets
A timed db-net has three layers: a persistence layer describ-

ing the underlying database of the net, a logic layer describing
the queries that can be made of the persistence layer, and a con-
trol layer describing how tokens of data flow through the net,
executing queries. See Ritter et al. [6] for motivation and a more
gentle definition.

Definition 7 (timed db-net [6]). A timed db-net is a tuple (D,P,
L,N , τ), where:
• D is a type domain — a finite set of data types, each of the

form D = (∆D, ΓD), where ∆D is a value domain, and ΓD is a
finite set of domain-specific predicate symbols.

• P is aD-typed persistence layer, i.e., a pair (R, E), where R is
a D-typed database schema, and E is a finite set of first-order
FO(D) constraints over R.
• L is a D-typed data logic layer over P, i.e., a pair (Q, A),

where Q is a finite set of FO(D) queries over P, and A is a
finite set of actions over P.

• N is a D-typed control layer over L, i.e., a tuple (P,T, Fin,
Fout, Frb, color, query, guard, action), where:

1. P = Pc ⊎ Pv is a finite set of places, partitioned into
so-called control places Pc and view places Pv,

2. T is a finite set of transitions,

3. Fin is an input flow from P to T ,

4. Fout and Frb are respectively output and roll-back flows
from T to Pc,

5. color is a color assignment over P (mapping P to a
Cartesian product of data types),

6. query is a query assignment from Pv to Q (mapping the
results of Q as tokens of Pv),

7. guard is a transition guard assignment over T (mapping
each transition to a formula over its input inscriptions),
and

8. action is an action assignment from T to A (mapping
some transitions to actions triggering updates over the
persistence layer).

• τ : T → Q≥0 × (Q≥0 ∪ {∞}) is a timed transition guard,
mapping each transition t ∈ T to a pair of values τ(t) =

(v1, v2), where v1 is a non-negative rational number, and v2 is
a non-negative rational number with v1 ≤ v2, or the special
constant∞. □

We adopt the following graphical conventions for drawing
the control layer of a timed db-net: places are depicted as round
nodes — view places are labelled by a database icon with
queries written in green — and transitions as rectangles. Roll-
back arcs are depicted with an “x”: . Actions are
written in blue, and guards are written in square brackets next

12

to the transition, and we adopt the following conventions for a
timed transition guard τ and a transition t: (i) if τ(t) = (0,∞),
then no temporal label is shown for t (this is often the default
choice for τ(t)); (ii) if τ(t) is of the form (v, v), we attach label
“@v” to t; (iii) if τ(t) is of the form (v1, v2) with v1 , v2, we
attach label “@⟨v1, v2⟩” to t.

Example 5. Fig. 8 shows a timed db-net realisation of an ag-
gregator. The intention is that messages arrive at the place chin.
The database is then queried using the Qmsgs query via a view
place, and if it already contains the message, it is updated via
the UpdateSeq action at transition T1. If it does not contain the
message, the CreateSeq action is triggered at T2 instead, and the
sequence number gets passed to the chtimer place, whose output
transition T3 will be enabled after 30 seconds, triggering the
TimeoutSeq action. This will enable transition T4, with the effect
that a token containing the data from the completed sequence,
queried via Qseqs from the database, will move into chout.

5.1.2. Open Timed DB-nets
We now describe timed db-nets that are open, in the sense

that they have “ports” for communicating with the outside world:
the idea being that tokens can be received and sent on these ports,
similar to in the existing literature on open Petri nets [45, 46, 47].

Definition 8 (Open timed db-net). An open timed db-net is a
pair A = (NA, BA), where NA = (D,P,L,N , τ) is a timed db-net
with control layer

N = (Pc ⊎ Pv,T, Fin, Fout, Frb, color, query, guard, action)

and BA = (IA,OA) ∈ List Pc × List Pc are lists of control places,
called the input and output boundaries respectively, such that
Fin(o, t) = ∅ for every o ∈ OA, and Fout(t, i) = Frb(t, i) = ∅ for
every i ∈ IA. The input (output) boundary configuration of A is
given by the corresponding list of colours of the input (output)
boundary places of A, and we write

NA : color(IA)→ color(OA)

(where color(X) = [color(x) | x ∈ X]) to indicate that A =

(NA, (IA,OA)) is an open timed db-net with the given boundary
configurations.

Note in particular that an open timed db-net with empty
boundaries is by definition an ordinary timed db-net.

Example 6. Fig. 9 shows an open timed db-net realisation of
a join router (joining messages containing integer data). The
input boundary are the places chin1 and chin2 and the output
boundary the place chout. We draw the input boundary using
dashed places on the left of the image, and the output similarly
on the right (in general, a place can be part of both the input
and the output boundary, but this will not occur in any nets
constructed from pattern graphs).

Similarly, the timed db-net realisation of an aggregator in
Fig. 8 from Example 5 can be made into an open timed db-net
by declaring the boundaries to be chin and chout respectively.

5.2. Execution Semantics for Open Timed DB-nets

We define the execution semantics of a given open timed db-
net as a labelled transition system, where the states are snapshots
of the db-net and the labelled transitions are given by firings,
as well as transitions that can create and consume tokens at
the input and output boundary respectively. A snapshot of an
open timed db-net B is a snapshot (I,m) of B considered as
an ordinary timed db-net (i.e. we forget about the boundaries),
which in turn consists of a compliant database instance I and a
marking m; see [6] for the precise definitions.

Given an open timed db-net B with boundaries (IB,OB), and
a B-snapshot s0 (the initial B-snapshot), we construct a labelled
transition system ΓBs0

= (S , s0,→) as follows: S is the infinite
set of B-snapshots, and→⊆ S × (IB ∪ T ∪ OB) × S is defined

by the following clauses (we write s
ℓ
→ s′ for (s, ℓ, s′) ∈→):

• for a transition t and B-snapshots s1, s2, if there is a
binding σ such that t fires in s1 with binding σ producing
s2 (see [6]), then s1

t
→ s2;

• for an input boundary place pi and B-snapshot s = (I,m),
if s′ = (I,m′) where m′(pi) = m(pi)+{o} for some o ∈ ∆D,
and m′(x) = m(x) for x , pi, then s

pi
→ s′; and

• for an output boundary place po and B-snapshot s =

(I,m), if s′ = (I,m′) where m′(pi) = m(pi) − {o} for
some o ∈ ∆D, and m′(x) = m(x) for x , po, then s

po
→ s′.

That is, in addition to transitions in the LTS arising from
transitions in the db-net firing, we also have transitions labelled
by each boundary place that make one token appear or disappear
at the boundary, depending on if the place is an input or output.
Note that for a closed timed db-net, the boundaries are empty,
and the LTS correspond exactly to the LTS of timed db-nets
from [6].

5.3. Composition of Open Timed DB-nets

It is straightforward to compose timed db-nets in parallel, i.e.
in such a way that there is no interaction between the component
nets. Given open timed db-nets

A : [c1, . . . , cn]→ [d1, . . . , dm]
B : [c′1, . . . , c

′
n′]→ [d′1, . . . , d

′
m′]

with the same type domains, persistence layers and data logic
layers1, we define an open timed db-net

A⊗ B : [c1, . . . , cn, c′1, . . . , c
′
n′]→ [d1, . . . , dm, d′1, . . . , d

′
m′]

again with the same type domain, persistence layer data logic
layer, but whose places and transitions are the disjoint union
of the places and transitions in A and B respectively. This
gives a tensor product or parallel composition of nets, with unit

1To compose timed db-nets with different underlying layers, we first rename
any unintended clashing names, and then take the union of the layers and embed
the nets into their now common layers.

13

(seq, msgs,data)
chout

data
chin

(msg, data)
[contains(msg,msgs)]

T

T(msg, data)

(seq,msgs)

(seq,msgs)

T

[status=='complete' || status == 'expired']

(msg, data)

seq
Tchtimer TimeoutSeq(seq)

Sequences
SEQ: int STATUS: string

Messages
MSG_ID: int DATA: stringSEQ: int

UpdateSeq(seq,msg,data)

seq

int*intlist*string

int*string

Qmsgs(msg,seq)

(seq, status)

{"complete","expired"}

CreateSeq
(seq,msg,data)

Qseqs(seq,status)

DB schema

Net

[contains(msgs,msg)]

colset intlist = list int;
var msg : int; var seq: int;
var msgs: intlist;
var status, data: string;

Qmsgs(msg,seq, data):-
 SELECT DISTINCT seq, GROUP_LIST(msg), GROUP_CONCAT(data)
 FROM Messages GROUP BY seq;
Qseqs(seq,status):- SELECT * FROM Sequences;

UpdateSeq(seq,msg,data)=
<DEL{}, ADD{Messages(msg,seq,data)}>;

CreateSeq(seq,msg,data)=
<DEL{}, ADD{Sequences(seq,NULL),
 Messages(msg,seq,data)}>;

TimeoutSeq(seq)= <DEL{Sequences(seq,NULL)},
 ADD{Sequences(seq,"expired")}>;

Actions

Queries

int string

int

[@30]

Figure 8: Timed db-net realization of an aggregator

Netvar

Actions Queries DB schema

int int

int

Figure 9: Timed db-net realization of a join router

I : [] → [] the empty timed db-net (necessarily with empty
boundary). Visually, we are stacking the control layers ofA and
B next to each other.

When the boundaries are compatible, i.e., when the input
boundary configuration is the same as the output boundary con-
figuration, we can also define a sequential composition of nets.
This will be achieved by “gluing” the two nets together along
their common boundary, formally expressed by quotienting the
set of places in the construction of the composite net.

Definition 9 (Sequential composition of open nets). Let A :
color(IA)→ color(OA) and B : color(IB)→ color(OB) be
open timed db-nets with the same type domains, persistence lay-
ers and data logic layers, and such that color(OA) = color(IB).
Write OA = [o1, . . . , on] and IB = [i1, . . . , in] — note that OA and
IB must have the same length, since color(OA) = color(IA).

We define the composition

A # B : color(IA)→ color(OB)

to again have the same type domain, persistence layer and data
logic layer asA and B, and control layer

NA#B = (P,T, Fin, Fout, Frb, color, query, guard, action)

with

P = (PA ⊎ PB)/ ∼

where ∼ is the equivalence relation generated by inPA (ok) ∼
inPB(ik) for 0 < k ≤ n,

T = TA ⊎ TB

Fin(x, y) =

FA

in(p, t) if (x, y) = ([inPA (p)], inTA (t))
FB

in(p′, t′) if (x, y) = ([inPB (p′)], inTB (t′))
∅ otherwise

Fin(x, y) =

FA

out(p, t) if (x, y) = (inTA (t), [inPA (p)])
FB

out(p′, t′) if (x, y) = (inTB (t′), [inPB (p′)])
∅ otherwise

Frb(x, y) =

FA

rb(t, p) if (x, y) = (inTA (t), [inPA (p)])
FB

rb(t′, p′) if (x, y) = (inTB (t′), [inPB (p′)])
∅ otherwise

color = [colorA, colorB]
query = [queryA, queryB]
guard = [guardA, guardB]

action′′ = [action, action′]
τ′′ = [τ, τ′]

14

(seq, msgs,data)
chout

data(msg, data)
[contains(msg,msgs)]

T

T(msg, data)

(seq,msgs)

(seq,msgs)

T

[status=='complete' || status == 'expired']

(msg, data)

seq
Tchtimer TimeoutSeq(seq)

Sequences
SEQ: int STATUS: string

Messages
MSG_ID: int DATA: stringSEQ: int

UpdateSeq(seq,msg,data)

seq

int*intlist*string

int*string

Qmsgs(msg,seq)

(seq, status)

{"complete","expired"}

CreateSeq
(seq,msg,data)

Qseqs(seq,status)

DB schema

Net

[contains(msgs,msg)]

colset intlist = list int;
var msg : int; var seq: int;
var msgs: intlist;
var status, data: string;
var msg , msg ;

Qmsgs(msg,seq, data):-
 SELECT DISTINCT seq, GROUP_LIST(msg), GROUP_CONCAT(data)
 FROM Messages GROUP BY seq;
Qseqs(seq,status):- SELECT * FROM Sequences;

UpdateSeq(seq,msg,data)=
<DEL{}, ADD{Messages(msg,seq,data)}>;

CreateSeq(seq,msg,data)=
<DEL{}, ADD{Sequences(seq,NULL),
 Messages(msg,seq,data)}>;

TimeoutSeq(seq)= <DEL{Sequences(seq,NULL)},
 ADD{Sequences(seq,"expired")}>;

Actions

Queries

int string

int

[@30]

int

int

Figure 10: Sequential composition of timed db-net realizations of a join router and an aggregator

Note that the new colour assignment is well-defined on the
quotient (PA ⊎ PB)/ ∼ since the two constituent nets have com-
patible boundaries, by assumption.

Example 7. In Fig. 10, we see the sequential composition
JoinRouter # Aggregator of the timed db-net realisation of a
join router followed by an aggregator. The two nets have been
glued together at their common boundary.

Composition of nets behaves as expected: it is associative,
and there is an identity net which is a unit for composition.
Furthermore, the parallel and sequential compositions interact
well, in the sense that we get the same result no matter if we
first compose in parallel and then sequentially, or the other way
around. All in all, this means that nets with boundaries are the
morphisms of a strict monoidal category [48]:

Lemma 1. For any open timed db-nets N, M, K with compat-
ible boundaries, we have N # (M # K) = (N # M) # K, and for
each boundary configuration c⃗ = [c1, . . . , cn], there is an identity
net idc⃗ : [c1, . . . , cn] → [c1, . . . , cn] such that idc⃗ # N = N and
idc⃗ # M = M for every M, N with compatible boundaries. Fur-
thermore, for every N, M, K, we have N⊗(M⊗K) = (N⊗M)⊗K,
and for compatible nets N # (M ⊗ K) = (N # M) ⊗ (N # K).

Proof. Associativity for both # and ⊗ is straightforward. The
identity net for [c1, . . . , cn] is the net with exactly n places
x1, . . . , xn with color(xi) = ci, that are all both input and output
boundaries. □

In particular, the lemma implies that we can compose nets se-
quentially and in parallel without worrying about how to bracket
the compositions [48].

5.4. CPN Tools Prototype

We prototypically implemented our formalism so as to ex-
periment with pattern compositions via simulation, following
the idea described in [6, Sect. 5]. We have chosen CPN Tools

v4.0.12 for modeling and simulation. As compared to other PN
tools like Renew v2.53, CPN tools supports third-party exten-
sions that can address the persistence and data logic layers of
our formalism. Moreover, CPN Tools handles sophisticated sim-
ulation tasks over models that use the deployed extensions. To
support db-nets, our extension4—denoting an unpublished part
of the first author’s PhD thesis [49]—adds support for defining
view places together with corresponding SQL queries as well
as actions, and realizes the full execution semantics of db-nets
using Java and a PostgreSQL database.

6. Interpreting IPCGs as Open Timed DB-nets

In this section we define the interpretation of integration
pattern contract graphs as timed db-nets with boundaries.

