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We investigate the connection between the classical Larmor formula and the quantum Unruh effect by
computing the emitted power by a uniformly accelerated charged particle and its angular distribution in the
coaccelerated frame. We consider a classical particle accelerated with nonzero charge only for a finite
period and then take the infinite-time limit after removing the effects due to the initial charging and final
discharging processes. We show that the result found for the interaction rates agrees with previous studies
in which the period of acceleration with nonzero charge was taken to be infinite from the beginning. We
also show that the power and angular distribution of emission, which is attributed either to the emission or
absorption of a Rindler photon in the coaccelerated frame, is given by the Larmor formula, confirming that,
at tree level, it is necessary to take into account the Unruh effect in order to reproduce the classical Larmor
radiation formula in the coaccelerated frame.
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I. INTRODUCTION

It is well established that spontaneous particle produc-
tion can occur in curved spacetime [1–3]. This effect has
played a significant role in our understanding of the early
Universe [4–6]. For example, gravitational particle pro-
duction can provide a generation mechanism for dark
matter (DM), especially during the inflationary period
because of the high Hubble rate and curvature of spacetime
(see Refs. [7–10] and references therein for recent studies
involving DM candidates of different spin). Depending
on the mass of the dark particle, this production channel
could account for all observed DM in the Universe.
Another well-recognized result of gravitationally induced
particle production is the thermal radiation occurring near
the event horizon of a black hole, known as Hawking
radiation [11,12]. Shortly after this discovery, it was shown
that a uniformly accelerated detector in flat spacetime
also sees a thermal bath with temperature proportional to
its own acceleration. This is known as the Fulling-Davies-
Unruh (FDU) effect, or simply referred to as Unruh

radiation [13–15]. Hawking and Unruh radiation are con-
nected through the equivalence principle.
So far, there has been no direct measurement of

gravitational particle production, including, in particular,
Hawking radiation. On the other hand, exploiting the
equivalence principle, it would appear that measuring
Unruh radiation from accelerating bodies is, by itself, a
test of gravitational particle production. An experiment has
been proposed to verify the existence of the FDU bath
which is encoded in Larmor radiation [16]. Getting the
required accelerations to produce an observable effect is
challenging [17,18]. In this endeavor, the electron is the
simplest “detector” to test the Unruh predictions. In fact,
large accelerations can already be realized in the laboratory
using high-intensity lasers [19–21] corresponding to a
thermal bath of temperature ≳1 eV [22]. Additionally,
the radiation reaction becomes important for 1 micron
lasers with intensities around 1021 W · cm−2 [23]. While, in
principle, this can be measured in the laboratory, the
detection of Unruh radiation has been a controversial
subject in the literature [24–26], especially concerning
how to distinguish it from other classical and quantum
radiation processes involving the acceleration of charged
particles.
In this paper, we aim at providing some clarification of

this issue, and we show, using a full quantum field theory
calculation, that the Unruh effect involving an accelerated
electron reduces, at tree level, to nothing other than the
classical Larmor radiation as seen in the laboratory frame.
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While this result would seem to diminish the importance of
the FDU effect, it has, on the contrary, a fundamental
implication. Hawking’s derivation of gravitational particle
production makes use of untested approximations in which
the appearance of trans-Planckian frequencies is unavoid-
able. The same problem is also present in Unruh’s
derivation. The fact that the FDU effect on an accelerated
electron reduces to the experimentally verified Larmor
radiation gives strong support to Hawking’s derivation of
gravitational particle production.
The presence of the FDU thermal bath is necessary

when comparing photon emission rates in the inertial and
coaccelerated frame. In this context, it is important to note
that the absorption of a photon in the FDU thermal bath
in the coaccelerated frame corresponds to the emission
of a photon in the inertial frame [27,28]. It was shown in
Refs. [29,30] that the rate of photon emission by an
accelerated charge in the inertial (or Minkowski) frame is
the same as the sum of the rates of emission and absorption
of photons in the coaccelerated or Rindler frame in the
presence of a FDU thermal bath. In Ref. [31], the same
equivalence was demonstrated for a more general case,
where the uniformly accelerated charge has an arbitrary
transverse motion. This connection suggests that the
classical Larmor radiation can be seen as a consequence
of the FDU thermal bath, though the link between the two
seems counterintuitive, since the former is a classical effect
while the latter is a purely quantum one. In Refs. [32,33], it
was shown that the classical radiation is built from zero-
energy Rindler modes, and the Larmor formula is recovered
in the Rindler frame by coupling a scalar field to the
accelerated particle. In Ref. [34], the Larmor formula was
recovered in the Minkowski frame for photons instead of
scalars.
To fully clarify how the Unruh effect on an accelerated

charged particle reduces to Larmor radiation, however,
what has been missing in the above work is a calculation of
the total photon power emitted by the accelerated electron
using the Unruh effect in the Rindler frame. This task is
carried out in this paper. The calculation will be done at tree
level in the Rindler frame. Next-to-leading-order Feynman
diagrams such as photon scattering by the electron (i.e.,
Compton scattering) are purely quantum, meaning that they
have no classical equivalent. These higher-order processes
are also linked to the Unruh effect [35], but they provide a
much smaller contribution to the total power [36,37]. In this
paper, we will neglect any subdominant terms and leave
them to a future study. In what follows, we use the metric
signature ðþ;−;−;−Þ and natural units ℏ ¼ c ¼ kB ¼ 1,
unless stated otherwise.

