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Abstract

A Scottish wood biochar sample was investigated for water remediation against persistent
organic pollutants as a potential renewable material for adsorption processes. Textural char-
acterisation gave a high surface area (588 m%/g) and a mix of microporous and mesoporous
nature with an average pore width of 4 nm. Morphological analysis revealed a layered carbon
structure and spectroscopic analysis showed the presence of oxygen and nitrogen-based
functionalities alongside 80% atomic carbon. The biochar had an average point of zero charge
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of 7.44 +0.2. 3,4-Dichloroaniline kinetic rates were rapid (<5 min), restricting kinetic analysis,
while a pseudo-second-order kinetic model was best suited to represent the kinetic data for
acetaminophen and carbamazepine, suggesting chemical control. The adsorption equilibria
were most appropriately described by the Sips isotherm model, further supporting the chem-
ical control theory for a multilayer system. Maximum adsorption capacity was 126 mg/g for
acetaminophen removal, 40 mg/g for carbamazepine and 83 mg/g for 3,4-dichloroaniline.
The biochar demonstrated good removal efficiency against all target species, showing poten-

tial as an adsorbent for water remediation.
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Introduction

The demands on freshwater supplies to support
growing populations and settlements is a key
issue, particularly for communities located in
water-stressed regions. Available freshwater
amounts to 2.5% of total global water resources
(International Energy Agency, 2017); in 2018,
an estimated two billion people were living in
countries experiencing water scarcity (United
Nations Educational Scientific and Cultural
Organization, 2021). Many also experience
‘economic’ water shortage, with ~1.6 million
people residing in areas where water is physically
available but there is an acute shortage of the
required infrastructure required to access those
water resources (United Nations Educational
Scientific and Cultural Organization, 2021). A
significant disparity exists in gathering the
required water quality data, due to a lack of mon-
itoring and reporting, especially in developing
nations.

Water quality has been severely affected by
pollution via natural and anthropogenic
factors. On a global scale, approximately 80%
of industrial and municipal wastewater is dis-
charged into the environment without undergo-
ing any form of treatment beforehand. The risks
associated with emerging pollutants, including
micropollutants, have been recognised since
the early 2000s (Bolong et al., 2009). Organic
pollutants can be either synthetic compounds
or oxygen-demanding wastes produced from
household or industrial activities. They contain

compounds such as hydrocarbons, detergents,
insecticides and herbicides, lubricants, endocrine
disrupting chemicals (EDCs), pharmaceuticals,
etc. that have detrimental effects on human and
environmental health (Burton and Pitt, 2001;
Verla et al., 2019). Among these, EDCs and
pharmaceutical compounds are of growing
concern due to release into the environment
through engineered and natural pathways,
without adequate monitoring systems. Such che-
micals can mimic hormones within the body and
interfere with the endocrine system and adversely
affect bodily functions (Crisp et al., 1998). Even at
low concentrations, prolonged exposure can result
in adverse health effects. An EDC of particular
concern is 3,4-Dicholoroaniline (3,4-DCA), a
derivative of aniline with high global annual pro-
duction (Livingston and Willacy, 1991) intermedi-
ate in the production of urea herbicides (Luca
Tasca and Fletcher, 2017) in the synthesis of
fabric pigments, and as a paint precursor
(Ibrahim et al., 2021; Nurul et al., 2021). Known
to be toxic to aquatic organisms and humans,
with the potential to cause long-term adverse
effects in aquatic environments, the predicted
no-effect concentration (PNEC) for 3,4-DCA is
0.2 ug/L. In addition, the detection of Active
Pharmaceutical Ingredients (APIs) in various
surface waters has sparked concems regarding
their potential impact on the environment and
living organisms and common pollutants in this
category include acetaminophen (APAP) and
carbamazepine (CBZ). APAP, commonly known
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as paracetamol, is an analgesic used to mitigate
moderate to severe pain (Rodriguez-Narvaez
etal., 2017). Healthcare facilities, improper house-
hold disposal, inadequate treatment and veterinary
treatment provided to livestock are pathways for
water contamination. APAP can accumulate in
the tissues of aquatic organisms, posing risks to
higher trophic levels in the food chain. In
humans, it has been reported to cause acute liver
failure and is the second most frequent reason for
liver transplantation in the USA (Larson et al.,
2005). CBZ is extensively used worldwide as a
multifunctional medication, serving both as an
anticonvulsant and a pain-reliever (Décima et al.,
2021) contamination pathways are similar to
those for APAP, with a range of environmental
and human health issues (Harvey, n.d,;
Vaseashta, 2009) CBZ is among the emerging
organic contaminants detected at the highest con-
centration with highest concentration (~4.6 pg/L)
(Loos et al., 2013). All of these pollutant species
pose a challenge for microbial degradation or
decomposition in the environment, and it is neces-
sary to develop new methods of removal from
water streams; this is increasingly complex when
designing systems that can target a range of species.

