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Abstract
This study uses the approach of Ferson and Siegel, Rev Financ Stud 22:2735–2758 (2009), 
and Ferson, Siegel and Wang, J Financ Quant Anal, forthcoming, (2024) to examine the 
unconditional mean–variance efficiency, in the presence of conditioning information 
(UMV), of ten linear factor models in U.K. stock returns. The study finds that the UMV 
efficiency of all the multifactor models is strongly rejected in U.K. stock returns in two dif-
ferent sets of test assets. This rejection is mainly driven by allowing dynamic trading in the 
test assets and factors. The optimal use of conditioning information also has a significant 
impact in relative model comparison tests. In relative model comparison tests based on 
UMV efficiency, the best performing model is the eight-factor model of Chib and Zeng, J 
Bus Econ Stat 38:771–783 (2020) model.

Keywords  Multi-factor models · Asset pricing · Conditioning information · Dynamic 
trading

JEL Classification  G11 · G12

1  Introduction

Mean–variance analysis developed by Markowitz (1952) has long played an important role 
in a number of areas in Finance. One of these areas is in the testing of asset pricing models. 
Roll (1977) shows that the central prediction of the capital asset pricing model (CAPM) is 
that the market portfolio lies on the ex ante mean–variance frontier. Chamberlain (1983) 
and Grinblatt and Titman (1987) show that for multifactor models, a combination of the K 
factor portfolios lie on the mean–variance frontier. Ferson (2019) points out that any candi-
date stochastic discount factor model, whether linear or nonlinear, implies that the portfolio 
with the maximum squared correlation portfolio to the stochastic discount factor lies on the 
mean–variance frontier (Hansen and Richard (1987)).
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The classic test of mean–variance efficiency in the presence of a risk-free asset was 
developed by Gibbons et al. (1989) (GRS). The GRS test examines the mean–variance 
efficiency of a linear factor model relative to the efficient frontier where the optimal 
strategies are fixed-weight portfolios (passive mean–variance (PMV) frontier). The heart 
of the GRS test compares the maximum squared Sharpe (1966) performance of the fac-
tors to the maximum squared Sharpe performance of the factors and test assets to see if 
there is a significant shift. Barillas and Shanken (2017) extend this analysis and show 
that when it comes to relative model comparison tests, the choice of test assets is irrele-
vant and models can be compared in terms of the maximum squared Sharpe measures of 
the factors in each model. The better models are the ones with higher maximum squared 
Sharpe measures.

Ferson and Siegel (2009) extend the mean–variance efficiency tests of Gibbons et  al. 
(1989) to allow dynamic trading strategies through the optimal use of conditioning infor-
mation, building on the work by Hansen and Richard (1987), and Ferson and Siegel (2001). 
Hansen and Richard (1987) define the unconditional mean–variance frontier (UMV) in 
the presence of conditioning information where an investor can follow a dynamic trading 
strategy1 to maximize the unconditional risk and return trade-off. Ferson and Siegel (2001, 
2015) derive the closed-form solutions to UMV optimal portfolios.

Ferson and Siegel (2009) show that every asset pricing model makes a prediction about 
a portfolio (or combination of portfolios) that lie on the UMV frontier. Testing UMV effi-
ciency represents a higher hurdle for asset pricing models to pass as models are required 
to correctly price not only fixed-weight portfolio strategies but also all portfolio strategies 
(satisfying the budget constraint) that can depend upon conditioning information. This 
approach compares the maximum squared Sharpe measure of the factors to the maximum 
squared Sharpe measure of the UMV frontier of the test assets and factors. Ferson et al. 
(2024) also extend the arguments of Barillas and Shanken (2017) and show that the maxi-
mum squared Sharpe measure of the UMV frontier of the factors of different models can 
be used in relative model comparison tests.

Ferson and Siegel (2009) use simulation analysis to test the UMV efficiency of factor 
models in U.S. stock returns and are able to reject unconditional and conditional versions 
of the CAPM and Fama and French (1993) models. Ferson et al. (2024) derive the asymp-
totic distribution of tests based on the maximum squared Sharpe measures of the UMV 
frontier, and the corresponding standard errors. These can be used to calculate t-statistics 
of the UMV efficiency tests of linear factor models, and to conduct relative model com-
parison tests.

This study examines the UMV efficiency of ten multifactor models in U.K. stock returns 
and to conduct relative model comparison tests. A focus on the U.K. is important for a 
number of reasons. A recent study by Pukthuanthong et al. (2023) find that the factors in 
the best model from a Bayesian model scan can be country specific. Dimson et al. (2015) 
find that the industrial compositions of the U.K. and U.S. markets can vary. The mining, 
oil, and gas sectors play a bigger role in the U.K. and the technology sector plays a smaller 
role relative to the U.S. market. The study of UMV efficiency of factor models is important 
in the evaluation of the performance of U.K. equity mutual funds. Ferson (2013) show that 
UMV efficient portfolios is an “Appropriate Benchmark” to use for clients with quadratic 

1  This approach allows the conditional expected returns and covariance matrix to change in response to 
lagged information variables.
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utility functions.2 The results of the study suggests whether any of the factor models are 
Appropriate Benchmarks in this context. This is the first study to examine the UMV effi-
ciency of linear factor models in U.K. stock returns,3 and complements the studies in U.S. 
stock returns such as Ferson and Siegel (2009), Penaranda (2016), and Ferson et al. (2024). 
Recent studies by Harvey (2019) and Hou et al. (2020) highlight the importance of replica-
tion studies in Finance.