II. MINKOWSKI AND UNRUH MODES

The goal of this section is to find the relation between the
Minkowski and Unruh modes, the latter being the eigen-
modes of the Rindler energy in each Rindler wedge, for the

electromagnetic (EM) field. One can then deduce how the
Unruh creation operators are expressed in terms of the
Minkowski ones. This result will be used in the next section
to calculate the emitted power in the Rindler frame. Here,
we focus on setting up the problem and presenting the
main relations. We leave all the technical details to the
Appendixes.
In Rindler coordinates, the Minkowski line element takes

the form [1]

ds2 ¼ e2aξðdτ2 − dξ2Þ − dx2 − dy2; ð1Þ

where the coordinates τ and ξ are defined by t ¼
a−1eaξ sinh aτ and z ¼ a−1eaξ cosh aτ with a > 0. The
part of Minkowski spacetime covered by the metric (1)
is restricted by z > jtj and is known as the right Rindler
wedge. The proper acceleration of the world lines with ξ, x,
and y constant is given by ae−aξ, and therefore uniformly
accelerated observers follow these world lines. Similarly,
the Rindler coordinates ðτ̄; ξ̄Þ which cover the part of
Minkowski spacetime with z < −jtj, known as the left
Rindler wedge, are defined by t ¼ a−1eaξ̄ sinh aτ̄ and
z ¼ −a−1eaξ̄ cosh aτ̄.
The Lagrangian describing the EM field in the Feynman

gauge is

L ¼ −
1

4

ffiffiffiffiffiffi
−g

p
FμνFμν −

1

2

ffiffiffiffiffiffi
−g

p ð∇αAαÞ2; ð2Þ

where Fμν ¼ ∇μAν −∇νAμ and the second term is a gauge-
fixing term. For the metric (1),

ffiffiffiffiffiffi−gp ¼ e2aξ. The equations
of motion of the Lagrangian (2) are given by

∇μð∇μAρÞ − Rρ
λAλ ¼ 0; ð3Þ

where Rμν is the Ricci tensor. Note that the Lagrangian (2)
does not include any mutual interaction between the
point particle and the quantum field. The backreaction
effects arising from such a term are important in deter-
mining radiation reaction contributions in the inertial
frame [23,34,38,39], but they are neglected in our analysis
as subdominant. We have Rμν ¼ 0 in Eq. (3), since
Minkowski spacetime is flat. Thus, the equations of motion
simplify to

∇μ∇μAρ ¼ 0: ð4Þ

Expanding the EM field operator in the right Rindler wedge
gives

ÂR
μ ðxνÞ ¼

Z
d2k⊥dω

X4
λ¼1

h
aRðλ;ω;k⊥ÞA

Rðλ;ω;k⊥Þ
μ ðxνÞ þ H:c:

i
;

ð5Þ
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where k⊥ ¼ ðkx; kyÞ ≠ ð0; 0Þ, ω > 0, and where aRðλ;ω;k⊥Þ is
the annihilation operator in the right Rindler wedge, and
the index λ labels the different polarizations. The modes

ARðλ;ω;k⊥Þ
μ solve Eq. (4) and are given in Refs. [29,30], with

the notation Aμ ¼ ðAτ; Aξ; Ax; AyÞ, by

ARðI;ω;k⊥Þ
μ ¼ k−1⊥

�
0; 0; kyvRωk⊥ ;−kxv

R
ωk⊥

�
;

ARðII;ω;k⊥Þ
μ ¼ k−1⊥

�
∂ξvRωk⊥ ; ∂τv

R
ωk⊥ ; 0; 0

�
;

ARðG;ω;k⊥Þ
μ ¼ k−1⊥ ∇μvRωk⊥ ;

ARðL;ω;k⊥Þ
μ ¼ k−1⊥

�
0; 0; kxvRωk⊥ ; kyv

R
ωk⊥

�
; ð6Þ

where k⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
is the transverse momentum and

vRωk⊥ is the solution to the scalar Klein-Gordon equation
□ϕ ¼ 0, given by

vRωk⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðπω=aÞ

4π4a

r
Kiω=a

�
k⊥eaξ
a

�
e−iωτþik⊥·x⊥ : ð7Þ

Here, the function KνðzÞ is the modified Bessel function
of the second kind. The vacuum annihilated by aRðλ;ω;k⊥Þ is
referred to as the Rindler, or Fulling, vacuum and is
denoted by j0Ri. It differs from the Minkowski vacuum

j0Mi, since the Rindler modes ARðλ;ω;k⊥Þ
μ are not a combi-

nation of purely positive-frequency Minkowski modes but
contain negative-frequency modes as well [1].