Photocatalytic degradation processes using
biochars can target most organic pollutants
including EDCs. Photocatalytic processes
were used for the remediation of antibiotics
and organic dyes using bismuth-based nanos-
tructured photocatalysts. The catalysts offer
the advantage of narrow bandgaps and layered
structures, however, are limited in application,
due to their solubility and instability at low
pH, as well as issues with recovery and toxicity
(Oladipo and Mustafa, 2023). The process add-
itionally raises concerns about the formation of
intermediate species, as well as capital invest-
ment, despite the advantage of the high stability
offered by biochar-based catalysts (Qiu et al.,
2021). Photocatalysis of 3,4-DCA, using Ti-N
and Ti-S catalysts, resulted in full degradation
of 3,4-DCA in 2 h at an optimal pH of 6 for
Ti-N (Ellappan and Miranda, 2014). Ti-N cata-
lysts presented a higher surface area and lower
particle size compared to Ti-S catalysts. The

catalyst dosage above 0.1 g/L was observed to
be inversely proportional to the reaction rate.
Coagulation—flocculation systems are advanta-
geous to remove lighter particles that do not
easily settle in suspension. Certain inorganic
metal salts are also readily available and cheap
to add to these systems. Several coagulants,
however, can cause oxidation—reduction reac-
tions in suspension and there are also possibil-
ities of corrosion, and the production of toxic
sludge, while extensive polymer usage has
attracted criticism from an environmental stand-
point (Iwuozor, 2019). Cost analysis of anti-
biotic removal using Al and Fe anodes
revealed an operational cost of 0.166 US$/m’
for a 200 mL reactor volume. Despite the
process being reportedly economical, scaling
up such a system, especially the fabrication of
bigger reactors with higher pollutant loads
would be challenging (Oladipo et al., 2022).
To overcome such issues, adsorption systems
using biochars have gained considerable inter-
est. APAP removal using advanced oxidation
processes has been widely studied over the
years. Removal of APAP in such systems is
generally instantaneous with efficiencies typic-
ally >75%. The conventional Fenton process
can be modified into photo-based or electro-
based processes. Both processes operate via
the generation of hydroxyl radicals using UV
radiation and electrodes, respectively. An
investigation into the removal of 5mM of
APAP using UV radiation at 360 nm resulted
in 99% removal in under 40 min (Su et al.,,
2013). Different electrode materials, such as
Ti/boron-doped diamond and Pt sheets or
gauzes have been tested for APAP removal
and gave satisfactory results (He et al,
2015). Both processes can target high APAP
concentrations; however, the operation of
these processes requires a high capital invest-
ment due to electricity consumption (Phong
Vo et al., 2019). For CBZ, the presence of
electron-rich moieties makes it easier to react
with strong hydroxyl radicals, and even ozone
(Rizzo et al., 2019). However, the presence of
other components, such as suspended solids and
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organic matter, can compete for ozone, reducing
the reaction efficiency (Juarez et al., 2021; Rizzo
et al.,, 2019). CBZ removal using Fenton pro-
cesses was reported to achieve a mix of
removal efficiencies (Klamerth et al., 2010; Li
et al., 2012; Matta et al., 2011).

Adsorption is often used as an application for
targeting persistent organic compounds owing
to its ease of application and the availability
of a range of materials as potential adsorbents.
The choice of precursor is an important step in
developing an effective adsorbent material.
Biochar-based adsorbents can be derived from
a range of precursors and are also versatile in
their field of application. They are carbon-rich
by-products obtained from the pyrolysis of
biomass under an inert atmosphere. They are
low-cost alternatives to conventional activated
carbon materials and are flexible in their field
of application (Jin et al., 2022). Biochars can
be ideal adsorbent materials due to their stabil-
ity, high carbon content and aromatic nature
and can target a range of contaminants, such
as organics, heavy metals, pesticides, dyes and
pharmaceuticals. Without physical or chemical
activation, biochars typically are ineffective
against most contaminants, primarily owing to
their low surface area. With recent develop-
ments in activation techniques, however,
biochar application in water remediation has
provided a low-cost, low-carbon footprint alter-
native (Qiu et al., 2022). There is also consider-
able influence of the operational parameters of
the system as suggested by Jin et al. (2022),
who investigated the removal of Pb (II) ions
using peanut shell biochars.

Quirantes et al. (2017) investigated 3,4-DCA
removal using biomass fly ash and concluded
that removal is regulated by boundary layer dif-
fusion, while strong adsorbate—adsorbent inter-
actions have been observed (Bakhaeva et al.,
2001; van Oss, 2007). APAP adsorption
appears to be controlled by the hydroxyl and
amino functional groups acting as electron
donors, augmenting the electron density on
the aromatic ring (Pauletto et al., 2021), which
may be influenced by the surface groups

present on the biochar surface (Tran et al.,
2020). CBZ, on the other hand, is reported to
interact through mechanisms including chem-
ical bonding, n—= interaction, and Lewis acid—
base interaction; and despite its weak hydrogen
bonding, CBZ has been shown to chemical
bond with biochar surfaces (Liang et al.,
2020). Enrofloxacin removal was investigated
using biochar derived from cow dung, modified
under three different phosphoric acid concentra-
tions (10%, 30% and 50%). Largest surface
area was reported for 30% phosphoric acid modi-
fication, which also coincided with the maximum
adsorption capacity of enrofloxacin at 63.61 mg/
g (Jiang et al., 2024). This indicates that, despite
all being aromatic molecules, there is a range of
interactions between these target molecules and
a potential adsorbent material.

Despite compelling concepts and innovation
for the use of biochar, market demand and
large-scale application require ample supply of
feedstock and significant capital input for
process application. A comprehensive produc-
tion technique could lead to smaller profit
margins providing a challenge in gaining
capital investments. Companies and manufac-
turers often tend to evaluate these risk factors
to ensure the accessibility of a final product
that is reasonably priced and user-friendly.
The aim of this work is to investigate the
removal of 3,4-DCA, APAP and CBZ from an
aqueous system using biochar derived from
native Scottish woods, analysed using thermo-
dynamic and kinetic studies. Locally procured
raw material provides a considerable reduction
in carbon footprint associated with supply and
transport, offering the potential for circularity
in the formation of biochar materials for pos-
sible applications.

Materials and methods

The precursor used for making the biochar was
procured from Sustainable Thinking Scotland
C.I.C. (Kinneil Estate, Bo’ness, Scotland). Wood
samples are taken from deforested wood in the
walled garden of the 200-acre estate. The sample
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mix was pure softwood including species such as
Scots pine, western red cedar, and Sitka spruce.

