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Interrogation of Ecotoxic Elements Distribution in Slag and
Precipitated Calcite through a Machine Learning-Based
Approach Aided by Mass Spectrometry

Faisal W. K. Khudhur,* Matthew Divers, Mark Wildman, John M. MacDonald,
and Joshua Franz Einsle

CO2 mineralization in slag has been widely investigated as a potential solution
for offsetting steelmaking industry emissions. However, it can be associated
with ecotoxic elements release (e.g., V and Cr). The presence of such elements
in heterogenous slag at the micro-scale remains difficult for analysis since
microstructural features can be missed during microscopy data inspection,
thereby presenting a challenge in understanding how ecotoxic elements exist
in slag. Here, an unsupervised machine learning-based technique is used to
analyze slag’s microstructural features. Energy Dispersive Spectroscopy (EDS)
data are analyzed through Hierarchical Density-Based Spatial Clustering of
Applications with Noise (HDBSCAN) method. Results show that passive CO2

mineralization has occurred in situ in the studied samples, on the surface,
and within their pores. Additionally, V and Cr regions with equivalent
diameters < 42 μm can exist within slag, potentially making such elements
prone to mobilization due to slag pulverization. Interrogation of the samples
with Laser Ablation Inductively Coupled Plasma Mass Spectroscopy
(LA-ICP-MS) confirms the distribution of the elements obtained from the
clustering algorithm and further demonstrates that up to 84 and 9 ppm of V
and Cr are incorporated in the precipitated calcite, respectively. This implies
that ecotoxic elements may be immobilized through calcite precipitation.

1. Introduction

Ironmaking and steelmaking industry are vital to infrastructure
and economic development as steel is an essential component

F. W. K. Khudhur, M. Divers, M. Wildman, J. M. MacDonald, J. F. Einsle
School of Geographical and Earth Sciences
University of Glasgow
Glasgow G12 8QQ, UK
E-mail: f.khudhur.1@research.gla.ac.uk
M. Divers
Department of Civil and Environmental Engineering
University of Strathclyde
Glasgow G1 1XJ, UK

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/adsu.202300559

© 2024 The Authors. Advanced Sustainable Systems published by
Wiley-VCH GmbH. This is an open access article under the terms of the
Creative Commons Attribution License, which permits use, distribution
and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.1002/adsu.202300559

in various industries, with crude steel
production reaching 160 Mt in 2021.[1]

However, this industry generates ≈7% of
global anthropogenic CO2 emissions, at
a rate of 1.8 kg of CO2 per kg of steel.[2,3]

The increased awareness of sustainable
development goals resulted in several
proposals to offset the CO2 emitted from
this industry, as documented in[4] and
the references therein. One of these pro-
posals is to sequester CO2 through pas-
sive mineralization. This process follows
a waste-to-resource pathway by utilizing
slag – a byproduct from this industry that
is composed of metals and silicon oxides
– as a reactant. Passive CO2 mineraliza-
tion has been documented at different
locations worldwide.[5] For example, slag
heaps near Consett, UK have captured up
to 7.8×104 kg CO2 y−1

.
[6] However, as this

process occurs with minimal human in-
tervention, the rate of CO2 uptake can be
slow due to different reasons, including
low CO2 concentration in atmospheric
air and low dissolution rates of several

minerals that constitute these wastes. Consequently, attempts
have been made to enhance CO2 uptake by enhancing water-
ing frequency and reducing the size of the slag lumps to allow
for a larger reactive surface area.[7,8] Passive CO2 mineralization
occurs during slag weathering as various minerals in slag dis-
solve to provide Ca2+ cations that react with dissolved carbon-
ates to precipitate calcite, as exemplified in the cases of larnite
(Ca2SiO4) and gehlenite (Ca2Al2SiO7), in Equations (1) and (2),
respectively:[9–11]

Ca2SiO4 + 2H2CO3 ↔ 2CaCO3 + 2H2O + SiO2 (1)

2Ca2Al2SiO7 + 2H2CO3 ↔ 2CaCO3 + 2H2O + Al2O3 + SiO2 (2)

However, the dissolution of slag is associated with releas-
ing ecotoxic elements that originate from the raw materials
that were used in the ironmaking and steelmaking process.
Upon interaction with water, slag can produce leachates that
contain oxyanions like As, Cr, and V.[12] The elevated con-
tent of these elements (e.g., 120 μg l−1 of V) in the leachates,
as well as their alkaline pH, can exceed the environmentally
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acceptable discharge limits, thereby making them a potential
hazard to nearby water bodies.[13,14] However, CO2 mineraliza-
tion can immobilize the ecotoxic elements that are released dur-
ing weathering of tailings.[15] For example, at Woodsreef in Aus-
tralia, the hydromagnesite (Mg5(CO3)4(OH)2·4H2O) and pyroau-
rite (Mg6Fe3+

2(OH)16CO3·4H2O) formed as a result of CO2 min-
eralization contained up to 100′s ppm of transition elements
(Cr, Co, Ni, V).[15] Previous work observed that elements leach-
ing from slag are largely affected by the CO2 mineralization
process.[16,17] In the absence of CO2, the leachates from the slag
had a pH value of 11.9 and a V concentration of 493 μg L−1. How-
ever, as CO2 is introduced, it dissolves in water and consumes
the OH− to produce carbonates which in turn react with leached
Ca2+ from slag to produce CaCO3, leading to a reduced pH value
of 8.0 and a V concentration of 859 μg L−1.[17]