The normalization of the physical modes ARðI;ω;k⊥Þ
μ and

ARðII;ω;k⊥Þ
μ , which satisfy the Lorenz condition ∇μAμ ¼ 0

and are not pure gauge, is determined with respect to
the Klein-Gordon inner product (see Appendix A). As a
result [29,30], the creation and annihilation operators for
the physical modes satisfy the following commutation
relations:

h
aRðλ;ω;k⊥Þ; a

R†
ðλ0;ω0;k0⊥Þ

i
¼ δλλ0δðω − ω0Þδð2Þðk⊥ − k0⊥Þ: ð8Þ

As we shall see later, the only nonzero components of the
current jμ representing a charge uniformly accelerated in
the z direction are jτ and jξ [see Eq. (15)]. This implies
that the only modes that couple to this current are the

second physical modes, ARðII;ω;k⊥Þ
μ : the τ and ξ components

of the modes ARðI;ω;k⊥Þ
μ and ARðL;ω;k⊥Þ

μ are zero, and the

coupling of jμ to the modes ARðG;ω;k⊥Þ
μ vanishes because

of the conservation equation ∇μjμ ¼ 0. Thus, we need to

consider only the modes ARðII;ω;k⊥Þ
μ . They can be written as

ARðII;ω;k⊥Þ
μ ¼ k−1⊥ ϵμν∂

νvRωk⊥ , where ϵμν is the antisymmetric
tensor on the plane in Minkowski spacetime with x and y
fixed, which has the following metric:

ds2ð2Þ ¼ dt2 − dz2 ¼ e2aξðdτ2 − dξ2Þ; ð9Þ

with ϵzt ¼ 1. Therefore, in Minkowski coordinates, these
modes take the following form:

ARðII;ω;k⊥Þ
μ ¼ k−1⊥

�
∂zvRωk⊥ ; ∂tv

R
ωk⊥ ; 0; 0

� ð10Þ

in the notation Aμ ¼ ðAt; Az; Ax; AyÞ. Using a similar
approach on the left Rindler wedge (see Appendix B),

the left EM modes ALðλ;ω;k⊥Þ
μ can be obtained from the right

ones with the substitution vRωk⊥ → vLωk⊥ , where v
L
ωk⊥ are the

corresponding solutions to the scalar Klein-Gordon equa-
tion in the left Rindler wedge. The purely positive-
frequency EM modes, or Unruh modes, are then [40]

Wðλ;−;ω;k⊥Þ
μ ¼ ARðλ;ω;k⊥Þ

μ þ e−πω=aALðλ;ω;−k⊥Þ�
μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p ;

Wðλ;þ;ω;k⊥Þ
μ ¼ ALðλ;ω;k⊥Þ

μ þ e−πω=aARðλ;ω;−k⊥Þ�
μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p : ð11Þ

The full EM field can be expanded in terms of these modes,
as they form a complete set:

Âμ ¼
Z

d2k⊥
Z þ∞

0

dω
X
λ

h
Wðλ;−;ω;k⊥Þ�

μ a†ðλ;−;ω;k⊥Þ

þWðλ;þ;ω;k⊥Þ�
μ a†ðλ;þ;ω;k⊥Þ þ H:c:

i
; ð12Þ

where a†ðλ;�;ω;k⊥Þ are the Unruh creation operators. The

creation operators for the second physical modes can be
expanded in terms of the Minkowski ones, b†k, with the
momentum k and the polarization vector εμðkÞ ¼
k−1⊥ ðkz; k0; 0; 0Þ that satisfy ½bk; b†k0 � ¼ δð3Þðk − k0Þ as
(see Appendix B)

a†ðII;�;ω;k⊥Þ ¼ i
Z þ∞

−∞

dkzffiffiffiffiffiffiffiffiffiffiffiffi
2πak0

p e�iϑðkzÞωb†k; ð13Þ

where ϑðkzÞ ¼ ð2aÞ−1 lnfðk0 þ kzÞ=ðk0 − kzÞg is the nor-
malized rapidity and k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ k2z

p
is the total energy of

the photon.

III. PHOTON EMISSION IN THE
RINDLER FRAME

The interaction between a photon and the charged
particle (an electron, for example) in the right Rindler
wedge with the associated classical current jμ is described
by the action

SI ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p
jμÂR

μ : ð14Þ
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We consider a point charge q located in the right Rindler
wedge at ξ ¼ x ¼ y ¼ 0. This charge is uniformly accel-
erated with proper acceleration a. It would be ideal to
consider a charge uniformly accelerated only for a finite
time. However, such a charge would enter the right Rindler
wedge at τ ¼ −∞ and leave it at τ ¼ þ∞. This behavior
for the charge would make the analysis rather involved.
Instead, we consider a point charge which is charged and
uncharged through a wire at x ¼ y ¼ 0 extending from
ξ ¼ 0 to þ∞ (see Refs. [29,30] for a similar model). The
associated current jμ is

jτ ¼ qFðτÞδðξÞδðxÞδðyÞ;
jξ ¼ −qF0ðτÞe−2aξθðξÞδðxÞδðyÞ;
jx ¼ jy ¼ 0; ð15Þ

where FðτÞ is a smooth function. A charge uniformly
accelerated forever corresponds to the choice FðτÞ ¼ 1 for
all τ. This choice would lead to inconsistencies even for
classical Larmor radiation [41,42]. Considering a finite
period of acceleration with nonzero charge avoids these
inconsistencies. Thus, the function FðτÞ is chosen in such
a way as to ensure that the period where the particle
has nonzero charge is finite. We let FðτÞ ¼ 1 for jτj < T,
where 2T ≫ 1=a is the period of constant charge. For
jτj > T þ b, where 1=a ≪ b ≪ T, we let the particle have
no charge—i.e., FðτÞ ¼ 0. The period T < jτj < T þ b is a
period of smooth transition between the two. In the end, we
let T → þ∞ but keep b finite [see Eq. (31)], thus removing
contributions to the transition rate (with fixed transverse
momentum) coming from transition effects. Note that the
current (15) satisfies current conservation ∇μjμ ¼ 0, which
ensures gauge invariance.
At tree level, the amplitude of emission of a photon in the