Pyrolysis

Previous results (Jamal and Fletcher, 2023)
indicated that, for the feedstock used, the
optimum yield and surface area were obtained
for a sample pyrolysed at 725 °C, with a hold
time of 60 min and a heating rate of 15 °C/min
(known as the optimised biochar). Before
pyrolysis, wood samples were divided into
small cubes, rinsed with DI water and oven-dried
for 24 h at 100 °C. A precursor weight of 30 +
0.1 g was distributed into three crucibles with a
lid placed on top and pyrolysed inside a
Thermconcept KLS 10/12/WS muffle furnace.
An inert atmosphere was obtained inside the
furnace using a CO, flow rate of 250 mL/min.
The furnace was switched on at the designated
temperature and dwell time conditions and at
the end of each run, the flow of gas was switched
off and samples were allowed to cool overnight
before analysis. Figure 1 shows a schematic
diagram of the muffle furnace used in this study.

Biochar production was repeated twice to
ensure the results fell within acceptable error
margins.

Material characterisation

Porous structure characterisation. Biochar-specific
surface area and pore size distribution were
determined using Brunauer—-Emmett-Teller
(BET) (Brunauer et al., 1938) and Barrett—
Joyner—Halenda (BJH) (Barrett et al., 1951)
models. Samples were crushed to a powdered
form before analysis. A Micromeritics ASAP
2420 system was used to perform nitrogen
adsorption at —196 °C. Sample degassing was
performed at 200 °C for 4 h at a heating rate
of 10 °C/min. The adsorption branch of the iso-
therm consisted of 49 points, with 30 points on
the desorption branch.

Fourier transform infrared spectroscopy (FTIR).
Attenuated Total Reflectance (ATR) was used

to study functional groups on the biochar
surface. A small amount of powdered biochar
was analysed using an ABB IR Instrument
MB3000 series. The acquisition mode was set
to transmittance, with a detector gain of 80%
for increased accuracy. A total of 32 scans
were taken between wavenumbers 500 and
4000 cm™!, at 4 cm™! resolution.

X-ray photoelectron spectroscopy (XPS). XPS
analysis was used to determine the surface
chemistry of the biochar sample and was per-
formed by the NEXUS facility. The biochar
sample was crushed to a powdered form and ana-
lysed using a K-Alpha Photoelectron Spectrometer
(Thermo Fisher) and electron detection using a
hemispherical analyser. Measurements were
taken with the flood gun on to lower charging
with the beam energy at 40 eV and a step size
of 0.05 eV. The generated results were analysed
using the Fityk programme.

Point of zero charge (PZC). PZC analysis was
performed using a salt addition method
(Bakatula et al., 2018). A 40 mL portion of a
solution containing 0.1 M NaNOj3 was modified
to reach five different pH levels ranging from 3
to 11. To achieve the desired pH, solutions of
0.1M NaOH and 0.1 M HCI were utilised.
Approximately 0.2 g of powdered biochar was
introduced into the beakers and stirred at a speed
0f 450 rpm for 24 h. The resulting mixture was fil-
tered, and the pH of the filtered liquid was mea-
sured. By calculating the difference between the
initial and final pH values of the samples and plot-
ting the change in pH against the initial value, the
PZC value was determined.

Scanning electron microscopy (SEM). Scanning
electron microscopy (SEM) of biochar
samples was performed to examine surface
structure and morphology. Surface imaging of
biochars produced in this work was performed
by clipping a small solid portion from the
material and placing it into a Tungsten low-
vacuum JEOL JSM-IT100 InTouchScope
SEM. Images were captured at 10 um with
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Figure |. Schematic diagram of muffle furnace equipped with a weighing system (Licence number:

5501811254585) (Cao et al,, 2021).

1000x magnification. The beam current was
kept constant at 35 with a voltage difference
of 20 kV.

Analytical method

The experimental solutions were passed
through Fisherbrand Grade 601 general-
purpose filter papers (125 mm diameter). Two
filter papers were used for each filtration step
to ensure the removal of all suspended particles
from the permeate. For the target species in this
work, calibration curves were plotted prior to
kinetic and adsorption experiments. The
maximum  adsorption  wavelengths  for
3,4-DCA, APAP and CBZ are 296, 243 and
285nm, respectively.  For  calibration,

absorbance obtained by passing light of mono-
chromatic radiation was plotted against concen-
tration and a liner fit provided the required
parameters of slope and intercept. The gener-
ated equation was then used to identify residual
concentrations from experimental runs.

Adsorption kinetics

Biochar samples (0.1 g) were added to 100 mL
glass bottles and mixed with 50 mL of 100 mg/
L solution of either APAP, CBZ or 3,4-DCA.
The bottles were subsequently placed on an
orbital shaker at 420 rpm for time steps 15,
30, 60, 120, 180, 240, 360 and 1440 min.
Once completed, the solutions for each time
step were double-filtered using cellulose
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acetate filter papers to obtain a clear solution
free of suspended biochar particles. The super-
natants were analysed using UV-Vis spectros-
copy. The amount of target species adsorbed
was calculated using calibration curves run
prior to kinetic and isotherm measurements. It
should be noted that there was an exception in
the case of 3,4-DCA kinetic analysis. The
speed of adsorption was observed to be
extremely fast, not allowing sufficient time to
measure and analyse multiple samples. Hence,
a reduction in temperature was used, using an
ice bath (~2-3°C) to slow the reaction
process to obtain kinetic parameters. A series
of kinetic models were applied to determine
the most appropriate fit.

