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A B S T R A C T

Crowd localization can provide the positions of individuals and the total number of people, which has great
application value for security monitoring and public management, meanwhile it meets the challenges of
lighting, occlusion and perspective effect. In recent times, Transformer has been applied in crowd localization
to overcome these challenges. Yet such kind of methods only consider to integrate the multi-scale information
once, which results in incomplete multi-scale information fusion. In this paper, we propose a novel Transformer
network named Cross-scale Vision Transformer (CsViT) for crowd localization, which simultaneously fuses
multi-scale information during both the encoder and decoder stages and meanwhile building the long-range
context dependencies on the combined feature maps. To this end, we design the multi-scale encoder to fuse
the feature maps of multiple scales at corresponding positions so as to obtain the combined feature maps, and
meanwhile design the multi-scale decoder to integrate the tokens at multiple scales when modeling the long-
range context dependencies. Furthermore, we propose Multi-scale SSIM (MsSSIM) loss to adaptively compute
head regions and optimize the similarity at multiple scales. Specifically, we set the adaptive windows with
different scales for each head and compute the loss values within these windows so as to enhance the accuracy
of the predicted distance transform map. We perform comprehensive experiments on five public datasets, and
the results obtained validate the effectiveness of our method.
. Introduction

In recent times, deep learning has been applied and developed
cross diverse research domains (Chen et al., 2023; Si et al., 2023;
e et al., 2022; Liu et al., 2023). Crowd analysis based on deep

earning, including identification, counting and localization of pedes-
rians, has attracted great interest among researchers due to its wide
pplications in various domains such as intelligence monitoring and
ublic safety (Lin et al., 2023; Basalamah et al., 2023; Zhao and Li,
023; Gong et al., 2023). Crowd localization as an important task of
rowd analysis focuses on predicting the position of each individual and
stimate the total number of human heads in the crowd (Song et al.,
021; Wang et al., 2023a; Liang et al., 2022b; Abousamra et al., 2021).
ompared with crowd counting only estimating the total number of

ndividuals (Zhang et al., 2016; Wang et al., 2023c; Qiu et al., 2017;
ang et al., 2023b), crowd localization provides detailed information
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of the crowd spatial distribution, which could provide efficient crowd
management and emergency response.

Crowd localization faces significant challenges, such as illumina-
tion, occlusion and perspective effect. Hence, many approaches are
proposed to overcome these challenges (Abousamra et al., 2021; Zhang
et al., 2016; Liu et al., 2019c; Ma et al., 2019). The approaches used
mainly fall into the following three categories.

Firstly, the detection-based approaches (Liu et al., 2019c; Sam et al.,
2021; Lian et al., 2019; Wang et al., 2021c) typically rely on the nearest
neighbor distances between head points to generate pseudo ground-
truth bounding boxes which are treated as the training supervision
information. Secondly, the regression-based approaches (Song et al.,
2021; Liang et al., 2022b) directly regress the head coordinates with-
out generating pseudo ground-truth bounding boxes, and output the
corresponding confidence scores. Then, the confidence scores are used
vailable online 15 February 2024
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Fig. 1. (a) and (c) indicate that the head sizes in the front and back vary significantly.
The corresponding point-level annotations are shown in (b) and (d), with green markers
indicating the ground-truth heads.

to determine the final head coordinates. Nevertheless, these regression-
based approaches neglect the correlation between the head point and
its neighboring pixels, causing suboptimal localization performance.
Thirdly, the map-based approaches (Abousamra et al., 2021; Liang
et al., 2022c; Idrees et al., 2018; Xu et al., 2022) generate the training
maps based on the annotation points and their neighbors where the
pixels in the map have large values if they are close to the head point.
These maps contain the head positions and rich spatial information,
which are treated as supervision information in the training phase to
produce accurate localization performance.

Recently, Transformer has gained significant popularity in the com-
puter vision tasks (Zhang et al., 2023; Liu et al., 2021b; Touvron
et al., 2021; Wu et al., 2021). Some methods (Liang et al., 2022b;
Deng et al., 2023) utilize Transformer to construct long-range context
dependencies to enhance the representation capacity of the network
for crowd images. Fig. 1 appears multi-scale heads in the crowds, that
is the head sizes varies greatly which is caused by the perspective
effect of the camera, and this phenomenon degrades the performance
of crowd localization. However, the existing Transformer-based ap-
proaches (Liang et al., 2022b; Deng et al., 2023) only consider to
integrate the multi-scale information once, which results in incomplete
multi-scale information fusion.

In this paper, we propose a novel Transformer network named
Cross-scale Vision Transformer (CsViT) for crowd localization, which
simultaneously fuses multi-scale information in the encoding and de-
coding stages and meanwhile builds the long-range context depen-
dencies on the combined feature maps. Specifically, we combine the
feature maps of each scale with the feature maps of shallower scales
at the corresponding positions in the encoding stage, and obtain the
combined feature maps. Since the receptive field sizes of feature maps
in the shallow and deep layers are different, integrating the feature
maps across multiple scales can effectively deal with the issue of multi-
scale heads. To capture long-range context dependencies, we construct
global attention information on the combined feature maps through
Cross-Shaped Window (CSWin) Transformer. In the decoding stage,
we combine the outputs of CSWin Transformer layer by layer, and
therefore the predicted distance transform map also contains the multi-
scale information. In a word, the deep model focuses on fusing the same
head at multiple scales in the encoding stage, and meanwhile it pays
attention to fusing long-range context dependencies between heads at
multiple scales in the decoding stage. Hence, the two-stage multi-scale
information fusion improves the representation capability of the deep
model.

Recently, some methods apply SSIM-based loss (Liang et al., 2022c;
Cao et al., 2018) to optimize the deep model in the field of crowd
2

analysis. Nevertheless, these methods solely compare the similarity
within a single-scale region, ignoring the fact that the region occupied
by each head is different. Hence, we propose a novel loss named Multi-
scale SSIM (MsSSIM) loss which could adaptively compute head regions
and optimize the similarity at multiple scales. Specifically, we select the
regions at different scales for each head by considering the distance
between the heads, and then integrate the losses of multi-scale regions,
which could optimize the accuracy of the predicted distance transform
map.

