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THRESHOLD NETWORK GARCH MODEL
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Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model and its variations have been widely adopted in
the study of financial volatilities, while the extension of GARCH-type models to high-dimensional data is always difficult
because of over-parameterization and computational complexity. In this article, we propose a multi-variate GARCH-type model
that can simplify the parameterization by utilizing the network structure that can be appropriately specified for certain types
of high-dimensional data. The asymmetry in the dynamics of volatilities is also considered as our model adopts a threshold
structure. To enable our model to handle data with extremely high dimension, we investigate the near-epoch dependence (NED)
of our model, and the asymptotic properties of our quasi-maximum-likelihood-estimator (QMLE) are derived from the limit
theorems for NED random fields. Simulations are conducted to test our theoretical results. At last we fit our model to log-returns
of four groups of stocks and the results indicate that bad news is not necessarily more influential on volatility if the network
effects are considered.
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1. INTRODUCTION

To pursue maximum return or to circumvent potential risk, investors constantly revise their portfolio according
to any related information. Understanding how the volatility of financial assets responds to new informa-
tion is crucial in risk management and a widely studied area in econometrics and statistics. In the literature,
statistical models that describe the formation of financial risks have been developed and conducted in prac-
tice. The Autoregressive Conditional Heteroscedasticity (ARCH) model was proposed by Engle (1982) for
estimating the variance of United Kingdom’s inflation. In an ARCH(p) model, the volatilities of returns are
affected by up to p lags of past observations. Bollerslev (1986) then proposed a generalized ARCH model
(GARCH), to accommodate longer memory of past observations. It has become one of the most popular
models in econometrics ever since, and numerous variations of GARCH model have been developed for
modeling volatility with complicated structures. See Teräsvirta (2009) for a survey of different GARCH-type
models.

When we study risks of multiple assets simultaneously, the conditional variances that represent individual risks
are of interest as well as conditional covariances that represent risk-sharing relationships. On the other hand, risk
of a particular individual could be affected by covariates of itself, and of those who closely related to it. This leads
to the need of extending the GARCH-type models into the multi-variate case. For an N dimensional time series
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{
yt

}
, a canonical expression of multi-variate GARCH would be

yt = H1∕2
t zt,

Ht = g
(
yt−1,Ht−1

)
, (1)

where random vector zt satisfies E(zt) = 0 and var(zt) = IN and there could be various specifications of the
function g(⋅) as it represents the structure of the conditional covariance matrix Ht. For more details on this
subject, an excellent survey paper by Bauwens et al. (2006) on the family of multi-variate GARCH models
is recommended.

However, in terms of parameter estimation, there are major challenges that could make multi-variate GARCH
(MGARCH) models inapplicable in empirical analysis when it comes to dealing with high-dimensional data. For
example, the number of parameters rises at the speed of (N4) in vectorized GARCH model (VEC-GARCH)
proposed by Bollerslev et al. (1988). Over parameterized specification causes high computational complexity,
and makes it problematic to derive conditions for positive definiteness of the conditional covariance matrix Ht.
Plenty of efforts have been made in the literature, diagonal VEC-GARCH (DVEC-GARCH) model by Boller-
slev et al. (1988) and Baba-Engle-Kraft-Kroner GARCH (BEKK-GARCH) model by Engle and Kroner (1995)
are proposed with the aim of simplifying the conditions of positive definite by imposing structural restric-
tions on the conditional covariance matrix. The number of parameters could also be significantly reduced to
(N2) in the Constant Conditional Correlation GARCH (CCC-GARCH) by Bollerslev (1990) and Dynamic
Conditional Correlation GARCH (DCC-GARCH) by Engle (2002) and Tse and Tsui (2001). On the other
hand, as an alternative way to overcome the over-parameterization problem, the idea of factor variables was
imposed by Engle et al. (1990) on the multi-variate ARCH model as a dimension reduction technique. This
idea is later introduced to MGARCH model by Bollerslev and Engle (1993), as well as succeeding work of
Pan et al. (2010), Hu and Tsay (2014) and Li et al. (2016). At certain application scenarios when there is
network structure behind the data we are interested in, multiple variables are connected and a multi-variate
GARCH-type model could be fitted. These variations of MGARCH models solved the over-parameterization
problem to some extent, but the number of parameters still expands along with the number of dimension
nevertheless. With this flaw, MGARCH models could only be imposed on data with a small number of dimen-
sions, such as stock indices of multiple markets or exchange rates of two currencies (see Karolyi, 1995 and
Tse and Tsui, 2001).

Despite aforementioned difficulties due to dimensionality, for some specific types of multi-variate data where
the connections between different components are actually observable, it is still possible to significantly simplify
the model setup in the following aspects:

1. Instead of considering both volatilities and co-volatilities, we focus on studying the dynamics of volatilities
only,

2. And instead of parameterizing every cross-individual effect, appropriate network structure can be embedded
into the model.

In many cases such network structure can provide sufficient information about how the influence of pulses travel
through edges between individual nodes. For instance, Nitzan and Libai (2011) found that customers connected
with a defecting neighbor are 80% more likely to cancel their cellular service, and Goel and Goldstein (2014)
concluded that the accuracy of individual behavior prediction can be significantly improved based on network data
compared with conventional marketing practices.