The pseudo-first-order (PFO) model was first
proposed by Lagergren in 1898 (Svenska
Vetenskapsakademiens, n.d.). The differential
form of the model is given by Equation 1:

— =ki(ge — q1) (M

where £, is the rate constant for adsorption, and
q. and ¢, are the adsorbate uptake amounts at
equilibrium and a given time ‘£, per mass of
adsorbent, respectively. Integrating the above
equation provides the linearised form of the
model shown in Equation 2 (Moussout et al.,
2018):

In (qe - 61:) = ane — kit (2)

Which upon rearranging gives the non-linear
PFO model given by Equation 3:

gr =qe(1 —e—kit) 3)

The physical meaning associated with the
model has been suggested to be dependent on
the initial solute concentration (Azizian, 2004;
Liu and Shen, 2008). The PFO model is asso-
ciated with a high initial solute concentration,
the process being at the initial stage of adsorp-
tion, and the availability of only a few active
adsorbent sites (Wang and Guo, 2020b).

Ho and McKay (1998) proposed the expres-
sion for the pseudo-second-order (PSO) model

by integrating Equation 4:

—= = ka(qe — q1)2 “4)

And applying it to the adsorption of lead onto
peat, to obtain the non-linear model displayed
in Equation 5:

g =12l )
+ C]ekzt
where k, is the reaction rate constant, and all
other terms are as defined for PSO. The line-
arised form of the model is given as shown in
Equation 6:

t_ 1 t
a kg2 qe

(6)

PSO models are more commonly used to
predict adsorption experiments as opposed to
PFO models. The model signifies a low initial
solute concentration, occurring within the final
stages of the adsorption process, and an abun-
dance of active sites on the adsorbent (Wang
and Guo, 2020b).

Adsorption isotherms

Batch adsorption experiments were carried out
using 0.1 g biochar in 50 mL solution of the
target species. For APAP and 3,4-DCA, the
concentrations used were 25, 50, 75, 100, 150,
200, 250 and 300 mg/L. For CBZ, the
maximum solubility is 125 mg/L and, hence,
the isotherm points were taken between 10
and 100 mg/L at intervals of 10 mg/L. Based
on the kinetic data, 3,4-DCA isotherm solutions
were filtered after 10 min. Experiments for
APAP were run for 6 h and CBZ experiments
were allowed to run for 24 h to allow for full
equilibration of the samples. The permeate col-
lection procedure was similar to that used
within the Kkinetic measurements, where the
solutions were double-filtered using two cellu-
lose acetate filter papers, and the absorbance
was measured using UV-Vis spectroscopy.
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The collected isotherm data was analysed using
three adsorption isotherm models.

The non-linear form of Langmuir model
(Langmuir, 1916) is given in Equation 7:

K1 C,
q _ mBite (7

T+ K;C.

where ¢,, is the maximum adsorption capacity
in mg/g, C, is the equilibrium concentration of
the solute in mg/L, ¢, is the amount of solute
adsorbed in mg/g and K is the ratio between
adsorption and desorption rates in L/mg. The
model represents a chemical adsorption
process with monolayer formation and homo-
genous adsorption (Wang and Guo, 2020a).

The Freundlich model (Freundlich, 1907) is
given in Equation 8:

qe = KrC" ®)

where K is the rate constant in L'"mg'~"""/g
and n is a correction factor. The linearised
form of the model can be obtained when
n=1. All other terms are as defined above.
This model represents nonlinear adsorption
processes and can be treated as an empirical
equation (Wang and Guo, 2020a).

The Sips model (Sips, 1948) is often referred
to as the Langmuir—Freundlich isotherm model
and was developed in 1948. The non-linear
form is shown in Equation 9:

_ CImsKs Cz y

y = dmsBsTe 9
Te =1 K.Cm ©)

where the maximum adsorbed amount is repre-
sented by ¢,,, in mg/g and Kg (L".mg™") and
ng are the Sips constants. When the value of
ng in the Sips model is equal to 1, the model
simplifies to the Langmuir model. At low
initial concentrations (Cp), the Sips model also
resembles the Freundlich model. However, it
is important to note that, unlike the Sips
model, the Langmuir model satisfies Henry’s
law at low Cy. The model can be applied to
homogeneous as well as heterogeneous
systems and describes the adsorption process
of a monolayer, where one adsorbate molecule

is adsorbed onto 1/ng adsorption sites (Wang
and Guo, 2020a).

Results

Material characterisation

Figure 2 shows the adsorption—desorption iso-
therms obtained for the optimised biochar
sample. The adsorption isotherm shows a high
initial uptake at low relative pressures, followed
by a plateau in the high relative pressure region,
which can be attributed to the microporous and
mesoporous nature of the material. This resem-
bles a Type IV isotherm behaviour, as per the
IUPAC classification of physisorption behav-
iour (Thommes et al., 2015). The desorption
branch between the pressure range 0.85-0.4
shows the hysteresis loop which typically
results from the presence of mesoporosity in
porous materials. The difference in desorption
branch can be linked to differences in evapor-
ation mechanisms, cavitation and pore
blocking.

The hysteresis loop resembles Type H4
where the adsorption branch is associated with
micropore filling at low relative pressures as
expected for microporous carbons (Thommes
et al., 2015), this is further supported by the
ratio of micropore to total pore volume for the
biochar sample, which was 55%. The micropore
volume was calculated using the t-plot method
developed by Lippens and Boer (Lippens and
de Boer, 1965). Total pore volume (TPV) was
calculated using Equation 10:

My
TPV = <Qsat XV—m> /pliq (10)

where Qy, is the maximum nitrogen adsorption
in cm’/g, MW is the molecular weight of nitro-
gen (28 g/mol), V,, is the volume occupied by
1 mol of gas (22.4 L) and py; is the density of
nitrogen at boiling point (808 g/L). TPV of
the biochar sample was 0.36 cm’/g with an
average pore width of 4 nm, and the pore
volume distribution is shown in Figure 3. It is
evident from the distribution that the produced
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biochar material is highly microporous with a
discrete pore size.