The sample period is between July 1983 and December 2022. The models include the 
three-factor model of Fama and French (1993), the five-factor model of Fama and French 
(2015), the six-factor model of Fama and French (2018), the four-factor model of Hou et al. 
(2015), the three-factor model of Clarke (2022), the two-factor model of Frazzini and Ped-
ersen (2014), the four-factor model of Stambaugh and Yuan (2017), and the best factor 
models drawn from Bayesian model scan studies of Barillas and Shanken (2018), Chib and 
Zeng (2020), and Chib et al. (2024). I use two sets of test assets in 16 size/book-to-market 
(BM) portfolios, and 15 volatility/momentum portfolios.

There are three main findings in my study. First, the UMV efficiency of all the factor 
models is rejected. When dynamic trading is allowed in the factors, the UMV efficiency is 
no longer rejected for some of the models using the volatility/momentum portfolios as the 
test assets. Second, the rejection of UMV efficiency is driven mainly by allowing dynamic 
trading in the test assets and factors. Third, the best performing model in the relative model 
comparison tests using the UMV frontiers is the Chib and Zeng (2020) model.

The paper is organized as follows. Section II presents the research method. Section III 
describes the data used in my study. Section IV reports the empirical results. The final sec-
tion concludes.

2 � Research method

Ross (1978), Harrison and Kreps (1979), and Hansen and Richard (1987) show that if the 
Law of One Price (LOP) exists in financial markets, then there exists a stochastic discount 
factor4 (mt+1) such that:

where pt are the costs of the N test assets at t, Xt+1 are the payoffs of the N test assets at 
t + 1, and Zt is the information set of investors at time t. Where there are No Arbitrage (NA) 
opportunities available in financial markets, then mt+1 > 0 (Cochrane (2005)).5 When the 
payoffs are gross returns (1 + returns), then Eq. (1) becomes:

(1)Pt = E
(
mt+1Xt+1

||Zt

)

2  Ferson and Siegel (2009) find that hedge fund indexes are able to outperform the PMV frontier but not 
the UMV frontier.
3  A partial list of prior U.K. studies includes Fletcher (1994, 2001, 2019), Davies, Fletcher and Marshall 
(2015), Gregory, Tharyan and Christidis (2013) among others.
4  Cochrane (2005) and Ferson (2019) provide excellent textbook treatments of the stochastic discount fac-
tor approach to asset pricing.
5  The analysis can be extended to incorporate market frictions such as no short selling constraints, and 
transaction costs (He and Modest (1995), Luttmer (1996), Hansen et  al. (1995), De Roon, Nijman and 
Werker (2001), and Korsaye et al. (2021) among others).
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Ferson and Siegel (2009) show if we restrict portfolio strategies such that the weights 
sum to 1 at each point in time, and take unconditional expectations, then Eq. (2) becomes:

where x’(Zt) is a (N,1) vector of portfolio weights that can depend upon Zt, and e is a (N,1) 
vector of ones. In Eq. (3) asset pricing models are required to price not only the test assets 
but also all dynamic trading strategies that trade on Zt subject to the restriction that the 
weights sum to 1.

Ferson and Siegel (2009) show that if a candidate stochastic discount factor model satis-
fies Eq. (3), then it implies that a certain portfolio lies on the UMV frontier in the presence 
of conditioning information. The UMV frontier is defined as in Hansen and Richard (1987) 
as a portfolio (Rpt+1) such that:

The candidate stochastic discount factor models examined in this study are linear factor 
models given by:

where ft+1 is a (K,1) vector of the K excess factor returns at time t + 1, and bK is a (1,K) 
vector of slope coefficients on the K factors in the model. The individual slope coefficients 
in bK tell us whether the factor is important for pricing the test assets given the other fac-
tors in the model. Proposition 2 in Ferson and Siegel (2009) show that if Eq. (3) is satisfied 
by a linear factor model in Eq. (5), then there will be a combination of the K factor portfo-
lios that lie on the UMV frontier.

The UMV efficiency of a linear factor model can be tested by comparing squared Sharpe 
(1966) measures. Define r as the N test assets, f as the K factors in a model, and Sh2 as the 
squared Sharpe measure. The null hypothesis is given by:

where Sh2umv(r,f) is the maximum squared Sharpe measure from the UMV frontier of 
the test assets and factors, and Sh2pmv(f) is the maximum squared Sharpe measure from 
the PMV frontier of the factors. To estimate the Sharpe measures, a zero-beta return is 
required6 and it is assumed in this study to be equal to the average return of the one-month 
Treasury Bill as in Ferson and Siegel (2009) and Ferson et al. (2024).