Zhou et al. (2020) proposed a network GARCH model (see (2) for detailed specification of this model) that
significantly reduces the parameterization complexity – the number of parameters remains fixed in their model
no matter how large is the dimension N. However, they did not fully utilize such an advantage as their dis-
cussion on parameter estimation is limited to the case when N is fixed. Such setting narrows the variety of
scenarios where their model could be applied since the size of network is often extremely large. In a study
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THRESHOLD NETWORK GARCH MODEL 3

on social network that consists of 2982 users, Zhu et al. (2017) proposed a network AR model and the corre-
sponding least squares estimator is proved to remain valid when the sample size T → ∞ and the dimension
N → ∞. Compared with their AR-type model, the unobserved volatility processes raise difficulties in extend-
ing such properties to GARCH-type models. We manage to address this problem by considering our network
model as a spatial process on a two-dimensional lattice and adopting the asymptotic theorems for random fields
proposed by Jenish and Prucha (2012) in the estimation of parameters. Since their limit theorems require NED,
we will show such properties under certain restrictions on parameters and network structure. The idea of using
limit theorems of spatial processes in the inference of high-dimensional time series has been considered by
Xu et al. (2022) in the instrumental variable quantile regression estimation of their dynamic network quan-
tile regression model. In this article, we will first introduce this idea into the estimation of high-dimensional
GARCH-type models.

Aside from data with a diverging number of dimensions, we also aim to enable our model to handle data with
asymmetry that was observed in empirical work such that positive and negative pulses affect volatilities differ-
ently in magnitude as well as in direction. While most GARCH-type models have an implicit assumption that the
volatilities respond equally to the magnitude of positive and negative returns, Glosten et al. (1993) proposed a
Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) model with a threshold structure, allowing the volatility to
act asymmetrically in magnitude responding to positive and negative pulses. The threshold GARCH (TGARCH)
by Zakoïan (1994) also accommodates the asymmetry, but in magnitude of influence on conditional standard
deviation. The exponential GARCH (EGARCH) of Nelson (1991) takes log transformation on the conditional
variances, lifting the limitation of non-negative coefficients in conventional GARCH-type models and making it
possible for their model to explain asymmetry in the direction of how volatility change corresponding to positive
and negative news.

To study the asymmetrical dynamics in the volatilities of high-dimensional financial data, we propose a threshold
network GARCH (TNGARCH) in Section 2. Stationarity conditions of this model are derived in Section 3.1
with fixed N. In Section 3.2 we prove the L2-NED of proposed model under certain restrictions. The asymptotic
properties of QMLE are investigated in Section 4, in the case when T → ∞ and N → ∞ at a lower rate. Then we
propose a Wald statistic in Section 5.1, to test the existence of threshold effect, and in Section 5.2 we introduce a test
for high-dimensional white noise proposed by Li et al. (2019). In Section 6, our methodology is tested on simulated
data that are generated based on four different kinds of network structure. We observed an asymmetry that is
different from existing literature, in how much the volatility responds to good news and bad news at individual
level by applying our model to high-dimensional time series of log returns in Section 7. At last in Section 8,
conclusions and potential directions for future research are summarized.

2. MODEL SETUP

Consider an undirected and weightless network with N nodes. Define the adjacency matrix A = (aij)1≤i,j≤N , where
aij = 1 if there is a connection between node i and node j, otherwise aij = 0. Besides, self-connection is not allowed
for any node i by letting aii = 0.

The connection can be defined differently with respect to practical scenarios, such as two social network
accounts in a mutual followship, or two stocks who share at least one of top shareholders. As an interpretation of
the network structure, A is symmetric since aij = aji, hence for any node i, the out-degree d(out)

i =
∑N

j=1aij is equal

to the in-degree d(in)i =
∑N

j=1aji and we use di to denote both for convenience.
For any node i in this network, let yit be the observation at time t, and hit be the unobservable conditional

heteroscedasticity of yit, i.e. hit ∶= var(yit|t−1) where t−1 denotes the 𝜎-algebra consisting of all available
information up to t−1. A network GARCH(1, 1) specification of the conditional variance incorporates the network
effect:

hit = 𝜔 + 𝛼y2
i,t−1 + 𝜆

N∑

j=1

wijy
2
j,t−1 + 𝛽hi,t−1, i = 1, 2, … ,N. (2)
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4 Y. PAN AND J. PAN

Model (2) indicates that the volatility hit of each stock i, is influenced by not only its own previous change of price
measured by y2

i,t−1, but also the average (with weight wij =
aij

di
) of y2

j,t−1 for all node j that are related to node i. To

ensure the positiveness of conditional variance, it is constrained that 𝜔 > 0 while 𝛼, 𝜆, 𝛽 ≥ 0.
To model the asymmetry in volatility, our TNGARCH model contains the threshold structure comparing with

model (2). A TNGARCH(1,1) model is specified as follows:

yit = 𝜀it

√
hit,

hit = 𝜔 +
(
𝛼

(1)1{yi,t−1≥0} + 𝛼(2)1{yi,t−1<0}

)
y2

i,t−1 + 𝜆
N∑

j=1

wijy
2
j,t−1 + 𝛽hi,t−1,

i = 1, 2, … ,N, (3)

where 1{⋅} is the indicator function. To assure the positiveness of hit, the coefficients 𝜔, 𝛼(1), 𝛼(2), 𝜆 and 𝛽 are
assumed to have the same constraints as in (2).

{
𝜀it

}
is a white noise process satisfying the following assumption:

Assumption 1.
{
𝜀it

}
is i.i.d. across i and t, with non-degenerate distribution, mean 0 and variance 1.

This assumption allows us to investigate, in the next section, the conditions for our model to have a unique
strictly stationary solution, which serves as a precondition for further discussion on parameter estimation and
statistical inference.

3. STATIONARITY AND NEAR-EPOCH DEPENDENCE

To derive the conditions under which model (3) is strictly stationary, we rewrite the conditional variance process
in vector form

ht = 𝜔1N + Bt−1ht−1, (4)

with notations as follows:

ht =
(
h1t, h2t, … , hNt

)′ ∈ R
N
,

1N = (1, 1, … , 1)′ ∈ R
N
,

Bt−1 = 𝛼(1)Rt−1Et−1 + 𝛼(2)(IN − Rt−1)Et−1 + 𝜆D−1AEt−1 + 𝛽IN ,

Rt−1 = diag
{

1{y1,t−1≥0}, 1{y2,t−1≥0}, … , 1{yN,t−1≥0}

}
,

Et−1 = diag
{
𝜀

2
1,t−1, 𝜀

2
2,t−1, … , 𝜀

2
N,t−1

}
,

D = diag
{

d1, d2, … , dN

}
.