The biochar surface area was calculated,
using the BET method, to be 620 m*/g. BET
analysis, however, is sensitive to the selected
relative pressure region (Gomez-Gualdron
et al., 2016); specifically for microporous mate-
rials, the optimal range of relative pressure can
be determined by applying the four consistency
criteria proposed by Sing (2014). These criteria
are as follows: (1) only the range where the
product of the adsorbate loading rate and the
difference between 1 and the relative pressure
exhibits a monotonic increase with the relative
pressure should be selected; (2) the value of
the BET ‘C constant’ should be positive. The
C constant represents the interactions between
the adsorbent and adsorbate and is linked to
the energetic aspects of the first adsorbed
layer (Gomez-Gualdron et al, 2016); (3)
the linear region chosen should include the
loading corresponding to the monolayer at the
given relative pressure; (4) the relative pressure
obtained from Criterion 3 should be within a
20% tolerance of the relative pressure calcu-
lated from BET theory that aligns with mono-
layer loading. Upon applying the correction to
the data obtained for this biochar sample, the
‘corrected’ surface area was calculated to be
588 m%/g, which is larger than other wood-
based biochars reported in previous studies
(Idowu and Fletcher, 2020; Jindo et al., 2014;
Kloss et al., 2012).

The FTIR spectra obtained for the wood
feedstock and the optimised biochar are
shown in Figure 4. The fingerprint region,
observed between 600 and 1500 cm™' shows
the presence of vinyl terminals (Nandiyanto
et al., 2019). At 1000 cm™", there is evidence
of a loss of the peak observed in the feedstock,
due to heat treatment. The peak loss can be
attributed to the removal of C-OH vibrations
from dehydration during pyrolysis (Idowu and
Fletcher, 2020). The process of heat treatment
is essential in facilitating condensation of the
carbonaceous skeleton and eliminating the
hydroxyl groups found in the cellulosic

compounds within the initial materials (Lee
et al, 2010). Overall, the feedstock and
biochar spectra look comparable with the pres-
ence of C = C bonds with symmetric and asym-
metric vibrations between 1600 and 1800 cm™".

The XPS spectra of the optimised biochar
sample used are shown in Figure 5. The
spectra show the presence of oxygen and nitro-
gen bonds, in addition to carbon with peaks at
532.5, 400 and 284.5eV, respectively
(Reddygunta et al., 2022). Peak deconvolution
was achieved using the Fityk programme, and
the Voigt function assisted in the identification
of the heteroatoms present in the biochar. The
corresponding parameters are provided in
Table S1 (Supporting Information). Cls peaks
were deconvoluted into three peaks at
284.5 eV, suggesting a graphene-like arrange-
ment (C=C), at 285.6 eV indicating the pres-
ence of carbonyl bonds (C-O), and a third
peak at 289.6 eV, which is ascribed to either
carboxylic or pyridinic N bond functionalities
(C=0/C-N) (Beamson and Briggs, 1992;
Lhoest et al., 1995; Smith and Black, 1984;
Wagener et al., 1989). The area under the
C=C peak is the largest indicating the preser-
vation of the graphene-like arrangement in the
wood samples post-pyrolysis. Peak convolution
of Ols showed the presence of both carbonyl, as
well as carboxyl groups, with peaks at 531.1
and 532.9eV (Beamson and Briggs, 1992;
Lopez et al, 1991). There were also trace
amounts of nitrogen functionalities present in
the sample and convolution of the N1s spectra
suggested the presence of pyridinic (398.6 eV)
as well as graphene N (400.2 ¢V) bonds in
the sample (NIST X-ray Photoelectron
Spectroscopy (XPS) Database, Version 3.5,
n.d.). The incorporation of O and N-based func-
tional groups into the carbon framework
enhances its wettability (Reddygunta et al.,
2022), which is further correlated with contact
angle measurement presented in previous
work (Jamal and Fletcher, 2023), where
biochar samples proved to be extremely hydro-
philic. The calculation of the elemental compo-
sitions of C, N and O were performed as
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suggested by Alexander G. Shard (Shard,
2020). Equation 11 works under the assumption
that the sample is homogenous and a single
phase within the penetration depth; where X
represents the atomic fraction (in %), and Ip/
Sp is the intensity divided by the sensitivity
factor (Sp=1, 1.8 and 2.93 for C, N and O,
respectively).

IP/SP

WA (b

The biochar sample used consisted of 80%
C, 13% O and 7% N fractions. The findings
again supplement the results obtained in the pre-
viously reported study, where thermogravi-
metric analysis of the samples showed 80%
fixed C (Jamal and Fletcher, 2023).

The PZC of the biochar was observed to be
7.44+0.2. The results are comparable to the
previous study on parameter optimisation,
where the DOE biochars had similar average
PZC values (Jamal and Fletcher, 2023). PZC

values are temperature dependent, and high
temperatures result in a loss of volatile matter
including acidic functional groups such as
phenols and carboxyl, causing the resulting
biochar to have a more alkaline nature
(Shaheen et al., 2019). PZC of wood pellet bio-
chars was also reported to increase with increas-
ing temperatures (Zhang et al., 2015); such
alkaline/neutral PZC values make these bio-
chars suitable for potential application in drink-
ing water systems that operate naturally under
slightly acidic conditions.