Slag mineralogical composition depends on the properties of
the ore used, the processing method, and its management prac-
tice, resulting in compositionally heterogeneous slag at macro-
scopic and microscopic levels. Previous work investigated the
bulk properties of slag such as their mineralogy and major and
minor elements contents.[14,18] However, there is a lack of un-
derstanding as to how ecotoxic elements distribution can affect
the applicability of slag in passive mineralization applications
since these elements are prone to mobility during slag weath-
ering. For example, it is not clear if such elements exist within
well-defined grains or if they preferentially substitute cations in
different slag minerals. Understanding the nature of ecotoxic el-
ements presence in slag will help in designing waste manage-
ment practices that promote CO2 mineralization and hinder the
release of such elements to the environment. Scanning Electron
Microscopy (SEM) coupled with Energy Dispersive Spectroscopy
(EDS) analysis has been used to visualize the elements distribu-
tion in slag and reaction fronts at which minerals dissolve and cal-
cite precipitates.[19,20] Increased automation makes the collection
of large area (i.e., 10′s of mm2) hyperspectral maps a routine task.
The collected maps consist of large datasets that can contain mil-
lions of spectra and can be exported as data arrays. Consequently,
machine learning algorithms can be leveraged to determine the
present phases and to extract valuable information related to the
studied materials. To illustrate, while it is difficult to visualize
minor elements across a thin section, since such elements may
exist within fine structures that are easily missed, dimensionality
reduction and clustering algorithms enhance the signal-to-noise
ratio and provide a method to identify such structures and extract
their representative spectra.[21] In this work, we use dimension-
ality reduction and clustering techniques to study EDS data col-
lected from slag samples, to segment the different regions within
these samples as per their chemical compositions, and to visu-
alize the distribution of low-concentration (<5%) elements. The
purpose of this technique is to identify the composition of differ-
ent regions in slag, thereby assisting in minerals identification.
The clustering algorithm is further used to identify regions of in-
terest where ecotoxic elements (e.g., V, Cr) reside, and to identify
regions on which line-scans LA-ICP-MS measurements were per-
formed. EDS and LA-ICP-MS quantification methods were com-
pared to discuss the similarity of measurements obtained from
both techniques. We further investigated ecotoxic elements im-
mobilization by measuring their concentrations in the precipi-
tated calcite through LA-ICP-MS.

2. Results

The studied samples were collected from a legacy slag site near
the former Ravenscraig steelworks Scotland, where ironmaking
and steelmaking operations produced Blast Furnace (BF) and Ba-
sic Oxygen Furnace (BOF) slag.[22] The polished thin sections of
these samples were investigated by Backscatter Electrons (BSE)
imaging, EDS, and Raman spectroscopy to identify the present el-
ements and mineralogy of the samples. Figure 1 shows the BSE
images (with a magnification of x400, having a pixel size 1.4 μm)
of the studied slag samples. These images show that the samples
possess different phases, as evident by the difference of the grey-
level values that reflect different chemistry within the samples,
that is, areas appear brighter as their content of elements with
higher atomic numbers increases. The BSE images also show
that the void space within the slag can host material with a uni-
form grey level. This material can also form on the external sur-
face of the slag. Examples of EDS spectra taken from circular re-
gions demonstrate that this material is composed of Ca, O, and
C (spectra A1, B1, and C1) while the slag is composed of Mg, Al,
Si, Ca, Fe, and O (spectra A2, B2 and C2). Note that the EDS tech-
nique has been reported to have a detection limit of 0.1%−0.5%
by weight, making it unsuitable for trace elements detection, with
the latter being present at 0.01% scale.[23–26] Figure 1b shows that
for sample B, a distinctive intermediate layer forms on the exter-
nal surface of the slag. This layer contains several localities with
varying grey level values, reflecting the heterogeneity in this layer.
Based on the measured Raman shifts (Figure 2), the observed ma-
terial on the slag surface and the pore linings is indexed as calcite
and the slag minerals in samples A and C resemble åkermanite-
gehlenite. However, on different locations in sample B the Ra-
man spectra are inconclusive, showing a large peak broadening
between 700 and 900 cm−1, as exemplified by Raman spectra B2
and B3.

Due to the apparent heterogeneity of the samples and the in-
conclusiveness of the acquired Raman spectra, the acquired EDS
maps of the samples were further used to segment each sample
to areas based on their chemical composition. This segmenta-
tion is achieved through dimensionality reduction and cluster-
ing. The dimensionality reduction was performed by Principal
Component Analysis (PCA) through Singular Value Decompo-
sition (SVD), and it demonstrates that the studied data can be
represented by 5 (sample A), 8 (sample B), and 5 (sample C) prin-
cipal components, with these components being able to explain
up to 42% (sample A), 32% (sample B) and 18% (sample C) of
the total variance (Figure 3a). These principal components can
be thought of as orthogonal compositional vectors that provide
a reasonable representation of the complete dataset while being
significantly smaller in number when compared to the number
of actual measurements (1024 measurements at each pixel in the
current study), as explained elsewhere.[27] Note that as shown in
Table 1 (in the Experimental section) and Figure 3a, higher cu-
mulative explained variance at a given number of components
is associated with higher counts per pixel, thereby resulting in
a higher signal-to-noise ratio. Beyond this point, adding further
components does not increase the cumulative explained variance
by more than 0.5% per component, meaning that additional com-
ponents do not help in explaining the data further and can be
considered as noise. Figure 3b–d) shows the acquired EDS data
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Figure 1. Backscatter electron image for samples A(a), B(b), and C(c). Scalebars are 100 μm.
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Figure 2. Raman spectra were collected from locations annotated in Figure 1. Dashed lines represent Raman spectra of the standards as collected from
the RRuff database.