6.1. Interpretation of Single Patterns
We assign an open timed db-net ⟦p⟧ for every node p in

a integration pattern contract graph. Recall that an integration
pattern contract graph has input and output contracts inContr :∏

p∈P(CPT × 2EL)|•p| and outContr :
∏

p∈P(CPT × 2EL)|p•| re-
spectively. If the cardinality of p is k : m, then the open timed
db-net will be of the form

⟦p⟧ :
k⊗

i=1

inContri(p)EL →

m⊗
j=1

outContr j(p)EL

This incorporates the data elements of the input and output
contracts into the boundary of the timed db-net, since these are
essential for the dataflow of the net. In Sec. 6.2.1, we will also
incorporate the remaining concepts from the contracts such as
signatures, encryption and encodings into the interpretation.

The shape of the timed db-net ⟦p⟧ depends on type(p) only,
i.e., we give one interpretation for each pattern type:

2CPN Tools, visited 5/23: https://cpntools.org/
3Renew, visited 5/2023: http://www.renew.de/
4CPN Tools extension for timed db-net with boundaries and pattern models

(i.e., mainly ∗boundary∗ .cpn, ∗ f usion∗ .cpn) is available for download, visited
5/2023: https://github.com/dritter-hd/db-net-eip-patterns.

15

https://cpntools.org/
http://www.renew.de/
https://github.com/dritter-hd/db-net-eip-patterns

DB	schema

Net Actions

Queries

(a) Start

�ℎ��

DB	schema

Net Actions

Queries

�

(b) End

Figure 11: Start and end patterns

Net

Actions

colset		..;
var	msg:	..;

msg msg

msgmsg

Queries DB	schema

Figure 12: Interpretation of an unconditional fork pattern.

Start and end pattern types. We interpret a start pattern pstart
as the open timed db-net ⟦pstart⟧ : I → colorout(pstart) shown
in Fig. 11(a). Similarily, Fig. 11(b) shows the interpretation of an
end pattern pend as an open timed db-net ⟦pend⟧ : colorin(pend) →
I.

Non-conditional fork patterns. We interpret a non-conditional
fork pattern pfork with cardinality 1 : n as the open timed db-net
⟦pfork⟧ : colorin(pfork)→

⊗n
j=1 colorout(pfork) j shown in Fig. 12.

Non-conditional join patterns. We interpret a non-conditional
join pattern pjoin with cardinality m : 1 as the open timed
db-net ⟦pjoin⟧ :

⊗m
j=1 colorin(pjoin) j → colorout(pjoin) shown

in Fig. 13.

Conditional fork patterns. We interpret a conditional fork pat-
tern pcfork of cardinality 1 : n with conditions cond1, . . . , condn−1
in its pattern characteristic assignment as the open timed db-net
⟦pcfork⟧ : colorin(pcfork)→

⊗n
j=1 colorout(pcfork) j shown in Fig. 14.

Note that net is constructed so that the conditions are evaluated
in order — the transition corresponding to condition k will only
fire if condition k is true, and conditions 1, . . . , k − 1 are false.
The last transition will fire if all conditions evaluate to false.

Message processor patterns. We interpret a message processor
pattern pmp with storage schema S , actions A, query Q, con-
dition cond, time τ and program f in its pattern characteristic

Netcolset		..;
var	

Actions Queries DB	schema

Figure 13: Interpretation of an unconditional join pattern

[]

[]

[
]

Net

Actions Queries DB	schema

colset		..;
var	msg:	..;
fun	 	=	...,	...
fun	 =...;

msg
msg

msg

m
sg

msg

msg

Figure 14: Interpretation of a conditional fork pattern

assignment as the open timed db-net ⟦pmp⟧ : colorin(pmp) →
colorout(pmp) shown in Fig. 15. If the condition cond and timing
window τ are satisfied, the incoming message possibly gets en-
riched by data from the query Q and action A might be triggered,
before the program f transforms the data into possibly multiple
messages, collected in a list. These get emitted one by one.

Of course, not all features need to be used by all message
processor patterns (e.g., no storage for control-time delayer).

Merge patterns. We interpret a merge pattern pmerge with ag-
gregation function f and timeout τ as the open timed db-net
⟦pmerge⟧ : colorin(pmerge) → colorout(pmerge) shown in Fig. 16,
where contains(msg, msgs) is defined to be the function that
checks if msg occurs in the list msgs. Briefly, the net works as
follows: the first message in a sequence makes transition T1 fire,
which creates a new database record for the sequence, and starts
a timer. Each subsequent message from the same sequence gets
stored in the database using transition T2, until τ seconds has
elapsed, which will fire transition T3. The action associated to
T3 will make the condition for the Aggregate transition true,
which will retrieve all messages msgs and then put f (msgs) in
the output place of the net.

16

msg f(msg, store)
T1

var msg, xs;
var store: S;
fun hd(xs) = .., tl(xs) = ..;

Qds(obj):- Q

A(id,value) = A;

DataSource
S

Qds(val)
store

xs

xs

hd(xs)

tl(xs)

[List.null(xs)]

[List.null(xs)][cond(msg)

A(msg, store)

Net Actions

Queries

DB schema

DataSource

Figure 15: Interpretation of a message processor pattern.

(seq, msgs) chout
((msg),age)

chin (msg,age)

[]

(msg,age)

(seq,msgs)

(seq,msgs)

[status=='complete' ||
status == 'expired']

(msg,age)

(seq,age)

chtimer TimeoutSeq(seq)T3

Sequences
SEQ: int STATUS: string

Messages
MSG_ID: int DATA: stringSEQ: int

UpdateSeq(seq,msg,data)

(seq,age)

ms

Qmsgs(msg,seq)

(seq, status}

{"complete","expired"}

CreateSeq
(seq,msg,data) chp

Qseqs(seq,status)

T1

T2

Aggregate

DB schema

Net

[]

colset Alist = list ;
var msg : ; var seq: int;
var msgs: AList;
var status: string;

Qmsgs(msg,seq):-
 SELECT DISTINCT seq,
 GROUP_LIST(msg)
 FROM Messages GROUP BY seq;

Qseqs(seq,status):-
 SELECT * FROM Sequences;

UpdateSeq(seq,msg,data)=
<DEL{}, ADD{Messages(msg,seq,data)}>;

CreateSeq(seq,msg,data)=
<DEL{}, ADD{Sequences(seq,NULL),
 Messages(msg,seq,data)}>;

TimeoutSeq(seq)= <DEL{Sequences(seq,NULL)},
 ADD{Sequences(seq,"expired")}>;

Actions

Queries

@

Figure 16: Interpretation of a merge pattern

chsc1

chin
msg msg'

T1

var	msg,	msg',	x;

chout

chsc2

msg

x T2
msg

msg'

Net

Actions

Queries

DB	schema

Figure 17: Interpretation of an external call pattern.

External call patterns. We interpret an external call pattern pcall
to the timed db-net with boundaries ⟦pcall⟧ : A ⊗ B → B ⊗ A
shown in Fig. 17, where the boundary ports chsc1 and chsc2 are
meant to be plugged into the pattern representing the external
process called. Token x feeding into transition T2 ensures that
the external process does not inject unasked for messages into
the pattern.

6.2. Interpreting integration pattern contract graphs

We now show how to interpret not just individual nodes from
an integration pattern contract graph, but how to also take edges

into account. We first enrich the interpretations of single patterns
with transitions and guards to enable and enforce the concepts
from output and input contracts in Sec. 6.2.1, and then prove that
composing the interpretation of individual patterns according to
how they are connected in the graph gives rise to a well-formed
timed db-net in Sec. 6.2.2.

6.2.1. Taking contract concepts into account
Recall that a pattern contract also represents concepts, i.e.,

properties of the exchanged data, such as if a pattern is able
to process or produce signed, encrypted or encoded data. A
message can only be sent from one pattern to another if their
contracts match, i.e., if they agree on these properties. To reflect
this in the timed db-nets semantics, we enrich all colorsets to
also keep track of this information: given a place P with colorset
C, we construct the colorset C × {yes, no}3, where the color
(x, bsign, bencr, benc) is intended to mean that the data value x is
respectively signed, encrypted and encoded or not according to
the yes/no values bsign, bencr, and benc. To enforce the contracts,
we also make sure that every token entering an input place cin is
guarded according to the input contract by creating a new place
ch′in and a new transition from ch′in to chin, which conditionally
forwards tokens whose properties match the contract. The new
place ch′in replaces chin as an input place. Dually, for each output

17

place chout we create a new place ch′out and a new transition from
chout to ch′out which ensures that all tokens satisfy the output
contract, via a new transition for each combination of output
contract values. The new place ch′out replaces chout as an output
place. Formally, the construction is as follows:

Definition 10. Let X : ⊗i<mci → ⊗i<nc′i be an open timed db-
net, and C⃗ = IC1, . . . , ICm,OC1, . . . ,OCn be a list of integration
concepts with ICi,OC j ∈ CPT. Define the open timed db-net

XCPT(C⃗) : ⊗i<m(ci × {yes, no}3)→ ⊗i<n(c′i × {yes, no}3)

with the same type domains, persistence layers and data logic
layers as X, but with control layer

N ′ = (P′,T ′, F′in, F
′
out, F

′
rb, color

′, query, guard′, action′)

with

P′ = P ⊎ {ch′in,1, . . . , ch′in,m, ch′out,1, . . . , ch′out,1}

T ′ = T ⊎ Tin ⊎ Tout

where Tin = {tin,1, . . . , tin,m, } and

Tout = {tout,1,⃗b, . . . , tout,n,⃗b | b⃗ ∈ {yes, no}3}

F′in(x) =

Fin(p, t) if x = (inP(p), inT (t))
{(y, ysign, yencr, yenc)} if x = (chin,i, tin,i)
{y} if x = (chout, j, tout, j,⃗b)

and b⃗ = (bsign, bencr, benc)
with (OC j)CPT (p) ∈ {bp, any}

∅ otherwise

F′out(x) =

Fout(p, t) if x = (inP(p), inT (t))
{y} if x = (chin,i, tin,i)
{(y, b⃗)} if x = (chout, j, tout, j,⃗b)

and b⃗ = (bsign, bencr, benc)
with (OC j)CPT (p) ∈ {bp, any}

∅ otherwise

F′rb(x) =

Frb(p, t) if x = (inP(p), inT (t))
∅ otherwise

guard′(inT (t) = guard(t)

guard′(tin,i) =
∧

{p | (ICi)CPT (p),any}

yp = (ICi)CPT (p)

guard′(tout, j) = ⊤
action′ = [action, ti 7→ −, t′j 7→ −]

τ′ = [τ, ti 7→ [0,∞], t′j 7→ [0,∞]]

The pattern contract construction in Definition 10, can again
be realized as template translation on an inter pattern level, as
shown in Fig. 18. On the input side, a token token (y, bsign, bencr,
benc) only enables the transition tin,i if (bsign, bencr, benc) fulfils the
input contract ICi, in which case the metadata is stripped and
only the message y passed to the actual pattern. On the output
side, any of the boundary transitions tout,i,(bsign,bencr,benc) may fire
and enrich the data y with metadata (bsign, bencr, benc), ready to
be passed to the next pattern.

Let us consider two examples to gain an understanding of
the construction.

Example 8. Figure 19 shows the translation of a message trans-
lator pattern MT with input contract {(ENC, no), (ENCR, no),
(S IGN, any)} and output contract {(ENC, no), (ENCR, no),
(S IGN, any)}. The input transition T ′ hence checks the guard
[x, no, any, no], and if it matches, the token is forwarded to the
actual message translator. After the transformation, the result-
ing message msg′ is not encrypted, the signing is invalid, and
not encoded, and thus emits (x, no, no, no).

Example 9. A join router structurally combines many incoming
to one outgoing message channel without accessing the data.
Consequently, both input and output contracts have any for all
properties. Figure 20 shows the result of the boundary construc-
tion for the join router. The input boundary does not enforce
CPT constraints, and thus no guards are defined for the tran-
sitions. The output boundary, however, supplies all 8 different
permutations of {yes,no} for the three CPT properties.

6.2.2. Synchronising Pattern Compositions and correctness of
the translation

We are now in a position to define the full translation of a
correct integration pattern contract graph G. For the translation
to be well-defined, we need only data element correctness of the
graph. Concept correctness is used to show that in the nets in
the image of the translation, tokens can always flow from the
translation of the start node to the translation of the end node.

Theorem 1. Let a correct integration pattern contract graph G
be given. For each node p, consider the timed db-net

⟦p⟧CPT(inContr(p),outContr(p)) :
k⊗

i=1

colorin(p)i →

m⊗
j=1

colorout(p) j

Use the graphical language [48] enabled by Lemma 1 to com-
pose these nets according to the edges of the graph. The resulting
timed db-net is then well-defined, and has the option to complete,
i.e., from each marking reachable from a marking with a token
in some input place, it is possible to reach a marking with a
token in an output place.

Proof. Since the graph is assumed to be correct, all input con-
tracts match the output contracts of the nets composed with it,
which by the data element correctness means that the boundary
configurations match, so that the result is well-defined.

To see that the constructed net also has the option to com-
plete, first note that the interpretations of basic patterns in

18

chout,1

chin, 1

var y, ysign, yencr, yenc;
guard1(y,ysign,yencr,yenc): ...
...
guardn(y,ysign,yencr,yenc): ...

ch'out, 1

Ti
y

Tout, 1, (Y,Y,Y)

(y,ysign,yencr,yenc)
ch'in, 1 tin, 1

[guard1]

...

y

Net
Actions

Queries

DB schema

(y, Y, Y, Y)

Tout, 1, (Y,Y,N)

...

y

Tout, 1, (N,N,N)

(y, Y, Y, N)

(y, N, N, N)

y

chout,m ch'out, m

Ti
y

Tout, m, (Y,Y,Y)
(y, Y, Y, Y)

Tout, m, (Y,Y,N)
...

y

Tout, m, (Y,N,N)

(y, Y, Y, N)

(y, Y, N, N)

y

......

chin, n(y,ysign,yencr,yenc)ch'in, n tin, n

[guardn]

y

Figure 18: Boundary construction template.

choutchin

var y,ysign,yencr,yenc, y';

ch'outT2

(y',N,N,N)
y'(y,ysign,yencr,yenc)

ch'in tin

[ysign=Y yenc=N] translate

y y y'

Net

Actions

Queries

DB schema

tout

Figure 19: Example: message translator construction

Sec. 6.1 do (in particular, one transition is always enabled in
the translation of a conditional fork pattern in Fig. 14, and the
aggregate transition will always be enabled after the timeout in
the translation of a merge pattern in Fig. 16). By the way the
interpretation is defined, all that remains to show is that if N and
N′ have the option to complete, then so does NCPT(C⃗) ◦ N′

CPT(C⃗′)
,

if the contracts C⃗ and C⃗′ match. Assume a marking with a token
in an input place of N′. Since N′ has the option to complete,
a marking with a token in an output place of N′ is reachable,
and since the contracts match, this token will satisfy the guard
imposed by the NCPT(C⃗) construction. Hence a marking with
a token in an input place of N is reachable, and the statement
follows, as N has the option to complete. □

6.3. Discussion

Solely giving an interpretation of pattern compositions as
timed db-nets does not guarantee correctness. However, Theo-
rem 1 gives confidence in the translation itself, as it shows that
the output of the translation is structurally well-behaved (i.e.,
input cardinalities match output cardinalities), and also semanti-
cally well-behaved, in the sense that tokens flowing through the

resulting timed db-net cannot get “stuck” (i.e., having the option
to complete). Note that having a translation targeting timed
db-nets means that one can now formulate formal conjectures
and prove them, perhaps for classes of integration patterns.