Figure 6(a)-(d) shows the SEM images
recorded for lower ramp rate biochars and
Figure 6(e)—(h) displays the observations for
higher ramp rate biochars. There is evidence
of a well-developed pore network in biochars
produced at both ramp rates. The images at
10 um and 1000Xx magnification suggest that
the high pyrolysis temperatures used to create
the biochars exposed the carbonaceous skeleton
of the parent material encompassing an intricate
network of pores (Angin, 2013). A pyrolysis
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Figure 5. XPS spectra and Fityk simulated models showing N 1s, Ols and Cls scans. Fityk models suggest
possibilities of existing functional groups at specific binding energies that can be compared with the NIST database.

temperature that is sufficiently high is necessary
for the removal of the outer biochar layer. The
open structure of pores could be attributed to
a lower ash content, which reduces the potential
for clogging. There is no apparent evidence of
influence from different ramp rates on the
pore networks developed in the biochars.

Adsorption kinetics

Table 1 shows the parameters of kinetic models
fitted to the data obtained for adsorption of
APAP and CBZ onto the optimised biochar.
Kinetic analysis of 3,4-DCA revealed fast
adsorption rates, which could not be fitted to
any kinetic models.

Data was obtained for 3,4-DCA adsorption
on the optimised biochars at room temperature,

for an initial concentration of 100 mg/L.
Removal was observed to be 90% after
15 min, with a plateau thereafter. Readings
were, therefore, taken at shorter time intervals,
and also at lower temperature in an attempt to
slow the kinetic process. Table 2 shows the
removal percentages of 3,4-DCA at room tem-
perature and in the ice bath. The data obtained
confirms the rapid adsorption of 3,4-DCA
onto the optimised biochar, even at the lower
temperature, hence, it was not possible to
monitor the adsorption in order to determine
the kinetic parameters for 3,4-DCA.

The results indicate that the interaction
between the biochar surface and 3,4-DCA mol-
ecule is almost instant. An investigation into
solution pH also yielded similar results with
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Table I. Kinetic parameters of adsorption models
fitted to Acetaminophen (APAP) and carbamazepine

(CBZ).

Model parameters APAP Carbamazepine
Pseudo first order

(non-linear)

R? (COD) 0.461 0.460

Adjusted R? 0.371 0.371

x 0.678 9.921

ge (mglg) 46.72+0315 38.83+1.266

K, (min™") 0.207 +0.028 0.097 +0.023
Pseudo second order

(non-linear)

R? (COD) 0.871 0.782

Adjusted R? 0.849 0.746

x> 0.162 4.004

qe (mglg) 47.32+0.199 40.56 + 1.001

K; (g/mg X min)  0.021 £0.003 0.004 +0.001
Pseudo second

order (linear)

R? (COD) | |

Adjusted R [ |

e - -

qe (mglg) 47.62 46.86

K3 (g/mg x min) 0.013 0.054

Table 2. Biochar performance against 3,4-DCA at
room temperature and in an ice bath.

% Removal -> room % Removal ->

Time (min)  temp. 3+0.5°C
2 94 86
4 94 88
6 95 90
9 95 89

overnight runs at pH 6 and 9 resulting in 93%
and 91% removal, respectively. Previous
research into 3,4-DCA removal using adsorp-
tion suggested that the data followed a
pseudo-second-order kinetic model (Angioi
et al., 2005). The observed reaction rates in
this study are quicker than those previously
reported. Experiments using kaolinite and
montmorillonite to test the removal of chloroa-
nilines, including 3,4-DCA, were reported to

achieve equilibrium in under 4 days (Polati
et al., 2006). Another study into 3,4-DCA
removal from water using biomass fly ashes
reported kinetic equilibrium at approximately
10 h (Quirantes et al., 2017). A selection of
low-cost materials including corncob char,
sugar beet pulp, perlite, and vermiculite were
also tested against 3,4-DCA. The quickest reac-
tion time to achieve maximum sorption percent-
age was 60 min using vermiculite (Huguenot
et al., 2010). The rates observed here indicate
that there is significantly quicker adsorption
for the biochars created in this work.

Figure 7 shows the kinetic data obtained
for the sorption of CBZ and APAP on the
biochar sample. Sorption kinetics for APAP
showed rapid uptake with 90% removal
achieved in 15 min followed by a gradual
increase in the uptake, and equilibrium
achieved after approximately 2 h. For CBZ,
the uptake was slower with just under 75%
removal at 15 min and adsorption slowed con-
siderably after 2 h, with equilibrium achieved
after 24 h.

The linearised pseudo-second-order rate
equation showed a better fit for the data for
both species compared to pseudo-first-order
and non-linear second-order kinetic models
(Table 2). The adjusted R*> values for both
species were>0.99. The maximum adsorption
capacity for APAP was 47.6mg/g and
46.7 mg/g for CBZ. The second-order rate con-
stants show a quicker uptake rate for APAP than
CBZ with the adsorption rate being 0.013 g/mg
xmin. The high R* values obtained for both
species, with linear PSO model fitting, can be
attributed to the availability of abundant
vacant active sites in the physically activated
biochar and the adsorption process being ruled
by chemisorption (Abd et al., 2020; El Saied
et al., n.d.; Wang and Guo, 2020b). The mech-
anism could likely be attributed to hydrogen
bonding between the species. Additionally,
-7 interactions between the benzene ring in
APAP and CBZ and the aromatics in biochar
can influence the adsorption process (Abd
et al., 2020).
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Figure 7. Non-linear kinetic model fittings for (top) carbamazepine and (bottom) acetaminophen on the
optimised biochar showing fits for pseudo-first-order and pseudo-second-order models.

Further analysis of the kinetic data was
performed using the intraparticle diffusion
model proposed by Weber and Morris (Weber
and Morris, 1963), to understand the rate-
controlling step in the adsorption process. The
model equation is given below:

g = kpt"? + C (12)
where k, is the intraparticle diffusion rate con-
stant in mg/g-min'? and C is a constant that
represents the boundary layer effect and initial

adsorption. Linearised plots of the model are
depicted in Figure 8.