Figure 3. Results of dimensionality reduction, show the cumulative explained variance as a function of the number of principal components for the
studied samples a). Images b), c), and d) shows the EDS data plotted as a function of their PC1, PC2, and PC3, and color-coded as per their PC4 values.
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Table 1. SEM and EDS settings were used for data collection.

SEM settings Sample A Sample B Sample C

Accelerating voltage [kV] 20

Aperture size [μm] 60

Dwell time [μs] 250

Frame count 200

Magnification 400

Maps Properties

Physical size [μm x μm] 728×546 734×1040 1380×545

BSE image pixel size [μm] 0.71 0.71 0.71

EDS map dimensions [pixels] 512×384 516×728 972×383

EDS map pixel size [μm] 1.42 1.42 1.42

Counts per pixel 2725 1792 1665

Live time [hour] 2.7 5.2 5.2

Data size [GB] 1.6 3.0 3.0

when plotted as per their principal components (PCs) values,
depicting how these data group together and form assemblies.
These assemblies can be spotted in Figure 3 although the num-
ber of assemblies differs across the studied samples due to varied
chemistry. For example, Figure 3c depicts several areas of high
point density, reflecting the larger heterogeneity in that sample.
Some smaller assemblies in Figure 3c are evident, reflecting the
presence of several clusters with each having a distinct chem-
ical composition. Figure 3d only shows that data points group
around two main clusters and the rest of the points are dispersed
in the data space. Figure 4 depicts the chemical signature of dif-
ferent PCs of sample A (Figures S2 and S3 for samples B and C,
respectively, Supporting Information). The output components
in Figure 4b do not always exist in the actual measurement,[28]

as exemplified in the negative peaks of some elements. In these
spectra, a positive peak value reflects a positive correlation with a
given energy channel, while a negative peak value reflects a nega-
tive correlation.[29] Figure 4c,g depicts the values of each principal
component at each pixel across the studied samples. For exam-
ple, brighter regions in the loading map of PC1 (4c) demonstrate
a stronger contribution of the spectrum described by PC1. In
those bright regions, one would expect higher abundances of all
the positive elemental peaks (Mg, Al, Si, Ti, Mn) and an absence
of negative elements (C, Ca). Conversely, in the darker intensity
regions of the loading map, one would expect to find higher con-
centrations of the negative elemental peaks, with an absence to
low contribution from positive peaks. The dimensionally reduced
data were then clustered using the HDBSCAN algorithm, and
the clustering results reveal the existence of 7 clusters in sam-
ple A (with outliers representing ≈10%, Figure 5a), 14 clusters
in sample B (with outliers representing ≈30%, Figure 5b) and 5
clusters in sample C clusters (with outliers representing=≈20%,
Figure 5c). The obtained cluster maps were then back-projected
on the original EDS maps so that physically interpretable spec-
tra of these clusters could be obtained. The thus obtained spectra
can be used to quantify different elements in a given in a given
cluster thereby allowing minerals identification. For example, the
blue clusters contain a Ca to O molar ratio of ≈0.3, which corre-
sponds to the ratios of these elements in calcite (CaCO3). The cal-

cite cluster can be identified in all the samples, while åkermanite-
gehlenite dominates the slag in samples A and C as evident from
the clusters distribution map. In addition to the calcite cluster,
Sample B contains several clusters with variable compositions,
as exemplified in Figure 5b. The annotated cluster in sample B
(Figure 5b) is of particular concern since it contains pronounced
peaks of Cr and V which are known for their ecotoxicity. EDS
quantification in Figure 6c,d demonstrates that this cluster is pre-
dominately composed of Ca (30.9 wt.%), O (33.6 wt.%), Fe (11.1
wt.%), and Ti (11.1 wt.%), with Cr (1.7 wt.%) and V (1.5 wt.%).
This cluster appears at different locations within the studied area,
and it is characterized by irregular shapes and particles having
equivalent diameters of up to 42 μm. Other phases in Sample B
show no detectable concentration of any ecotoxic elements, and
they contain variable amounts of Fe, Ca, Mn, Al, and Ti. LA-ICP-
MS results in Figure 6e,g show that elevated concentrations of
V and Cr (9000 and 11 000 ppm, respectively) coincide with the
locations of the Cr/V-containing cluster. We highlight that the
clusters distribution map shown in Figure 6b and the elements
distribution shown in Figure 6e,g differ since the spot size in
the LA-ICP-MS line scans is ≈38 times larger than the pixel size
of the EDS analysis (38 vs 1.4 μm). Various locations within the
calcite that precipitated on the external surface of the slag show
variable incorporation of different elements with V having a max-
imum composition of 84 ppm, while Mn concentration reaches
5420 ppm in calcite precipitated within the pore space (Figure 7).

3. Discussion

3.1. Samples Properties

It is important to note that slag is a heterogeneous material, there-
fore the present results may only be representative of the stud-
ied samples. Nevertheless, these samples were selected for anal-
ysis as they reflect different calcite precipitation patterns (e.g., in
pores or on external surfaces) as well as different compositions
that are commonly encountered in slag.[30] Therefore, the present
results can give an idea about the nature of CO2 mineralization
in slag and the existence of ecotoxic elements. The BSE and EDS
imaging of the studied samples portray typical features of slag
shown in previous studies performed on slag samples collected
from this site and from different sites.[31,32] These features in-
clude the coexistence of multiple phases with variable compo-
sitions as well as the existence of pore space within the sam-
ples, thereby providing potential permeability and surface area at
which slag dissolution and calcite precipitation reactions can oc-
cur. Raman spectroscopy and EDS clustering analysis of samples
A and C show that they contain åkermanite-gehlenite minerals,
which are commonly observed in BF slag, and their presence has
been documented in this site and several sites worldwide.[14,33–36]

For sample B, however, Raman spectra taken from different spots
within the matrix could not be indexed. We speculate that these
observed Raman spectra are a consequence of alteration that dif-
ferent mineral phases are subjected to during the steelmaking
process, or during the chemical alteration that slag may be sub-
jected to during hydration and subsequent minerals dissolution.
For sample B, quantification of several clusters shows low con-
centration of Si (<10 wt %) and high concentration of iron (up to
40 wt %), suggesting that this sample may be a BOF slag.
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Figure 4. Demonstration of dimensionality reduction of Sample A through PCA. a) BSE image of sample A. The scale bar is 100 μm. B) The chemical
signature of each PC. Images c) through g) show the values of PC1 through 5 (score maps) at each pixel in the image.