In Section 3.1, the stationarity of (4) when N is a fixed number will be discussed. However, to estimate the
parameters when N → ∞, limit theorems based on stationarity and ergodicity of fixed-dimensional time series
are not sufficient. Therefore, in Section 3.2 we will discuss the near-epoch dependence for a random field that
supports the adoption of limit theorems for spatial processes in the subsequent sections.

3.1. Stationarity with N being Fixed

Since yit = 𝜀it

√
hit, yit ≥ 0 is equivalent to 𝜀it ≥ 0. Hence

Rt−1 = diag
{

1{𝜀1,t−1≥0}, 1{𝜀2,t−1≥0}, … , 1{𝜀N,t−1≥0}

}
.

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12743
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THRESHOLD NETWORK GARCH MODEL 5

In this case, the random matrices
{

Bt

}
are i.i.d. and model (4) is a generalized autoregressive equation by

definition 1.4 in Bougerol and Picard (1992). It is easy to verify that E(log+ ‖‖B0
‖‖∗) < ∞. Therefore, the top

Lyapunov exponent associated to
{

Bt

}
is well-defined as follows:

𝛾 ∶= inf
{

E

( 1
t + 1

log ‖‖BtBt−1 … B0
‖‖∗
)
, t ∈ N

}
, (5)

where ‖⋅‖∗ is an operator norm of N × N matrices, corresponding to any norm on RN through

‖M‖∗ = sup
{
‖Mx‖ ∕ ‖x‖ ; x ∈ R

N
, x ≠ 0

}
.

According to theorem 3.2 in Bougerol and Picard (1992), the series

ht = 𝜔1N + 𝜔
∞∑

k=1

Bt−1 … Bt−k1N , (6)

is the unique strictly stationary and ergodic solution of model (4) if and only if the Lyapunov exponent 𝛾 < 0.
Under this condition, process

{
yt

}
is also strictly stationary and ergodic where yt =

(
y1t, y2t, … , yNt

)′ ∈ RN

since we could easily construct a continuous function Λ ∶ RN → RN according to (3) such that yt = Λ(ht).
Besides, since yit = 𝜀it

√
hit, the almost sure convergence of (6) guarantees that E(hit) < ∞ for any i. Thus,

E||yt||2 =
∑N

i=1E(hit) < ∞ with || ⋅ || being an Euclidean norm.
By the subadditive ergodic theorem in Kingman (1973),

𝛾 = lim
t→∞

1
t + 1

log ‖‖BtBt−1 … B0
‖‖∗

almost surely. In this case, 𝛾 could be approximated through computer simulation technique given a specific dis-
tribution of 𝜀it. For the purpose of reducing computation complexity, we derive a sufficient condition that is simple
and much easier to verify.

Theorem 1. Under Assumption 1, model (4) has a unique strictly stationary and ergodic solution in the form (6) if

max
{
𝛼

(1)
, 𝛼

(2)} + 𝛽 + 𝜆 < 1. (7)

3.2. Near-Epoch Dependence for Random Fields

Let D ∶= {(i, t) ∶ i ∈ N+, t ∈ Z} be a lattice on space R2, and 𝜌((i, t), (j, 𝜏)) ∶= max{|i − j|, |t − 𝜏|} measures
the distance between any two locations (i, t), (j, 𝜏) ∈ D. Assume we have observations from model (3) {yit, 1 ≤
i ≤ N, 1 ≤ t ≤ T}, then these observations could be regarded as triangular array of random fields {yit ∶ (i, t) ∈
DNT ,NT ≥ 1} with {DNT ,NT ≥ 1} being a series of finite rectangular lattices DNT ∶= {(i, t) ∶ 1 ≤ i ≤ N, 1 ≤ t ≤
T}. Then the growth of sample size is ensured by unbounded expansion of DNT as NT → ∞. Such expansion is
represented as |DNT |c → ∞, where | ⋅ |c is the cardinality of DNT . The discussions on the asymptotic behaviors of
random fields concern only the expansion of sample region, therefore the theoretical results derived in this section
will apply as long as |DNT |c = NT → ∞.

Let ‖⋅‖p denote the Lp-norm, i.e. ‖X‖p ∶= (E|X|p)1∕p for an arbitrary random variable X. The definition of NED
random fields is given as follows (see definition 1 in Jenish and Prucha, 2012):

Definition 1. A triangular array of random fields  ∶= {yit ∶ (i, t) ∈ DNT ,NT ≥ 1} is said to be Lp-NED (p ≥ 1)
on  = {𝜀it ∶ (i, t) ∈ D} if sup(i,t)∈D

‖‖yit
‖‖p < ∞, and

‖‖yit − E(yit|it(s)‖‖p ≤ dit𝜓(s),

J. Time Ser. Anal. (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12743 Journal of Time Series Analysis published by John Wiley & Sons Ltd.

 14679892, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jtsa.12743 by W

elsh A
ssem

bly G
overnm

ent, W
iley O

nline L
ibrary on [17/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 Y. PAN AND J. PAN

where it(s) ∶= 𝜎{𝜀j𝜏 ∶ 𝜌((i, t), (j, 𝜏)) ≤ s}, 𝜓(s) is some non-negative sequence with lims→∞ 𝜓(s) = 0, and
{dit ∶ (i, t) ∈ DNT ,NT ≥ 1} is an array of finite positive constants.