The plots suggest that the adsorption process
for both pharmaceutical species involved three
diffusion steps. In both cases, liquid film diffu-
sion was the dominating phase signifying rapid
diffusion of molecules onto the active sites in
the pores and voids of the biochar (Wang
et al., 2021; Zhao et al., 2022). There is a hint
of intraparticle diffusion in CBZ adsorption.
This step involves the gradual diffusion of
molecules into the micropores before the
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Figure 8. Intraparticle diffusion model fittings for acetaminophen and carbamazepine adsorption show three

steps of the diffusion mechanism.

reaction proceeds to the equilibrium stage. For
APAP however, the intraparticle diffusion
phase is not as prevalent and the reaction
appears to proceed rapidly to equilibrium after
liquid phase diffusion. This also correlates
with the longer time required by CBZ to reach
equilibrium compared to APAP. The three
target molecules have some similarities, allow-
ing a comparison of their adsorption behaviour
relative to their chemistry. All contain amine
functionalities and benzene rings, with APAP/
BBZ sharing carbonyl moieties and only
3,4-DCA containing halogenated species. The
slower kinetics for CBZ could realistically be
a consequence of the significantly larger
relative size of the molecule (see Supporting
Information), while the rapid adsorption of
3,4-DCA is likely a result of the comparatively
increased electrostatic interactions, where the
chlorine groups will be electron withdrawing
from the benzene ring.

Adsorption isotherms

Adsorption isotherms are of crucial importance
in determining the maximum adsorption cap-
acity of the adsorbent and understanding the
adsorption equilibrium. The results of isotherm
fittings for the Langmuir, Freundlich and Sips

models are given in Table 3, and isotherm
plots for the target species are shown in
Figure 9.

The results indicate that the adsorption
uptake was significant at low pollutant concen-
trations. The data presented in Table 3 suggests
that for CBZ and 3,4-DCA, the Sips model can
be best used to describe the adsorption behav-
iour. This suggests that the adsorption process
is a combination of physisorption at low con-
centrations and chemisorption at high initial
C, values with the formation of a monolayer
on the adsorbent material. The maximum
adsorption capacities for CBZ and 3,4-DCA,
suggested by the Sips model, were 39.8 mg/g
and 83.2 mg/g, respectively. For APAP, both
Langmuir and SIPS isotherm models demon-
strated high R* values with the chi-square
value lower in the case of Langmuir isotherm.
A good fit to the Langmuir model assumes
monolayer adsorption of the molecules on the
biochar surface, with almost identical activation
energies, albeit with the possibility of multi-
layer formation (El Saied et al., n.d.). The
maximum adsorption capacity for APAP is
determined as 126 mg/g, much higher than the
other two species, which may be reduced as a
consequence of molecular size affecting
packing in the case of CBZ and electrostatic
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Table 3. Adsorption isotherm parameters obtained for Acetaminophen (APAP), carbamazepine (CBZ) and
3,4-dicholoroaniline (3,4-DCA) on the optimised biochar sample.

Isotherm parameters APAP CBz 3,4-DCA
Langmuir

R? (COD) 0.976 0.907 0.905

Adjusted R 0.972 0.895 0.893

x> 4746 23.58 1125

Gm (Mglg) 118.9+5.910 59.84 +9.694 1109+ 15.36

K, (Limg) 0.204 +0.036 0.182 +0.065 0.028+0.010
Freundlich

R? (COD) 0.929 0.801 0.797

Adjusted R 0915 0.772 0.769

b 105.1 40.16 200.3

Gm (Mglg) 32,62 +4.966 11.77 £2.679 9.771 +£4.409

Kr (L'""mg'~"""/g) 0.313 +0.044 0.503 +0.106 0.456 +0.104
SIPS

R? (COD) 0.977 0.968 0.939

Adjusted R 0.967 0.959 0.922

x> 55.22 9.24 81.64

Gm (Mglg) 126.2+19.81 39.77 +2.105 83.20+7.025

Ks (L"-mg™"™) 0.214 +0.046 0.065 +0.032 0.002 +0.003

repulsion in the case of 3,4-DCA due to over-
lapping of the electron clouds of the molecule
within the pore structure (Weber, 1974).

Since the two models exhibited a good fit to
the experimental data for APAP, the value of
the separation factor (Rp) suggested by
Webber and Chakkravorti (Weber and
Chakravorti, 1974) was calculated to further
verify the favourability of the Langmuir adsorp-
tion isotherm (see Supporting Information). The
separation factor is determined from Equation
13:

1

R=—
L7153k,

(13)

The value for RL was >1 for all Co values sug-
gesting unfavourable adsorption (Wang and
Guo, 2020a). However, this could also be attrib-
uted to the limitations of the model assump-
tions, including homogenous adsorption sites
and identical adsorption energies. The model
is also limited to the assumption of monolayer
adsorption, which can be overcome by the

Sips model, which includes the possibility of
multilayer formation. To conclude, APAP
adsorption on the biochar surface is better repre-
sented by the Sips model (Wang and Guo,
2020a).To further investigate the nature of
adsorption sites, Scatchard plots were obtained
from the adsorption data. The Scatchard equa-
tion is given in Equation 14.

qe
2e = 0 — qe 14
C. Ob — gep (14)

where the Scatchard adsorption constant Q is in
mg/g and b is in L/mg. The nature of the mater-
ial surface can be interpreted from the plot
between ¢./C, vs. q.. If the plot is linear, the
material surface is expected to be homogeneous
with a single type of binding site available.
Contrarily, a non-linear plot suggests hetero-
geneity and multiple binding sites (Anirudhan
and Suchithra, 2010).