In summary, our contributions mainly lie in three folds:
(1) We propose CsViT for crowd localization, which simultaneously

fuses multi-scale information in the encoding and decoding stages
when building long-range context dependencies. The representation
capability of the deep model is enhanced by the two-stage multi-scale
information fusion strategy.

(2) We propose the MsSSIM loss to optimize the multi-scale informa-
tion fusion by comparing the similarity of different scales head regions.
It could further reduce the negative responses caused by the back-
ground and improve the accuracy of the predicted distance transform
map.

(3) We evaluate the proposed method on five public datasets,
i.e., ShanghaiTech, UCF-QNRF, JHU-Crowd++, UCF_CC_50 and NWPU-
Crowd, and the results indicate that our method achieves the state-of-
the-art performance in both crowd counting and localization tasks.

2. Related work

2.1. Detection-based approaches

Most detection-based approaches (Sam et al., 2021; Wang et al.,
2021c; Liu et al., 2018) generate pseudo ground-truth bounding boxes
based on dot labels or manually label part of the bounding boxes as
supervision information. Liu et al. (2019c) initialize the size of the
bounding box with the nearest neighbor distance between the heads,
and an iterative update method is used to adjust the bounding boxes.
Considering that the correlation between the size of the human head
and the distance from the head to the camera, Lian et al. (2019)
predict the size of the bounding boxes by considering the assistance
of depth information. Nevertheless, these approaches show suboptimal
performance in terms of accurate localization in extremely dense scenes
due to occlusion and blurring.

2.2. Regression-based approaches

Regression-based approaches (Song et al., 2021; Liang et al., 2022b)
can regress the coordinates of head points and output the confidence
scores. Song et al. (2021) present a framework for counting and local-
ization based on points, where a series of point proposals are regressed
to indicate the heads using predefined anchor points. Liang et al.
(2022b) propose a crowd localization model based on DETR (Carion
et al., 2020), which applies trainable query instances instead of a
large number of predefined anchor points. Nevertheless, these ap-
proaches lack the correlation information between the head point and
surrounding pixels, so the localization performance is not accurate
enough.

2.3. Map-based approaches

Map-based approaches (Wang et al., 2023a; Abousamra et al., 2021;
Liang et al., 2022c) generate the training maps to guide the model
training, which can reflect the relationship between the head points
and the neighboring pixels. Idrees et al. (2018) conduct the head
localization using the density map, where the head point location is
determined by identifying the maximum value within the local area
of the density map. Abousamra et al. (2021) present a topological
approach which slightly dilates the head points into a dot mask, and
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Fig. 2. The overall architecture of CsViT. It mainly consists of the VGG-16 backbone network, multi-scale encoder, CSWin Transformer Block and multi-scale decoder.
they utilize the dot mask map as supervision information. Xu et al.
(2022) generate the distance label maps based on the distance between
the head points, which could avoid the issue of overlapping heads in the
dense regions. Liang et al. (2022c) propose the Focal Inverse Distance
Transform (FIDT) map which could well represent the correlation
between the head points and other pixels. Wang et al. (2023a) generate
robust binary maps as the ground-truth through an adaptive threshold
map for crowd localization. These approaches take full advantage of
spatial information, but they ignore completed multi-scale information
fusion.

2.4. Vision transformer

Transformer (Vaswani et al., 2017) is first proposed in natural lan-
guage processing to capture long-range context dependencies for text
content. Dosovitskiy et al. (2021) propose Vision Transformer (ViT) in
computer vision, which achieves competitive performance compared to
CNN. However, global self-attention in Transformer is computationally
intensive. Hence, Liu et al. (2021b) present the Swin Transformer,
which employs the shifted windows to perform self-attention. After-
wards, Dong et al. (2022) present CSWin Transformer to perform
long-range context dependencies by using the cross-shaped window.
These methods (Liu et al., 2021b; Dong et al., 2022) greatly reduce
the computation amount of the self-attention.

In crowd analysis, some approaches (Liang et al., 2022b; Deng
et al., 2023; Liang et al., 2022a, 2023) implement crowd counting
and localization using Transformer. Liang et al. (2022b) present an
end-to-end Transformer model for crowd counting and localization,
which utilizes query instances to directly return the coordinates of head
points in the image. Liang et al. (2023) first present to perform crowd
counting using visual language knowledge, and design a multi-modal
ranking loss to guide the learning of ViT by constructing ranking text
prompts for unsupervised crowd counting. However, these approaches
do not consider completed multi-scale information fusion during the
learning process. Instead, our method fuses the multi-scale information
of heads in the encoding stage, the decoding stage and the loss function,
simultaneously.

3. Approach

3.1. Overview of CsViT

Fig. 2 depicts the framework of the proposed CsViT. Firstly, we
utilize VGG-16 (Simonyan and Zisserman, 2015) as the backbone to
extract the feature maps of four scales for each image. In the multi-
scale encoding stage, the feature maps of each scale are combined with
the feature maps of the shallower scales using the integration encoder,
and then they are flattened into the tokens. After a residual connection,
3

we apply the CSWin Transformer Block to learn the long-range context
dependencies. In the multi-scale decoding stage, the outputs of CSWin
Transformer Blocks are combined by the integration decoder. Finally,
we utilize MSE loss and the proposed MsSSIM loss to optimize the
network.

3.2. Multi-scale encoder

The head sizes in the crowd vary greatly, and this appears the
multi-scale phenomenon. Hence, we design the multi-scale encoding
to achieve completed multi-scale information fusion by combining
different scales feature maps at the corresponding positions.