Remark. If 𝜓(s) = (s−𝜇) for some 𝜇 > 0, then  is said to be Lp-NED on  of size-𝜇; If 𝜓(s) = (𝜌s) for some
0 < 𝜌 < 1, then  is said to be Lp-NED on  geometrically; If sup(i,t)∈D dit < ∞, then  is said to be uniformly
Lp-NED on random field  . Note that geometric NED means NED of size-𝜇 for all 𝜇 > 0.

We need following assumptions before discussing the NED property of  . Assumption 2 is needed to prove
that sup(i,t)∈D

‖‖hit
‖‖2 < ∞; Assumption 3 put restriction on the sparsity of the network: the power of connections

between two nodes decays with their distance in case (a), or two nodes are only connected if they are sufficiently
close in case (b). Similar restrictions on the network structure could also be seen in assumption 3 by Xu and
Lee (2015) and assumption 3.2 by Xu et al. (2022).

Assumption 2. There exists 𝜅4 ∶= E𝜀
4
it <∞, such that

𝜅4

(
max{𝛼(1), 𝛼(2)} + 𝛽 + 𝜆

)2
< 1.

Assumption 3. The row-normalized adjacency matrix W satisfies one of following conditions:

(a). wij = (|i − j|−
𝜇+2

2 ) for some 𝜇 > 0;
(b). wij ≠ 0 if |i − j| ≤ K for some constant K ≥ 1, and wij = 0 otherwise.

Theorem 2. If condition (7) holds, under Assumptions 1, 2 and 3(a), {hit ∶ (i, t) ∈ DNT ,NT ≥ 1} is uniformly
L2-NED on {𝜀it ∶ (i, t) ∈ D} of size-𝜇, where the NED size 𝜇 is the constant in Assumption 3(a). Moreover, if
Assumption 3(b) holds instead of 3(a), {hit ∶ (i, t) ∈ DNT ,NT ≥ 1} is uniformly and geometrically L2-NED on
{𝜀it ∶ (i, t) ∈ D}.

Remark. Note that ‖‖y2
it − E(y2

it|it(s))‖‖2
= ‖‖𝜀

2
it
‖‖2

‖‖hit − E(h2
it|it(s))‖‖2

, then Assumption 2 facilitates the L2-NED

of y2
it’s given the L2-NED of hit’s. Besides, since hit ≥ 𝜔 > 0, it is easy to verify that

√
hit is a Lipschitz transfor-

mation of hit using mean value theorem. Then proposition 2 in Jenish and Prucha (2012) allows
√

hit’s to inherit
the NED properties from hit’s, therefore we could also verify that yit’s are also L2-NED.

4. PARAMETER ESTIMATION

From model (3) we have observations {yit ∶ (i, t) ∈ DNT ,NT ≥ 1} with respect to true parameters 𝜃0 ∶=
(𝜔0, 𝛼

(1)
0 , 𝛼

(2)
0 , 𝜆0, 𝛽0)′ ∈ R5. Based on the infinite past of observations, the quasi log-likelihood function is

LNT (𝜃) =
1

NT

N∑

i=1

T∑

t=1

lit(𝜃),

lit(𝜃) = log 𝜎2
it(𝜃) +

y2
it

𝜎

2
it(𝜃)

, (8)

where 𝜎2
it is generated from model (3) as

𝜎

2
it = 𝜔 +

{
𝛼

(1)1{yi,t−1≥0} + 𝛼(2)1{yi,t−1<0}

}
y2

i,t−1 + 𝜆d−1
i

N∑

j=1

aijy
2
j,t−1 + 𝛽𝜎

2
i,t−1,

and 𝜃 ∶= (𝜔, 𝛼(1), 𝛼(2), 𝜆, 𝛽)′ ∈ R5 is the parameter vector.
Since the evaluation of the exact value of (8) is infeasible in practice, it is convenient to approximate (8) with

̃LNT (𝜃) =
1

NT

N∑

i=1

T∑

t=1

̃lit(𝜃),

̃lit(𝜃) = log �̃�2
it(𝜃) +

y2
it

�̃�

2
it(𝜃)

, (9)

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12743
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THRESHOLD NETWORK GARCH MODEL 7

where �̃�2
it is also generated from model (3) but with initial value �̃�2

i0 = 0. And the QMLE of 𝜃 ∈ Θ is given by

̂
𝜃NT ∶= argmin

𝜃∈Θ
̃LNT (𝜃).

To prove the asymptotic properties of ̂𝜃NT , we need following assumptions aside from those required by Theorem 2:

Assumption 4. Θ is a compact subset of
{
𝜃 ∶ 𝜔 > 0, 𝛼(1) > 0, 𝛼(2) > 0, 𝜆 > 0, 𝛽 > 0

}
such that all 𝜃 ∈ Θ satisfy

(7) and Assumption 2, and the true parameter 𝜃0 ∈ Θ is an interior point of Θ.

Assumption 5. sup(i,t)∈D sup
𝜃∈Θ

‖‖𝜎
2
it(𝜃)‖‖p

<∞ for some p > 1.

Assumption 6. E𝜀
4r
it < ∞ for some r > 2, and following bounds exists:

sup
(i,t)∈D

‖‖𝜎
2
it(𝜃0)‖‖2r

< ∞;

sup
(i,t)∈D

‖‖‖‖
𝜕

𝜕𝜃k

𝜎

2
i,t(𝜃0)

‖‖‖‖2r

< ∞;

sup
(i,t)∈D

‖‖‖‖‖

𝜕

2

𝜕𝜃j𝜕k𝜃
𝜎

2
it(𝜃0)

‖‖‖‖‖2

<∞,

where 𝜃k denotes the kth component of parameter vector 𝜃.

Assumption 7. The NED-size 𝜇 in Theorem 2 satisfies r−2

2r−2
𝜇 > 2 with r being the one in Assumption 6.