Ferson and Siegel (2001, 2015) derive the closed-form solutions of the optimal weights 
of the UMV frontier. Define ut as a (N,1) vector of the conditional expected returns of the 
assets based on information at time t, Vt is the (N,N) conditional covariance matrix, Zt is 
a (L,1) vector of lagged information variables (including a constant), and Lt is the (N,N) 
inverse conditional second moment matrix and is equal to (Vt + utut’)−1. Define Dt = Lt 
– (Ltee’Lt)/(e’Lte), α1 = E(1/e’Lte), α2 = E((e’Ltut)/(e’Lte)), and α3 = E((ut’Dtut)/(e’Lte). The 
optimal weights are given by:

(2)1 = E
(
mt+1Rt+1

||Zt

)

(3)E
(
mt+1x

�
(
Zt

)
Rt+1

)
= 1 for all x�

(
Zt

)
e = 1

(4)
VAR

(
Rpt+1

)
≤ Var

(
x�
(
Zi

)
Ri+1

)
if E

(
Rpt+1

)
= E

(
x�
(
Zi

)
Ri+1

)
and x�

(
Zt

)
e = 1

(5)mt+1 = a + bkft+1

(6)Sh2Diff = Sh2umv(r, f) − Sh2umv(f) = 0

6  See Ferson (2019).
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where up is the target expected return.7
The first term in Eq. (7) is the minimum conditional second moment portfolio where the 

weights sum to 1. The second term are the excess returns on the mean–variance component 
where the weights sum to zero. By varying the target up, any point on the UMV frontier 
can be selected.8 Ferson and Siegel (2001) show that investors with a quadratic utility func-
tion will select UMV portfolios. Ferson and Siegel (2001) point out that the UMV opti-
mal portfolio weights are conservative for extreme values of Zt. For a client who does not 
observe the information of the fund manager they would want the fund manager to hold the 
UMV portfolio.9

Given a model of conditional moments, the optimal weights can be estimated, and the 
corresponding squared Sharpe measures can be calculated. Ferson et al. (2024) show that 
the squared Sharpe measure on the UMV frontier can be calculated as Sh2 = a – 2brz + crz

2, 
where a = [(α2

2 + α1α3)/(α1(1 – α3) – α2
2)], b = [α2/(α1(1 – α3) – α2

2)], and c = [(1 – α3)/(α1(1 
– α3) – α2

2)]. Ferson and Siegel (2009), and Ferson et al. (2024) use a predictive regres-
sion of the asset returns on Zt to model the conditional moments. The conditional expected 
returns are the fitted values from the regression, and the conditional covariance matrix is 
assumed constant and given by the residual covariance matrix from the regression. Ferson 
and Siegel (2009) point out the tests are robust to using the wrong model of conditional 
moments. The UMV portfolio is still a valid portfolio strategy but no longer the optimal 
one. Ferson and Siegel (2009) note that this leads to a loss in power. Ferson and Siegel 
(2009) use simulations to test the UMV efficiency of a factor model. Ferson et al. (2024) 
derive the asymptotic distribution of the test of Eq. (6) through Theorem I and Corollary 
I.10 These can be used to calculate the standard error of the Sh2 Diff measure, and the cor-
responding t-statistic to evaluate the null hypothesis.

To provide further insight into the UMV efficiency tests, Ferson et al. (2024) consider 
two decompositions. The first decomposition is given by:

where Sh2 Diff1 = Sh2pmv(r,f)–Sh2pmv(f), Sh2 Diff2 = Sh2umv(r,f)–Sh2pmv(r,f), where 
Sh2pmv(r,f) is the maximum squared Sharpe measure from the PMV frontier of the test 
assets and factors. The first term in the decomposition in Eq. (8) is a test of PMV efficiency 
of the factor model, and the second term captures the impact of allowing dynamic trading 
in the test assets and factors. The second decomposition is given by:

where Sh2 Diff3 = Sh2
umv(r,f)–Sh2

umv(f), Sh2 Diff4 = Sh2
umv(f)–Sh2

pmv(f), where Sh2umv(f) 
is the maximum squared Sharpe measure from the UMV frontier of the factors. The first 
term in the decomposition in Eq. (9) is the UMV efficiency test of the factor model, where 
dynamic trading is allowed in the factors. Ferson and Siegel(2009) point out that this is 

(7)x
(
Zt

)
=
(
Lte∕e�Lte

)
+
((
up − α2

)
∕α3

)
Dtut

(8)Sh2Diff = Sh2Diff + Sh2Diff2

(9)Sh2Diff + Sh2Diff3 + Sh2Diff4

7  The target expected return depends upon the choice of the zero-beta return.
8  Hansen and Richard (1987) show that portfolios on the UMV frontier also lie on the conditional mean–
variance frontier but the converse is not generally true.
9  Dybvig and Ross (1985) show that a manager who selects a portfolio on the conditional mean-wherevari-
ance frontier can appear inefficient from the perspective of the client.
10  The relevant Corollary for the PMV frontier is in the Appendix of Ferson et al. (2024).
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a test of dynamic mean–variance intersection along the lines of Huberman and Kandel 
(1987). The second term captures the impact in dynamic trading in the factors, and esti-
mates the increase in the maximum squared Sharpe performance of the factors through the 
optimal use of conditioning information. The Sh2 Diff measures can be calculated for the 
four terms, and the corresponding t-statistics using Theorem I and relevant Corollaries in 
Ferson et al. (2024).