For a given image 𝐼 ∈ R𝐶×𝐻×𝑊 , we obtain the feature maps with
four scales 𝐹𝑖 ∈ R𝐶𝑖×

𝐻
2𝑖
×𝑊

2𝑖 (𝑖 = 1, 2, 3, 4) using VGG-16 (Simonyan and
Zisserman, 2015), where 𝐶, 𝐻 and 𝑊 are the number of channels,
height and width respectively. In the multi-scale encoder, we utilize
the integration encoder to combine the feature maps of each scale with
the feature maps of the shallower scales at the corresponding positions.
We take the deepest feature maps 𝐹4 ∈ R𝐶4×

𝐻
24

×𝑊
24 as an example to

illustrate the integration encoder, as depicted in Fig. 3. The region
with the size of 1 × 1 in 𝐹4 corresponds to the regions with the size
of 24−𝑖 × 24−𝑖 in the shallow feature maps 𝐹𝑖 (𝑖 = 1, 2, 3). We utilize
the integration encoder to combine the corresponding regions of the
feature maps. Specifically, the feature maps 𝐹4 are flattened into the
tokens 𝐷4 ∈ R𝐶4×

(

𝐻
24

×𝑊
24

)

, and the shallow feature maps are flattened
to the tokens 𝐷𝑖 ∈ R(𝐶𝑖×𝑁𝑖)×

(

𝐻
24

×𝑊
24

)

, where 𝑁𝑖 = 24−𝑖 × 24−𝑖. Then, we
map these tokens 𝐷𝑖 to 𝐷′

𝑖 ∈ R𝐶4×
(

𝐻
24

×𝑊
24

)

(𝑖 = 1, 2, 3, 4) by the linear

layers. Afterwards, we obtain 𝐺4 ∈ R𝐶4×
(

𝐻
24

×𝑊
24

)

by summing 𝐷′
𝑖 (𝑖 =

1, 2, 3, 4). Similarly, we can obtain 𝐺𝑖 ∈ R𝐶𝑖×
(

𝐻
2𝑖
×𝑊

2𝑖

)

(𝑖 = 1, 2, 3) using
the integration encoder. Finally, we generate 𝐿𝑖 ∈ R𝐶𝑖×

(

𝐻
2𝑖
×𝑊

2𝑖

)

(𝑖 =
1, 2, 3, 4) via a residual connection as the input of CSWin Transformer
Block.

The feature maps at different scales possess different receptive field
sizes, and therefore our multi-scale encoder could effectively utilize the
information of feature maps of each scale by combining them across
scales, which is beneficial to localizing the head positions at different
scales.

3.3. CSWin Transformer Block

We apply the CSWin Transformer Block (Dong et al., 2022) to learn
long-range context dependencies for each scale. Specifically, for the
input tokens 𝐿𝑖 ∈ R𝐶𝑖×

(

𝐻
2𝑖
×𝑊

2𝑖

)

, we perform the cross-shaped window
(CSWin) self-attention in the CSWin Transformer Block with the multi-
head strategy. Each CSWin self-attention is designed with 𝐾 heads,
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Fig. 3. The structure of the integration encoder. 𝐹1, 𝐹2, 𝐹3 and 𝐹4 are the feature maps with four scales extracted from VGG-16, and they are combined in the corresponding
regions to obtain 𝐺4.
and these heads are evenly divided into two groups, half of which
perform horizontal stripes self-attention and the other half perform
vertical stripes self-attention.

As for the horizontal stripes self-attention, we evenly divide 𝐿𝑖 into
𝐽 horizontal stripes

[

𝐿1
𝑖 ,… , 𝐿𝑗𝑖 ,… , 𝐿𝐽𝑖

]

, where 𝐿𝑗𝑖 ∈ R𝐶𝑖×
(

𝐻
𝐽×2𝑖

×𝑊
2𝑖

)

. The
horizontal stripes self-attention with the 𝑘th head is formulated as:

𝐻𝐴𝑡𝑡−𝑘
(

𝐿𝑖
)

=
[

𝑌 1
𝑖𝑘,… , 𝑌 𝑗𝑖𝑘,… , 𝑌 𝐽𝑖𝑘

]

(1)

𝑌 𝑗𝑖𝑘 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

⎛

⎜

⎜

⎜

⎝

𝑄𝑗𝑖𝑘
(

𝐾𝑗
𝑖𝑘

)𝑇

√

𝑑𝑘

⎞

⎟

⎟

⎟

⎠

𝑉 𝑗
𝑖𝑘 (2)

where 𝑄𝑗𝑖𝑘 =
(

𝐿𝑗𝑖
)𝑇

𝑊 𝑄
𝑖𝑘 , 𝐾𝑗

𝑖𝑘 =
(

𝐿𝑗𝑖
)𝑇

𝑊 𝐾
𝑖𝑘 and 𝑉 𝑗

𝑖𝑘 =
(

𝐿𝑗𝑖
)𝑇

𝑊 𝑉
𝑖𝑘

are the query, key and value of the 𝑘th head respectively, and 𝑑𝑘 is
the dimension of the 𝑘th head. Here, 𝑊 𝑄

𝑖𝑘 , 𝑊 𝐾
𝑖𝑘 and 𝑊 𝑉

𝑖𝑘 ∈ R𝐶𝑖×𝑑𝑘
represent the projection matrices of the 𝑘th head, respectively. In the
same way, the 𝑘th head of the vertical stripes self-attention is denoted
as 𝑉𝐴𝑡𝑡−𝑘(𝐿𝑖). The CSWin self-attention is defined by concatenating the
two parts:

𝐶𝑆𝑊 𝑖𝑛 = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1,… , ℎ𝑒𝑎𝑑𝐾 )𝑊 𝑂 (3)