Rindler vacuum state by the charged particle is given by

Ae
ðω;k⊥Þ ¼ ihII;ω;k⊥jSIj0Ri; ð16Þ

where jII;ω;k⊥i ¼ aR†ðII;ω;k⊥Þj0Ri. The emission amplitude

can be computed explicitly by combining Eqs. (6), (7),
and (15):

Ae
ðω;k⊥Þ ¼ −iqF̃ðωÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhðπω=aÞ

4π4a

r �
K0

iω=a

�
k⊥
a

�

−
ω2

k⊥

Z þ∞

0

dξKiω=a

�
k⊥eaξ
a

��
; ð17Þ

where F̃, the Fourier transform of F, is defined by

F̃ðωÞ ¼
Z þ∞

−∞
dτFðτÞeiωτ: ð18Þ

The amplitude for the absorption of a photon with trans-
verse momentum −k⊥ is

Aa
ðω;−k⊥Þ ¼ ih0RjSIjII;ω;−k⊥i: ð19Þ

The total one-photon interaction probability is found by
taking into account the Unruh effect—i.e., the fact that, in
the Rindler wedge, the Minkowski vacuum state is equiv-
alent to a thermal bath of temperature a=2π with the Bose-
Einstein distribution function ðe2πω=a − 1Þ−1 with respect to
the Rindler energy. The result is

Ptot¼
Z þ∞

0

dω
Z

d2k⊥

" jAe
ðω;k⊥Þj2

1−e−2πω=a
þ
jAa

ðω;−k⊥Þj2
e2πω=a−1

#
: ð20Þ

Note that

1

1 − e−2πω=a
¼ 1þ 1

e2πω=a − 1
: ð21Þ

Thus, the first term in the integrand gives the (spontaneous
and induced) photon emission probability, while the second
term gives the photon absorption probability in the pres-
ence of the FDU thermal bath of temperature a=2π.
To understand the Larmor formula in the context of the

Unruh effect, we first note that one can interpret Eq. (20)
as the norm squared of a one-photon final state expressed
as a linear combination of Unruh states a†ðII;�;ω;k⊥Þj0Mi, as
shown in Appendix C:

jf1-photoni ¼
Z

d2k⊥
Z þ∞

0

dω

"
Ae

ðω;k⊥Þa
†
ðII;−;ω;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p

þ
Aa

ðω;−k⊥Þa
†
ðII;þ;ω;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2πω=a − 1
p

#
j0Mi: ð22Þ

This state can be expressed as a linear combination
of states b†kj0Mi with (Minkowski) momentum k, using
Eq. (13) as

jf1-photoni ¼ i
Z

d2k⊥
Z þ∞

−∞

dkzffiffiffiffiffiffiffiffiffiffiffiffi
2πak0

p

×
Z þ∞

−∞
dω

e−iϑðkzÞωAe
ðω;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p b†kj0Mi; ð23Þ

where we have used the relation

Aa
ðω;−k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2πω=a − 1
p ¼

Ae
ð−ω;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2πω=a
p : ð24Þ
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Then, one can write Eq. (20) as

Ptot ¼ hf1-photonjf1-photoni

¼
Z

d2k⊥
Z þ∞

−∞

dkz
2πak0

				
Z þ∞

−∞
dω

e−iϑðkzÞωAe
ðω;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p

				
2

:

ð25Þ

Notice that there are interference terms between the
emission and absorption in the coaccelerated frame.
Substituting Eq. (17) into this equation, we find

Ptot ¼
a

16π3

Z
d2k⊥

Z þ∞

−∞
dϑjAðkÞj2; ð26Þ

where we use dϑ ¼ dkz=ak0 and where

AðkÞ ¼ −
q
πa

Z þ∞

−∞
dωF̃ðωÞe−iωϑeπω=2a

×

�
K0

iω=a

�
k⊥
a

�
−
ω2

k⊥

Z þ∞

0

dξKiω=a

�
k⊥eaξ
a

��
:

ð27Þ

To identify the contribution to the amplitudeAðkÞ from the
period of uniform acceleration, separating out the contri-
bution from the transition period, we need to express this
amplitude in terms of FðτÞ rather than F̃ðωÞ. The result is
(see Appendix D)

AðkÞ ¼ qa
k⊥

Z þ∞

−∞
dτ



FðτÞe−iðk⊥=aÞ sinh aðϑ−τÞ

cosh2aðϑ − τÞ

−
i
a3

d
dτ

�
1

cosh aðϑ − τÞ
d
dτ

�
F0ðτÞ

cosh2aðϑ − τÞ
��

×
Z þ∞

k⊥=a

dz
z2

e−iz sinh aðϑ−τÞ
�
: ð28Þ

Due to our choice of the function FðτÞ stated before, and
by further letting ð−c1;−c2Þ ∪ ðc1; c2Þ ¼ fτ∈R∶0 <
FðτÞ < 1g be such that c1 − T; T þ b − c2 ≫ 1=a, we
can conclude that