Ferson et al. (2024) extend the analysis of Barillas and Shanken (2017) to relative model 
comparison tests using the UMV fronter. Better models have higher maximum squared 
Sharpe measures from the UMV frontier. Define two factor models fA, and fB. The null 
hypothesis in relative model comparison tests is:

The t-statistic of the Sh2 Diff measure in the null hypotheses in Eq. (10) can be calcu-
lated using Theroem I and the relevant Corollaries in Ferson et al. (2024).

One issue that arises when using the maximum squared Sharpe measures to test and 
compare factor models is that there is a large upward bias in the sample maximum squared 
Sharpe measure (Jobson and Korkie (1980)). Ferson and Siegel (2003) in their study of 
Hansen and Jagannathan (1991) volatility bounds use a bias adjusted maximum squared 
Sharpe measure given by:

The adjusted Sh2b works well when evaluating models using the PMV frontier. Fer-
son and Siegel (2003) find that the bias adjustment works less well when using the UMV 
frontier. Proposition II in Ferson et al. (2024) derives a bias adjustment of the maximum 
squared Sharpe measures of UMV portfolios based on the method of statistical differentials 
(see Siegel and Woodgate (2007)). Simulation evidence in Ferson et  al. (2024) suggests 
that their bias adjustment works well in testing factor models in U.S. stock returns, and 
performs better than alternative bias adjustment methods. In this study, I use the adjusted 
maximum squared Sharpe measures for UMV portfolios based on Proposition II in Ferson 
et al. (2024), and Sh2

b for the PMV frontier.

3 � Data

3.1 � A) Test assets

The sample period covers between July 1983 and December 2022. I use two sets of test 
assets in the study. Details on the formation of the test assets are included in the Appendix. 
The first set is 16 size/BM portfolios, where the stocks are sorted by market value (Small 
to Big), and the BM ratio (Growth to Value). The portfolios are reformed annually and are 
value weighted portfolio returns. The data for forming the size/BM portfolios is collected 
from the London Share Price Database (LSPD) provided by the London Business School, 
and Refinitiv Worldscope.

The second set of test assets is motivated from Kirby and Ostdiek (2012a, b), and is 15 
portfolios sorted by volatility (Low to High), and momentum (Losers to Winners). The vol-
atility/momentum portfolios are formed monthly and are value weighted portfolio returns. 
The data for forming the volatility/momentum portfolios is collected from LSPD. I use 

(10)Sh2Diff = Sh2umv

(
fA
)
− Sh2umv

(
fB
)
= 0

(11)Sh2b = Sh2∗((T − N − 2)∕T) − N∕T
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the return on the one-month U.K. Treasury Bill as the risk-free asset, which I collect from 
LSPD and Datastream.

3.2 � B) Factor models

I consider the performance of ten different linear factor models. Fama and French (2018) 
argue for using a small number of linear factor models in relative model comparison tests 
to mitigate the impact of data dredging issues. The factors are formed using data on LSPD 
and Worldscope. Details on how the factor models are formed are included in the Appen-
dix. The following factor models are used.

	 1.	 Fama and French (1993) (FF3).
		    The FF3 model is a three-factor model, which includes the excess market returns, 

and two zero-cost portfolios that capture the size (SMB), and value (HML) effects in 
stock returns.

	 2.	 Fama and French (2015) (FF5).
		    The FF5 model is a five-factor model, which includes the FF3 factors and adds 

two zero-cost portfolios that capture the profitability (RMW), and investment (CMA) 
effects in stock returns.

	 3.	 Fama and French (2018) (FF6).
		    The FF6 model is a six-factor model, which includes the FF5 factors, and a zero-cost 

portfolio that captures the momentum (MOM) effect in stock returns.
	 4.	 Clarke (2022) (LSC).
		    The LSC model is a three-factor model, which includes the excess returns of a Level, 

Slope, and Curve factors in stock returns.11

	 5.	 Hou et al. (2015) (HXZ).
		    The HXZ model is a four-factor model, which includes the excess market return and 

three zero-cost portfolios that capture the size (ME), profitability (ROE), and invest-
ment (IA) effects in stock returns.

	 6.	 Frazzini and Pedersen (2014) (FP).
		    The FP model is a two-factor model which includes the excess market returns, and 

the Betting against Beta (BAB) factor.
	 7.	 Stambaugh and Yuan (2017) (SY).
		    The SY model is a four-factor model, which includes the excess market return, and 

zero-cost portfolios for the size, (SIZE), management (MGMT), and performance 
(PERF) factors.

		    The final three models are selected from recent Bayesian model scan studies of 
Barillas and Shanken (2018), Chib and Zeng (2020), and Chib et al. (2024) in U.S. 
stock returns. The model scan searches for the best model which has the highest pos-
terior probability (log Marginal Likelihood) among a set of factors.