ℎ𝑒𝑎𝑑𝑘 =

{

𝐻𝐴𝑡𝑡−𝑘(𝐿𝑖) if 𝑘 = 1,… , 𝐾2
𝑉𝐴𝑡𝑡−𝑘(𝐿𝑖) if 𝑘 = 𝐾

2 + 1,… , 𝐾
(4)

where 𝑊 𝑂 ∈ R𝐶𝑖×𝐶𝑖 is the projection matrix.
Finally, the CSWin Transformer Block is formulated as:

𝐿′
𝑖 =𝑀𝐿𝑃

(

𝐿𝑁(𝑆𝑖)
)

+ 𝑆𝑖 (5)

𝑆𝑖 = 𝐶𝑆𝑊 𝑖𝑛
(

𝐿𝑁(𝐿𝑖)
)

+ 𝐿𝑖 (6)

where 𝐿′
𝑖 ∈ R𝐶𝑖×

(

𝐻
2𝑖
×𝑊

2𝑖

)

is the output of the CSWin Transformer Block,
𝐿𝑁 is the layer normalization and 𝑀𝐿𝑃 is the multi-layer perceptron.

3.4. Multi-scale decoder

The tokens with different scales 𝐿′
𝑖 outputted by the CSWin Trans-

former Blocks contain rich scale information, and therefore we apply
the multi-scale combination strategy to decode them so as to fully fuse
the multi-scale information.

In the decoding stage, we utilize the integration decoder to combine
the tokens of each scale with the tokens of deeper scales. We take the
shallowest feature maps 𝐹1 as an example:

𝐹1 = 𝐶𝑜𝑛𝑣3×3
(

𝐼𝐷
(

𝐿′
1, 𝐿

′
2, 𝐿

′
3, 𝐿

′
4
)

+ 𝑈𝑃
(

𝐹2
))

(7)

where 𝐶𝑜𝑛𝑣3×3, 𝐼𝐷 and 𝑈𝑃 denote the convolution operation using
the kernel size of 3 × 3, the integration decoder and the upsampling
4

Fig. 4. The red rectangle in (a) is a fixed window which is unsuitable for some heads.
The blue rectangle in (b) is the adaptive window which could well fit different head
sizes.

operation, respectively. Here, for the integration decoder, we first
reshape the tokens 𝐿′

𝑖 into the feature maps with the same size of 𝐹𝑖
(𝑖 = 1, 2, 3, 4), and then resize them into the same size of 𝐹1. Finally, we
sum them as the output of the integration decoder.

3.5. Multi-scale SSIM loss

We first change the ground-truth to the FIDT map (Liang et al.,
2022c) which could model the head relations using the Euclidean
distance between head points and pixel points. It is expressed as:

𝐹 (𝑥, 𝑦) = 1
𝐷 (𝑥, 𝑦)(𝛾×𝐷(𝑥,𝑦)+𝜑) + 𝜉

(8)

where 𝐷 (𝑥, 𝑦) denotes Euclidean distance between the pixel and the
annotation point of its nearest head, 𝛾, 𝜑 and 𝜉 are the adjustment
coefficients. Here, we set 𝛾, 𝜑, and 𝜉 to 0.02, 0.75 and 1 respectively
as Liang et al. (2022c).

SSIM (Wang et al., 2004) is a significant index to quantify the
similarity between two images. And, for crowd localization (Liang
et al., 2022c; Cao et al., 2018), it is treated as the loss function:

𝐿𝑆𝑆𝐼𝑀 (𝐸,𝐺) = 1 −

(

2𝜇𝐸𝜇𝐺 + 𝜙1
) (

2𝜎𝐸𝐺 + 𝜙2
)

(

𝜇2𝐸 + 𝜇2𝐺 + 𝜙1
) (

𝜎2𝐸 + 𝜎2𝐺 + 𝜙2
) (9)

where the predicted FIDT map and the ground-truth FIDT map are de-
noted as 𝐸 and 𝐺 respectively. The mean and variance are represented
by 𝜇 and 𝜎 respectively, while 𝜙1 and 𝜙2 are constants.

To compute the SSIM loss, the existing methods for crowd local-
ization (Liang et al., 2022c; Liu et al., 2019a) directly conduct on the
whole image or apply a fixed window for each head position. However,
the fixed-size window is unsuitable for various head sizes as shown in
Fig. 4(a). Hence, we propose an adaptive window for each head to
compute the SSIM loss, where the size of adaptive window depends
on the neighbor distance between the heads as shown in Fig. 4(b).
Furthermore, we select the adaptive windows at different scales to



Journal of King Saud University - Computer and Information Sciences 36 (2024) 101972S. Liu et al.

w
a
g
o
n
h
t
h
m
l
M
w
l

𝐿

w
a

i
s

fuse the multi-scale information. Hence, the formulated MsSSIM loss
is proposed as:

𝐿𝑀𝑠𝑆𝑆𝐼𝑀 (𝐸,𝐺) = 1
𝑁𝑀

𝑁
∑

𝑛=1

𝑀
∑

𝑚=1
𝐿𝑆𝑆𝐼𝑀

(

𝐸𝑛𝑚, 𝐺𝑛𝑚
)

(10)

here 𝑁 is the head counts, 𝑀 is the number of scales, 𝐸𝑛𝑚 and 𝐺𝑛𝑚
re the regions of the 𝑛th head at the 𝑚th scale in the predicted and the
round-truth FIDT map, respectively. Note that the adaptive window
f the 𝑚th scale is a square area whose side length is the 𝑚-nearest
eighbor Euclidean distance of the 𝑛th head. For example, for a given
ead, the side length of the adaptive window at the 2nd scale is set to
he average Euclidean distance of the two nearest heads of this given
ead. We calculate the average SSIM loss of the adaptive window at
ultiple scales as the loss value of this head, and the final MsSSIM

oss value is obtained by averaging all head loss values. The proposed
sSSIM loss not only considers the various head size via the adaptive
indow, but also fuse the multi-scale information when computing the

oss.
In summary, the total loss is expressed as:

= 𝐿𝑀𝑆𝐸 (𝐸,𝐺) + 𝜂𝐿𝑀𝑠𝑆𝑆𝐼𝑀 (𝐸,𝐺) (11)

here 𝜂 is adjustment coefficient. 𝐿𝑀𝑆𝐸 and 𝐿𝑀𝑠𝑆𝑆𝐼𝑀 could be treated
s the global and local losses, respectively.