Adv. Sustainable Syst. 2024, 2300559 2300559 (6 of 14) © 2024 The Authors. Advanced Sustainable Systems published by Wiley-VCH GmbH
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Figure 5. HDBSCAN results of EDS data of samples A(a), B(b), and C(c). Each color represents a distinct cluster. Scale bars are 100 μm. The color of
each cluster corresponds to that shown in the spectra plot. The grey color represents outliers. The boxed area in image B is magnified in Figure 6.
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Figure 6. Concentrations of different elements across sample B. a) shows a BSE image of sample B and shows the locations of the lines scanned by
the LA-ICP-MS across the sample. b) magnified results of the HDBSCAN. c) and d) show the concentrations of the elements in different clusters, as
obtained by the EDS standardless, carbon-free quantification. e), f), and g) show the concentrations of Mn, V, and Cr, respectively, in the dashed regions
in images (a) and (b) as obtained from the LA-ICP-MS.

While samples A and C contain åkermanite-gehlenite miner-
als, which slowly dissolve to produce Ca2+ that can be used to
capture CO2 to produce CaCO3,[37] it is evident that passive CO2
mineralization and calcite precipitation did occur across all the
studied samples, on their external surface and within their pore
space. Unlike our previous observations, however, the thickness
of precipitated calcite reaches 300 μm versus a maximum thick-
ness of 50 μm observed in our previous study.[36] We attribute
this to the fact that the currently investigated samples were col-
lected from a pond near the slag deposit site. Consequently, the
water enhanced the calcite precipitation, in contrast to our previ-
ous study in which calcite precipitation took place within the pore
space of the samples. While the samples investigated in this study

have thicker calcite layers on their surfaces, we highlight that cal-
cite precipitation can provide a negative feedback mechanism to
CO2 mineralization. This is because carbonate precipitation may
form an impermeable barrier that hinders calcite dissolution and
further CO2 mineralization, analogous to experimental CO2 min-
eralization in columns and in natural settings.[38,39]

3.2. Clustering Results Analysis

The dimensionality reduction of the studied samples shows that
with the chosen number of PC’s, the cumulative explained vari-
ance reaches ≈42%, reflecting that additional components still
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Figure 7. Median-inclusive box and whisker plot of the concentration of different elements in the precipitated calcite in the three studied samples as
determined by LA-ICP-MS. Outliers reflect concentrations in calcite that precipitated in the pore space. Values and errors of each data point are presented
in Supplementary Table S1 (Supporting Information).

explain the data, as shown in Figures S4-S6 (Supporting Infor-
mation). Nevertheless, the cutoff point used in our analysis was
chosen by observing the point beyond which additional compo-
nents increase the cumulative explained variance by less than
0.5%. Additional components increase the computational time,
and may reduce the effectiveness of the clustering performance
due to the curse of dimensionality as reported elsewhere.[28,40]

The application of the HDBSCAN method on the dimension-
ally reduced data depicts that the studied samples exhibit a va-
riety of complexity and that the provided workflow can analyze
samples containing several phases that have characteristic com-
positions. Samples A and C containing 7 and 5 clusters respec-
tively, including up to ≈20% outliers, while sample C shows 14
clusters with ≈35% outliers, as depicted in Figure 5. This can
be attributed to the heterogeneous nature of slag as its chemical
and mineralogical compositions strongly depend on the property
of the ore used, processing technique, and waste management
practice, with the latter strongly affecting its crystallinity and car-
bon capture potential.[41] Additionally, samples are continuously
altered by different environmental factors. For example, water
can percolate into the slag heap and result in the dissolution of
minerals, or it can carry ions that precipitate on the surface of
the slag or within its pore space. To illustrate, in sample B, it is
observed that an intermediate layer is evident between the cal-
cite cluster and the matrix phase. We previously documented the
existence of similar layers at the interface between slag miner-
als and the precipitated calcite in pore space within other slag
samples,[36] where we attributed the observed layers to the disso-
lution of calcium ions from complex minerals that dissolve non-
stoichiometrically as reported elsewhere.[42] Our previous obser-
vations demonstrated that this layer is homogenous and predom-
inantly composed of Si and O. In sample B, however, the cluster-
ing result shows that this layer has low Si content (< 5%) and it