	 8.	 Barillas and Shanken (2018) (BS).
		    The BS model is a six-factor model, and includes the excess market return, and zero-

cost portfolios for the size (SMB), value (HMLT),12 profitability (ROE), investment 
(IA), and momentum (MOM) factors.

11  The LSC model is an equity version of the corresponding factors in bond returns as in Litterman and 
Scheinkman (1991).
12  The value factor here is the more timely value factor of Asness and Frazzini (2013).
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	 9.	 Chib and Zeng. (2020) (CZ).
		    The CZ model is an eight-factor model.13 The model includes the excess market 

returns, and zero-cost portfolios including the SMB, HMLT, RMW, ROE, MOM, 
BAB, and the Quality minus Junk (QMJ)14 factors.

	10.	 Chib et al. (2024) (CZZ).
		    The CZZ model is a seven-factor model. The model includes the excess market 

returns, and zero-cost portfolios including the SMB, ROE, MOM, MGMT, PERF, and 
Post Earnings Announcement Drift (PEAD)15 factors.

Table 1 reports summary statistics of the test assets and the factors between July 1983 
and December 2022. Panel A of Table 1 includes the average excess return (%), standard 
deviation (Std Dev), and the t-statistic of the null hypothesis that the average excess factor 
returns are equal to zero for the different factors. Panel B of Table 1 reports the average 
excess returns (%) of the size/BM, and volatility/momentum portfolios.

Panel A of Table 1 shows that most of the factors have significant positive average 
excess returns. The main exception are the size factors (SMB, ME, Size), the ROE 
and HMLT factors. The MOM factor has the largest average excess return across fac-
tors at 0.760%, highlighting the strong momentum effect in U.K. stock returns, fol-
lowed by the BAB factor at 0.590%. The MGMT and PERF factors in the SY model 
also have substantial average excess returns. There is a significant investment effect 
in the FF5 and HXZ models, using the CMA, and IA factors. It is only the CMA and 
MOM factors that have a t-statistic larger than 3, which is the recommended cut-off 
t-statistic by Harvey et al. (2016) to control for multiple testing.

Panel B of Table  1 shows that there is a wide spread in average excess returns 
for both sets of test assets. The average excess returns of the size/BM portfolios 
range between 0.141% (Small/Growth), and 0.722% (Small/Value). The value effect 
is stronger in smaller companies, which is consistent with Fama and French (2012). 
There is a small size effect in the Value portfolios, and a reverse size effect in the 
Growth portfolios.

The spread in average excess returns in panel B of Table 1 is a lot wider in the vol-
atility/momentum portfolios compared to the size/BM portfolios. The average excess 
returns of the volatility/momentum portfolios range between -0.751% (High/Losers), 
and 0.914% (4/Winners). There is a large momentum effect in average excess returns 
across all volatility groups. There is likewise a volatility effect in average excess 
returns, for the Losers and 2 portfolios, where the Low volatility portfolio has a much 
higher average excess return than the High volatility portfolio. The volatility effect 
is a lot stronger when we look the standard deviations of the volatility/momentum 
portfolios.

14  The QMJ factor is developed in Asness, Frazzini and Pedersen (2019).
15  The PEAD factor is proposed in the recent behavioral factor model of Daniel, Hirshleifer and Sun 
(2020). Bryzgalova et al. (2023a, b) highlight the importance of the PEAD factor in U.S. stock returns.

13  Chib and Zeng (2020) use a multivariate t-distribution in their model scan and Barillas and Shanken 
(2018) assume multivariate normality. Barillas and Shanken allow only one type of each factor in the 
model. Chib, Zeng and Zhao (2020) provide a critique of the Barillas and Shanken approach. See Barillas 
and Shanken (2022) for a response.
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3.3 � C) Lagged information variables

I use four lagged information variables that earlier studies have found to have some pre-
dictive ability of future stock returns.16 The lagged information variables include the lag 
one-month annualized dividend yield (DY) of the U.K. market index (Fama and French 
(1988)), lag return on the one-month U.K. Treasury Bill return (Rf) (Fama and Schwert 
(1977), Ferson (1989)), the lag one-month term spread (Term) given by the difference in 
the annualized yields of the long-term government bonds (International Financial Statis-
tics), and the three-month U.K. Treasury Bill (LSPD), and the lag one-month excess return 
on U.K. market index. The lag DY is formed using data from LSPD.

To examine the predictive ability of the lagged information variables, I run predictive 
regressions for both sets of test assets of the excess asset returns on a constant and the four 
lagged information variables in unreported tests.17 It is only for the size/BM portfolios that 
the Wald test rejects the null hypothesis that the slope coefficients on the lagged infor-
mation variables are jointly equal to zero. The magnitude of the predictability is small in 
statistical terms with the highest adjusted R2 is 8.13% (Small/Value) in the size/BM portfo-
lios, and 2.74% (High/2) in the volatility/momentum portfolios.