AðkÞ ≈ qa
k⊥

Z þ∞

−∞
dτ

FðτÞ
cosh2aðϑ − τÞ e

−iðk⊥=aÞ sinh aðϑ−τÞ

if jϑj < T; ð29Þ

and AðkÞ ≈ 0 if jϑj > T þ b, for each k with k⊥ > 0,
because of the exponential decay of each term in Eq. (28).
The amplitude AðkÞ is a continuous function of ϑ. Hence,
the ϑ integral of jAðkÞj2 for T < jϑj < T þ b is finite.
Furthermore, if we let T → þ∞ while keeping the shape
of the function FðτÞ in the transition period unchanged,

then the ϑ integral of jAðkÞj2 over this period will remain
constant.
We define the emission probability with k⊥ fixed by

Pðk⊥Þ ¼
a

16π3

Z þ∞

−∞
dϑjAðkÞj2: ð30Þ

Then, the emission rate with k⊥ð≠ 0Þ fixed is [43]

Rðk⊥Þ ¼ lim
T→þ∞

Pðk⊥Þ
2T

¼ lim
T→þ∞

1

2T
×

q2a3

16π3k2⊥

Z þ∞

−∞
dϑ

×

				
Z þ∞

−∞
dτ

FðτÞe−iðk⊥=aÞ sinh aðϑ−τÞ
cosh2aðϑ − τÞ

				2: ð31Þ

We note in passing that Eq. (29) with FðτÞ ¼ 1 agrees with
the amplitude for the general motion, which can be
straightforwardly derived from Eq. (2.33) of Ref. [44]
and is given by

AμðkÞ ¼ −q
Z þ∞

−∞

dτ
k · v

�
aμ −

k · a
k · v

vμ
�
eik·x; ð32Þ

where xμðτÞ, vμðτÞ, and aμðτÞ are the world lines of the
charge, its 4-velocity and 4-acceleration, respectively, with
the identificationAμðkÞ ¼ −AðkÞεμðkÞ. The emission rate
is given, in the large-T limit, (see Appendix E) by

Rðk⊥Þ ¼
q2a3

16π3k2⊥

Z þ∞

−∞
dϑ̄

Z þ∞

−∞
dσ

×
e2iðk⊥=aÞ cosh aϑ̄ sinhaσ=2

½cosh2aϑ̄þ sinh2aσ=2�2 ; ð33Þ

where ϑ̄ is the rapidity in the rest frame of the charge. First,
we verify that Eq. (33) agrees with the result of Ref. [29,30]
by the change of integration variables s� ¼ ϑ̄� σ=2, which
essentially restores the original expression (31). Thus,
we find

Rðk⊥Þ ¼
q2a3

16π3k2⊥

				
Z þ∞

−∞

eiðk⊥=aÞ sinh as

cosh2as
ds

				2

¼ q2

4π3a

				K1

�
k⊥
a

�				2; ð34Þ

as expected. The second equality can be established using
Eq. (8.432.5) of Ref. [45].
The power radiated in the rest frame of the charge is

given by multiplying the integrand of Eq. (33) by k̄0 ¼
k⊥ coshaϑ̄ and integrating the result over k⊥. Thus,
defining the energy and longitudinal momentum in the
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rest frame by k̄0 ¼ k⊥ cosh aϑ̄ and k̄z ¼ k⊥ sinh aϑ̄, respec-
tively, we find

Srest ¼
q2a2

16π3

Z
d2k⊥dk̄zk2⊥

Z þ∞

−∞
dσ

×
cos½2ðk̄0=aÞ sinhðaσ=2Þ�
½k̄20 þ k2⊥sinh2ðaσ=2Þ�2

: ð35Þ

Then, by writing d2k⊥dk̄z ¼ dk̄0k̄20dΩ, where dΩ is the
solid angle element in the instantaneous rest frame of the
accelerated particle, and where k⊥ ¼ k̄0 sin θ, we find

dSrest
dΩ

¼ q2a2

32π3
sin2 θ

Z þ∞

−∞
dσ

Z þ∞

−∞
dk̄0

×
e2iðk̄0=aÞ sinhðaσ=2Þ

½1þ sin2 θ sinh2ðaσ=2Þ�2

¼ q2a2

16π2
sin2 θ: ð36Þ

This is the well-known Larmor formula, with

Srest ¼
q2a2

6π
: ð37Þ

IV. CONCLUSIONS

In this paper, we studied the electromagnetic radiation
from a uniformly accelerated charge, the Larmor radiation,
in the context of the Unruh effect—i.e., the fact that the
Minkowski vacuum state appears to be a thermal bath to a
uniformly accelerate observer. A formal derivation of the
power radiated from a charge uniformly accelerated forever
does not lead to the correct Larmor formula. For this
reason, we studied a model where a nonzero charge is
accelerated only for a finite time and identified the part of
the radiation due to the period in which the nonzero charge
has a uniform acceleration, removing the transition effects
at the start and the end. Then, we took the infinite-time limit
to recover the Larmor formula.
We used the observation of Unruh and Wald [27] that

both the emission and the absorption of a photon in the
Rindler frame correspond to the emission of a photon in the
inertial frame. Thus, a uniformly accelerated charge emits a
photon in the Unruh modes, which can be decomposed into
the usual Minkowski modes with definite momenta. In this
manner, we were able to reproduce the Larmor radiation
formula for the power emitted from a uniformly accelerated
charged particle.
Larmor’s formula was found previously in Refs. [34,40]

for photons in the laboratory frame and in Refs. [32,46]
for scalar fields in the context of the Unruh effect. Our
derivation makes the link between the Unruh effect and the
Larmor radiation from a uniformly accelerated charged

particle clearer and will help in resolving some of the
controversies that have surrounded the Unruh effect since
its discovery.
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APPENDIX A: NORMALIZATION OF THE
RIGHT RINDLER MODES