contains several constituents of variable chemical compositions,
as exemplified in Figure 5b. Prior to calcite precipitation, this
layer represents the portion of slag that is subjected to chemi-
cal alteration, mostly due to interaction with water. This water
contains carbonate ions that are consumed in the carbonation
reaction to produce calcite. It can also carry other elements that
can be immobilized due to calcite precipitation, as shown in the
colored localities within this region. Across the studied samples,
outliers can appear within grains because of surface defects, or
more commonly at clusters boundaries. This is in part due to the
interaction volume that generates EDS signals can be larger than
the pixel resolution, therefore producing outliers where grains of
different chemical composition overlap. This issue is more evi-
dent in Sample B, which contains several clusters within the slag
matrix, resulting in a larger content of outliers within the ma-
trix. Additionally, we note that the data of each cluster shown in
Figure 7 can be exported and further analyzed through P/B ZAF
EDS quantification. That is, the raw spectrum of a given spectra
can be exported and then quantified to gain more insight into
mineral identification. For example, the blue cluster in all the
samples shown in Figure 7 has Ca/O atomic concentration ra-
tios of ≈0.3, consistent with the corresponding ratio of these el-
ements in calcite (CaCO3) and with the Raman spectra acquired
from within these clusters. Likewise, the brown cluster in sam-
ples A and C is shown to have a Ca/Si atomic ratio of 1.8. This
value is between 1 for åkermanite (Ca2MgSi2O7) and 2 for gehlen-
ite (Ca2Al2SiO7). These minerals are endmembers that form so-
lutions that are found in slag,[43] in agreement with the provided
Raman results that showed similarity of the acquired spectra with
the åkermanite and gehlenite standard spectra (Figure 2). How-
ever, a larger deviation is observed when comparing the atomic
ratio of Ca/(Al+Mg+Si), calculated to be 0.8 and 0.9 in samples
A and C, to the corresponding value in åkermanite/gehlenite
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(≈0.7). This could be a result of the material measured being not
a pure end member and some pixels being positioned at grain
boundaries. The latter can cause boundary pixels to have contri-
butions from more than one mineral, therefore presenting a devi-
ation from the ideal mineral compositions. Additionally, the pro-
vided EDS quantification through the P/B ZAF method is based
on a standardless method, which makes it more prone to errors
when compared to standard-based methods.

Figure 6b shows a magnified image of sample B, demonstrat-
ing the large heterogeneity of this sample. EDS quantification
shows that the largest content of V and Cr is in cluster 2, which is
present at various locations within the studied thin section, and it
has an equivalent diameter of up to 42 μm. Previous work demon-
strated that slag can be used in passive CO2 mineralization, al-
though the observed CO2 uptake is usually low, that is, in the
order of 60 kgCO2/1000 kg slag.[36,44] Consequently, it has been
suggested that slag size reduction through pulverization can be
used to increase the CO2 uptake rate. For example, the size reduc-
tion of slag average diameter from 532.1 to 43.9 μm increased the
CO2 uptake by around two orders of magnitude under the same
experimental conditions, and they attributed this rise to increas-
ing the dissolution rate of slag minerals.[45] However, based on
the present analysis, we highlight that the mobility of ecotoxic
elements should be further evaluated at 42 μm or less can. Previ-
ous work suggested that the size reduction of rocks and ores un-
til particle size reaches grain size makes the elements that reside
in these grains more mobile.[46] In light of the current findings,
size reduction to below 42 μm could make the observed Cr and
V more prone to mobilization due to the enhanced surface area
that is available for elements leaching.

3.3. Sequestration of Ecotoxic Elements in the Precipitated
Calcite

The LA-ICP-MS results on Sample B in Figure 6e,g exemplify
how slag can contain various amounts of ecotoxic elements. In-
spection of the locations of cluster 2 with respect to the laser path
demonstrates that this cluster coincides with areas of high Cr
and V concentrations as calculated by ICP-MS, indicating that the
clustering method can segregate clusters based on differences in
ecotoxic elemental compositions. These elements can be mobi-
lized during water percolation or slag dissolution and can provide
lasting environmental concerns. Through entrapment of these el-
ements in carbonates, Hamilton and coworkers reported that up
to 102, 440, and 784 ppm of Cr, Ni, and Co, respectively can be
captured within hydromagnesite and pyroaurite that precipitate
during weathering of ultramafic tailings.[15] These elements were
incorporated within carbonates mostly due to the substitution of
Mg in the crystalline structure of the carbonates or as distinct
grains within carbonate cement. The concentrations of ecotoxic
metals that were available within the ore minerals were below the
detection limit in the pit water, suggesting that the CO2 mineral-
ization process can sequester ecotoxic elements.[15] In our study,
however, no grains containing ecotoxic elements were detected in
the precipitated calcite, and low concentrations of Cr (maximum
of 9 ppm) and V (maximum of 84 ppm) were measured in the
precipitated calcite as depicted in Figure 7, although LA-ICP-MS
shows that the cluster in the slag that is rich in V and Cr contains

up to 9000 and 110 000 ppm of V and Cr. In the present anal-
ysis, the studied elements have ionic radii smaller than that of
Ca2+ and should be suitable for incorporation within the precip-
itated calcite as they can fit into the lattice site without disrupt-
ing the calcite lattice.[47] Nevertheless, Mn is observed to exist at
a high concentration within the calcite that precipitates within
the pore space. We attribute this to the high incorporation of Mn
that can result from the slow precipitation of calcite that occurs
in porous media, as reported elsewhere.[47] While the current re-
sults show that carbonate precipitation can immobilize some eco-
toxic elements, previous work and modeling studies suggested
that carbonate precipitation may affect the solubility and concen-
trations of V and Cr in the leachates.[17,48,49] For example, it has
been explained that calcium vanadate Ca3(VO4)2 solubility con-
trols the release of V in a slag environment.[16,17] To illustrate, in
the absence of CO2, the released Ca2+ during the leaching pro-
cess is at a concentration sufficient to hinder the dissolution of
Ca3(VO4)2 (log Ksp =−17.97). However, the presence of CO3

2− re-
sults in the formation of CaCO3, which provides a sink for Ca2+

and promotes the dissolution of Ca3(VO4)2. This indicates that
larger CO2 mineralization can result in a higher release of V. With
respect to Cr, no mineral in their thermodynamic database could
mimic its leaching as a function of pH, and at various carbona-
tion levels.[16] However, it was reported that higher Cr concentra-
tion in the leachate was observed at higher carbonation and that
its leaching is proportional to basicity reduction.[50]