4 � Empirical results

I begin the empirical analysis by testing the UMV efficiency of the linear factor models. 
Table 2 reports the difference in adjusted maximum squared Sharpe measures (Sh2 Diff) 
between the UMV frontier of the test assets and factors and the PMV frontier of the fac-
tors, and the corresponding t-statistics. An earlier version of Ferson et al. (2024) point out 
that the increase in squared Sharpe performance can be interpreted in economic terms 
using maximum quadratic utilities (Kan and Zhou (2007)). The Certainty Equivalent (CE) 
excess returns is given by (1/2γ)Sh2 Diff where γ is risk aversion level. The CE in Table 2 
assumes a risk aversion level of 5 as in Ferson et al. (2024). Panel A includes the results 
using the size/BM portfolios as the test assets, and panel B includes the results using the 
volatility/momentum portfolios as the test assets.

Table 2 shows that the UMV efficiency of each factor model is strongly rejected in both 
sets of test assets. There is a large significant increase in the adjusted maximum squared 
Sharpe performance between the UMV frontier of the test assets and factors, and the PMV 
frontier of the factors. The Sh2 Diff measures range between 0.28 (BS) and 0.377 (CZ) for 
the size/BM portfolios, and 0.117 (SY) and 0.268 (CZ) for the volatility/momentum portfo-
lios. The magnitude of the CE excess returns is greater than 2.79% for all models using the 
size/BM portfolios, and greater than 1.17% for all models using the volatility/momentum 
portfolios. The rejection of the UMV efficiency of the factor models is consistent with Fer-
son and Siegel (2009), and Ferson et al. (2024) in U.S. stock returns.

Table 2 shows that the UMV efficiency of all the factor models is rejected in both 
sets of test assets. I next explore what drives the rejection in UMV efficiency by esti-
mating the decompositions of Ferson et al. (2024) in Eqs.  (8) and (9). Tables 3 and 4 

16  Rapach and Zhou (2013, 2022), Ferson (2019) chap 32 provide excellent reviews of stock return predict-
ability.
17  Results are available on request.
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report the two decompositions of UMV efficiency tests using the size/BM portfolios as 
the test assets (Table 3), and volatility/momentum portfolios as the test assets (Table 4). 
The first decomposition is in panel A of each table, and the second decomposition is in 
panel B. The table reports the differences in adjusted maximum squared Sharpe meas-
ures (Sh2 Diff1, Sh2 Diff2, Sh3 Diff3, Sh4 Diff4), and the corresponding t-statistics.

Panel A of Table 3 shows that using the size/BM portfolios as the test assets, it is the 
dynamic trading in both the test assets and factors that drives the rejection of UMV effi-
ciency of the factor models. The Sh2 Diff2 measures are a lot larger than the Sh2Diff1 
measures and all are highly statistically significant. The Sh2 Diff1 measures reject the 
passive mean–variance efficiency of all models at the 10% level, except for the BS and 
CZ models. The finding that the dynamic trading drives the rejection of UMV efficiency 
of the factor models is similar to Ferson et al. (2024).

Table 1   Summary statistics of 
test assets and factors

1 Significant at 5%

Panel A:
Factors Mean Std Dev t-statistic

  Market 0.437 4.245 2.241

  SMB 0.053 2.970 0.39
  HML 0.261 2.813 2.021

  RMW 0.212 2.131 2.161

  CMA 0.285 1.945 3.191

  MOM 0.760 3.231 5.121

  ME -0.138 3.341 -0.90
  ROE -0.031 2.596 -0.26
  IA 0.400 3.636 2.391

  BAB 0.590 5.698 2.251

  Size -0.259 3.980 -1.41
  MGMT 0.434 3.452 2.741

  PERF 0.431 4.410 2.131

  HMLT 0.163 3.301 1.08
  QMJ 0.249 2.427 2.241

  PEAD 0.205 2.216 2.011

Panel B:
Test Assets

  Size/BM Growth 2 3 Value
  Small 0.141 0.408 0.556 0.722
  2 0.207 0.329 0.576 0.695
  3 0.418 0.411 0.493 0.684
  Big 0.352 0.450 0.518 0.560
  Volatility/Momentum Losers 2 Winners
  Low 0.066 0.377 0.558
  2 0.153 0.711 0.713
  3 0.025 0.153 0.871
  4 -0.672 0.246 0.914
  High -0.751 -0.360 0.622
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Panel B of Table 3 shows that allowing dynamic trading in the factors, there is a signifi-
cant increase in the maximum adjusted squared Sharpe measures of the factors, as reflected 
in the significant positive Sh2 Diff4 measures. This is especially the case for the CZ model. 
This result provides support for the optimal use of conditioning information in the factors, 
which is consistent with Ferson and Siegel (2009), Abhyankar et  al. (2012), Penaranda 
(2016), and Ferson et al. (2024). Although allowing dynamic trading in the factors leads 
to a significant increase in squared Sharpe performance of the factors, the UMV efficiency 
of each model is still rejected. The Sh2 Diff3 measures are all large in economic terms and 
highly statistically significant. This result rejects the dynamin mean–variance intersection 
of all the models (Huberman and Kandel (1987)).