In the inference stage, we first obtain all the local maximum points
n the predicted FIDT map through the 3 × 3 max-pooling, and then we
et two adaptive thresholds 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛. When the local maximum is

larger than 𝑇𝑚𝑎𝑥, this point is treated as a head. If the maximum value
of FIDT map is less than 𝑇𝑚𝑖𝑛, we consider that there is no head in the
whole image.

4. Experimental results

4.1. Datasets

We evaluate our method on five challenging public datasets.
ShanghaiTech (Zhang et al., 2016) consists of two parts: Part A

and Part B. Part A contains 244,176 annotated heads, which has a
count range of 33 to 3,139. The training set consists of 300 images
and the test set consists of 182 images. Part B is composed of 88,488
annotated heads where the training set includes 400 images and the test
set includes 316 images. The number of heads in this dataset ranges
from 9 to 578.

UCF-QNRF (Idrees et al., 2018) includes 1,535 images with 1.25
million annotated heads. There are 1,201 images in the training set and
334 images in the test set. This dataset consists of a variety of scenes,
whose count range is from 49 to 12,865.

JHU-Crowd++ (Sindagi et al., 2022) is composed of 4,372 images
and 1.51 million annotations. The training, validation and test sets
contain 2,272, 500 and 1,600 images, respectively. It includes the
scenarios in severe weather and various lighting conditions, making it
challenging. The total number of people in each image ranges from 0
to 25,791.

UCF_CC_50 (Idrees et al., 2013) contains 50 gray images with a total
of 63,974 annotated heads. The number of heads for each image ranges
from 94 to 4,543. This dataset contains dense crowd images. We utilize
5-fold cross-validation to evaluate the average test performance (Song
et al., 2021; Liang et al., 2022c; Idrees et al., 2013).

NWPU-Crowd (Wang et al., 2021a) has a total of 5,109 images,
including 3,109 training images, 500 validation images, and 1,500 test
images. This dataset has 2.13 million annotated head points, and the
number of people ranges from 0 to 20,033. It contains crowd images in
a variety of scenarios including exposure, extreme darkness, and high
density. The results on the test set come from the online evaluation
benchmark website https://www.crowdbenchmark.com (Wang et al.,
2021a).
5

4.2. Implementation details

VGG-16 (Simonyan and Zisserman, 2015) is the backbone, and the
number of CSWin Transformer Block for each scale is set to 1. We
set the scale number 𝑀 in Eq. (10) to 3, and set the parameter 𝜂 in
Eq. (11) to 0.1. In the inference stage, 𝑇𝑚𝑎𝑥 is 𝜆𝑚 times the maximum
value of the FIDT map where 𝜆𝑚 is equal to 110∕255, and 𝑇𝑚𝑖𝑛 is set
to 0.1. We keep the resolution for ShanghaiTech and UCF_CC_50. And
for remaining datasets, we ensure that the image resolution does not
exceed 2048 × 2048 while maintaining the original aspect ratio of
the image. For ShanghaiTech, the batch size is set to 16, while for
the remaining datasets, it is set to 8. Adam (Kingma and Ba, 2015) is
utilized to optimize the model, setting the weight decay to 5𝑒 − 4 and
the learning rate to 1𝑒 − 4.

4.3. Evaluation metrics

Following Idrees et al. (2018), Wang et al. (2021a), for the evalu-
ation metrics of localization performance, we adopt Precision, Recall,
and F1-measure. The predicted head point that falls within the distance
threshold 𝜓 from the ground-truth point is considered a True Positive,
while those exceeding 𝜓 are classified as False Positives. The ground-
truth points which are not predicted are treated as False Negative.
For ShanghaiTech, JHU-Crowd++ and UCF_CC_50, as in Liang et al.
(2022b,c), we take 𝜓𝑠 = 4 and 𝜓𝑙 = 8 as two fixed thresholds, where
𝜓𝑠 = 4 is the stricter one. For UCF-QNRF, we apply Precision, Recall and
F1-measure across a range of thresholds from 1 to 100 as Abousamra
et al. (2021), Liang et al. (2022c), Idrees et al. (2018). For NWPU-
Crowd, following Liang et al. (2022b), Wang et al. (2021a), Wan et al.
(2021), Lin and Chan (2023), 𝜓 is determined by the real size of each
head: 𝜓 =

√

ℎ2 +𝑤2∕2, where ℎ represents the height and 𝑤 represents
the width of the head. For the evaluation of counting performance,
we apply MAE and MSE following Liang et al. (2022b,c), Idrees et al.
(2018), Wang et al. (2021a).

4.4. Comparison and analysis

Localization. As showcased in Tables 1–5, we conduct a com-
parison between our method and the state-of-the-art methods on five
datasets to evaluate the localization performance.

For ShanghaiTech, UCF-QNRF, JHU-Crowd++ and UCF_CC_50, our
method achieves the best localization performance. For the sparse
dataset ShanghaiTech, compared to the state-of-the-art FIDTM (Liang
et al., 2022c), our method achieves a higher F1-measure by 3.8% for
𝜓𝑠 (a stricter setting) on Part A, and 8.3% improvement in F1-measure
for 𝜓𝑠 on Part B. For UCF-QNRF, a dense dataset, our method sur-
passes the state-of-the-art method OT-M (Lin and Chan, 2023) by 5.1%
for Average F1-measure and reports the highest performance on all
three metrics. For JHU-Crowd++, our method improves FIDTM (Liang
et al., 2022c) by 2.0% F1-measure for 𝜓𝑠. For UCF_CC_50, our method
outperforms FIDTM (Liang et al., 2022c) by 4.7% F1-measure for
𝜓𝑠. For NWPU-Crowd, our method demonstrates the highest Precision
performance and achieves comparable results in terms of Recall and
F1-measure. It should be noticed that our method only utilizes point-
level annotations, whereas GMS (Wang et al., 2023a) uses box-level
annotations. The results presented here prove the superior performance
of our method for crowd localization.