The normalization of the physical modes ARðI;ω;k⊥Þ
μ and

ARðII;ω;k⊥Þ
μ , which satisfy the Lorenz condition ∇μAμ ¼ 0

and are not pure gauge, is determined with respect to the
Klein-Gordon inner product:

ðARðiÞ; ARðjÞÞ ¼
Z
Σ
dΣμΞμ

�
ARðiÞ; ARðjÞ; ðA1Þ

where the labels i, j represent ðλ;ω;k⊥Þ, and Σ is a Cauchy
hypersurface (τ ¼ constant). The vector Ξμ½ARðiÞ; ARðjÞ� is
given by

Ξμ
�
ARðiÞ; ARðjÞ ¼ iffiffiffiffiffiffi−gp

�
ARðiÞ�
ν πRðjÞμν − ARðjÞ

ν πRðiÞ�μν
�
;

ðA2Þ

where πRðiÞμν ¼ ∂L=∂μAνjARðiÞ
μ
, and the asterisk indicates

complex conjugation. This vector satisfies the conservation
equation ∇μΞμ½ARðiÞ; ARðjÞ� ¼ 0, and hence, the Klein-
Gordon inner product (A1) is τ-independent. The normali-

zation of the physical modes ARðI;ω;k⊥Þ
μ and ARðII;ω;k⊥Þ

μ is
chosen such that�
ARðλ;ω;k⊥Þ; ARðλ0;ω0;k0⊥Þ

� ¼ δλλ0δðω − ω0Þδð2Þðk⊥ − k0⊥Þ:
ðA3Þ

APPENDIX B: UNRUH AND MINKOWSKI
CREATION OPERATORS

In this appendix, we derive the relation between the
Unruh and Minkowksi creation operators. Recall that the
right second physical modes λ ¼ II can be written as

ARðII;ω;k⊥Þ
μ ¼ k−1⊥

�
∂zvRωk⊥ ; ∂tv

R
ωk⊥ ; 0; 0

�
: ðB1Þ

The left scalar modes vLωk⊥ , which are nonzero in the left
Rindler wedge and vanish in the right one, are obtained
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from vRωk⊥ by letting z → −z. (The right Rindler modes
vRωk⊥ vanish in the left Rindler wedge by definition.) They

can be found by replacing τ with τ̄ and ξ with ξ̄ in the
expression of vRωk⊥ , where τ̄ and ξ̄ are the left Rindler
coordinates. Then, the left Rindler EM modes can be
obtained from the right ones by simply replacing vRωk⊥ with
vLωk⊥ . In particular, the second physical left Rindler modes
are given by

ALðII;ω;k⊥Þ
μ ¼ k−1⊥

�
∂zvLωk⊥ ; ∂tv

L
ωk⊥ ; 0; 0

�
: ðB2Þ

Similarly to the right Rindler modes, the left Rindler modes
are not purely positive frequency with respect to the inertial
time t. However, in the scalar case, the purely positive-
frequency modes, or Unruh modes, are linear combinations
of left and right Rindler modes and are given by

w−ωk⊥ ¼ vRωk⊥ þ e−πω=avL�ω−k⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω=a

p ;

wþωk⊥ ¼ vLωk⊥ þ e−πω=avR�ω−k⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2πω=a

p : ðB3Þ

They form a complete set of orthonormal solutions to
the scalar Klein-Gordon equation. The second physical
EM Unruh mode, λ ¼ II, can be found by combining
Eqs. (B1)–(B3). It is given in terms of the scalar Unruh
modes as

WðII;�;ω;k⊥Þ
μ ¼ k−1⊥

�
∂zw�ωk⊥ ; ∂tw�ωk⊥ ; 0; 0

�
: ðB4Þ

To find the relation between the Unruh and the
Minkowski creation operators, we need to find the relation
between the Unruh and the Minkowski modes. For this
purpose, we make use of the expansion of the scalar
positive-frequency modes [17]:

w�ωk⊥ ¼
Z þ∞

−∞

dkzffiffiffiffiffiffiffiffiffiffiffiffi
2πak0

p e�iϑðkzÞωϕk; ðB5Þ

where k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þ k2z

p
is the energy of the photon, and

where we define the rapidity ϑðkzÞ as

ϑðkzÞ ¼
1

2a
ln
k0 þ kz
k0 − kz

; ðB6Þ

and the othornormal Minkowski scalar modes are

ϕk ¼ e−ik·xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ32k0

p : ðB7Þ

[Here, we are using the notation kμ ¼ ðk0; kz; kx; kyÞ.]
Thus, we find

WðII;�;ω;k⊥Þ
μ ¼ i

Z þ∞

−∞

dkzffiffiffiffiffiffiffiffiffiffiffiffi
2πak0

p e�iϑðkzÞωεμðkÞϕk; ðB8Þ

where the polarization vector is given by

εμðkÞ ¼
�
kz
k⊥

;
k0
k⊥

; 0; 0

�
; ðB9Þ

which satisfies k · εðkÞ ¼ 0 and εðkÞ · εðkÞ ¼ −1. This
polarization vector is gauge-equivalent to