Assumptions 4 is also required by Zhou et al. (2020) to prove the asymptotic properties in the case when N
being fixed. With both T → ∞ and N → ∞, additional assumptions as above are required to adopt the limit the-
orems of random fields. Specifically, Assumption 5 is required for lit(𝜃) to satisfy the bound condition of law of
large numbers (LLN) for random fields (assumption 2(a) in Jenish and Prucha, 2012); Assumption 6 facilitates
the heredity of NED property from 𝜎

2
it(𝜃0) to the more complicated forms of first-order and second-order deriva-

tives of LNT (𝜃0); Assumption 7 is a constraint on the decaying rate of NED coefficients, which is required by the
central limit theorem (CLT) for random fields (assumption 4(c) in Jenish and Prucha, 2012). Of course, as we
have remarked after Definition 1 that geometric NED means NED of size-𝜇 for all 𝜇 > 0, therefore Assumption 7
would be trivial under geometric NED.

Theorem 3. Under Assumptions required by Theorem 2, Assumption 4 and Assumption 5, the quasi-maximum
likelihood estimator ̂𝜃NT is consistent, i.e.

̂
𝜃NT

p
−−→ 𝜃0,

as NT →∞; If Assumptions 6 and 7 also hold, and the smallest eigenvalue 𝜆min(ΣNT ) of

ΣNT ∶=
𝜅4 − 1

NT

∑

(i,t)∈DNT

E

[
1

𝜎

4
it(𝜃0)

𝜕

𝜕𝜃

𝜎

2
it(𝜃0)

𝜕

𝜕𝜃
′ 𝜎

2
it(𝜃0)

]

,

satisfies that
inf

NT≥1
𝜆min(ΣNT ) > 0, (10)

then ̂
𝜃NT is asymptotically normal as NT → ∞ and N = o(T):

√
NTΣ1∕2

NT ( ̂𝜃NT − 𝜃0)
d
−−→N(0, (𝜅4 − 1)2I5),

where I5 is the 5 × 5 identity matrix.

J. Time Ser. Anal. (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12743 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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8 Y. PAN AND J. PAN

Remark. Condition (10) can be implied if the smallest eigenvalues 𝜆(i,t)min of E

[
1

𝜎

4
it(𝜃0)

𝜕

𝜕𝜃

𝜎

2
it(𝜃0)

𝜕

𝜕𝜃
′ 𝜎

2
it(𝜃0)

]
satisfy that

infNT≥1 inf(i,t)∈DNT
𝜆

(i,t)
min > 0.

As we will show in the proof of Proposition 5.1, 𝜅4 and ΣNT above could be approximated by

�̂�4 ∶=
1

NT

N∑

i=1

T∑

t=1

y4
it

�̃�

4
it( ̂𝜃NT )

, (11)

and

̂ΣNT ∶=
�̂�4 − 1

NT

N∑

i=1

T∑

t=1

[
1

�̃�

4
it( ̂𝜃NT )

𝜕�̃�

2
it( ̂𝜃NT )
𝜕𝜃

𝜕�̃�

2
it( ̂𝜃NT )
𝜕𝜃

′

]

, (12)

respectively. The later could be calculated recursively as 𝜕

𝜕𝜃

�̃�

2
it( ̂𝜃NT ) = ũi,t−1 + ̂

𝛽

𝜕

𝜕𝜃

�̃�

2
i,t−1( ̂𝜃NT ) where

ũi,t−1 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

y2
i,t−11{�̂�i,t−1≥0}

y2
i,t−11{�̂�i,t−1<0}
∑N

j=1wi,jy
2
j,t−1

�̃�

2
i,t−1( ̂𝜃NT )

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

5. TESTS ON THRESHOLD EFFECT AND RESIDUALS

5.1. A Wald Test for the Threshold Effect

Given a null hypothesis

H0 ∶ Γ𝜃0 = 𝜂, (13)

where Γ is an s × 5 matrix with rank s and 𝜂 is an s-dimensional vector, we could define a Wald test statistic as
follows:

WNT ∶= (Γ ̂𝜃NT − 𝜂)′
{ Γ

NT
(�̂�4 − 1)2̂Σ

−1

NTΓ
′
}−1

(Γ ̂𝜃NT − 𝜂), (14)

where �̂�4 and ̂ΣNT are defined in (11) and (12).
By the asymptotic normality of ̂𝜃NT , WNT could also be proved to follow a canonical asymptotic distribution as

in Proposition 5.1.

Proposition 5.1. Under the same assumptions required by Theorem 3, as T → ∞ and N = o(T), the Wald test
statistic defined in (14) asymptotically follows a 𝜒2 distribution with degree of freedom s, i.e.

WNT

d
−−→𝜒

2
s .

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12743
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THRESHOLD NETWORK GARCH MODEL 9

5.2. A White Noise Test on the Residuals

There has been a large literature investigating high-dimensional time series models, including Xu and Lee (2015),
Zhu et al. (2017) and Xu et al. (2022) among others, but none of them has used diagnostic tools to check the model
adequacy. In this section, we will introduce a high-dimensional white noise test developed by Li et al. (2019) that
can be applied to the diagnostic of high-dimensional models including ours.

Assume we have residuals {rt ∶ 1 ≤ t ≤ T}, where rt ∶= (r1t, … , rNt)′. We want to test whether
{rt ∶ 1 ≤ t ≤ T} are high-dimensional white noises, i.e. there exists a matrix P such that

H0 ∶ rt = Pzt, (15)

where zt = (𝜀1t, … , 𝜀Nt)′. The test statistic is the sum of squared singular values of first q lagged sample
autocovariance matrices:

Gq ∶=
q∑

𝜏=1

tr
(
̂S
𝜏

̂S′
𝜏

)
, (16)

where ̂S
𝜏

= 1

T

∑T
t=1rtr

′
t−𝜏 with rt = rt+T when t ≤ 0.