7. Optimization Strategy Realization

In this section we formally define the optimizations from the
different strategies identified in Tab. 2 in the form of a rule-based
graph rewriting system (addressing REQ-7). This gives a formal
framework in which different optimizations can be compared.
We begin by describing the graph rewriting framework, and
subsequently apply it to define the optimizations.

7.1. Graph Rewriting

Graph rewriting provides a visual framework for transform-
ing graphs in a rule-based fashion. A graph rewriting rule is
given by two embeddings of graphs L ←↩ K ↪→ R, where L
represents the left hand side of the rewrite rule, R the right hand
side, and K their intersection (the parts of the graph that should
be preserved by the rule). A rewrite rule can be applied to a

19

y'

choutchin, 1

var y1, y2, y3, y4, y';
var y1

sign,y1
encr, y

1
enc;

var y2
sign,y2

encr, y
2
enc; ...

var yn
sign,yn

encr, y
n
enc;

ch'out

(y', Y, Y, Y)

t

(y1,y1sign,y1encr, y1enc)

ch'in, 1 tin, 1

...

y1

y2

yn

y1

y2

yn

...

Net

Actions

Queries

DB schema
y1

chin, 2
(y2,y2sign,y2encr, y2enc)

ch'in, 2
y2

chin, n
(yn,ynsign,ynencr, ynenc)

ch'in, n
yn

tin, 2

tin, n

y'
(y', Y, Y, N)

y'
(y', Y, N, Y)

y'
(y', Y, N, N)

y' (y', N, Y, Y)
y' (y', N, Y, N)y'

(y', N, N, Y)y'

(y', N, N, N)

Figure 20: Join router construction

graph G after a match of L in G has been given as an embedding
L ↪→ G; this replaces the match of L in G by R. The applica-
tion of a rule is potentially non-deterministic: several distinct
matches can be possible [50]. Visually, we represent a rewrite
rule by a left hand side and a right hand side graph colored green
and red: green parts are shared and represent K, while the red
parts are to be deleted in the left hand side, and inserted in the
right hand side respectively. For instance, the following rewrite
rule moves the node P1 past a fork by making a copy in each
branch, changing its label from c to c′ in the process:

Formally, the rewritten graph is constructed using a double-
pushout (DPO) [51] from category theory. We use DPO rewrit-
ing since rule applications are side-effect free (e.g., no “dangling”
edges) and local (i.e., all graph changes are described by the
rules). We additionally use Habel and Plump’s relabeling DPO
extension [52] to facilitate the relabeling of nodes in partially la-
beled graphs. In Fig. 7, we showed contracts and characteristics
in dashed boxes, but in the rules that follow, we will represent
them as (schematic) labels inside the nodes for space reasons.

In addition, we also consider rewrite rules parameterized
by graphs, where we draw the parameter graph as a cloud (see
e.g., Fig. 21(a) for an example). A cloud represents any graph,
sometimes with some side-conditions that are stated together
with the rule. When looking for a match in a given graph G, it is
of course sufficient to instantiate clouds with subgraphs of G —
this way, we can reduce the infinite number of rules that a param-
eterized rewrite rule represents to a finite number. Parameterized
rewrite rules can formally be represented using substitution of
hypergraphs [53] or by !-boxes in open graphs [54]. Since we
describe optimization strategies as graph rewrite rules, we can
be flexible with when and in what order we apply the strategies.
We apply the rules repeatedly until a fixed point is reached, i.e.,
when no further changes are possible, making the process idem-

CECE
SG1 CBR

...

...

SG2

...

...

SG'1

...

... CBR

i1 in j1 jn

o1om k1 km o1 om k1 km
CF CF CFCF

... ...i1 in j1 jn

CE
...

...

CE

...

(a) Redundant sub-process

(b) Combine sibling patterns

Figure 21: Rules for redundant sub-process and combine sibling patterns.

potent. Each rule application preserves IPCG correctness in the
sense of Definition 5, because input contracts do not get more
specific, and output contracts remain the same. Methodologi-
cally, the rules are specified by pre-conditions, change primitives,
post-conditions and an optimization effect, where the pre- and
post-conditions are implicit in the applicability and result of the
rewriting rule.

7.2. OS-1: Process Simplification

We first consider the process simplification strategies from
Sec. 3.2 OS-1 to OS-3 that mainly strive to reduce the model
complexity and latency.

7.2.1. Redundant sub-process
This optimization removes redundant copies of the same

sub-process within a process.
Change primitives: The rewriting is given by the rule in Fig. 21(a),
where S G1 and S G2 are isomorphic pattern graphs with in-
degree n and out-degree m. The Content Enricher (CE) node is

20

a message processor pattern from Fig. 15 with a pattern char-
acteristic (PRG, (addCtxt, [0,∞))) for an enrichment program
addCtxt which is used to add content to the message (does it
come from the left or right subgraph?). Similarly, the Con-
tent Filter (CF) is a message processor, with a pattern char-
acteristic (PRG, (removeCtxt, [0,∞))) for an enrichment pro-
gram removeCtxt which is used to remove the added content
from the message again. Moreover, the Content-based Router
(CBR) node is a conditional fork pattern from Fig. 14 with a pat-
tern characteristic (CND, {fromLeft?}) for a condition fromLeft?
which is used to route messages depending on their added con-
text. In the right hand side of the rule, the CE nodes add the
context of the predecessor node to the message in the form of a
content enricher pattern, and the CBR nodes are content-based
routers that route the message to the correct recipient based on
the context introduced by CE. The graph S G′1 is the same as
S G1, but with the context introduced by CE copied along ev-
erywhere. This context is stripped off the message by a content
filter CF.
Effect: The optimization is beneficial for model complexity
when the isomorphic subgraphs contain more than n + m nodes,
where n is the in-degree and m the out-degree of the isomorphic
subgraphs. The latency reduction is by the factor of subgraphs
minus the latency introduced by the additional n CE nodes, m
CBR nodes and 2m CF nodes.

7.2.2. Combine sibling patterns
Sibling patterns have the same parent node in the pattern

graph (e.g., they follow a non-conditional forking pattern) with
channel cardinality of 1:1. Combining them means that only one
copy of a message is traveling through the graph instead of two
— for this transformation to be correct in general, the siblings
also need to be side-effect free, i.e., no external calls.
Change primitives: The rule is given in Fig. 21(b), where S G1
and S G2 are isomorphic side-effect free pattern graphs, and F is
a fork.
Effect: The model complexity and latency are reduced by the
model complexity and latency of S G2.

7.3. OS-2: Data Reduction

Now, we consider data reduction optimization strategies,
which mainly target improvements of the message throughput
(incl. reducing element cardinalities). These optimizations re-
quire that pattern input and output contracts are regularly up-
dated with snapshots of element data sets ELin and ELout from
live systems, e.g., from experimental measurements through
benchmarks [55].

7.3.1. Early-Filter
A filter pattern can be moved to or inserted prior to some of

its successors to reduce the data to be processed. The following
types of filters have to be differentiated:

• A message filter removes messages with invalid or in-
complete content. It can be used to prevent exceptional
situations, and thus improves stability.

P2

C/M	F

P2

P1 P1
P3

(a) Early Filter

MT

SG2
P1

MT SG2

CF

P1

P3
P4P4

P3

P5

(b) Early Mapping

Figure 22: Rules for early-filter and early-mapping.

• A content filter removes elements from messages, thus
reduces the amount of data passed to subsequent patterns.

Both patterns are message processors in the sense of Fig. 15.
The content filter assigns a filter function (prg1, ([0,∞)) →
f (msg, value) to remove data from the message (i.e., without
temporal information), and the message filter assigns a filter
condition {(cond1)} → g(msg).
Change primitives: The rule is given in Fig. 22(a), where P3 is
either a content or message filter matching the output contracts
of P1 and the input contract of P2, removing the data not used
by P2.
Effect: Message throughput increases by the ratio of the number
of reduced elements that are processed per second, unless limited
by the throughput of the additional pattern.

7.3.2. Early-Mapping
A mapping that reduces the number of elements in a message

can increase the message throughput.
Change primitives: The rule is given in Fig. 22(b), where P3
is an element reducing message mapping compatible with both
S G2, P4, and P1, S G2, and where P4 does not modify the el-
ements mentioned in the output contract of P3. Furthermore
P5 is a content filter, which ensures that the input contract of
P4 is satisfied. The Message Translator (MT) node is a mes-
sage processor pattern from Fig. 15 with a pattern characteristic
(PRG, (prg, [0,∞))) for some program prg which is used to
transform the message.
Effect: The message throughput for the subgraph subsequent to
the mapping increases by the ratio of the number of unnecessary
data elements processed.

7.3.3. Early-Aggregation
A micro-batch processing region is a subgraph which con-

tains patterns that are able to process multiple messages com-
bined to a multi-message [31] or one message with multiple
segments with an increased message throughput. The optimal

21

SG3

SG2

SG3

SG'2

SG1 SG1

SP

AG
P1

P2

(a) Early-Aggregation

SG2 SG2

CE

CC
P1

P2

(b) Early-Claim Check

Figure 23: Rules for early-aggregation and early-claim check

number of aggregations is determined by the highest batch-size
for the throughput ratio of the pattern with the lowest throughput,
if latency is not considered.
Change primitives: The rule is given in Fig. 23(a), where S G2
is a micro-batch processing region, P1 an aggregator, P2 a split-
ter which separates the batch entries to distinct messages to
reverse the aggregation, and S G′2 finally is S G2 modified to
process micro-batched messages. The Aggregator (AG) node
is a merge pattern from Fig. 16 with a pattern characteristic
{(CND, {cndcr, cndcc}), (PRG, prgagg, (v1, v2)} for some correla-
tion condition cndcr, completion condition cndcc, aggregation
function prgagg, and timeout interval (v1, v2). The Splitter (SP)
node is a message processor from Fig. 15 with a pattern charac-
teristic (PRG, (prg, [0,∞))) for some split function prg which
is used to split the message into several ones.
Effect: The message throughput is the minimal pattern through-
put of all patterns in the micro-batch processing region. If the
region is followed by patterns with less throughput, only the
overall latency might be improved.

7.3.4. Early Claim Check
If a subgraph does not contain a pattern with message access,

the message payload can be stored intermediately persistently
or transiently (depending on the quality of service level) and
not moved through the subgraph. For instance, this applies to
subgraphs consisting of data independent control-flow logic only,
or those that operate entirely on the message header (e.g., header
routing).
Change primitives: The rule is given in Fig. 23(b), where S G2
is a message access-free subgraph, P1 a claim check that stores
the message payload and adds a claim to the message properties
(and possibly routing information to the message header), and P2
a content enricher that adds the original payload to the message.
The Claim Check (CC) node is a message processor from Fig. 15
with a pattern characteristic (PRG, (, [0,∞))), which stores the
message for later retrieval.

SSQ1
SSQ1

SP

SP

P1

P'1

P0

P2

P0

P2

(a) Early Split

SSQ1 SSQ1

SP

AG

P1

P2

P0

P3

P0

P3

(b) Early Split (inserted)

Figure 24: Rules for early split.

Effect: The main memory consumption and CPU load decreases,
which could increase the message throughput of S G2, if the
claim check and content enricher pattern throughput is greater
than or equal to the improved throughput of each of the patterns
in the subgraph.

7.3.5. Early-Split
Messages with many segments can be reduced to several

messages with fewer segments, and thereby reducing the pro-
cessing per message. A segment is an iterable part of a message,
such as a list of elements. When such a message grows big-
ger, the message throughput of a set of adjacent patterns might
decrease, compared to the expected performance for a single
segment; a phenomenon called segment bottleneck sub-sequence.
Algorithmically, such bottlenecks can be found using max flow-
min cut techniques based on workload statistics. The splitter
(SP) node is a message processor from Fig. 15 with a pattern
characteristic (PRG, (prg, [0,∞))), for some split program prg.
Change primitives: The rule is given in Fig. 24, where S S Q1
is a segment bottleneck sub-sequence. If S S Q1 already has an
adjacent splitter, Fig. 24(a) applies, otherwise Fig. 24(b). In the
latter case, S P is a splitter and P2 is an aggregator that re-builds
the required segments for the successor in S G2. For an already
existing splitter P1 in Fig. 24(a), the split condition has to be
adjusted to the elements required by the input contract of the
subsequent pattern in S S Q1. In both cases we assume that the
patterns in S S Q1 deal with single- and multi-segment messages;
otherwise all patterns have to be adjusted.
Effect: The message throughput increases by the ratio of re-
duced number of message segments per message, if the through-
put of the moved / added splitter (and aggregator) ≥ throughput
of each of the patterns in the segment bottleneck sub-sequence
after the segment reduction.

22

P1P1

SSQ1

SSQ'1

F
SSQ'n

JR
P2

P3 ...

P2

P4

(a) Sequence to parallel

P1 P1

SSQ1

SSQ'1

F
SSQ'n

JR
P2

P3 ...

P2

P4

(b) Merge parallel

Figure 25: Rules for sequence to parallel variants.

7.4. OS-3: Parallelization

Parallelization optimization strategies increase message through-
put, and again require experimentally measured message through-
put statistics, e.g., from benchmarks [55].

7.4.1. Sequence to parallel
A bottleneck sub-sequence with channel cardinality 1:1 can

also be handled by distributing its input and replicating its logic.
The parallelization factor is the average message throughput
of the predecessor and successor of the sequence divided by
two, which denotes the improvement potential of the bottleneck
sub-sequence. The goal is to not overachieve the mean of pre-
decessor and successor throughput with the improvement to
avoid iterative re-optimization. Hence the optimization is only
executed, if the parallel sub-sequence reaches lower throughput
than their minimum.
Change primitives: The rule is given in Fig. 25(a), where
S S Q1 is a bottleneck sub-sequence, P2 a fork node, P3 a join
router, and each S S Q′k is a copy of S S Q1, for 1 ≤ k ≤ n. The
parallelization factor n is a parameter of the rule.
Effect: The message throughput improvement rate depends on
the parallelization factor n, and the message throughput of the
balancing fork and join router on the runtime. For a measured
throughput t of the bottleneck sub-sequences, the throughput can
be improved to n×t ≤ average of the sums of the predecessor and
successor throughput, which is limited by the upper boundary
of the balancing fork or join router.

7.4.2. Merge parallel
The balancing fork and join router realizations can limit the

throughput in some runtime systems, so that a parallelization
decreases the throughput, e.g., when a fork or a join has smaller
throughput than a pattern in the following sub-sequence.
Change primitives: The rule is given in Fig. 25(b), where
P3 and P4 limit the message throughput of each of the n sub-
sequence copies S S Q′1, . . . , S S Q′n of S S Q1.