As listed in Tables 1–5, our method achieves the highest perfor-
mance on almost all datasets. We select two representative methods for
analysis and comparison. Compared with Transformer-based method
CLTR (Liang et al., 2022b) which only learns single scale information
in the training process, our method considers multi-scale information
fusion in both encoding and decoding stages. Compared with map-
based method, i.e., FIDTM (Liang et al., 2022c), our method builds
the long-range context dependencies on the combined feature maps

and considers the multi-scale information fusion in the loss. Completed

https://www.crowdbenchmark.com
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Table 1
The performance (%) of localization on ShanghaiTech.
Methods SHTech Part A SHTech Part B

𝜓𝑠 𝜓𝑙 𝜓𝑠 𝜓𝑙
Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

LCFCN (Laradji et al., 2018) 43.3 26.0 32.5 75.1 45.1 56.3 – – – – – –
TopoCount (Abousamra et al., 2021) 41.7 40.6 41.1 74.6 72.7 73.6 63.4 63.1 63.2 82.3 81.8 82.0
LSC-CNN (Sam et al., 2021) 33.4 31.9 32.6 63.9 61.0 62.4 29.7 29.2 29.5 57.5 56.7 57.0
AutoScale (Xu et al., 2022) 56.2 54.2 55.2 74.4 71.7 73.0 – – – – – –
CLTR (Liang et al., 2022b) 43.6 42.7 43.2 74.9 73.5 74.2 – – – – – –
FIDTM (Liang et al., 2022c) 59.1 58.2 58.6 78.2 77.0 77.6 64.9 64.5 64.7 83.9 83.2 83.5
CSViT (Ours) 63.5 61.3 62.4 80.3 77.6 78.9 73.4 72.6 73.0 87.2 86.3 86.7
Fig. 5. Here are some qualitative results showcasing our crowd localization method. The ground-truth counts are indicated by blue numbers, while the predicted counts are
represented by orange numbers.
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Table 2
The performance (%) of localization on UCF-QNRF.

Methods Av.Pre Av.Rec Av.F1

CL (Idrees et al., 2018) 75.8 59.8 66.8
LCFCN (Laradji et al., 2018) 77.9 52.4 62.7
LSC-CNN (Sam et al., 2021) 75.8 74.7 75.3
GL (Wan et al., 2021) 78.2 74.8 76.3
TopoCount (Abousamra et al., 2021) 81.8 79.0 80.3
AutoScale (Xu et al., 2022) 81.3 75.8 78.4
CLTR (Liang et al., 2022b) 82.2 79.8 81.0
FIDTM (Liang et al., 2022c) 84.5 80.1 82.2
OT-M (Lin and Chan, 2023) 80.4 78.3 79.3
CSViT (Ours) 87.7 81.4 84.4

Table 3
The performance (%) of localization on JHU-Crowd++.

Methods 𝜓𝑠 𝜓𝑙
Pre Rec F1 Pre Rec F1

TopoCount (Abousamra et al., 2021) 31.5 28.8 30.1 63.6 58.3 60.8
FIDTM (Liang et al., 2022c) 38.9 38.7 38.8 62.5 62.4 62.4
CSViT (Ours) 41.5 40.2 40.8 64.6 62.6 63.6

Table 4
The performance (%) of localization on UCF_CC_50.

Methods 𝜓𝑠 𝜓𝑙
Pre Rec F1 Pre Rec F1

LSC-CNN (Sam et al., 2021) 37.7 39.5 38.6 57.8 61.1 59.4
TopoCount (Abousamra et al., 2021) 39.5 42.0 40.7 62.5 66.9 64.6
AutoScale (Xu et al., 2022) 37.8 40.5 39.1 59.0 62.3 60.6
FIDTM (Liang et al., 2022c) 46.5 49.0 47.7 67.0 70.6 68.7
CSViT (Ours) 52.4 52.6 52.4 70.6 70.9 70.7

multi-scale information fusion and the long-range context dependencies
6

enable our method to exceed these state-of-the-art methods. i
Table 5
The performance (%) of localization on NWPU-Crowd. Bold and underline represent
the best and second-place performance, respectively.

Methods Pre Rec F1

TinyFaces (Hu and Ramanan, 2017) 52.9 61.1 56.7
RAZ_Loc (Liu et al., 2019d) 66.6 54.3 59.8
Crowd-SDNet (Wang et al., 2021c) 65.1 62.4 63.7
TopoCount (Abousamra et al., 2021) 69.5 68.7 69.1
SCALNet (Wang et al., 2021b) 69.2 69.0 69.1
GL (Wan et al., 2021) 80.0 56.2 66.0
AutoScale (Xu et al., 2022) 67.3 57.4 62.0
CLTR (Liang et al., 2022b) 69.4 67.6 68.5
FIDTM (Liang et al., 2022c) 79.7 71.7 75.5
OT-M (Lin and Chan, 2023) 71.0 65.8 68.3
GMS (Lin and Chan, 2023) 79.8 76.5 78.1
CSViT (Ours) 82.9 70.4 76.1

Furthermore, we give some visualization results of our method in
ig. 5. From the first and the second columns of this figure, we can
ee that the heads with large-scale variations are effectively localized.
dditionally, our method achieves accurate localization results in the
ense scene (column 3). These indicate that our method performs
ffective crowd localization in different scenarios.
Counting. Our method mainly focuses on crowd localization, and it

ould also obtain the crowd counting from the summation of localized
eads. The comparison results with other crowd counting methods
re displayed in the upper part of Table 6, where the blue bold
ndicates the best performance among crowd counting methods. Note
hat these compared methods only perform the crowd counting, while
ur method not only conducts the crowd counting, but also the crowd
ocalization. By observing the table, it becomes evident that our method
urpasses these crowd counting methods on all datasets except for MSE
f ShanghaiTech Part A. This showcases the versatility of our method
n handling various tasks, i.e., crowd counting and crowd localization.
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Table 6
The performance of counting on ShanghaiTech, UCF-QNRF, JHU-Crowd++, UCF_CC_50 and NWPU-Crowd. Blue bold represents the best performance among crowd counting
methods. Red bold and underline represent the best and second-place performance among crowd localization methods, respectively.