If A is unknown, the sample covariance matrix of rt is ̂S0 =
1

T

∑T
t=1rtr

′
t . According to (2.8) in Li et al. (2019),

we reject (15) if

Gq −
N2q

T
ŝ2

1
√

2N2q

T2

(
ŝ2 −

N

T
ŝ2

1

)2
> Z

𝛼

,

where ŝ1 =
1

N
tr( ̂S0), ŝ2 =

1

N
tr( ̂S2

0) and Z
𝛼

is the upper-𝛼 quantile of standard normal distribution.
Note that {rt ∶ 1 ≤ t ≤ T} being white-noise means that the residuals are uncorrelated over t. However, it

doesn’t indicate that the residuals are uncorrelated over both i and t. The later indicates a stronger adequacy of
high-dimensional model. We could assume that P = IN in the null hypothesis, and by (2.5) in Li et al. (2019), we
reject H0 ∶ rt = zt if

Gq −
N2q

T√
2N2q

T2
+ 4N3q2(𝜅4−3)

T3
+ 8N3q2

T3

> Z
𝛼

.

6. SIMULATION STUDY

6.1. Network Simulation

The symmetric matrix A in model 4 represents an undirected network structure, the pattern of which varies
over different application scenarios. In this simulation study, we tend to use four different mechanisms of
simulating corresponding network. The network structure in Example 1 adapts to Assumption 3(b), which
is required by geometric NED as we have shown in Theorem 2. Simulation mechanisms introduced in
Examples 2–4 are for testing the robustness of our estimation, against network structures that may violate
Assumption 3.

Example 1. For each node i ∈ {1, 2, … ,N}, it is connected to node j only if j is inside i’s D-neighborhood. That
is, in the adjacency matrix, aij = 1 if 0 < |i− j| ≤ D and aij = 0 otherwise. Figure 1(a) is a visualization of such a
network with N = 100 and D = 10.

J. Time Ser. Anal. (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12743 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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10 Y. PAN AND J. PAN

Example 2 (Network structure with random distribution). For each node i ∈ {1, 2, … ,N}, we generate Di from
uniform distribution U(0, 5), and then draw [Di] samples randomly from {1, 2, … ,N} to form a set Si ([x] denotes
the integer part of x). A = (aij) could be generated by letting aij = 1 if j ∈ Si and aij = 0 otherwise. In a network
simulated with such mechanism, as it is indicated in Figure 1(b), there is no significantly influential node (i.e. node
with extremely large in-degree).

Example 3 (Network structure with power-law distribution). According to Clauset et al. (2009), for each node i
in such a network, Di is generated the same way as in Example 2. Instead of uniformly selecting [Di] samples from
{1, 2, … ,N}, these samples are collected w.r.t. probability pi = si∕

∑N
i=1si where si is generated from a discrete

power-law distribution P
{

si = x
}
∝ x−a with scaling parameter a = 2.5. As shown in Figure 1(c), a few nodes

have much larger in-degrees while most of them have less than 2. Compared to Example 2, network structure
with power-law distribution exhibits larger gaps between the influences of different nodes. This type of network

Figure 1. Visualized network structures with N = 100. (a) Example 1 (D = 10) (b) Example 2; (c) Example 3; (d) Example 4
(K = 10)

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12743
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THRESHOLD NETWORK GARCH MODEL 11

is suitable for modeling social media such as Twitter and Instagram, where celebrities have huge influence while
the ordinary majority has little.

Example 4 (Network structure with stochastic blocks). As it was proposed in Nowicki and Snijders (2001), in
a network with stochastic block structure, all nodes are divided into blocks and nodes from the same block are
more likely to be connected comparing to those from different blocks. To simulate such structure, these N nodes
are randomly divided into K groups by assigning labels {1, 2, … ,K} to every nodes with equal probability. For
any two nodes i and j from the same group, let P(aij = 1) = 0.5 while for those two from different groups,
P(aij = 1) = 0.001∕N. Hence, it is very unlikely for nodes to be connected across groups. Our simulated network
successfully mimics this characteristic as Figure 1(d) shows clear boundaries between groups. Block network also
has its advantage in practical perspective. For instance, the price of one stock is highly relevant to those in the
same industry sector.

In the next section, the simulation study is carried out on datasets that are generated according to the process
(3) in conjunction with three types of adjacency matrices in Examples 1–4.

6.2. Simulation Results

Setting the true parameters 𝜃0 as (0.1, 0.1, 0.2, 0.2, 0.2)′, we generate data according to process (3) with different
sample sizes T and number of dimensions N. In our setting, T increases from 50 to 4000, while N also increases

at relatively slower rates of (
√

T) and (T∕ log(T)) respectively, as it is showed in the following table:

T 50 100 200 500 800 1000 1500 2000 2500 3000 4000

N ≈
√

T 7 10 14 22 28 31 38 44 50 54 63
N ≈ T∕ log(T) 12 21 37 80 119 144 205 263 319 374 482

For each combination of (T ,N), M = 1000 datasets will be simulated independently, according to (3). Based on
the mth (m = 1, 2, … ,M) dataset, the estimation of 𝜃0 will be carried out and the estimation result is denoted as
̂
𝜃m = ( ̂𝜃km)′ = (�̂�m, �̂�

(1)
m , �̂�

(2)
m ,

̂
𝜆m,

̂
𝛽m)′. For k = {1, 2, 3, 4, 5}, the following two measurements are used to evaluate

the performance of simulation results:

1. root-mean-square error: RMSEk =
√

M−1
∑M

m=1

(
̂
𝜃km − 𝜃k0

)2
,

2. coverage probability: CPk = M−1∑M
m=11{𝜃k0∈CIkm}.