When using the volatility/momentum portfolios as the test assets, panel A of Table 4 
shows again that it is the dynamic trading in the test assets and factors that drives the rejec-
tion of the UMV efficiency of the models in most cases. This is especially the case for the 
FF6, BS, CZ, and CZZ models. All of the Sh2 Diff2 measures are significantly positive at 
the 10% level. In contrast, the Sh2 Diff1 measures are only significantly positive for FF3, 
FF5, LSC, HXZ, FP, and SY models. It is interesting to note that the PMV efficiency is not 
rejected for the BS and CZ models in either set of test assets. Allowing dynamic trading in 
the factors in panel B of Table 4 shows that the UMV efficiency of the FF6, BS, CZ, and 
CZZ models is no longer rejected. For these models, the hypothesis of dynamic mean–vari-
ance intersection is not rejected.

Table 2   UMV Efficiency tests of 
linear factor models

1 Significant at 5%

Panel A:
Size/BM Sh2 Diff t-statistic CE

  FF3 0.3 5.51 2.996
  FF5 0.297 5.361 2.966
  FF6 0.299 5.231 2.989
  LSC 0.298 5.531 2.984
  HXZ 0.297 5.421 2.971
  FP 0.3 5.61 3.003
  SY 0.337 5.81 3.366
  BS 0.28 5.011 2.799
  CZ 0.377 6.141 3.769
  CZZ 0.340 5.611 3.400

Panel B:
Volatility/Momentum Sh2 Diff t-statistic CE

  FF3 0.167 3.31 1.67
  FF5 0.196 3.711 1.962
  FF6 0.155 3.161 1.553
  LSC 0.166 3.231 1.663
  HXZ 0.156 3.151 1.558
  FP 0.19 3.871 1.897
  SY 0.117 2.491 1.174
  BS 0.146 31 1.457
  CZ 0.268 4.771 2.681
  CZZ 0.138 2.891 1.390
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Tables 3 and 4 provide some support for the FF6, BS, CZ, and CZZ models when allow-
ing dynamic trading in the factors. I next examine the relative model comparison tests 
using the maximum adjusted squared Sharpe measures from the PMV and UMV frontiers 
of the factors. Tables 5 and 6 report the difference between the adjusted maximum squared 
Sharpe measures (Sh2 Diff) of two factor models (panel A), and corresponding t-statistics 
(panel B). Table  5 reports the relative model comparison tests using the PMV frontier, 
and Table 6 reports the relative model comparison tests using the UMV frontier. The Sh2 
Diff measures in Tables 5 and 6 is the difference between the adjusted maximum squared 
Sharpe measures of the model in the column and the model in the row.

Table 5 shows that there are a large number of significant differences in the adjusted 
maximum squared Sharpe measures using the PMV frontier between the factor models. 
The FF3 model has a significant lower adjusted squared Sharpe measure then the FF5, 
FF6, BS, CZ, and CZZ models. The FF3, LSC, HXZ, FP, and SY models have similar 
adjusted squared Sharpe measures. These models all significantly underperform the FF6, 
BS, CZ, and CZZ models. Among the FF6, BS, CZ, and CZZ models, there are no signifi-
cant differences in the adjusted squared Sharpe measures. These are the best performing 
models in the relative model comparison tests based on the PMV frontiers.

Table 6 shows that allowing dynamic trading in the factors has an impact on the rel-
ative model comparison tests. There is a sizeable increase in the magnitude of the Sh2 

Table 3   UMV Efficiency 
decomposition tests: size/bm 
portfolios

1 Significant at 5%
2 Significant at 10%

Panel A:
First Decomposition Sh2 Diff1 t-statistic Sh2 Diff2 t-statistic

  FF3 0.052 1.912 0.248 5.291

  FF5 0.053 1.882 0.244 5.171

  FF6 0.051 1.772 0.247 5.071

  LSC 0.051 1.812 0.247 5.351

  HXZ 0.048 1.812 0.249 5.231

  FP 0.054 1.971 0.246 5.451

  SY 0.06 2.051 0.277 5.581

  BS 0.027 1.07 0.253 5.191

  CZ 0.04 1.41 0.337 6.381

  CZZ 0.061 2.011 0.279 5.411

Panel B:
Second Decomposition Sh2 Diff3 t-statistic Sh2 Diff4 t-statistic

  FF3 0.239 4.661 0.061 2.771

  FF5 0.192 3.831 0.104 3.931

  FF6 0.184 3.581 0.115 4.031

  LSC 0.254 4.911 0.045 2.291

  HXZ 0.238 4.611 0.059 2.61

  FP 0.194 3.961 0.106 4.241

  SY 0.3 5.421 0.037 1.892

  BS 0.187 3.721 0.093 3.441

  CZ 0.162 3.271 0.215 5.741

  CZZ 0.236 4.341 0.103 3.591
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Diff measures between models and a larger number of significant Sh2 Diff measures. The 
FF3 model continues to perform poorly in relative model comparison tests with a signifi-
cant lower adjusted maximum squared Sharpe measures relative to the FF5, FF6, FP, BS, 
CZ, and CZZ models. The FP, LSC, HXZ, and SY models have similar performance to 
one another. The FF5 model significantly outperforms the LSC, HXZ, and SY models but 
significantly underperforms the FF6, and CZ models. Among the FF6, BS, CZ, and CZZ 
models, the CZ model has a significant higher adjusted squared Sharpe measure than the 
FF6 and CZZ models. The CZ model does have a sizeable higher adjusted squared Sharpe 
measure than the BS model but the difference is not statistically significant. The findings 
in Table 6 suggest that the CZ model is the best performing model, and complements the 
empirical results in Chib and Zeng (2020).