ε̃μðkÞ ¼ εμðkÞ −
kz

k⊥k0
kμ; ðB10Þ

which satisfies ε̃tðkÞ ¼ 0 in addition. The relation (B8)
between the Unruh and Minkowski modes translates to that
between the Unruh and Minkowski creation operators as

a†ðII;�;ω;k⊥Þ ¼ i
Z þ∞

−∞

dkzffiffiffiffiffiffiffiffiffiffiffiffi
2πak0

p e�iϑðkzÞωb†k: ðB11Þ

APPENDIX C: ONE-PHOTON INTERACTION
PROBABILITY

In this appendix, we find the total one-photon emission
probability as an integral over the Minkowski momenta k.
We start from the one-particle part of the final state. It is
given by

jf1-photoni ¼
Z þ∞

0

dω
Z

d2k⊥
h
Ae

ðω;k⊥Þa
R†
ðω;k⊥Þ

þAa
ðω;−k⊥Þa

R
ðω;−k⊥Þ

i
j0Mi; ðC1Þ

where the operators aRðII;ω;k⊥Þ are written as aRðω;k⊥Þ for

simplicity.
By denoting the annihilation operators for the left

Rindler modes ALðII;ω;k⊥Þ
μ by aLðω;k⊥Þ, we can translate the

relations between the Rindler and Unruh modes, Eq. (11),
into those among the creation and annihilation operators as
follows:

aRðω;k⊥Þ ¼
að−;ω;k⊥Þ þ e−πω=aa†ðþ;ω;−k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p ;

aLðω;k⊥Þ ¼
aðþ;ω;k⊥Þ þ e−πω=aa†ð−;ω;−k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p ; ðC2Þ

where the operators aðII;�;ω;k⊥Þ are written as að�;ω;k⊥Þ for
simplicity. Using Eqs. (C1) and (C2) and the fact that the
annihilation operators að�;ω;k⊥Þ annihilate the Minkowski
vacuum state j0Mi, we find
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jf1-photoni ¼
Z

d2k⊥
Z þ∞

0

dω

� Ae
ðω;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p a†ð−;ω;k⊥Þ

þ
Aa

ðω;−k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2πω=a − 1

p a†ðþ;ω;k⊥Þ

�
j0Mi: ðC3Þ

Hence, the total one-photon interaction probability is

Ptot¼hf1-photonjf1-photoni

¼
Z þ∞

0

dω
Z

d2k⊥
� jAe

ðω;k⊥Þj2
1−e−2πω=a

þ
jAa

ðω;−k⊥Þj2
e2πω=a−1

�
; ðC4Þ

as expected. In order to recover the Larmor formula in the
Rindler frame, our goal is to write this probability as a sum
over all the momenta. Using Eq. (B11), Eq. (C1) can be
written as

jf1-photoni ¼ i
Z

d2k⊥
Z þ∞

0

dω
Z þ∞

−∞

dkzffiffiffiffiffiffiffiffiffiffiffiffi
2πak0

p

×

�e−iϑðkzÞωAe
ðω;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1− e−2πω=a
p þ

eiϑðkzÞωAa
ðω;−k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2πω=a − 1
p

�
b†kj0Mi:

ðC5Þ

Then, the total probability takes the form

Ptot ¼
Z

d2k⊥
Z þ∞

−∞

dkz
2πak0

				
Z þ∞

−∞
dω

e−iϑðkzÞωAe
ðω;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πω=a
p

				
2

;

ðC6Þ

where we use

Aa
ðω;−k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2πω=a − 1
p ¼

Ae
ð−ω;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2πω=a
p : ðC7Þ

We note that Eq. (C6) can directly be shown to be
equivalent to Eq. (C4) by noting dkz=ak0 ¼ dϑðkzÞ:

Ptot¼
Z

d3k
2πak0

				
Z þ∞

−∞
dω

e−iϑðkzÞωAe
ðω;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−e−2πω=a
p

				
2

¼ 1

2π

Z
d2k⊥dωdω0

Z þ∞

−∞
dϑe−iϑðω−ω0Þ

×
Ae

ðω;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−e−2πω=a

p
Ae�

ðω0;k⊥Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−e−2πω

0=a
p

¼
Z þ∞

−∞
dω

Z
d2k⊥

jAe
ðω;k⊥Þj2

1−e−2πω=a

¼
Z þ∞

0

dω
Z

d2k⊥
� jAe

ðω;k⊥Þj2
1−e−2πω=a

þ
jAa

ðω;−k⊥Þj2
e2πω=a−1

�
: ðC8Þ

APPENDIX D: DERIVATION OF EQ. (28)

In this appendix, we write the amplitude AðkÞ in terms
of FðτÞ instead of its Fourier transform. For this purpose,
we make use of the following formula [from Eq. (6.796)
of Ref. [45]]:Z þ∞