Methods Position SHTech Part A SHTech Part B QNRF JHU UCF_CC_50 NWPU

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

CSRNet (Li et al., 2018) × 68.2 115.0 10.6 16.0 – – 85.9 309.2 266.1 397.5 121.3 387.8
SFCN (Wang et al., 2019) × 64.8 107.5 7.6 13.0 102.0 171.4 77.5 297.6 214.2 318.2 105.7 424.1
L2SM (Xu et al., 2019) × 64.2 98.4 7.2 11.1 104.7 173.6 – – 188.4 315.3 – –
CG-DRCN (Sindagi et al., 2019) × 64.0 98.4 8.5 14.4 112.2 176.3 82.3 328.0 – – – –
DSSI-Net (Liu et al., 2019b) × 60.6 96.0 6.9 10.3 99.1 159.2 133.5 416.5 216.9 302.4 – –
MBTTBF (Sindagi and Patel, 2019) × 60.2 94.1 8.0 15.5 97.5 165.2 81.8 299.1 233.1 300.9 – –
BL (Ma et al., 2019) × 62.8 101.8 7.7 12.7 88.7 154.8 75.0 299.9 229.3 308.2 105.4 454.2
RPNet (Yang et al., 2020) × 61.2 96.9 8.1 11.6 – – – – – – – –
ASNet (Jiang et al., 2020) × 57.8 90.1 – – 91.6 159.7 – – 174.8 251.6 – –
AMSNet (Hu et al., 2020) × 56.7 93.4 6.7 10.2 101.8 163.2 – – 208.6 296.3 – –
LibraNet (Liu et al., 2020) × 55.9 97.1 7.3 11.3 88.1 143.7 – – 181.2 262.2 – –
NoisyCC (Wan and Chan, 2020) × 61.9 99.6 7.4 11.3 85.8 150.6 67.7 258.5 – – 96.9 534.2
DM-Count (Wang et al., 2020) × 59.7 95.7 7.4 11.8 85.6 148.3 – – 211.0 291.5 88.4 388.6
DENet (Liu et al., 2021a) × 65.5 101.2 9.6 15.4 121.0 205.0 – – 241.9 345.4 – –
DensityCNN (Jiang et al., 2021) × 63.1 106.3 9.1 16.3 101.5 186.9 – – 244.6 341.8 – –
Lw-Count (Liu et al., 2022) × 69.7 100.5 10.1 12.4 149.7 238.4 90.2 311.8 239.3 307.6 – –
KDMG (Wan et al., 2022) × 63.8 99.2 7.8 12.7 99.5 173.0 69.7 268.3 – – 100.5 415.5
ECCNAS (Wang et al., 2022) × 62.0 110.9 7.5 12.9 91.2 158.9 – – 223.1 293.8 – –
MPNet (Zhao et al., 2023) × 65.4 108.4 9.3 13.4 – – – – – – – –
CP-Net (Lyu et al., 2023) × 58.5 95.4 6.7 10.6 91.2 156.6 – – 198.2 283.9 – –

PSDDN (Liu et al., 2019c) ✓ 65.9 112.3 9.1 14.2 – – – – 359.4 514.8 – –
LSC-CNN (Sam et al., 2021) ✓ 66.4 117.0 8.1 12.7 120.5 218.2 112.7 454.4 225.6 302.7 – –
Crowd-SDNet (Wang et al., 2021c) ✓ 65.1 104.4 7.8 12.6 – – – – – – – –
TopoCount (Abousamra et al., 2021) ✓ 61.2 104.6 7.8 13.7 89.0 159.0 60.9 267.4 184.1 258.3 107.8 438.5
GL (Wan et al., 2021) ✓ 61.3 95.4 7.3 11.7 84.3 147.5 59.9 259.5 – – 79.3 346.1
AutoScale (Xu et al., 2022) ✓ 65.8 112.1 8.6 13.9 104.4 174.2 85.6 356.1 210.5 287.4 123.9 515.5
FIDTM (Liang et al., 2022c) ✓ 57.0 103.4 6.9 11.8 89.0 153.5 66.6 253.6 171.4 233.1 86.0 312.5
CLTR (Liang et al., 2022b) ✓ 56.9 95.2 6.5 10.6 85.8 141.3 – – – – 74.3 333.8
GMS (Wang et al., 2023a) ✓ 68.8 138.6 16.0 33.5 104.4 197.4 70.2 316.8 – – 84.7 361.5
CSViT (Ours) ✓ 51.5 92.9 6.0 10.0 79.5 141.2 58.0 198.8 161.3 212.2 75.8 330.5
Table 7
The effectiveness of combining multi-scale feature maps of CsViT on ShanghaiTech Part
A, where the measurement unit of Pre, Rec and F1 is %.

Methods MAE MSE 𝜓𝑠 𝜓𝑙
Pre Rec F1 Pre Rec F1

BL 57.6 103.2 59.1 58.5 58.9 77.9 76.6 77.2
BL+IE 54.3 96.3 62.1 60.1 61.6 78.9 77.0 78.0
BL+ID 54.5 97.5 61.8 59.7 61.2 78.6 76.8 77.8
BL+IE+ID 51.5 92.9 63.5 61.3 62.4 80.3 77.6 78.9

We compare the counting performance with the state-of-the-art
rowd localization methods as depicted in the bottom part of Table 6.
ur method achieves the highest level of performance on all datasets
xcept for NWPU-Crowd. It is essential to mention that our method
ignificantly boosts counting accuracy on all datasets compared to
MS (Wang et al., 2023a). In particular, on ShanghaiTech Part B, the

mprovements are 62.5% and 70.1% in MAE and MSE, respectively.
he findings indicate that our method exhibits a more comprehensive
nd well-balanced performance in both counting and localization.