4. Conclusion

As slag contains alkaline earth oxides in the form of silicate min-
erals (e.g., åkermanite), it can be used in CO2 removal applica-
tions. However, Ecotoxic elements in slag can be a source of pol-
lution that may present a drawback when deploying passive min-
eralization as a CO2 removal solution. While the literature largely
focuses on the bulk content of these elements in slag, this work
focuses on interrogating slag samples at the microstructural level
through a machine learning-based approach. This approach is
based on using dimensionality reduction followed by the HDB-
SCAN method to segment EDS data into distinct clusters, each
with its own chemical signature. In addition to providing clear
evidence of calcite precipitation in the studied samples, the pro-
vided workflow can segment the data into clearly identifiable clus-
ters that are otherwise easily missed through visual inspection of
BSE and EDS data. For example, slag can contain ecotoxic ele-
ments (V/Cr) in grains having equivalent diameters of less than
42 μm. While it is common to pulverize slag to increase the sur-
face area, thereby enhancing the reaction rate, our work demon-
strates that size reduction to particles smaller than 42 μm should
be avoided to prevent the mobilization of these elements and
their consequent delivery to nearby water resources. Additionally,
the presented analysis shows the content of ecotoxic elements in
the precipitated calcite (mainly V, averaging at 55 ppm), suggest-
ing that calcite precipitation may immobilize ecotoxic elements
that are released due to slag weathering. While dissolution of slag
minerals is required for calcite precipitation, it also makes eco-
toxic elements more prone to mobilization. This problem should
be accounted for during the economic and life cycle evaluation
of enhanced weathering of slag. The presented workflow shows
that the clustering algorithm can segregate different portions of
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Figure 8. Demonstration of the data structure obtained through BSE/EDS. The count of each energy level at each pixel is recorded in the EDS data, as
exemplified in the case of Oxygen (green map). The edge length of the BSE image is 500 μm.

a thin section into different clusters that can otherwise be easily
missed during visual inspection of the microscopy data, and the
locations of the observed clusters matched that displayed from
the LA-ICP-MS. The provided workflow relies on freely available,
open source thereby making it accessible to a wider community.
However, given that this workflow is applied only on a small num-
ber of samples (n = 3) in the current work, future work can in-
volve applying it to a larger number of samples to increase the
representativeness of the thus obtained results. Additionally, the
availability of an open-source EDS quantification algorithm can
enhance the accessibility of the provided workflow and will en-
able studying the effect of using different machine learning pa-
rameters/algorithms on the reproducibility of clusters quantifi-
cation.

5. Experimental Section
SEM-EDS Data Acquisition System: Slag samples were collected from

the former Ravenscraig Steelworks site in Motherwell, Scotland. Details
about the location of this site and its history were summarized in the
previous study. In light of the previous observations of microstructural
features of slag and previously acquired backscattered electron images of
slag,[31,36,32] three samples (A, B, and C) were shortlisted for the present
analysis. These samples were selected so that they reflect the variation
in slag sample microstructure (e.g., presence of pores space, presence of
materials with different atomic numbers, presence of pore filling materials
and precipitates) and so they demonstrate different calcite precipitation
patterns (i.e., in pore space and on the external surface of the slag). This
enables understand how different precipitation environments may immo-
bilize ecotoxic elements. The samples were mounted, and three thin sec-
tions (one per sample) were prepared and imaged using the Zeiss Axio
Imager M2m microscope (Supplementary Figure S1, Supporting Informa-
tion), polished, and carbon-coated for imaging with the SEM. Backscatter
electrons (BSE) and EDS signal were collected using Zeiss Sigma VP Field-
Emission Gun SEM (VP-FEG-SEM) equipped with Oxford Instruments
170 mm2 silicon drift EDS detector based in the GEMS facility at the Uni-
versity of Glasgow. For each sample, the acquired data tiles were stitched
and montaged with Oxford Instrument AZtec 6.0 software. Previous work
demonstrated that ≈700 counts per pixel was sufficient to facilitate data

analysis.[40] However, there is no direct entry for the number of counts per
pixel in SEM-EDS control software. The counts per pixel can be increased
through increasing the dwell time and/or the number of acquired frames.
Consequently, several attempts were performed to find suitable combina-
tions of settings that yield greater than 1000 counts per pixel without in-
troducing surface damage and minimal drift, in a reasonable time (≈ 5 h).
The acquisition parameters are summarized in Table 1.