−∞
e−iωyeπω=2aKiω=aðzÞdω ¼ πae−iz sinhay: ðD1Þ

Using the definition of F̃ðωÞ, the amplitude is

AðkÞ ¼ q
Z þ∞

−∞
dτ
�
iFðτÞ sinh aðϑ − τÞe−iðk⊥=aÞ sinh aðϑ−τÞ

−
F00ðτÞ
ak⊥

Z þ∞

k⊥=a

dz
z
e−iz sinh aðϑ−τÞ

�
: ðD2Þ

As it stands, this expression is not convenient for identify-
ing the contribution from the period of uniform acceler-
ation, because the first term grows exponentially as a
function of τ. We integrate the first term by parts after
writing

iFðτÞ sinh aðϑ − τÞe−iðk⊥=aÞ sinh aðϑ−τÞ

¼ 1

k⊥
FðτÞ tanh aðϑ − τÞ d

dτ
e−iðk⊥=aÞ sinh aðϑ−τÞ; ðD3Þ

and we find

AðkÞ ¼ qa
k⊥

Z þ∞

−∞
dτ

��
FðτÞ

cosh2aðϑ − τÞ

−
F0ðτÞ
a

tanhaðϑ − τÞ
�
e−iðk⊥=aÞ sinh aðϑ−τÞ

−
F00ðτÞ
a2

Z þ∞

k⊥=a

dz
z
e−iz sinh aðϑ−τÞ

�
: ðD4Þ

For the term involving F0ðτÞ in Eq. (D4), we write

e−iðk⊥=aÞ sinh aðϑ−τÞ ¼ i sinh aðϑ − τÞ
Z þ∞

k⊥=a
dze−iz sinh aðϑ−τÞ;

ðD5Þ

where we assume a convergence term in the exponent
sinhaðϑ− τÞ→ sinhaðϑ− τÞ− iϵ;ϵ→ 0þ. Then, by using
the identity,Z þ∞

−∞
dτgðτÞ

Z þ∞

k⊥=a

dz
zn

e−iz sinh aðϑ−τÞ

¼ i
a

Z þ∞

−∞
dτ

d
dτ

�
gðτÞ

cosh aðϑ − τÞ
�

×
Z þ∞

k⊥=a

dz
znþ1

e−iz sinh aðϑ−τÞ; ðD6Þ
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where gðτÞ is a smooth and compactly supported function and n is a natural number, we find

AðkÞ ¼ qa
k⊥

Z þ∞

−∞
dτ

�
FðτÞe−iðk⊥=aÞ sinh aðϑ−τÞ

cosh2aðϑ − τÞ −
1

a2
d
dτ

fF0ðτÞ½1 − tanh2aðϑ − τÞ�g
Z þ∞

k⊥=a

dz
z
e−iz sinh aðϑ−τÞ

�

¼ qa
k⊥

Z þ∞

−∞
dτ

�
FðτÞe−iðk⊥=aÞ sinh aðϑ−τÞ

cosh2aðϑ − τÞ −
i
a3

d
dτ



1

cosh aðϑ − τÞ
d
dτ

�
F0ðτÞ

cosh2aðϑ − τÞ
��Z þ∞

k⊥=a

dz
z2

e−iz sinh aðϑ−τÞ
�
: ðD7Þ

The integral of the second term is bounded as				
Z þ∞

k⊥=a

dz
z2

e−iz sinh aðϑ−τÞ
				 ≤

Z þ∞

k⊥=a

dz
z2

¼ a
k⊥

: ðD8Þ

Then, because the second term in Eq. (D7) is exponentially
decaying as jϑ − τj → ∞, it is subdominant if jϑj < T.

APPENDIX E: TECHNICAL DETAILS FOR THE
DERIVATION OF EQ. (33)

In this appendix, we provide some details omitted in
the derivation of Eq. (33). The square of the amplitude,
jAðkÞj2, without the terms coming from the transient
effects, is proportional to

Iðk⊥;ϑÞ≡
				
Z þ∞

−∞
dτ

FðτÞe−iðk⊥=aÞsinhaðϑ−τÞ
cosh2aðϑ−τÞ

				2

¼
Z þ∞

−∞
dτ0

Z þ∞

−∞
dτ00

×
Fðτ0ÞFðτ00Þe−iðk⊥=aÞ½sinhaðϑ−τ0Þ−sinhaðϑ−τ00Þ�

cosh2aðϑ−τ0Þcosh2aðϑ−τ00Þ : ðE1Þ

We change the integration variables to τ ¼ ðτ0 þ τ00Þ=2
(the average proper time) and σ ¼ τ0 − τ00. Then, we
find

Iðk⊥; ϑÞ ¼
Z þ∞

−∞
dτ

Z þ∞

−∞
dσFðτ þ σ=2ÞFðτ − σ=2Þ

×
e2iðk⊥=aÞ coshaðϑ−τÞ sinh aσ=2

½cosh2 aðϑ − τÞ þ sinh2 aσ=2�2 : ðE2Þ

For large T, the integral Iðk⊥;ϑÞ is approximately equal
to the expression obtained by limiting the integration range
for τ by jτj < T and letting Fðτ þ σ=2ÞFðτ − σ=2Þ ¼ 1 as
long as jϑj < T with jjϑj − Tj ≫ 1=a. Using this approxi-
mation in Eq. (E2), we find that the integrand becomes
τ-independent after changing the integration variable from
ϑ to ϑ̄ ¼ ϑ − τ, the rapidity in the rest frame of the charge.
Then, the τ integration results in a factor of 2T, and we
obtain Eq. (33) in the main text.
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