P4

P5

P1 P1
F

JRAG

P3

SSQ1

SSQn

... SSQn...

SSQ1

P2 P2

Figure 26: Heterogeneous sequence to parallel.

Effect: The model complexity is reduced by (n − 1)k − 2, where
each S S Q′i contains k nodes. The message throughput might
improve, since the transformation lifts the limiting upper bound-
ary of a badly performing balancing fork or join router imple-
mentations to the lowest pattern throughput in the bottleneck
sub-sequence.

7.4.3. Heterogeneous Parallelization
A heterogeneous parallelization consists of parallel sub-

sequences that are not isomorphic. In general, two subsequent
patterns Pi and P j can be parallelized, if the predecessor pattern
of Pi fulfills the input contract of P j, Pi behaves read-only with
respect to the data element set of P j, and the combined outbound
contracts of Pi and P j fulfill the input contract of the successor
pattern of P j.
Change primitives: The rule is given in Fig. 26, where the
sequential sub-sequence parts S S Q1, .., S S Qn are side-effect
free and can be parallelized, P3 is a parallel fork, P4 is a join
router, and P5 is an aggregator that waits for messages from all
sub-sequence branches before emitting a combined message that
fulfills the input contract of P2.
Effect: Synchronization latency can be improved, but the model
complexity increases by 3. The latency improves from the sum
of the sequential pattern latencies to the maximal latency of all
sub-sequence parts plus the fork, join, and aggregator latencies.

7.5. OS-4: Pattern Placement
All of the data reduction optimizations discussed in Sec. 7.3

can be applied in OS-4, i.e., “Pushdown to Endpoint”, by ex-
tending the placement to the message endpoints, with contracts
similar to our definition. However, due to our focus on the in-
tegration processes, we will not further elaborate on it in this
work.

7.6. OS-5: Reduce Interaction
Optimization strategies that reduce interactions target a more

resilient behavior of an integration process.

7.6.1. Ignore Failing Endpoints
When endpoints fail, different exceptional situations have to

be handled on the caller side. This can come with long timeouts,
which can block the caller and increase latency. Knowing that an
endpoint is unreliable can speed up processing, by immediately
falling back to an alternative.
Change primitives: The rule is given in Fig. 27(a), where
S Gext is a failing endpoint, S G1 and S G2 subgraphs, and P1 is a

23

cfP1 SG1

SGext

cfP1 SG1

SGext

(a) Ignore Failing Endpoint

7

cfP1 SG1

SGext

cfP1 SG1

SGext

(b) Try Failing Endpoint

Figure 27: Rules for ignore failing endpoints.

(a) Reduce Requests

Figure 28: Rules for reduce requests.

service call or message send pattern with configuration c f . This
specifies the collected number of subsequently failed delivery
attempts to the endpoint or a configurable time interval. If one of
these thresholds is reached, the process stops calling S Gext and
does not continue with the usual processing in S G1, however,
invokes an alternative processing or exception handling in S G2.
Effect: Besides improved latency (i.e., average time to response
from endpoint in case of failure), the integration process behaves
more stable due to immediate alternative processing. To not
exclude the remote endpoint forever, the rule in Fig. 27(b) is
scheduled for execution after a period of time to try whether the
endpoint is still failing. If not, the configuration is updated to c f ′

to avoid the execution of Fig. 27(a). The retry time is adjusted
depending on experienced values (e.g., endpoint is down every
two hours for ten minutes).

7.6.2. Reduce Requests
A message limited endpoint, i.e., an endpoint that is not

able to handle a high rate of requests, can get unresponsive
or fail. To avoid this, the caller can notice this (e.g., by TCP
back-pressure) and react by reducing the number or frequency
of requests. This can be done be employing a throttling or even
sampling pattern [4], which removes messages. An aggregator
can also help to combine messages to multi-messages [31].

Change primitives: The rewriting is given by the rule in Fig. 28(a),
where P1 is a service call or message send pattern, S Gext a mes-
sage limited external endpoint, S G2 a subgraph with S G′2 a
re-configured copy of S G2 (e.g., for vectorized message process-
ing [31]), and S Gcs a subgraph that reduce the pace, or number
of messages sent.
Effect: Latency and message throughput might improve, but this
optimization mainly targets stability of communication. This
is improved by configuring the caller to a message rate that the
receiver can handle.

7.7. Optimization Correctness

We now show that the optimizations do not change the input-
output behaviour of the pattern graphs in the timed db-nets
semantics, i.e., if we have a rewrite rule G ⇒ G′ (cf. Sec. 7.1),
then the constructed timed DB-net with boundaries ⟦G⟧ has the
same observable behaviour as that of ⟦G′⟧ (addressing REQ-
8). More formally, we mean that the transition systems of the
original and the rewritten graphs are bisimilar in a certain sense,
as defined in Definition 11. At a high level, this means that G
can simulate G′ with respect to input-output behaviour, and vice
versa. Recall that we associate a labelled transition system to
each timed DB-net in Sec. 5.2.

Definition 11 (Functional bisimulation). Let B and B′ be timed
DB-nets with equal boundaries, and let ΓBs0

= ⟨S , s0,→⟩ and
ΓB

′

s0
= ⟨S ′, s′0,→

′⟩ be their associated labelled transition sys-
tems. We say that a B-snapshot (I,m) is functionally equivalent
to a B′-snapshot (I′,m′), (I,m) ≈ (I′,m′), if I = I′, and m and
m′ agree on output places except for age variables. Further we
say that ΓBs0

is functionally bisimilar to ΓB
′

s0
, ΓBs0

∼ ΓB
′

s0
, if when-

ever s0 →
∗ (I,m) then there is (I′,m′) such that s′0 →

′∗ (I′,m′),
(I,m) ≈ (I′,m′), and ΓB(I,m) ∼ ΓB

′

(I′,m′), and similarly whenever
s′0 →

∗ (I′,m′) then there is (I,m) such that s0 →
∗ (I,m),

(I′,m′) ≈ (I,m), and ΓB
′

(I′,m′) ∼ ΓB(I,m). ■

The notion of functional bisimulation captures the notion of
having the same output behaviour, in the sense that transition
system can reach a certain configuration of the output places
if and only if the other one can. Note that this definition al-
lows bisimilar transition systems to assign different token ages —
what matters is not the exact age value, but that the correspond-
ing transitions are always possible. Let us discuss an explanatory
example of bisimulation.

Example 10. Figure 29 shows the interpretation of a simple
IPCG as a timed DB-net before and after applying the rewrite
rule for the combining sibling patterns from Fig. 21(b) (for
simplicity without boundaries). The improvement of the opti-
mization is to move S G1 (isomorphic to S G2) in front of the fork-
ing pattern F and leave out S G2, which reduces the modeling
complexity on the right hand side (cf. Fig. 29(b)). The synchro-
nization subnet synch is required to show bisimilarity between
the original and the resulting net, since tokens might be moved
independently in S G1 and S G2 before applying the optimisa-
tion. The subnet (essentially transitions Ts1,Ts2) compensates

24

SG1

P1 F

\(P2

P3

SG2

var	msg,	msg':	INT	 	STRING;×

msg

msg

msg

msg′

msg′msg

msgmsg

msg

msg msg

Net

(a) Before applying the rewrite rule

SG1

P1 \(

P2

P3

var	msg,	msg':	INT	 	STRING;×

msg

msg′

msg F

msg′

msg′ msg′msg

Ts2

Ts1Ps1

Ps2msg′

msg′
msg′

msg′

synch
Net

(b) After applying the rewrite rule

Figure 29: Timed db-net translation of IPCGs before and after applying the
“combine sibling patterns” rewrite rule

for that to ensure that places P2 and P3 can be reached inde-
pendently as well. The timed DB-net B representing Fig. 29(a)
and B′ Fig. 29(b) are bisimilar ΓB(I,m) ∼ ΓB

′

(I,m′) for any database
instance I, and any markings m and m′ with m(P1) = m′(P1)
and m(p) = ∅ = m′(p) for all other p. ■

We will need the following basic lemma to show the correct-
ness of our optimizations, i.e., , that the right and left hand sides
of the respective optimization rules are bisimilar.

Lemma 2. The relation ∼ is an congruence relation with re-
spect to composition of timed db-nets with boundaries, i.e., it
is reflexive, symmetric and transitive, and if if ΓB1

s0 ∼ Γ
B′1
s0 and

Γ
B2
s0 ∼ Γ

B′2
s0 for all s0 on the shared boundary of B1 and B2, then

Γ
B1◦B2
s0 ∼ Γ

B′1◦B
′
2

s0 . □

The following lemma means that it makes sense to ask the
question if the optimized version of an IPCG is bisimilar to the
original IPCG or not.

Lemma 3. Let G and G′ be IPCGs. For each optimisation
rewrite rule G ⇒ G′, ⟦G⟧ and ⟦G′⟧ have the same boundary. □

We are now ready to state and prove our correctness theorem.

Theorem 2 (Change Correctness). Let G and G′ be IPCGs
such that G ⇒ G′ is an optimization rule. For every initial
snapshot s0 of both ⟦G⟧ and ⟦G′⟧, with tokens in input places
only, we have Γ

⟦G⟧
s0 ∼ Γ

⟦G′⟧
s0 .

Proof. We verify the statement for each optimization G ⇒

G′. By Lemma 2, it is enough to show that the parts of the
interpretation of the graphs which are actually modified by the
rewrite are bisimilar.

Redundant Sub-Processes (Sec. 7.2.1). Each move on the left
hand side of the optimization rule in Fig. 21(a) (on Page 20)
either moves tokens into a cloud, out of a cloud, or inside a
cloud. In the first two cases, this can be simulated by the right
hand side by moving the token through the CE or CBR and CF
respectively followed by a move into or out of the cloud, while
in the latter case the corresponding token can be moved in S G′1
up to the isomorphism between S G′1 and the cloud on the left.

Similarly, a move on the right hand side into or out of the
cloud can easily be simulated on the left hand side. Suppose
a transition fires in S G′1. Since all guards in S G′1 have been
modified to require all messages to come from the same enriched
context, the corresponding transition can either be fired in S G1
or S G2.
Combining Sibling Patterns (Sec. 7.2.2). Suppose the left hand
side of Fig. 21(b) (on Page 20) takes a finite number of steps and
ends up with m(P2) tokens in P2 and m(P3) tokens in P3. There
are three possibilities: (i) there are tokens of the same color in
both P2 and P3; or (ii) there is a token in P2 with no matching
token in P3; or (iii) there is a token in P3 with no matching token
in P2. For the first case, the right hand side can simulate the
situation by emulating the steps of the token ending up in P2,
and forking it in the end. For the second case, the right hand side
can simulate the situation by emulating the steps of the token
ending up in P2, then forking it, but not moving one copy of the
token across the boundary layer in the interpretation of the fork
pattern. The third case is similar, using that S G2 is isomorphic
to S G1.

The right hand side can easily be simulated by copying all
moves in S G1 into simultaneous moves in S G1 and the isomor-
phic S G2.
Early-Filter (Sec. 7.3.1). By construction, the filter removes
the data not used by P2, so if the left hand side of Fig. 22(a)
(on Page 21) moves a token to P2, then the same token can be
moved to P2 on the right hand side and vice versa.
Early-Mapping (Sec. 7.3.2). Suppose the left hand side of Fig. 22(b)
(on Page 21) moves a token to P4. The same transitions can then
move the corresponding token to P4 on the right hand side, with
the same payload, by construction. Similarly, the right hand side
can be simulated by the left hand side.
Early-Aggregation (Sec. 7.3.3). The interpretation of the sub-
graph S G2 is equivalent to the interpretation of P1 followed by
S G′2 followed by P3, by construction in Fig. 23(a) (on Page 21),
hence the left hand side and the right hand side are equivalent.
Early Claim Check (Sec. 7.3.4). Since the claim check CC + CE
in Fig. 23(b) (on Page 21) simply stores the data and then adds
it back to the message in the CE step, both sides can simulate
each other.
Early-Split (Sec. 7.3.5). By assumption, P1 followed by S S Q1
(P1 followed by S S Q1 followed by P2 for the inserted early split
in Fig. 24(a) (on Page 22)) is equivalent to S S Q1 followed by
P1, from which the claim immediately follows.
Sequence to Parallel (Sec. 7.4.1), Merge Parallel (Sec. 7.4.2).
The left hand side of Fig. 25(a) (on Page 23) can be simulated by
the right hand side by copying each move in S S Q1 by a move

25

each in S S Q′1 to S S Q′n. If the right hand side moves a token
to an output place, it must move a token through some S S Q′i ,
and the same moves can move a token through S S Q1 in the left
hand side.

The same reasoning applies to the Merge Parallel transfor-
mation in Fig. 25(b), but in reverse.
Heterogeneous Sequence to Parallel (Sec. 7.4.3). By assumption,
the sub-sequences S S Q1 to S S Qn are side-effect free. The right
hand side of Fig. 26 (on Page 23) can simulate the left hand side
as follows: if the left hand side moves a token to an output place,
it must move it through all of S S Q1 to S S Qn. The right hand
side can make the same moves in the same order. For the other
direction, the left hand side can reorder the moves of the right
hand side to first do all moves in S S Q1, then in S S Q2 and so on.
This is still a valid sequence of steps because the subseqences
can be parallelized.
Ignore, try failing endpoints (Sec. 7.6.1). Suppose the left hand
side of Fig. 27(a) takes a finite amount of steps to move a token
to an output place in S G1, however, the transition to S Gext does
not produce a result due to an exceptional situation (i.e., no
change of the marking in c f). Correspondingly, the right hand
side moves the token, however, without the failing, and thus
read-only transition to S Gext, which ensures the equality of the
resulting tokens on either side. Under the same restriction that
the no exception context is returned from S Gext, the right hand
side can simulate the left hand side accordingly.

The situation for try failing endpoints in Fig. 27(b) is the
same in reverse.
Reduce requests (Sec. 7.6.2). Since the only difference between
the left hand side and the right hand side is the slow-down due to
the insertion of the pattern CS , and simulation does not take the
age of messages into account, the left hand side can obviously
simulate the right hand side and vice versa. □

7.8. Discussion

Theorem 2 makes precise in which sense the proposed op-
timization rules are correct, in the sense that they preserve the
“meaning” of integration patterns as defined in our translation to
timed db-nets. We emphasise that this is a property proven by
analysing the proposed optimization rules, and not a fact that we
expect to be decidable for arbitrary rewrite rules. By interpreting
integration patterns as timed db-nets, we however get access to
a framework where it makes sense to prove individual optimiza-
tions correct in the above sense, since there is a formal definition
of the behaviour of (the interpretation of) the integration pattern.

8. Evaluation

In this section, (a) we evaluate the impact of optimization
strategies (i.e., OS-1–3) from Sec. 3.2 that are most relevant to
this work, and (b) we study ReCO for real-world integration
processes.