Dimensionality Reduction and Clustering: The obtained EDS map data
were exported as .raw and .rpl files from Aztec 6.0 software and were
imported and separately processed in Jupyter Notebook using HyperSpy,
SciPy, pandas, Matplotlib, Seaborn, and NumPy dependencies.[51–56] The
current workflow builds on the work of Tominaga and coworkers[40] for
processing of the EDS data and it is described as follows. The obtained
BSE images were used to visualize the samples and to identify pore space
such that it could be masked from subsequent dimensionality reduction
and clustering analysis. Pore space provides no information regarding the
sample mineralogy and elements’ distribution and can be ignored in di-
mensionality analysis to reduce the size of the processed data, thereby
reducing the processing time. The pore space mask of a given sample was
created by manually thresholding the corresponding BSE image through
the Scikit image library in Python.[57] The Poissonian noise in the EDS data
was normalized following the method of Keenan and Katoula[29] from the
modified HyperSpy source code. Figure 8 depicts the structure of the col-
lected data. Each EDS map is divided into pixels in the x and y direction,
and the pixel size is dictated by the required resolution and magnification.
The EDS detector measures the energy emitted from each pixel as a result
of the interaction with the incident electrons. The energy ranges across
2048 levels that span over 20 keV. As energy levels are characteristic of
elements, more than one energy level can be associated with each pixel,
depending on the chemical composition at that pixel, as exemplified in
O, Si, Mg, Al, and Ca maps shown in Figure 8. Therefore, the obtained
data are structured as follows: x and y values that identify the location of
the pixel in the sample, and values for each of the 2048 energy levels. As
the map data contain over 400000 pixels and 2048 energy channels, they
are characterized by high dimensionality. Inspection of the acquired EDS
data demonstrates that they show no peak beyond 1024 energy channels,
so the energy axis was cropped beyond this point. The dimensionality re-
duction is then required to eliminate noise by identifying linear relation-
ships in the data that describe most of the relevant chemical variation,
later used to cluster the data. Dimensionality reduction reduces the com-
putational cost and improves the performance of clustering algorithms
that utilize distance-based metrics.[28,57–59] Consequently, Principal Com-
ponent Analysis (PCA) was used to project the EDS data to lower dimen-
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sional space using PCA singular value decomposition (SVD)-based imple-
mentation in Scikit-learn.[60] Reduced-dimensionality data were then clus-
tered using the Hierarchical Density-Based Spatial Clustering of Applica-
tions with Noise (HDBSCAN) algorithm.[61,62] This probabilistic method
does not require prior knowledge of the number or geometry of the clus-
ters within a dataset, and it does not require all points within a dataset
to be clustered as it can identify noise as outliers. Here HDBSCAN im-
plementation was used in Python to cluster the obtained EDS data into
different phases, each with a distinctive chemical signature, to visualize
the distribution of different elements within the studied samples.[63] The
HDBSCAN hard cluster assignments were used to identify regions of inter-
est for further analysis and quantification using the standardless, peak-to-
background method (P/B-ZAF) implemented within Bruker ESPRIT soft-
ware. This EDS quantification technique yields the mass and atomic ratios
of different elements in a given spectrum, thereby facilitating mineral iden-
tification and sample characterization. User inputs to the provided work-
flow are required for peaks identification and spectra calibration, choos-
ing a number of the dimensions for the dimensionally reduced data, and
choosing values for the HDBSCAN parameters (e.g., minimum cluster
size and minimum sample numbers). The user can also use a mask to
exclude a given area (like pores) from the analysis. The analysis was per-
formed on a Dell Precision 5820 workstation with Intel Xeon W-2175 CPU
and 32 GB RAM. Running the provided workflow on the largest dataset
(Sample B) required less than 10 min, as measured using the time.time()
function. To calculate the morphological properties of a given cluster, a bi-
nary image of that cluster was noise-reduced and then analyzed using the
morphology and label measurement operation in the Scikit image library
in Python.[57] Details of used packages and Python scripts are available in
the supplementary information.

This open-source unsupervised approach provides a vendor-
independent and agnostic method for the identification and quantitation
of the mineral phases present in a specimen. Commercial solutions for
automated mineralogy such as the QEMSCAN, Zeiss’s Mineralogic or
Tescan’s TIMA all rely on the coupling of vendor-specific instrument au-
tomation combined with a proprietary database of reference EDS spectra
(more information about these systems are available elsewhere.[63–66]

Ignoring vendor-specific variations, the crux of the technique rests on
matching the collected spectra to a library of reference spectra – in some
ways very similar to simple forms of supervised regression. Importantly
the result of this fitting process results in a set of proprietary data
formats, which are difficult to work with and require vendor licenses. In
contrast, the workflow leverages the power of the underlying patterns
in the data collected. This exploratory data analysis approach allows for
the discovery of minor phases which would often get overlooked due
to the weak signals being not apparent due to low abundance. In this
way, user bias was avoided in the assignment of phases, while leveraging
experimental expertise in the processing and classification of the phases
identified. Further by leveraging open-source software tools, these are not
dependent on any one vendor’s system design and instead offer a method
for a broad range of users to take advantage of the statistically dense data
that they routinely collect with their existing instrumentation. Additionally,
the workflow can be adapted to address system-specific peculiarities.
Finally, in the present work, the output of the workflow was assessed
by using Raman spectroscopy to ensure that different regions within a
given cluster do represent the same material and that the compositions
calculated through the EDS quantification technique in a given cluster
match the mineral identification obtained through Raman spectroscopy.

Raman Spectroscopy and LA-ICP-MS: For mineral identification in the
three studied samples, Raman spectroscopy was performed using an In-
Via Raman microscope (Renishaw) within the GEMS facility at, Univer-
sity of Glasgow. 514 nm monochromatic light and 1000 grating were used
to identify the intensity of Raman shifts to be used for mineral identifica-
tion. Data were processed by truncation and background subtraction using
WiRE 4.1 software (Renishaw) and they were indexed with reference to the
RRuff database.[67] ASI RESOlution Laser ablation system (Australian Sci-
entific Instruments) with ArF 193 nm laser (ATL Lasertechnik) and Thermo
iCAP RQ mass spectrometer (Thermo Fisher Scientific) was used for quan-
tification of elements within areas of interest in slag in Sample B that were