CIkm is the 95% confidence interval defined as

CIkm =
(
̂
𝜃km − z0.975

̂SEkm,
̂
𝜃km + z0.975

̂SEkm

)
,

where the estimated SE ̂SEkm could be calculated as the square root of kth diagonal element of (NT)−1(�̂�4 − 1)̂Σ
−1

and z0.975 is the 0.975th quantile of standard normal distribution. To eliminate the effect of starting points, a different
initial guess of 𝜃 is used for each m.

As it is demonstrated in line graphs (c) and (d) in Figures 2–5, the consistency of the estimator is obvious since
RMSE drops toward zero when T and N increases. Additionally, ̂SE is proved to provide reliable estimation of
true SE since the coverage probability (CP) converges to its theoretical value of 95% in graphs (a) and (b) in
Figures 2–5. In conclusion, the asymptotic properties of our estimator in Theorem 3 are well supported by our
simulation results, even for network structures in Examples 2–4 that may violate Assumption 3.

J. Time Ser. Anal. (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12743 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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16 Y. PAN AND J. PAN

Figure 6. Coverage probabilities varies with the ratio of T and N

Remark. It is worth noticing that the CPs show a lower efficiency of convergence in general when N =
(T∕ log(T)), comparing with the case when N = (

√
T). Such phenomenon raises an assumption that the

performance of the estimator ̂SE is highly related to the ratio of T and N. We repeat the simulation for 61 differ-
ent combinations of (T ,N) and the scatter graph Figure 6 indicates that such assumption could be true, and the
convergence of ̂SE only requires T∕N → ∞, which includes what we have in Theorem 3, where T → ∞ and
N → ∞ at a lower rate.

7. EMPIRICAL DATA ANALYSIS

In addition to simulation studies, we want to test our model using real data from Chinese Shanghai Stock Exchange
(SSE) and Shenzhen Stock Exchange (SZSE). The dataset consists of daily log returns of 286 stocks, which are
observed in two consecutive years of 2019 and 2020 (T = 487 except for closing days). These stocks come from
four industry sectors as follows:

• 75 stocks from automotive industry sector;
• 73 stocks from financial industry sector;
• 68 stocks from information industry sector;
• 70 stocks from pharmaceutical industry sector.

And our model is tested within each sector, in which the number of stocks is approximately T∕ log(T) ≈ 79.
Hence the estimates and inferences could be trusted according to the simulation study.

As an initial impression of data from each category the time plots of daily average log returns are presented in
Figure 7. We also have the shareholder information of each stock, based on which two stocks are considered as
connected when they share at least one common shareholder among their top ten shareholders. By this principle,
four adjacency matrices are constructed and visualized as Figure 8 for four different industry sectors. Although
it is quite intuitive to tell from Figure 8 the sparsity of these four networks, we tend to use the network density
(ND) as a quantified measurement, which is defined by the ratio of the number of existing edges to the number of
potential connections:

ND ∶= 100% ×
∑N

i=1di

N(N − 1)
.

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. (2024)
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THRESHOLD NETWORK GARCH MODEL 17

Figure 7. Average log returns of stocks from different industry sectors. (a) Automotive industry; (b) Financial industry; (c)
Information industry; (d) Pharmaceutical industry

J. Time Ser. Anal. (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12743 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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18 Y. PAN AND J. PAN

Figure 8. Visualization of networks for stocks from different industry sectors. (a) Automotive industry (ND = 1.26%); (b)
Financial industry (ND = 8.11%); (c) Information industry (ND = 1.58%); (d) Pharmaceutical industry (ND = 2.82%)

The results of parameter estimation is summarized in Table I. It is worth noting that the estimated network effect
𝜆 for automotive industry sector is not statistically significant while the other estimates for other coefficients or
estimates from other sectors are all significant at 5% level. As indicated in Figure 8(a), this could be caused by the
sparsity of the network structure as the data from automotive industry has the lowest network density comparing
to others. Positive estimates of 𝜆 indicate positive correlation between the return of a stock and the returns of its
neighbors. Comparing with other parameters, the estimates of 𝛽 are much larger for all four categories. Strong
memory of volatility has been observed in many econometric studies on daily data, and such persistence would
be stronger with data sampled at higher frequency according to Nelson (1991).

We now conduct a Wald test on the existence of threshold effect based on the estimated parameters. By letting
Γ ∶= (0, 1,-1, 0, 0) and 𝜂 ∶= 0 in (13), we can make a null hypothesis as follows:

H0 ∶ 𝛼
(1)
0 = 𝛼(2)0 .

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12743
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THRESHOLD NETWORK GARCH MODEL 19

Table I. Estimation results based on daily log-returns (2019&2020) of stocks from four industries.

Parameter Estimation SE p-Value Parameter Estimation SE p-Value

Automotive industry Financial industry
𝜔 0.000099 5.83e−07 <0.05 𝜔 0.000043 3.12e−06 <0.05
𝛼

(1) 0.199408 1.08e−02 <0.05 𝛼

(1) 0.247765 1.41e−02 <0.05
𝛼

(2) 0.136423 1.01e−02 <0.05 𝛼

(2) 0.202237 1.47e−02 <0.05
𝜆 0.004591 4.71e−03 0.16465 𝜆 0.010469 5.35e−03 <0.05
𝛽 0.727756 1.17e−02 <0.05 𝛽 0.737272 1.09e−02 <0.05

Information industry Pharmaceutical industry
𝜔 0.000105 6.39e−06 <0.05 𝜔 0.000063 4.15e−06 <0.05
𝛼

(1) 0.172737 9.34e−03 <0.05 𝛼

(1) 0.180950 1.05e−02 <0.05
𝛼

(2) 0.122312 8.86e−03 <0.05 𝛼

(2) 0.131722 1.06e−02 <0.05
𝜆 0.009475 4.03e−03 <0.05 𝜆 0.012929 4.06e−03 <0.05
𝛽 0.745699 1.11e−02 <0.05 𝛽 0.753305 1.11e−02 <0.05

Table II. p-Values of Wald test on H0 ∶ 𝛼
(1)
0 = 𝛼(2)0

Automotive industry Financial industry Information industry Pharmaceutical industry

1.09e−10 2.16e−07 3.8e−06 3.17e−06

Table III. Results of high-dimensional white noise test on H0 ∶ rt = Pzt with q = 3 and 𝛼 = 0.01

Automotive industry Financial industry Information industry Pharmaceutical industry

P is unknown Not rejected Not rejected Not rejected Not rejected
P = IN Rejected Rejected Rejected Rejected

As it is indicated in Table II, we could reject the null hypothesis with strong confidence and conclude that there
exists extremely significant threshold effect within each industry sector.