Process Models Data Specs

ds15
(archive)

ds17
(catalog) configschema mapping

ds15
(IPCGs)

ds17
(IPCGs)

latency

Runtime Benchmark

throughput

G
ra

ph
 D

at
a

Data flow re-construction and
IPCG construction

Automated
discovering, mining

Automated graph
construction

opt.
potentials costs runtime Automated

application of
optimization
strategies

R
es

ul
ts

Figure 30: Pattern composition evaluation pipeline.

8.1. Optimization Strategies

For (a) we quantitatively analyze the effect of optimizations
on two catalogs of integration processes regarding improvements
of model complexity, throughput and latency. The catalogs have
a two year difference to be able to study whether improvements
were found by integration experts within that time span by them-
selves.

Then, we revisit our motivating example from Sec. 2 and
study a more complex integration process regarding applicable
optimization strategies.

8.1.1. Quantitative Analysis
We applied the optimization strategies OS-1–3 to 627 inte-

gration scenarios from the 2017 standard content of the SAP
CPI (called ds17), and compared with 275 scenarios from 2015
(called ds15). Our goal is to show the applicability of our ap-
proach to real-world integration scenarios, as well as the scope
and trade-offs of the optimization strategies. The comparison
with a previous content version features a practical study on
content evolution. To analyze the difference between different
scenario domains, we grouped the scenarios into the following
categories [5]: On-Premise to Cloud (OP2C), Cloud to Cloud
(C2C), and Business to Business (B2B). Since hybrid integration
scenarios such as OP2C target the extension or synchronization
of business data objects, they are usually less complex. In con-
trast native cloud application scenarios such as C2C or B2B
mediate between several endpoints, and thus involve more com-
plex integration logic [5]. The process catalog also contained
a small number of simple Device to Cloud scenarios; none of
them could be improved by our approach.
Setup: Construction and analysis of IPCGs For the analysis,
we constructed an IPCG for each integration scenario follow-
ing the workflow sketched in Fig. 30. Notably, the integration
scenarios are stored as process models in a BPMN-like nota-
tion [4]. The process models reference data specifications such
as schemas (e.g., XSD, WSDL), mapping programs, selectors
(e.g., XPath) and configuration files. For every pattern used in
the process models, runtime statistics are available from bench-
marks [55]. The data specifications are picked up from the 2015
content archive and from the current 2017 content catalog, while

26

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

all op2c c2c b2b misc.

Av
er

ag
e

nu
m

be
r

of
 p

at
te

rn
s

pe
r

sc
en

ar
io

ds15
ds17

Figure 31: Pattern reduction per scenario.

the runtime benchmarks are collected using the open-source
integration system Apache Camel [56]5 as used in SAP CPI. The
mapping and schema information is automatically mined and
added to the patterns as contracts, and the rest of the collected
data as pattern characteristics. For each integration scenario and
each optimization strategy, we determine if the strategy applies,
and if so, if the cost is improved. This analysis runs in about two
minutes in total for all 902 scenarios on our workstation.

We now discuss the improvements for the different kinds of
optimization strategies identified in Sec. 3.2.
Improved Model Complexity: Process Simplification (OS-1).
The relevant metric for the process simplification strategies from
OS-1 is the average reduction in model complexity, shown in
Fig. 31.
Results. Although all scenarios were implemented by integration
experts, who are familiar with the modeling notation and the
underlying runtime semantics, there is still a small amount of
patterns per scenario that could be removed without changing the
execution semantics. On average, the content reduction for the
content from 2015 and 2017 was 1.47 and 2.72 patterns/IPCG,
respectively, with significantly higher numbers in the OP2C
domain.
Conclusions. (1) Even simple process simplifications are not
always obvious to integration experts in scenarios represented
in a control-flow-centric notation (e.g., current SAP CPI does
not use BPMN Data Objects to visualize the data flow); and (2)
the need for process simplification does not seem to diminish as
experts gain more experience.
Improved Bandwidth: Data Reduction (OS-2). Data reduc-
tion impacts the overall bandwidth and message throughput [11].
To evaluate data reduction strategies from OS-2, we leverage
the data element information attached to the IPCG contracts and
characteristics, and follow their usages along edges in the graph,
similar to “ray tracing” algorithms [57]. We collect the data
elements that are used or not used, where possible — we do
not have sufficient design time data to do this for user defined
functions or some of the message construction patterns, such as

5All measurements were conducted on a HP Z600 workstation, equipped
with two Intel X5650 processors clocked at 2.67GHz with a 12 cores, 24GB of
main memory, running a 64-bit Windows 7 SP1 and a JDK version 1.7.0, with
2GB heap space.

request-reply. Based on the resulting data element usages, we
calculate two metrics: the comparison of used vs. unused ele-
ments in Fig. 32(a), and the savings in abstract costs on unused
data elements in Fig. 32(b).
Results. There is a large amount of unused data elements per
scenario for the OP2C scenarios; these are mainly web service
communication and message mappings, for which most of the
data flow can be reconstructed. This is because the predomi-
nantly used EDI and SOA interfaces (e.g., SAP IDOC, SOAP)
for interoperable communication with on-premise applications
define a large set of data structures and elements, which are not
required by the cloud applications, and vice versa. In contrast,
C2C scenarios are usually more complex, and mostly use user
defined functions to transform data, which means that only a
limited analysis of the data element usage is possible.

When calculating the abstract costs for the scenarios with
unused fields, there is an immense cost reduction potential for
the OP2C scenarios as shown in Fig. 32(b). This is achieved by
adding a content filter to the beginning of the scenario, which
removes unused fields. This results in a cost increase |din| =

#unused elements for the content filter, but reduces the cost of
each subsequent pattern up to the point were the elements are
used.
Conclusions. (3) Data flows can best be reconstructed when
design time data based on interoperability standards is available;
and (4) a high number of unused data elements per scenario
indicates where bandwidth reductions are possible.
Improved Latency: Parallelization (OS-3). For the sequence-
to-parallel optimization strategies from OS-3, the relevant metric
is the processing latency of the integration scenario. Because
of the uncertainty in determining whether a parallelization opti-
mization would be beneficial, we first report on the classification
of parallelization candidates in Fig. 33(a). We then report both
the improvements according to our cost model in Fig. 33(b), as
well as the actual measured latency in Fig. 33(c).
Results. Based on the data element level, we classify sce-
nario candidates as parallel, definitely non parallel, or
potentially parallel in Fig. 33(a). The uncertainty is due
to sparse information. From the 2015 catalog, 81% of the sce-
narios are classed as parallel, or potentially parallel,
while the number for the 2017 catalog is 53%. In both cases, the
OP2C and B2B scenarios show the most improvement potential.
Figure 33(b) shows the selection based on our cost model, which
supports the pre-selection of all of these optimization candidates.
The actual, average improvements per impacted scenario are
shown in Fig. 33(c). The average improvements of up to 230
milliseconds per scenario must be understood in the context of
the average runtime per scenario, which is 1.79 seconds. We
make two observations: (a) the cost of the additional fork and
join constructs in Java are high compared to those implemented
in hardware [11], and the improvements could thus be even bet-
ter, and (b) the length of the parallelized pattern sequence is
usually short: on average 2.3 patterns in our scenario catalog.
Conclusions. (5) The parallelization requires low cost fork
and join implementations; and (6) better runtime improvements

27

 0

 200

 400

 600

 800

 1000

 1200

all op2c c2c misc.

N
um

be
r

of
 d

at
a

el
em

en
ts

 p
er

 s
ce

na
rio

Used Elements ds15
Unused Elements ds15
Used Elements ds17
Unused Elements ds17

(a) Used vs. unused data elements

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

all op2c c2c misc.

Ab
st

ra
ct

 c
os

ts
 b

as
ed

 o
n

da
ta

 c
ar

di
na

lit
ie

s
pe

r
sc

en
ar

io

Cost savings ds15
Cost savings ds17

(b) Savings in abstract costs on unused data elements

Figure 32: Unused elements in integration scenarios.

 0

 50

 100

 150

 200

 250

all op2c b2b c2c misc.

N
um

be
r

of
 s

ce
na

rio
s

Parallel ds15
Potentially Parallel ds15
Non Parallel ds15
Parallel ds17
Potentially Parallel ds17
Non Parallel ds17

(a) Parallelization scenario candidates

 0

 50

 100

 150

 200

 250

all op2c b2b c2c misc.Im
pr

ov
em

en
ts

 a
cc

or
di

ng
 t

o
es

tim
at

ed
 a

bs
tr

ac
t

co
st

s
in

 m
s

Parallel ds15
Potentially Parallel ds15
Parallel ds17
Potentially Parallel ds17

(b) Optimized scenarios based on costs

 0

 50

 100

 150

 200

 250

all op2c b2b c2c misc.
La

te
nc

y
im

pr
ov

em
en

ts
 p

er
 s

ce
na

rio
 in

 m
s

Parallel ds15
Potentially Parallel ds15
Parallel ds17
Potentially Parallel ds17

(c) Actual latency improvements

Figure 33: OS-3 “Sequence to parallel” optimization candidates on (a) integration flows, (b) optimization selection based on abstract cost model, and (3) actual
latency improvements.

might be achieved for scenarios with longer parallelizable pat-
tern sequences.

8.1.2. Case Studies
We apply, analyze and discuss the proposed optimization

strategies in the context of two case studies: the Replicate Mate-
rial on-premise to cloud scenario from Fig. 3 in Sec. 2, as well as
an SAP eDocument invoicing cloud to cloud scenario. These sce-
narios are part of the SAP CPI standard, and thus several users
(i.e., SAP’s customers) benefit immediately from improvements.
For instance, we additionally implemented a content monitor
pattern [5] that allowed analysis of the SAP CPI content. This
showed the Material Replicate scenario was used by 546 distinct
customers in 710 integration processes copied from the standard
into their workspace — each one of these users is affected by
the improvement.
Replicate Material (revisited) Recall from Sec. 2 that the Repli-
cate Material scenario is concerned with enriching and translat-
ing messages coming from a CRM before passing them on to a
Cloud for Customer service, as in Fig. 3. As already discussed,
the content enricher and the message translator can be paral-
lelized according to the sequence to parallel optimization from
OS-3. The original and resulting IPCGs are shown in Figs. 7(a)
and 7(b). No throughput optimizations apply.

Latency improvements. The application of this optimization can
be considered, if the latency of the resulting parallelized process
is smaller than the latency of the original process, i.e. if

cost(MC) + max(cost(CE), cost(MT))
+ cost(JR) + cost(AGG)

< cost(CE) + cost(MT)

Subtracting max(cost(CE), cost(MT)) from both sides of the
inequality, we are left with

cost(MC) + cost(JR) + cost(AGG)
< min(cost(CE), cost(MT))

If we assume that the content enricher does not need to make an
external call, its abstract cost becomes

cost(CE)(|din|, |dr |) = |din|,

and plugging in experimental values from a pattern benchmark [55],
we arrive at the inequality (with latency costs in seconds)

0.01 + 0.002 + 0.005 ≮ min(0.005, 0.27)

which tells us that the optimization is not beneficial in this case —
the additional overhead is larger than the saving. However, if the

28

content enricher does use a remote call, cost(CE)(|din|, |dr |) =

|din| + |dr |, and the experimental values now say cost(CE) =

0.021. Hence the optimization is worthwhile, as

0.01 + 0.002 + 0.005 < min(0.021, 0.27) .

Model Complexity. Following Sánchez-González et al. [38], we
measure the model complexity by node count. In this case, the
optimization increases the complexity by 3.
Conclusions. (7) Pattern characteristics are important when de-
ciding if an optimization should be applied (e.g., local vs. remote
enrichment); and (8) there are conflicts between different objec-
tives, as illustrated by the trade-off between latency reduction
and model complexity increase.
eDocuments: Italy Invoicing. The Italian government accepts
electronic invoices from companies, as long as they follow regu-
lations — they have to be correctly formatted, signed, and not be
sent in duplicate. Furthermore, these regulations are subject to
change. This can lead to an ad-hoc integration process such as in
Fig. 34 (simplified). Briefly, the companies’ Fattura Electronica
is used to generate a factorapa document with special header
fields (e.g., Paese, IdCodice), then the message is signed and sent
to the authorities, if it has not been sent previously. The multiple
authorities respond with standard Coglienza, Risposta acknowl-
edgments, that are transformed to a SendInvoiceResponse. We
transformed the BPMN model to an IPCG, tried to apply opti-
mizations, and created a BPMN model again from the optimized
IPCG.
Model Complexity. Our heuristics for deciding in which order
to try to apply different strategies are “simplification before
parallelization” and “structure before data”, since this seems
to enable the largest number of optimizations. Hence we first
try to apply OS-1 strategies: the combine siblings rule matches
the sibling Message Signers, since the preceding content-based
router is a fork. (The signer is also side-effect free, so applying
this rule will not lead to observably different behavior.)
Latency Improvements. Next we try OS-3 strategies. Although
heterogeneous parallelization matches for the CE and the Mes-
sage Encoder, it is not applied since

cost(MC) + cost(JR) + cost(AGG)
≮ min(cost(CE), cost(ME)),

i.e., the overhead is too high, due to the low-latency, local CE.
Finally, the early-filter strategy from OS-2 is applied for the
Content Filter, inserting it between the Content Enricher and
the Message Encoder. No further strategies can be applied. The
resulting integration process translated back from IPCTG to
BPMN is shown in Fig. 35.
Conclusions. (9) The application order OS-1, OS-3, OS-2 seems
most beneficial (“simplification before parallelization”, “struc-
ture before data”); (10) an automatic translation from IPCGs
to concepts like BPMN could be beneficial for connecting with
existing solutions.

8.2. Case Studies: Responsible Pattern Composition
For (b), we evaluate the translation in two case studies of

real-world integration scenarios: the replicate material scenario

from Fig. 3, and a predictive machine maintenance scenario.
The former is an example of hybrid integration, and the latter of
IOT device integration.

For each of the scenarios, we give an integration pattern con-
tract graph with matching contracts, translate it to a timed DB-
net with boundaries, and show how its execution can be simu-
lated. The scenarios are both taken from the SAP Cloud Platform
Integration solution catalog of reference integration scenarios,
and are frequently used by customers [14]. For the simulation we
use the CPN Tools timed DB-net prototype from Sec. 5.4 with
the extension for hierarchical PN composition. In CPN Tools
hierarchies, the patterns can be represented as sub-groups and
pages with explicit in- and out-port type definitions [58], which
we use as part of the boundaries defined in Sec. 5. Thereby
the synchronization is checked based on the CPN color sets of
the port types. The other boundary checks are performed dur-
ing the simulation according to the constructed boundaries (see
construction mechanism in Definition 10 in Sec. 6.2).