identified through clustering and within the precipitated carbonates of all
the three samples. Line scans were chosen over stationary spots since the
chosen spot size of 38 μm is larger than the features of interest that were
identified from the clustering analysis. Analysis of line scans enables cal-
culations of elements concentrations along a given line to good accuracy
and precision of <5%, as shown elsewhere.[68] At the condition of the LA-
ICP-MS, the depth of the ablated material is ≈5 μm. Consequently, the thus
produced concentration profiles can be compared with the quantifications
of EDS. Areas that resemble 38 μm-wide lines were ablated 5 Hz laser hav-
ing energy of 3.8–3.9 mJ. The following signals were collected: 29Si, 44Ca,
48Ti, 51 V, 52Cr, 55Mn, 59Co and 60Ni. 44Ca was collected as it was used as
the internal standard for quantification of trace elements in calcite, while
51 V, 52Cr, 55Mn, 59Co, and 60Ni were collected as they are anticipated to be
present in calcite due to their association with leachates produced during
slag weathering.[69] For the analysis of the slag, the NIST SRM 610 stan-
dard was used in accordance with the literature since no better reference
material that resembles slag properties has been identified.[70] Due to the
heterogeneous nature of the studied sample, only semi-quantitative data
are reported as no internal standard can be found at a fixed composition
throughout the scanned area. For analysis of calcite, the MACS 3 standard
was used, with calcium being identified as the internal standard. Quality
assessment of the collected data and the uncertainty of the measurement
are demonstrated in Tables S1 and S2 (Supporting Information) respec-
tively. The acquired LA-ICP-MS data were analyzed with Iolite4 software
with reference to the GeoReM database.[71]

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I.
Henriksen, E. A. Quintero, C. R. Harris, et al., Nat. Methods 2020, 17,
261.

[52] F. de la Peña, E. Prestat, V. T. Fauske, P. Burdet, J. Lähnemann, P.
Jokubauskas, T. Furnival, M. Nord, T. Ostasevicius, K. E. MacArthur,
D. N. Johnstone, M. Sarahan, J. Taillon, T. Aarholt, pquinn-dls, V.
Migunov, A. Eljarrat, J. Caron, C. Francis, T. Nemoto, T. Poon, S.
Mazzucco, actions-user, N. Tappy, N. Cautaerts, S. Somnath, T.
Slater, M. Walls, F. Winkler, H. W. Ånes, Zenodo 2022, https://doi.
org/10.5281/ZENODO.7263263.

[53] The pandas development team, Zenodo 2023, https://doi.org/10.
5281/zenodo.8364959.

Adv. Sustainable Syst. 2024, 2300559 2300559 (13 of 14) © 2024 The Authors. Advanced Sustainable Systems published by Wiley-VCH GmbH

 23667486, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adsu.202300559 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [03/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.advancedsciencenews.com
http://www.advsustainsys.com
https://worldsteel.org/steel-topics/statistics/world-steel-in-figures-2022/
https://worldsteel.org/steel-topics/statistics/world-steel-in-figures-2022/
https://worldsteel.org/wp-content/uploads/2019-World-Steel-in-Figures.pdf
https://worldsteel.org/wp-content/uploads/2019-World-Steel-in-Figures.pdf
https://www.oxinst.com/blogs/determining-accurate-detection-limits-for-eds-analysis-using-simulated-spectra
https://www.oxinst.com/blogs/determining-accurate-detection-limits-for-eds-analysis-using-simulated-spectra
https://arxiv.org/abs/1404.1100v1
https://doi.org/10.5281/ZENODO.7263263
https://doi.org/10.5281/ZENODO.7263263
https://doi.org/10.5281/zenodo.8364959
https://doi.org/10.5281/zenodo.8364959


www.advancedsciencenews.com www.advsustainsys.com

[54] J. D. Hunter, Comput. Sci. Eng. 2007, 9, 90.
[55] M. L. Waskom, J. Open Source Softw. 2021, 6, 3021.
[56] S. Van Der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne,

J. D. Warner, N. Yager, E. Gouillart, T. Yu, Peer J. 2014, 2014,
e453.

[57] T. Landers, R. L. Rosenberg, Encycl. Database Syst. 2009, 6, 846.
[58] J. Blanco-Portals, F. Peiró, S. Estradé, Microsc. Microanal. 2022, 28,

109.
[59] C. C. Aggarwal, A. Hinneburg, D. A. Keim, On the surprising behaviour

of distance metrics in high dimensional space. In Database theory-ICDT
2001. ICDT 2001 (Eds: J. Van den Bussche, V. Vianu). Lecture Notes in
Computer Science vol 1973. Springer, Berlin, Heidelberg. 2001, 420.

[60] F. Pedregosa, V. Michel, O. Grisel, M. Blondel, P. Prettenhofer, R.
Weiss, J. Vanderplas, D. Cournapeau, F. Pedregosa, G. Varoquaux, A.
Gramfort, B. Thirion, O. Grisel, V. Dubourg, A. Passos, M. Brucher,
M. Perrot andÉdouardand, A. Duchesnay, F. D. Edouardduchesnay,
J. Mach. Learn. Res. 2011, 12, 2825.

[61] R. J. G. B. Campello, D. Moulavi, J. Sander, in Lect. Notes Comput. Sci.
(Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),
Springer, Berlin, Heidelberg 2013, pp. 160.

[62] L. McInnes, J. Healy, S. Astels, J. Open Source Softw. 2017, 2, 205.

[63] R. Fandrich, Y. Gu, D. Burrows, K. Moeller, Int. J. Miner. Process. 2007,
84, 310.

[64] P. Gottlieb, G. Wilkie, D. Sutherland, E. Ho-Tun, S. Suthers, K. Perera,
B. Jenkins, S. Spencer, A. Butcher, J. Rayner, JOM 2000, 52, 24.

[65] T. Hrstka, P. Gottlieb, R. Skála, K. Breiter, D. Motl, J. Geosci. 2018, 63,
47.

[66] R. Juránek, J. Výravský, M. Kolář, D. Motl, P. Zemčík, Comput. Geosci.
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