Using the diagnostic tool introduced in Section 5.2, we could check the model adequacy by inspecting the cor-

relations between residual vectors rt =
[

y1t

�̃�1t( ̂𝜃NT )
, … ,

yNt

�̃�Nt( ̂𝜃NT )

]′
. We will test null hypothesis H0 ∶ rt = Pzt with P

being unknown and P = IN respectively, the results are summarized in Table III. In all sectors, we cannot reject the
hypothesis that the residual vectors are high-dimensional white noises with Ert = 0 and Var(rt) = PP′ over t. How-

ever, the stronger hypothesis H0 ∶ rt = zt is rejected, as there exist correlations between residuals
{

yit

�̃�it( ̂𝜃NT )

}
with

different i. We might be able to eliminate such deficiency in the adequacy of our model by heterogeneous parame-
terization with coefficients as 𝜔i. 𝛼

(1)
i , 𝛼(2)i , 𝜆i and 𝛽i, or by considering a dynamic network structure. However, the

purpose of the introduction of network structure is to reduce the number of parameters of high-dimensional time
series. Besides, deriving limit theorems for models with heterogeneous parameters or dynamic network could be
theoretically challenging.

On the other hand, our results on asymmetric effect of positive and negative news are quite different compared
to what was derived from univariate data in the literature. For instance, in a study by Engle and Ng (1993) on
daily returns of Japanese stock index TOPIX, it was found that negative news would have larger impact on future
volatility. Such phenomenon is reasonable in stock market since investors would lose confidence to a certain asset
when it performs badly, hence they would adjust their portfolio and add more uncertainty to the future. However,
it is not necessarily the case if we take into consideration the whole picture instead of looking at one individual
and ignoring possible impact of its neighbors in the same system. In our estimation results, 𝛼(1) are uniformly
larger than 𝛼(2), indicating a larger impact of good news on volatility. A more precise conclusion would be that
the volatility of one individual is more sensitive to its own good news, which actually does not contradict the

J. Time Ser. Anal. (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12743 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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20 Y. PAN AND J. PAN

conclusion of Engle and Ng (1993), since in the univariate case, how much proportion of the ‘bad news’ effect is
actually contributed by bad performance in systematic perspective remains unknown. Our results show that good
news has larger ‘local influence’ as it is indicated by 𝛼(1), while there is a possibility that bad news, despite of
having less ‘local influence’, spreads faster and has larger ‘global influence’ on the neighbors through network
connection. Such potential leads to a future extension of our model that the threshold effect could be further applied
on the coefficient 𝜆, allowing good news and bad news to have asymmetric network effect.

8. CONCLUSION

In this article, we propose a TNGARCH model by taking consideration of network effect, as well as the threshold
effect of shocks on volatilities. Our model can be applied to describe asymmetric properties for volatilities of high
dimensional time series without increasing the parameterization complexity. Strict stationarity when N is fixed, as
well as near-epoch dependence when N →∞ are discussed. Then the parameters are estimated by quasi-maximum
likelihood estimation, the consistency and the asymptotic normality of the proposed estimator are proved as well.
The results of simulation study support the theoretical properties of QMLE. At last, our model is fitted to real stock
data containing 710 stocks of four industries from SSE and SZSE. Empirical results reveal that although volatility
is more sensitive to bad news in univariate case, with network structure being considered, there is a possibility that
majority of the revision of individual volatility is due to the impact of bad news of its neighbors, hence the ‘local
influence’ of bad news is not necessarily larger than that of good news in such case.

There is room for extension of our methodology, which could lead to interesting topics for future research.
In Theorem 3 we have derived asymptotic properties when T → ∞ and N → ∞ at a lower rate, our estima-
tion method enables us to make reliable inference on parameters even when the data has hundreds of dimensions
according to the simulation study. The limitation is also obvious, for example, as shown in Figures 2–5, to get
a decent approximation of standard errors, we need to collect 4000 samples even though the number of dimen-
sions is about 482, which could be even higher in real-world situations: user data collected from a social network
often consists of millions of individual accounts whereas it may be impossible to collect sufficient number of
samples over time even at daily frequency. Therefore our model would be applicable in a much larger scale
if its statistical properties could be derived when N increases at the same rate, or even higher rate compared
to T . As far as we know, there is no published work in the literature to solve this problem theoretically for
GARCH-type models. Another limitation of our model is that the way we consider the network effect is simpli-
fied in two aspects: The network structure is deterministic rather than stochastic over time, embedding a random
network in our model would make more sense, it would nevertheless raise the complexity of the model, and
may cause problems in the estimation of parameters (see Chandrasekhar and Lewis, 2011); Moreover, there is
only one type of individual-to-individual relation considered since the network structure is constructed solely
based on common shareholders. Zhu et al. (2023) constructed their factor-augmented network using several types
of relations, including individual-to-individual relations and factor-to-individual relations. Bringing more infor-
mation into consideration would possibly improve the adequacy of the model and we will leave it for future
research.
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