8.2.1. Hybrid Integration: Replicate Material
An IPCG representing an integration process for the replica-

tion of material from an enterprise resource planning or customer
relationship management system to a cloud system was given
in Fig. 7(a) in Sec. 4.1. We now add slightly more data in the
form of the pattern characteristics, which provides sufficient in-
formation for the translation to timed DB-nets with boundaries.
Figure 36 depicts the enriched IPCG. The adapters are actually
message processors, however, for simplicity they are represented
as start and end pattern types, ADPTs denoting erp and ADPTr

representing cod. The characteristics of the CE node includes
the tuple (PRG, (prg1, [0,∞))), with enrichment function prg1
which assigns the DOCNUM payload to the new header field
AppID. Similarly, the characteristics of the MT nodes includes a
tuple (PRG, (prg2,)) with mapping program prg2, which maps
the EDI DC40-DOCNUM payload to the MMRR-BMH-ID field
(the Basic Message Header ID of the Material Mass Replica-
tion Request structure), and the EPM-PRODUCT ID payload to
the MMRR-MAT-ID field (the Material ID of the Material Mass
Replication Request structure).

Translation to a Timed DB-Nets with Boundaries. First we trans-
late each single pattern from Fig. 36 according to the construc-
tion in Sec. 6.1. The integrati on adapter nodes ADPTs and
ADPTr are translated as the start and end patterns in Fig. 11(a)
and Fig. 11(b), respectively. The content enricher CE node and
message translator MT node are message processors without
storage, and hence translated as in Fig. 15 with < f >CE= prg1
and < f >MT= prg2 (no database values are required). Since
no database table updates are needed for either translation, the
database update function parameter < g > can be chosen to be
the identity function in both cases.

In the second step, we refine the timed DB-net with bound-
aries to also take contract concepts into account by the construc-
tion in Definition 10. The resulting net is shown in Fig. 37. This
ensures the correctness of the types of data exchanged between
patterns, and follows directly from the correctness of the corre-
sponding IPCG. Other contract properties such as encryption

29

Italy_Invoice_micro

In
te

gr
at

io
n

Sy
st

em

Integration System

Set message
tax code to

header
(CE (local))

Content-based
Router

Sign Invoice
(Message

Signer)
Send Invoice
(External Call)

Send Invoice
(External Call)

Map to ERP
response format

(Message
Transformation)

Sign Invoice
(Message

Signer)

Map to target
format

(Message
Transformati

on)

Encode
Message for
transformati
on (Message

Encoder)

Filter fields
not required

by
government

(Content
Filter)

Fattura-
Electron

ica

Ensure no
duplicate
invoices

(Idempotent
Receiver))

Ensure no
duplicate
invoices

(Idempotent
Receiver))

signed(MSG.PL:
fatturapa; MSG.

HDR: ..)

MSG.PL:
accoglienz
a, risposta

MSG.PL:
SendInvoiceResponse

signed(MSG.PL:
fatturapa; MSG.

HDR: ..)MSG.HDR:
IdPaese,
IdCodice,
Progressi
voInvio, ..

MSG.PL:
encode
d(Fattu

ra-
Electron

ica)

MSG.PL:
fattura

pa;
MSG.H
DR: ..

signed(MSG.PL:
fatturapa; MSG.

HDR: ..)

Combine
Sibling
Patterns?

Early-Filter?

MSG.PL:
fatturapa';
MSG.HDR:

..

signed(MSG.PL:
fatturapa; MSG.

HDR: ..)

Heterogeneous
Parallel?

ERP

Governmental
Authoriy A

Governmental
Authoriy B

Fattura-
Electronica

(SOAP
Request)

SOAP

SFTP

SendInvoiceResponse
(SOAP Response)

Figure 34: Country-specific invoicing (potential improvements as BPMN Group)

encr, encodings enc, and signatures sign are checked through
transition guards.

Simulation. We test the composition construction of the ma-
terial replicate scenario in Fig. 37 through simulation in the
form of a hierarchical timed DB-net model, shown in Fig. 38.
Thereby, the CE and MT patterns are represented by CPN Tool
Subpage elements that are annotated with subpage tags enricher,
translator, respectively.

On arrival of the request msg from the ERP system, the
boundary configuration is appended to the message in place erp-
ToCe. In the replicate material scenario the data is received
unencrypted, uncoded and unsigned, leading to a boundary
(msg,no,no,no) (which is encoded as (msg,false,false,false) in
our prototype). The extended message erp msg is then moved to
the boundary place ch0 by transition CheckCeBoundary, if the
[encr=false] guard holds, and thus ensures the correctness of the
data exchange between patterns. Subsequently only the actual
message without the boundary data is moved to place ch0, that is
linked to the input place ch0 of the enricher, as in Fig. 38. We re-
call, that the in port type ensures that the synchronization on the
CPN color set level are correct. After the enricher processing,
the out port type ensures the correctness of the synchronization
on the CPN color set level and the resulting message emsg is
moved to the linked output place ch4. The constructed outbound
boundary, represented by transition SetCeBoundary sets the
boundary properties of the enricher to (msg,false,false,false) for
the following pattern. On the input boundary side of the trans-
lator, transition CheckMtBoundary evaluates its guard, before
moving the message without the boundary data to the boundary
place ch5, which proceeds similar to the enricher.

Note that our boundary construction mechanism from Defi-
nition 10 generated the input boundary, e.g., denoted by place
erpToCe and transition CheckCeBoundary, as well as the output
boundary, e.g., transition SetCeBoundary and place ceToMt, in-
cluding the transition guards, colorsets, variables, and port type
configurations, for the validation by simulation.

Discussion. Notably, constructing an IPCG requires less tech-
nical knowledge such as particularities of timed DB-nets but
still enables correct pattern compositions on an abstract level.
While the CPT part of the pattern contracts (e.g., encrypted,
signed) could be derived and translated automatically from a
scenario in a yet to be defined modeling language, many as-
pects like their elements EL as well as the configuration of the
characteristics by enrichment and mapping programs requires
a technical understanding of IPCGs and the underlying scenar-
ios. As such IPCGs can be considered a suitable intermediate
representation of pattern compositions. The user might still
prefer a more appealing graphical modeling language on top
of IPCGs. The simulation capabilities of the constructed timed
DB-net with boundaries allow for the experimental validation
of real-world pattern compositions. However, the complexity of
the construction highlights the importance of an automation of
the construction.
Conclusions. (11) IPCG and timed DB-net with boundaries can
be shown correct with respect to composition and execution
semantics; (12) timed DB-nets with boundaries are even more
complex than timed DB-nets; (13) IPCGs are more comprehen-
sible than timed DB-nets, and expressive enough for current
integration scenarios.

30

Italy_Invoice_micro_improved_v2

In
te

gr
at

io
n

Sy
st

em

Integration System

Set message
tax code to

header
(CE (local))

Content-based
Router

Send Invoice
(External Call)

Send Invoice
(External Call)

Map to ERP
response format

(Message
Transformation)

Map to target
format

(Message
Transformati

on)

Encode
Message for
transformati
on (Message

Encoder)

Fattura-
Electronica

signed(MSG.PL:
fatturapa; MSG.

HDR: ..)

MSG.PL:
accoglienz
a, risposta

MSG.PL:
SendInvoiceResponse

MSG.HDR:
IdPaese,
IdCodice,
Progressi
voInvio, ..

MSG.PL:
encode
d(Fattu

ra-
Electron

ica)

Heterogeneous
Parallel?

Filter fields
not required

by
government

(Content
Filter)

MSG.PL:
filtered
(Fattur

a-
Electron

ica)

Early-Filter:
less to encode

Sign Invoice
(Message

Signer)

MSG.PL:
fatturapa'; MSG.

HDR: ..

No
Heterogen
eous
Parallel, due
to local
enrich

Combined Sibling
Patterns
(Complexity -1)

Ensure no
duplicate
invoices

(Idempotent
Receiver))

ERP

Governmental
Authoriy A

Governmental
Authoriy B

Fattura-
Electronica

(SOAP
Request)

SOAP

SFTP

SendInvoiceResponse
(SOAP Response)

Figure 35: Invoice processing from Fig. 34 after application of strategies OS-1–3.

8.2.2. Internet of Things: Predictive Maintenance and Service
(PDMS)

The IPCG representing the predictive maintenance create
notification scenario that connects machines with enterprise re-
source planning (ERP) and PDMS systems is given in Fig. 39.
We add all pattern characteristics and data, which provides suf-
ficient information for the translation to timed DB-nets with
boundaries. Figure 39 depicts the corresponding IPCG. The
characteristics of the CE1 node includes an enrichment function
prg1 that adds further information about the machine in the
form of the FeatureType to the message that contains machine
ID and UpperThresholdWarningValue. This data is leveraged
by the UDF1 predict node, which uses a prediction function
prg2 about the need for maintenance and adds the result into
the MaintenanceRequestById field. Before the data is forwarded
to the ERP system (simplified by an End), the single machine
predictions are combined into one message by the AGG1 node
with correlation cndcr and completion cndcc conditions as well
as the aggregation function prg3 and completion timeout (v1, v2)
as pattern characteristics {({cndcr, cndcc}), (PRG, prg4, (v1, v2))}.

Translation to Timed DB-Nets with Boundaries. Again, we
translate each single pattern from Fig. 39 according to the con-
struction in Sec. 6.1. The S tart and End nodes are translated
as the start and end pattern in Fig. 11(a) and Fig. 11(b) respec-
tively. The CE CE1 and user-defined function UDF1 nodes
are message processors, and hence translated as in Fig. 15
with < f >CE1= prg1 and < f >UDF1= prg2. Since no
table updates are needed for either translation, the database
update function parameter < g > can be chosen to be the

identity function in all cases. The aggregator AGG1 node is
a merge pattern type, and thus translated as in Fig. 16 with
(v1, v2) → [τ1, τ2], prgagg → f (msgs). Moreover, the cor-
relation condition cndcr → g(msg,msgs) and the completion
condition cndcc → complCount.

In the second step, we refine the timed DB-net with bound-
aries to also take contract concepts into account by the construc-
tion in Definition 10. The resulting net is shown in Fig. 40. This
ensures the correctness of the types of data exchanged between
patterns, and follows directly from the correctness of the corre-
sponding IPCG. Other contract properties such as encryption,
signatures, and encodings are checked through the transition
guards.

Simulation. We illustrate the composition construction of the
predictive maintenance scenario in Fig. 40 through simulation in
the form of a hierarchical timed DB-net model, shown in Fig. 41.
Again, all timed DB-net patterns are hierarchically represented
by CPN Tool Subpage elements that are annotated with sub-
page tags enricher, message aggregator, respectively, and the
user-defined function predict is denoted by a transition. The
boundaries are constructed from Fig. 40 by inserting SetPdms-
Boundary and pdmsToCe as output boundary of get report, which
matches the input boundary of the subsequent enricher, denoted
by the CheckCeBoundary transition. Transition SetCeBound-
ary and place ceToPredict represent the output boundary of the
enricher, which again match the input boundary of the predict
user-defined function pattern through transition CheckPredict-
Boundary. Finally, the output boundary of the predict step is en-
sured by transition SetPredictBoundary and place predictToAgg.
Again, it can be easily seen that the input boundary of the aggre-

31

ADPTs

CE

MT

ADPTr
inContr(CE) =	({(ENCR,no)},	{(PL,{DOCNUM})})
outContr(CE) =	({(ENCR,no),	(SIG,no)},
	{(PL,{ ,	EDI_DC40DOCNUM,

EPMPRODUCT_ID}),	(HDR,{AppID})})	
⋅

inContr(MT) =	({(ENCR,no)},	{(PL,
{EDI_DC40DOCNUM,EPM
PRODUCT_ID})}
outContr(MT) =	({(ENCR,no),	(SIG,no)},
{(PL,{ , MMRRBMHID,	RcvID,MMRR
MATID}),	(HDR,	{AppID})})

	

⋅

outContr(ADPTs) =	({(ENCR,no)},{(PL,{ ,	EDI_DC40
DOCNUM,EPMPRODUCT_ID})})

⋅

inContr(ADPTr) =	({(ENCR,no)},
{(PL,{ ,	MMRRBMHID,
RcvID,MMRRMATID}),	(HDR,
{AppID})})

	

⋅

char(CE) =	{...,	(PRG,
{prg1,	()})}	

	
[0,∞)

char(MT) =	{...,(PRG,	{prg2,	()})}
	

[0,∞)

Figure 36: Complete integration pattern contract graph of the replicate material scenario

gator in the form of the CheckAggBoundary transition matches,
and thus the overall composition is correct. Consequently, the
simulation of the timed DB-net with these boundaries in Fig. 41
results in the same, correct output with the timed DB-nets with-
out boundaries in Fig. 41.

Discussion. In this slightly more complex scenario, it becomes
more obvious that the constructed IPCGs are quite technical as
well and require a careful construction of pattern characteristics
and contracts. While this seems to be an ideal representation for
checking the structural correctness of compositions, this should
be no manual task for a user. Especially for more complex
scenarios, we found that the re-configurable pattern type-based
translation works well. However, the construction of the timed
DB-nets with boundaries corresponding to an IPCG would ben-
efit from an automatic translation (e.g., through tool support).
Conclusions. (14) IPCGs are still quite technical, especially
for more complex scenarios; (15) a tool support for automatic
construction and translation is preferable.

8.3. Discussion

The evaluation on the optimization strategies on IPCGs (cf.
(a)) resulted into several interesting conclusions, i.e., emphasiz-
ing on the importance of a pattern composition and optimization
formalization, which are relevant even for experienced integra-
tion experts (conclusions 1–2), with interesting choices (conclu-
sions 3–4, 6), implementation details (conclusions 5, 10) and
trade-offs (conclusions 7–9). The contract graphs provide a rich
composition context, which might help the user when composing
patterns with built-in structural correctness guarantees.

The second major aspect of this work — besides process
optimizations — concerns the responsible composition of pro-
cesses out of integration patterns (cf. (b)) that can be automated
(cf. conclusion 10). The evaluation of two case studies — fol-
lowing ReCO — resulted into further interesting conclusions,
i.e., the suitability of our approach for pattern compositions
(cf. conclusions (11,13)), model complexity considerations (cf.
conclusions (12,14)) and desirable extensions like automatic

Table 5: Optimization Strategies in context of the objectives
Approach Formal model Optimizations Correctness
EAI - � -
BPM � � -
SPC - � �
AOS � � �
GT � � -

ReCO � � �

�: covered, -: partially covered, �: not covered

translation (cf. conclusion (15)). However, while IPCGs based
on timed DB-nets with boundaries denote the first comprehen-
sive definition of application integration scenarios with built-in
functional correctness and compositional correctness validation
and verification, it might not give an appealing modeling lan-
guage for (non-technical) users (cf. conclusions (12,14)). We
envision a novel modeling language and tool support that facili-
tates a translation from that language to IPCGs (cf. conclusion
(15)), which we consider as future work. Based on such a lan-
guage infrastructure, more advanced compositional aspects like
modeling guidelines on the different layers (i.e., language, inter-
mediate IPCG, and simulation timed DB-net with boundaries)
could be studied.