.5. Ablation studies

To verify the effectiveness of key components of our method, we
erform the ablation studies on ShanghaiTech Part A.
Effectiveness of combining multi-scale feature maps. Table 7

hows the comparison results where BL is the baseline, and IE and ID
epresent the integration encoder and the integration decoder, respec-
ively. Note that BL is obtained by removing the integration encoder
nd the integration decoder from the proposed CsViT. From the ta-
le, we can see that the performance of BL+IE and BL+ID is better

than that of BL because multi-scale information fusion is considered
in the encoding or decoding stage. Furthermore, the performance of
BL+IE+ID is the best among all compared methods because it considers
completed multi-scale information fusion. Specifically, for the counting
7

Table 8
The effectiveness of the proposed MsSSIM loss on ShanghaiTech Part A, where the
measurement unit of Pre, Rec and F1 is %.

Methods MAE MSE 𝜓𝑠 𝜓𝑙
Pre Rec F1 Pre Rec F1

MSE 59.6 101.5 60.5 58.9 60.0 77.8 76.6 77.2
MSE+SSIM 56.4 97.5 61.7 59.5 61.2 78.3 76.9 77.9
MSE+SSIM∗ 54.1 96.3 62.3 60.3 61.6 78.9 77.1 78.2
MSE+MsSSIM 51.5 92.9 63.5 61.3 62.4 80.3 77.6 78.9

performance, MAE and MSE of BL+IE+ID are lower than those of BL
by a large margin of 6.1 and 10.3, respectively. For the localization
performance, BL+IE+ID improves BL by 3.5% F1-measure (𝜓𝑠) and
1.7% F1-measure (𝜓𝑙), respectively.

Effectiveness of MsSSIM loss. Our investigation focuses on evalu-
ating the contribution of the proposed MsSSIM loss. The corresponding
results are shown in Table 8, where SSIM directly computes the loss on
the whole image and SSIM∗ computes the loss for each head using the
fixed-size head window (30 × 30) (Liang et al., 2022c). Firstly, the per-
formance is improved when adding the SSIM loss on the MSE loss. The
observed phenomenon could be attributed to the application of SSIM
loss, which effectively quantifies the deviation between the predicted
FIDT map and the actual FIDT map. Secondly, the performance of
MSE+SSIM∗ is better than that of MSE+SSIM because SSIM∗ could par-
tially mitigate the adverse impact caused by the background. Thirdly,
the performance of MSE+MsSSIM is the best, which demonstrates that
adaptive windows at different scales could precisely calculate the loss
values of head regions for crowd localization and crowd counting.

4.6. Parameter analysis

We analyze the effect of the number of scales in CsViT and the
number of scales 𝑀 in MsSSIM. We list the effect of the scale number
of the proposed CsViT in Table 9, showcasing the enhancement in
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Table 9
The effect of the number of scales in CsViT on ShanghaiTech Part A, where the
measurement unit of Pre, Rec and F1 is %.

Scales MAE MSE 𝜓𝑠 𝜓𝑙
Pre Rec F1 Pre Rec F1

2 57.1 101.0 60.7 58.7 60.3 77.9 76.7 77.4
3 54.4 96.5 61.9 60.6 61.3 78.5 77.3 77.9
4 51.5 92.9 63.5 61.3 62.4 80.3 77.6 78.9

Table 10
The effect of the number of scales 𝑀 in MsSSIM on ShanghaiTech Part A, where the
measurement unit of Pre, Rec and F1 is %.
𝑀 MAE MSE 𝜓𝑠 𝜓𝑙

Pre Rec F1 Pre Rec F1

2 53.5 95.8 62.8 60.6 61.9 79.2 77.3 78.5
3 51.5 92.9 63.5 61.3 62.4 80.3 77.6 78.9
4 53.9 95.5 63.0 60.4 62.2 79.5 77.1 78.6
5 54.0 96.7 62.5 60.2 62.0 78.9 76.8 78.4

counting and localization performance with an increasing number of
scales. It indicates that the combination of feature maps across multiple
scales could effectively deal with multi-scale heads. Hence, we choose
to combine the feature maps of all four scales of VGG-16.

Table 10 shows the effect of the number of scales 𝑀 in MsSSIM.
oo few scales could not robustly represent the adaptive window of
he head, and too many scales introduce outliers, i.e., large or minimal
he head neighbor distance. Therefore, as shown in Table 10, a suitable
umber of scales, i.e., 𝑀 = 3, achieves the best performance.

.7. Limitations

The potential drawback of the proposed method is its computational
omplexity. The computational complexity of our method is 578.7
MACs and the inference speed is 7.1 FPS. The experiments are con-
ucted on a 3090 GPU, and the size of the input image is 1024 × 768. In

practical applications, the crowd localization requires faster inference
speed. Thus, our subsequent direction is to develop a lightweight deep
model while maintaining the localization and counting performance in
order to achieve real-time in the inference stage.

5. Conclusion

In this paper, we have proposed CsViT for crowd localization, which
constructs completed multi-scale information fusion strategy in the
encoding and decoding stages. Furthermore, we propose the MsSSIM
loss to calculate the SSIM loss for each head using the adaptive windows
at different scales. We have performed extensive experiments on five
publicly available datasets, and the experimental results prove that our
method achieves the state-of-the-art performance in the crowd localiza-
tion and counting. In the future, we will develop the deep model with
low sensitivity to hyperparameters and focus on the interpretability of
the model.
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