Figure 10 shows the Scatchard plots
obtained for the adsorption of target species. It
is evident from the plots that the adsorption
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Figure 9. Adsorption isotherm models showing non-linear fits for (a) 3,4-DCA, (b) acetaminophen and (c)

carbamazepine.

behaviour deviates from linearity. The high and
low binding affinities can be attributed to the
presence of more than one type of binding
site, offering strong and weak interactions,
respectively. The high affinity binding sites
can be attributed to chemical interactions
between the biochar surface and the target com-
pounds whereas the low affinity sites indicate
weak physical bonds. The plots further supple-
ment the observations from Sips isotherm indi-
cating a heterogeneous material with multiple
binding sites.

Discussion

The results obtained suggest potential for appli-
cation of the optimised biochar in water remedi-
ation, targeting persistent organic pollutants.
The biochar surface area was higher than

those reported for many wood-based biochars
reported in the literature (Bataillou et al.,
2022; Idowu and Fletcher, 2020). The sample
presents a mixed microporous—mesoporous
structure, as observed from the nitrogen iso-
therms with an average pore width of 4 nm,
indicating that the mesopores present in the
sample are narrow. Biochars pyrolysed at
higher temperatures are linked with alkaline
surface character (Shaheen et al., 2019), which
fits with the PZC value obtained for the
biochar produced at 725 °C (7.44 +0.2). FTIR
analysis suggested a layered carbon structure
with the presence of oxygen and nitrogen chem-
ical moieties. These findings were further
assisted by XPS analysis presenting a graphene-
like arrangement, and 80% atomic carbon frac-
tion. Additionally, the presence of oxygen and
nitrogen-based functionalities was confirmed
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from XPS data. These chemical moieties assist
the hydrophilic nature of the biochar and
provide a potential avenue for application in
water remediation.

The application of biochar against 3,4-DCA,
APAP and carbamazepine resulted in efficient
removal of the species from an aqueous
system. 3,4-DCA removal was characterised
with fast removal rates and a very short equilib-
rium time of around 6 min and a maximum
adsorption capacity of 83 mg/g. Although the
maximum removal capacity was lower than
some activated carbons reported in the litera-
ture, adsorption rates were far superior in

achieving  acceptable  removal  overall
(Bakhaeva et al., 2001). Adsorption of APAP
and CBZ was best explained by the linearised
pseudo-second-order model indicating the for-
mation of chemical bonds as the rate-limiting
step. The maximum adsorption capacities for
APAP and CBZ were 126 and 40 mg/g, respect-
ively, and these were superior or on par with
those reported in Table 4. The presence of nitro-
gen and oxygen functionalities on the surface of
the biochars presents possible hydrogen
bonding or m=m interactions between the
benzene rings in the target elements and the
biochar surface, as a possible removal
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Table 4. Maximum uptake capacities of different adsorbents for Acetaminophen (APAP), carbamazepine

(CBZ) and 3,4-DCA.

Grmax Adsorbent Initial Equilibrium
Adsorbent Species (mg/g) dosage concentration  time Ref.
AC from wood APAP 87 Fixed bed I g/L 2h Quesada-Pefiate
et al. (2012)
AC from coconut APAP 135 Fixed bed I g/L 2h Quesada-Pefate
shell et al. (2012)
AC from orange ~ APAP 118 0.25-1.25g/ 20-150 mg/L 1.5h El Saied et al. (n.d.)
peels L
Biochar from APAP 126 2g/L 25-300mg/lL 6h This study
Scottish
softwood
Peanut shells CBZ 4.96 1:200 solid 1-50 mg/L 168 h Chen et al. (2017)
biochar to
aqueous
Pine sawdust CBz 5.25 - 1-50 mg/L 168 h Chu et al. (2019)
biochar
AC from Argan CBZ 714 0.1gL 50 mg/L 2h El Mouchtari et al.
tree nutshells (2020)
Biochar from CBz 40 2g/L 10-100mg/L  24h This study
Scottish
softwood
Kaolinite 3,4-DCA 0311 20gL 10200 mg/L 96 h Luca Tasca and
Fletcher (2017)
Montmorillonite ~ 3,4-DCA 0.077 20g/L 10200 mg/L 96 h Luca Tasca and
Fletcher (2017)
Greenhouse 34-DCA 0.125 20gL -5 mg/L 24 h Quirantes et al.
biomass fly ash (2017)
Biochar from 3,4-DCA 83 2glL 25-300mg/L  0.16 h This study
Scottish
softwood

mechanism. Overall, the optimised biochar
sample selected for application from the
design of experiments optimisation study con-
ducted previously (Jamal and Fletcher, 2023),
provided fast adsorption kinetics and high
adsorption capacities against the identified
target molecules. The results provide an attract-
ive avenue for biochar application for water
remediation targeting a range of pollutants in
aqueous media.

Conclusions

The optimised biochar produced from Scottish
softwood showed good performance against

selected pollutant species. The material was
characterised with a high surface area and
mixed microporous/mesoporous nature. Point
of zero charge analysis indicated a neutral
surface charge and X-ray photoelectron spec-
troscopy data suggested a hydrophilic nature
and potential for application in water remedi-
ation. The material showed great performance
against 3,4-dichloroaniline with rapid equilib-
rium proving difficult to perform a kinetic ana-
lysis. For acetaminophen and carbamazepine,
adsorption followed a pseudo-second-order
kinetic model. Adsorption isotherms were best
explained by the Sips model for all three
species suggesting the formation of an initial
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monolayer with chemical bonding as the rate-
limiting step. The highest adsorption capacity
was noted in the case of acetaminophen.
Scatchard plots suggested a heterogeneous
surface  with  multiple binding sites.
Ultimately, the results indicate a potential appli-
cation of softwood biochar as a renewable
adsorbent in water remediation.
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