9. Related Work

We presented related optimization techniques in Sec. 3.2.
We now briefly situate our work within the context of other
formalizations, beyond the already discussed BPMN [4] and
PN [39] approaches, as summarized in Tab. 5.
Enterprise Application Integration (EAI) Similar to the BPMN
and PN notations, several domain-specific languages (DSLs)
have been developed that describe integration scenarios. Apart
from the EIP icon notation [2], there is also the Java-based
Apache Camel DSL [56], and the UML-based Guaraná DSL [59].
However, none of these languages aim to be optimization-friendly
formal integration scenario representations. Conversely, we do

32

	chin
msg

prg1(msg,
value)T1

var	msg,	x;	
var	xs;	
var	value:	list<type>;	
fun	hd(xs)	=	..,	tl(xs)	=	..;	

Qds(obj):		
					SELECT	value	
					FROM	DataSource	as	ds
					WHERE	ds.msg	EQ	obj;

Update(id,value)=	
<DEL	{DataSource(id,old)},	
ADD	{DataSource(id,	INS(old,value)}>;	

chout

DataSource
MSG:	<EL> VALUE:	LIST<TYPE>

Qds(msg)

value

xs

xs

hd(xs)

tl(xs)

[List.null(xs)]¬

[List.null(xs)]¬
[∅(msg) ∧ (0,∞]]

Update(null,	
(null))∅

Net

Actions
QueriesDB schema

Ace

Bce

	chin
msg

prg2(msg,
value)T1 chout

Qds(msg)

value

xs

xs

hd(xs)

tl(xs)

[List.null(xs)]¬

[List.null(xs)]¬
[∅(msg) ∧ (0,∞]]

Update(null,	
(null))∅

Amt
B

	chout

Bstart

T ′

ad1

(x,no,	
no,no)	

	chsh1
msg	

T ′

ce

(x,no,	
no,no)	

[encr=no]	

msg	 xs

T ″

ce

(x,no,	
no,no)	 	chsh2

hd(xs)

T ′

mt

[encr=no]	

msg	
(x,no,	
no,no)	 xs

 chin

A
AendBmt

T ″

mt1

(x,no,	
no,no)	

	chsh3
hd(xs)	

T ′

end

(x,no,	
no,no)	 msg	

Figure 37: Material replicate scenario as a timed DB-nets with boundaries

not strive to build another integration DSL. Instead we claim that
all of the integration scenarios expressed in such languages can
be formally represented in our formalism, so that optimizations
can be determined that can be used to rewrite the scenarios.

There is work on formal representations of integration pat-
terns, e.g. Mederly et al. [60] represents messages as first-order
formulas and patterns as operations that add and delete formulas,
and then applies AI planning to find an process with a mini-
mal number of components. While this approach shares the
model complexity objective, our approach applies to a broader
set of objectives and optimization strategies. For the verification
of service-oriented manufacturing systems, Mendes et al. [61]
uses “high-level” Petri nets as a language instead of integration
patterns, similar to the approach of Fahland and Gierds [39].
Business Process Management (BPM) Sadiq and Orlowska [62]
applied reduction rules to workflow graphs for the visual iden-
tification of structural conflicts (e.g., deadlocks) in business
processes. Compared to process control graphs, we use a similar
base representation, which we extend by pattern characteristics
and data contracts. Furthermore, we use graph rewriting for
optimization purposes. In Cabanillas et al. [63], the structural
aspects are extended by a data-centered view of the process that
allows to analyze the life cycle of an object, and check data
compliance rules. This adds a view on the required data, but
does not propose optimizations for the EIPs. The main focus is
rather on the object life cycle analysis of the process.
Semantic Program Correctness (SPC) Semantic correctness
plays a bigger role in the compiler construction and analysis
domain. For example, Muchnick [64] provides an exhaustive
catalog of optimizing transformations and states that the proof

of the correctness of rewritings must be based on the (execu-
tion) semantics, and Nielson [65] provides semantic correctness
proofs using data-flow analysis, while Cousot [66] provides a
general framework for designing program transformations by
analyzing abstract interpretations. Although far simpler than
general programming language transformations, our translation
of IPCGs to timed db-nets with boundaries can be seen as a
concretization in the sense of an abstract interpretation, and thus
giving a similar notion of semantic correctness.
Analysis and Optimization Structures (AOS) Transformation
techniques for optimization have been employed by compiler
construction, e.g., for parallel [67] or pipeline processing [68],
where dependence graph representations become especially use-
ful. For example, Kuck et al. [69] construct dependence graphs
with output, anti, and flow dependencies as a foundation for opti-
mizing transformations. These kind of dependence graphs were
also used by Böhm et al. [36], however, they are “linearized” in
the form of our pattern contracts. This makes the decision of the
optimization “local” and does not require dependence graph ab-
stractions like intervals [70] or scoping [71]. More recently these
techniques have been applied for business process optimization
by Sadiq [62], Niedermann et al. [17, 18] or reductions to pro-
cess tree structures [72] with incremental transformations [73].
In our case the scope of the analysis is a local match of pattern
contracts.
Graph Transformations (GT) Similar to our approach, graph
transformations have been used in related domains, e.g., for-
malizing parts of the BPMN semantics by Dijkman et al. [74],
who specify the execution semantics as graph rewrites. Con-
formance is checked experimentally and verification is left for

33

connectDB("Material_Replication_Connection",9001)

disconnectDB("Material_Replication_Connection")

ch0

MSG

ch4

EMSG

ERP

MSG

1`(13,"DOC-1", "PROD-1") ++
1`(17,"DOC-2", "PROD-1") ++
1`(2,"DOC-3", "PROD-2")

COD

OUTPUT

ch6

OUTPUT

erpToCe

ERP_MSG

ceToMt

CE_MSG

ch5

EMSG

request
from ERP

send
to COD

enricher

enricherenricher

translator

translatortranslator

CheckCe
Boundary

[encr=false]

SetCe
Boundary

CheckMt
Boundary

[encr=false]

msg

outpacket

outpacket

(msg,false,false,false)

(msg,encr,enc,sign)

(msg)

emsg

(emsg,false,false,false)

(emsg,encr,enc,sign)

(emsg)

1 1`(2,"DOC-3","PROD-2","appid-2")

1
1`((17,"DOC-2","PROD-1"),false,false,
false)

1 1`(13,"DOC-1","PROD-1","appid-13")

Figure 38: Material replicate scenario simulation

future work. For the optimizations, we use the same visual no-
tation and double-pushout rule application approach. However,
our execution semantics are given as timed db-net and can be
formally analyzed.

10. Conclusions

This work addresses an important shortcoming in EAI re-
search, namely the lack of means for responsible or correct
integration pattern compositions and the application of changes,
e.g., as optimization strategies, which preserve structural and se-
mantic correctness, and thus ends the informality of descriptions
of pattern compositions and optimizations (cf. Q1–Q3).

We approached the questions along a responsible pattern
composition and optimization process (short ReCO), and started
by compiling catalogs of integration pattern characteristics as
well as optimization strategies from the literature. We then
developed a formalization of pattern compositions in order to
precisely define optimizations as pattern contract graphs. Then
we extended the timed db-nets formalism, covering integration
pattern semantics, into timed db-nets with boundaries, which
resemble the contracts in the pattern graphs, and defined a mech-
anism to interpret the pattern graphs by them.

With the resulting formal framework, we proved that all
defined optimizations preserve the meaning of compositions
as timed db-nets. We evaluated the framework on data sets
containing in total over 900 real world integration scenarios, and
two brief case studies. The responsible pattern composition part
in ReCO was then studied for two integration processes down
to the execution semantics, essentially showing ReCO from a
modeling perspective.

We conclude that formalization and optimizations of integra-
tion processes in the form of integration pattern compositions

— using pattern contract graphs — are relevant even for expe-
rienced integration experts (conclusions 1–2), with interesting
choices (concls. 3–4, 6), implementation details (conclusions
5, 10) and trade-offs (concls. 7–9). In the two additional case
studies, we showed the suitability of our interpretation of pat-
tern contract graphs in the newly defined timed db-nets with
boundaries for pattern compositions (concls. (11,13)), model
complexity considerations (concls. (12,14)) and desirable exten-
sions like automatic translation (concl. (15)).

References

[1] T. Jeske, M. Würfels, F. Lennings, M. Weber, S. Stowasser, Achievements
and opportunities of digitalization in productivity management, in: AHFE,
Vol. 1207 of Advances in Intelligent Systems and Computing, Springer,
2020, pp. 17–24.

[2] G. Hohpe, B. Woolf, Enterprise integration patterns: Designing, building,
and deploying messaging solutions, Addison-Wesley, 2004.

[3] D. Ritter, M. Holzleitner, Integration adapter modeling, in: CAiSE, 2015,
pp. 468–482.

[4] D. Ritter, J. Sosulski, Exception handling in message-based integration
systems and modeling using BPMN, Int. J. Cooperative Inf. Syst 25 (2)
(2016) 1–38.

[5] D. Ritter, N. May, S. Rinderle-Ma, Patterns for emerging application
integration scenarios: A survey, Inf. Syst. 67 (2017) 36 – 57.

[6] D. Ritter, S. Rinderle-Ma, M. Montali, A. Rivkin, Formal foundations for
responsible application integration, Inf. Syst. 101 (2021) 101439.

[7] D. Ritter, N. May, F. Nordvall Forsberg, S. Rinderle-Ma, Optimization
strategies for integration pattern compositions, in: ACM DEBS, 2018, pp.
88–99.

[8] S. Abiteboul, M. Arenas, P. Barceló, M. Bienvenu, D. Calvanese, C. David,
R. Hull, E. Hüllermeier, B. Kimelfeld, L. Libkin, W. Martens, T. Milo,
F. Murlak, F. Neven, M. Ortiz, T. Schwentick, J. Stoyanovich, J. Su,
D. Suciu, V. Vianu, K. Yi, Research directions for principles of data
management (abridged), SIGMOD Record 45 (4) (2017) 5–17.

[9] D. Eyers, A. Gal, H.-A. Jacobsen, M. Weidlich, Integrating Process-
Oriented and Event-Based Systems (Dagstuhl Seminar 16341), Dagstuhl
Reports 6 (8) (2017) 21–64.

[10] G. Kougka, A. Gounaris, Optimization of data-intensive flows: Is it
needed? Is it solved?, in: DOLAP, ACM, 2014, pp. 95–98.

34

	ADPT1

CE1 UDF1

	ADPT2AGG1

char() =	{}
outContr() =	({(ENCR,no)},{(PL,
{ID,	UpperThresholdWarningValue})})	
	

	

ADPT1

ADPT1

char() =	{...,	(PRG,	{prg3,	()})}	
inContr() =	({(ENCR,no)},{(PL,{ID,	UpperThresholdWarningValue,
FeatureType})})	
outContr() =	({(ENCR,no)},{(PL,{ID,	UpperThresholdWarningValue,
FeatureType,MaintenanceRequestById})})

	

AGG1 [30, 30)

AGG1

AGG1

char() =	{...,	(PRG,	{prg1,	()})}
inContr() =	({(ENCR,no)},{(PL,
{ID,	UpperThresholdWarningValue})})	
outContr() =	({(ENCR,no)},{(PL,
{ID,	UpperThresholdWarningValue,
FeatureType})})

	

CE1 [0,∞)

CE1

CE1

char() =	{...,	(PRG,	{prg2,	()})}
inContr() =	({(ENCR,no)},{(PL,
{ID,	UpperThresholdWarningValue,
FeatureType})})	
outContr() =	({(ENCR,no)},{(PL,
{ID,	UpperThresholdWarningValue,
FeatureType,MaintenanceRequestById})})

	

UDF1 [0,∞)

UDF1

UDF1

char() =	{}
inContr() =	({(ENCR,no)},{(PL,
{ID,	UpperThresholdWarningValue,
FeatureType,MaintenanceRequestById})})	
outContr() =	({(ENCR,no)},{(PL,
{ID,	UpperThresholdWarningValue,
FeatureType,MaintenanceRequestById})})

	

ADPT2

ADPT2

ADPT2

Figure 39: Integration pattern contract graph of the predictive maintenance scenario

[11] D. Ritter, J. Dann, N. May, S. Rinderle-Ma, Hardware accelerated appli-
cation integration processing: Industry paper, in: ACM DEBS, 2017, pp.
215–226.

[12] D. Ritter, Experiences with business process model and notation for mod-
eling integration patterns, in: ECMFA, 2014, pp. 254–266.

[13] K. Peffers, T. Tuunanen, M. A. Rothenberger, S. Chatterjee, A design
science research methodology for information systems research, JMIS
24 (3) (2007) 45–77.

[14] SAP SE, SAP API Business Hub – Prepackaged cloud integration content,
https://api.sap.com/ (2023).

[15] D. Ritter, F. Nordvall Forsberg, S. Rinderle-Ma, N. May, Catalog of
optimization strategies and realizations for composed integration patterns,
CoRR abs/1901.01005 (2019).

[16] K. Vergidis, A. Tiwari, B. Majeed, Business process analysis and optimiza-
tion: Beyond reengineering, IEEE Transactions on SMC, Part C 38 (1)
(2008) 69–82.

[17] F. Niedermann, S. Radeschütz, B. Mitschang, Business process optimiza-
tion using formalized patterns, BIS (2011).

[18] F. Niedermann, H. Schwarz, Deep business optimization: Making business
process optimization theory work in practice, in: BPMDS / EMMSAD,
Springer, 2011, pp. 88–102.

[19] K. Agrawal, A. Benoit, L. Magnan, Y. Robert, Scheduling algorithms for
linear workflow optimization, in: IPDPS, 2010, pp. 1–12.

[20] L. F. Bittencourt, E. R. M. Madeira, Hcoc: a cost optimization algorithm
for workflow scheduling in hybrid clouds, Journal of Internet Services and
Applications 2 (3) (2011) 207–227.

[21] T. Tirapat, O. Udomkasemsub, X. Li, T. Achalakul, Cost optimization for
scientific workflow execution on cloud computing, in: ICPADS, 2013, pp.
663–668.

[22] S. G. Ahmad, C. S. Liew, M. M. Rafique, E. U. Munir, S. U. Khan,
Data-intensive workflow optimization based on application task graph
partitioning in heterogeneous computing systems, in: IEEE BdCloud,
2014, pp. 129–136.

[23] A. Benoit, M. Coqblin, J.-M. Nicod, L. Philippe, V. Rehn-Sonigo, Through-
put optimization for pipeline workflow scheduling with setup times., in:
Euro-Par Workshops, 2012, pp. 57–67.

[24] I. Habib, A. Anjum, R. Mcclatchey, O. Rana, Adapting scientific workflow
structures using multi-objective optimization strategies, TAAS 8 (1) (2013)
4.

[25] P. Zhang, Y. Han, Z. Zhao, G. Wang, Cost optimization of cloud-based
data integration system, in: WISA, 2012, pp. 183–188.

[26] J. R. Getta, Static optimization of data integration plans in global informa-
tion systems, in: ICEIS, 2011, pp. 141–150.

[27] M. Vrhovnik, H. Schwarz, O. Suhre, B. Mitschang, V. Markl, A. Maier,
T. Kraft, An approach to optimize data processing in business processes,
in: VLDB, 2007, pp. 615–626.

[28] G. Kougka, A. Gounaris, A. Simitsis, The many faces of data-centric
workflow optimization: a survey, Int. J. Data Sci. Anal. 6 (2) (2018)
81–107.

[29] M. Böhm, U. Wloka, D. Habich, W. Lehner, Model-driven generation and
optimization of complex integration processes., in: ICEIS (1), 2008, pp.
131–136.

[30] A. Böhm, C. Kanne, Demaq/transscale: Automated distribution and scala-
bility for declarative applications, Inf. Syst. 36 (3) (2011) 565–578.

[31] D. Ritter, Database processes for application integration, in: BICOD, 2017,
pp. 49–61.

[32] D. Ritter, Cost-efficient integration process placement in multiclouds, in:
IEEE EDOC, IEEE, 2020, pp. 115–124.

[33] D. Ritter, Cost-aware process modeling in multiclouds, Inf. Syst. 108
(2022) 101969.

[34] M. Nygard, Release It!: Design and Deploy Production-Ready Software,
Pragmatic Bookshelf, 2007.

[35] B. Kitchenham, Procedures for performing systematic reviews, Keele, UK,
Keele University 33 (2004) (2004) 1–26.

[36] M. Böhm, D. Habich, S. Preissler, W. Lehner, U. Wloka, Cost-based
vectorization of instance-based integration processes, Inf. Syst. 36 (1)
(2011) 3–29.

[37] D. Ritter, S. Rinderle-Ma, Toward application integration with multimedia
data, in: IEEE EDOC, 2017, pp. 103–112.

[38] L. Sánchez-González, F. Garcı́a, J. Mendling, F. Ruiz, M. Piattini, Predic-
tion of business process model quality based on structural metrics, in: ER,
2010, pp. 458–463.

[39] D. Fahland, C. Gierds, Analyzing and completing middleware designs
for enterprise integration using coloured petri nets, in: CAiSE, 2013, pp.
400–416.

[40] M. Montali, A. Rivkin, DB-Nets: On the marriage of colored petri nets
and relational databases, T. Petri Nets and Other Models of Concurrency
12 (2017) 91–118.

[41] F. E. Allen, Control flow analysis, SIGPLAN Notices 5 (7) (1970) 1–19.
[42] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, D. Warneke, Nephele/

PACTs: a programming model and execution framework for web-scale
analytical processing, in: SoCC, 2010, pp. 119–130.

[43] M. Böhm, D. Habich, W. Lehner, U. Wloka, Systemübergreifende Kosten-
normalisierung für Integrationsprozesse, in: BTW, 2009, pp. 67–86.

[44] K. Jensen, Coloured Petri nets: basic concepts, analysis methods and
practical use, Vol. 1, Springer Science & Business Media, 2013.

35

https://api.sap.com/

[45] P. Baldan, A. Corradini, H. Ehrig, R. Heckel, Compositional semantics for
open petri nets based on deterministic processes, Mathematical Structures
in Computer Science 15 (1) (2005) 1–35.

[46] P. Sobociński, Representations of petri net interactions, in: International
Conference on Concurrency Theory, Springer, 2010, pp. 554–568.

[47] J. C. Baez, J. Master, Open petri nets, Mathematical Structures in Computer
Science 30 (3) (2020) 314–341.

[48] P. Selinger, A survey of graphical languages for monoidal categories, in:
B. Coecke (Ed.), New Structures for Physics, Vol. 813 of Lecture Notes in
Physics, Springer, 2011, pp. 289–355.

[49] D. Ritter, Application integration patterns and their compositions, Ph.D.
thesis, University of Vienna (2019).
URL http://othes.univie.ac.at/58436/

[50] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer, Fundamentals of Algebraic
Graph Transformation, Monographs in Theoretical Computer Science,
Springer, 2006.

[51] H. Ehrig, M. Pfender, H. J. Schneider, Graph-grammars: An algebraic
approach, in: Switching and Automata Theory, 1973, pp. 167–180.

[52] A. Habel, D. Plump, Relabelling in graph transformation, in: ICGT, Vol.
2505, Springer, 2002, pp. 135–147.

[53] D. Plump, A. Habel, Graph unification and matching, in: TAGT, 1994, pp.
75–88.

[54] A. Kissinger, A. Merry, M. Soloviev, Pattern graph rewrite systems, in:
DCM, 2012, pp. 54–66.

[55] D. Ritter, N. May, K. Sachs, S. Rinderle-Ma, Benchmarking integration
pattern implementations, in: ACM DEBS, 2016, pp. 125–136.

[56] C. Ibsen, J. Anstey, Camel in Action, Manning, 2010.
[57] A. S. Glassner, An introduction to ray tracing, Elsevier, 1989.
[58] K. Jensen, L. M. Kristensen, L. Wells, Coloured Petri nets and CPN Tools

for modelling and validation of concurrent systems, International Journal
on Software Tools for Technology Transfer 9 (3-4) (2007) 213–254.

[59] R. Z. Frantz, A. M. Reina Quintero, R. Corchuelo, A domain-specific
language to design enterprise application integration solutions, Int. J. Co-
operative Inf. Syst 20 (02) (2011) 143–176.

[60] P. Mederly, M. Lekavỳ, M. Závodský, P. Navra, Construction of messaging-
based enterprise integration solutions using AI planning, in: CEE-SET,
2009, pp. 16–29.

[61] J. M. Mendes, P. Leitão, A. W. Colombo, F. Restivo, High-level petri nets
for the process description and control in service-oriented manufacturing
systems, IJPR 50 (6) (2012) 1650–1665.

[62] W. Sadiq, M. E. Orlowska, Analyzing process models using graph reduc-
tion techniques, Inf. Syst. 25 (2) (2000) 117–134.

[63] C. Cabanillas, M. Resinas, A. Ruiz-Cortés, A. Awad, Automatic generation
of a data-centered view of business processes, in: CAiSE, Springer, 2011,
pp. 352–366.

[64] S. Muchnick, Advanced compiler design implementation, Morgan Kauf-
mann, 1997.

[65] F. Nielson, Semantic foundations of data flow analysis, DAIMI Report
Series 10 (131) (1981).

[66] P. Cousot, R. Cousot, Systematic design of program transformation frame-
works by abstract interpretation, in: Symposium on Principles of Program-
ming Languages (POPL), ACM, 2002, pp. 178–190.

[67] D. J. Kuck, Y. Muraoka, S.-C. Chen, On the number of operations simulta-
neously executable in Fortran-like programs and their resulting speedup,
IEEE Transactions on Computers 100 (12) (1972) 1293–1310.

[68] D. Kuck, R. Kuhn, B. Leasure, M. J. Wolfe, Analysis and transformation
of programs for parallel computation, in: COMPSAC, IEEE, 1980, pp.
709–715.

[69] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, M. Wolfe, Dependence
graphs and compiler optimizations, in: POPL, ACM, 1981, pp. 207–218.

[70] J. Cocke, Global common subexpression elimination, in: Symposium on
Compiler Optimization, ACM, 1970, pp. 20–24.

[71] M. V. Zelkowitz, W. G. Bail, Optimization of structured programs, Soft-
ware: Practice and Experience 4 (1) (1974) 51–57.

[72] J. Vanhatalo, H. Völzer, J. Koehler, The refined process structure tree, Data
& Knowledge Engineering 68 (9) (2009) 793–818.

[73] R. F. Hauser, M. Friess, J. M. Kuster, J. Vanhatalo, An incremental ap-
proach to the analysis and transformation of workflows using region trees,
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applica-
tions and Reviews) 38 (3) (2008) 347–359.

[74] R. M. Dijkman, P. V. Gorp, BPMN 2.0 execution semantics formalized as
graph rewrite rules, in: BPMN Workshop, 2010, pp. 16–30.

36

http://othes.univie.ac.at/58436/
http://othes.univie.ac.at/58436/

colset	INTlist	=	list	int;	
var	msg,seq:	int;			
var	msgs:	INTList;		
var	status:	string;	
var	x,	xs;	
var	value:	list<type>;	
fun	hd(xs)	=	..,	tl(xs)	=	..;	

DataSource
MSG:	<EL> VALUE:	LIST<TYPE>

Net

	chin
msg

prg2(msg,
value)T1 chout

Qds(msg)

value

xs

xs

hd(xs)

tl(xs)

[List.null(xs)]¬

[List.null(xs)]¬
[∅(msg) ∧ (0,∞]]

Update(null,	
(null))∅Ace

B

	chout

Bstart

T ′

ad1

(x,no,	
no,no)	

	chsh1
msg	

(x,no,	
no,no)	

T ′

ce

[encr=no]	

msg	 xs hd(xs)	

Bce

	chin
msg

prg3(msg,
value)T1 chout

Qds(msg)

value

xs

xs

hd(xs)

tl(xs)

[List.null(xs)]¬

[List.null(xs)]¬
[∅(msg) ∧ (0,∞]]

Update(null,	
(null))∅

Audf
B

T ″

ce

(x,no,	
no,no)	 	chsh2 T ′

udf

[encr=no]	

msg	
(x,no,	
no,no)	 xs hd(xs)	

Budf Aagg

T ″

udf

(x,no,	
no,no)	 	chsh2 T ′

mt

[encr=no]	

msg	
(x,no,	
no,no)	 chin

A
AendBagg

T ″

agg

(x,no,	
no,no)	

	chsh3 T ′

end

(x,no,	
no,no)	 msg	(seq,	msgs)

chout
((msg),age)f

chin (msg,age)

[]¬g(msg,msgs

(msg,age)

(seq,msgs)	

(seq,msgs)	

[status=='complete'	||
status	==	'expired']

(msg,age)

(seq,age)	
chtimer

	@⟨ , ⟩)τ1 τ2

TimeoutSeq(seq)	
T3

Sequences
SEQ:	int STATUS:	string

Messages
MSG_ID:	int DATA:	stringSEQ:	int

UpdateSeq(seq,msg,data)

(seq,age)

int*INTlist

ms int*string

Qmsgs(msg,seq)

(seq,	status}

{"complete","expired"}

CreateSeq	
(seq,msg,data) chp

Qseqs(seq,status)

T1

T2

Aggregate

DB schema

[]	g(msg,msgs)

Qmsgs(msg,seq):		
					SELECT	DISTINCT	seq,						GROUP_LIST(msg)	
					FROM	Messages	GROUP	BY	seq;
	
Qseqs(seq,status):	SELECT	*	FROM	Sequences;
	
Qcount(count,seq):	
					SELECT	count(MSG_ID)	as	cnt,	SEQ	
					FROM	Messages
					GROUP	BY	cnt	HAVING	cnt	>=	complCount;
	
Qds(obj):	
					SELECT	value	
					FROM	DataSource	as	ds
					WHERE	ds.msg	EQ	obj;
	

UpdateSeq(seq,msg,data)=		
<DEL{},	ADD{Messages(msg,seq,data)}>;	
	
CreateSeq(seq,msg,data)=	
<DEL{},	ADD{Sequences(seq,NULL),
													Messages(msg,seq,data)}>;
	
TimeoutSeq(seq)=	<DEL{Sequences(seq,NULL)},
																		ADD{Sequences(seq,"expired")}>;
	
CompleteSeq(seq)=<DEL{Sequences(seq,NULL)},	
																		ADD{Sequences(seq,"complete")}>;
	
Update(id,value)=
<DEL	{DataSource(id,old)},
ADD	{DataSource(id,	INS(old,value)}>;

ActionsQueries

A B

T4

Qcount	
(count,seq)

CompleteSeq(seq)	

Qmsgs	
(msg,seq)

msg	

Figure 40: Predictive maintenance scenario as a timed DB-nets with boundaries

37

connectDB("Create_Notification_Connection",9001)

disconnectDB("Create_Notification_Connection")

view_place : create_notification.IncidentReports: SELECT IncidentReport.id, IncidentReport.mid, IncidentReport.aval
FROM create_notification.IncidentReport, create_notification.Machine WHERE Machine.threshold_wrn<IncidentReport.aval;

prediction
result

PREDICTION

ch5

E_REPORT

CH_out

STRING

IncidentReports

REPORT

PDMS

REPORT

ERP

STRING

pdmsToCe

PDMS_REP

ch1

REPORT

ceToPredict

CE_REP

ch6

E_REPORT

predictToAgg

PRED

ch7

PREDICTION

predict

get
report

input (id,mid,aval);
output ();
action
let
in
DEL_REPORT(id,mid,aval);
()
end;

P_HIGH

send to
ERP

enricher

enricherenricher

message_aggregator

message_aggregatormessage_aggregator

SetPdms
Boundary

CheckCe
Boundary

[encr=false]

SetCe
Boundary

CheckPreidct
Boundary

[encr=false]

SetPredict
Boundary

CheckAgg
Boundary

[encr=false]

(true,extrep)

(id,mid,aval) concat_msg

concat_msg

(id,mid,aval)

rep

(rep,false,false,false)

(rep,encr,enc,sign)

rep

extrep

(extrep,false,false,false)

(extrep,encr,enc,sign)

extrep

extrep

pred

(pred,false,false,false)

(pred,encr,enc,sign)

pred

pred

2

1`"Assembly Robot"++
1`"Engine Robot|Engine Robot|Engin
e Robot|Engine Robot"

Figure 41: Predictive maintenance scenario simulation

38

	Introduction
	Responsible Composition and Optimization Process for Patterns
	Responsible Composition and Optimization Process
	Potential Process Optimization by Example

	Background and Requirements
	Integration Pattern Characteristics
	Ubiquitous Characteristics
	Optional Characteristics
	Summary

	Static Optimization Strategies
	Identifying Optimization Strategies
	Process Simplification
	Data Reduction
	Parallelization
	Pattern Placement
	Reduce Interaction
	Summary

	Discussion: Requirements for Formalizing Integration Pattern Compositions

	Graph-based Pattern Compositions
	Integration Pattern Graphs
	Abstract Cost Model

	A Semantics Using Timed DB-nets
	Open Timed DB-nets
	Ordinary Timed DB-nets
	Open Timed DB-nets

	Execution Semantics for Open Timed DB-nets
	Composition of Open Timed DB-nets
	CPN Tools Prototype

	Interpreting IPCGs as Open Timed DB-nets
	Interpretation of Single Patterns
	Interpreting integration pattern contract graphs
	Taking contract concepts into account
	Synchronising Pattern Compositions and correctness of the translation

	Discussion

	Optimization Strategy Realization
	Graph Rewriting
	OS-1: Process Simplification
	Redundant sub-process
	Combine sibling patterns

	OS-2: Data Reduction
	Early-Filter
	Early-Mapping
	Early-Aggregation
	Early Claim Check
	Early-Split

	OS-3: Parallelization
	Sequence to parallel
	Merge parallel
	Heterogeneous Parallelization

	OS-4: Pattern Placement
	OS-5: Reduce Interaction
	Ignore Failing Endpoints
	Reduce Requests

	Optimization Correctness
	Discussion

	Evaluation
	Optimization Strategies
	Quantitative Analysis
	Case Studies

	Case Studies: Responsible Pattern Composition
	Hybrid Integration: Replicate Material
	Internet of Things: Predictive Maintenance and Service (PDMS)

	Discussion

	Related Work
	Conclusions