My study has used a standard set of portfolios as the test assets. However even in these 
test assets, the UMV efficiency of the models are rejected. It is likely that if a more chal-
lenging set of test assets such as the anomaly portfolios of Jensen et  al. (2023) or the 
approach used by Bryzgalova et  al. (2023b), the rejection of the UMV efficiency of the 
factor models would be even stronger. I have also used a standard set of lagged informa-
tion variables. One of the attractions of the Ferson and Siegel (2009) approach is that the 
dimensions of the conditional covariance matrix remains fixed no matter how many lagged 
information variables are used. I repeat the tests by replacing the lagged excess market 

Table 4   UMV Efficiency 
decomposition tests: volatility/
momentum portfolios

1 Significant at 5%
2 Significant at 10%

Panel A
First Decomposition Sh2 Diff1 t-statistic Sh2 Diff2 t-statistic

  FF3 0.09 2.591 0.077 2.171

  FF5 0.094 2.691 0.102 2.721

  FF6 0.035 1.24 0.121 3.091

  LSC 0.088 2.491 0.078 2.161

  HXZ 0.078 2.411 0.078 2.161

  FP 0.066 2.121 0.123 3.361

  SY 0.059 1.952 0.058 1.662

  BS 0.031 1.19 0.115 2.921

  CZ 0.039 1.32 0.229 5.011

  CZZ 0.020 0.79 0.119 2.921

Panel B
Second Decomposition Sh2 Diff3 t-statistic Sh2 Diff4 t-statistic

  FF3 0.106 2.311 0.061 2.771

  FF5 0.092 2.021 0.104 3.931

  FF6 0.04 0.98 0.115 4.031

  LSC 0.122 2.561 0.045 2.291

  HXZ 0.096 2.171 0.059 2.61

  FP 0.083 1.932 0.106 4.241

  SY 0.08 1.872 0.037 1.892

  BS 0.053 1.29 0.093 3.441

  CZ 0.053 1.22 0.215 5.741

  CZZ 0.035 0.89 0.103 3.591
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returns with a lagged default spread. The benefits of the optimal use of conditioning infor-
mation is a lot weaker in all the factor models, and the CZ model no longer significantly 
outperforms the FF6, BS, and CZZ models. Although the results can be sensitive to the 
choice of lagged information variables, the results in the paper are likely to be conservative 
given that a much broader set of lagged information variables can be used.

5 � Conclusions

This paper examines the UMV efficiency of ten multifactor models in U.K. stock returns, 
and conducts relative model comparison tests. There are three main findings in the study.

First, the UMV efficiency of all the factor models is strongly rejected in both sets 
of test assets. There is a significant increase in the maximum adjusted squared Sharpe 
performance in moving from the PMV frontier of the factors to the UMV frontier of 
the test assets and factors. Allowing dynamic trading in the factors, the UMV efficiency 
is rejected for all factor models using the size/BM portfolios as the test assets. This 
result implies the dynamic mean–variance intersection hypothesis (Huberman and Kan-
del (1987)) is rejected for each factor model. In contrast, using the volatility/momentum 
portfolios the dynamic mean–variance intersection is only rejected for the FF3, FF5, 

Table 5   PMV Efficiency model comparison tests

1 Significant at 5%
2 Significant at 10%

Panel A:
Shp2 Diff FF5 FF6 LSC HXZ FP SY BS CZ CZZ

  FF3 0.038 0.11 0.014 0.006 0.001 0.03 0.099 0.137 0.081
  FF5 0.072 -0.024 -0.032 -0.037 -0.008 0.061 0.098 0.043
  FF6 -0.096 -0.104 -0.109 -0.08 -0.011 0.026 -0.029
  LSC -0.008 -0.013 0.016 0.085 0.123 0.067
  HXZ -0.006 0.024 0.093 0.13 0.075
  FP 0.029 0.098 0.136 0.081
  SY 0.069 0.106 0.051
  BS 0.037 -0.018
  CZ -0.055

Panel B:
t-statistic FF5 FF6 LSC HXZ FP SY BS CZ CZZ

  FF3 2.121 3.391 1.03 0.54 0.09 1.47 3.31 3.941 2.461

  FF5 2.641 -1.08 -1.82 -1.922 -0.38 1.812 2.831 1.29
  FF6 -2.861 -3.211 -3.481 -2.451 -0.54 0.98 -1.02
  LSC -0.44 -1.04 0.65 2.671 3.361 2.061

  HXZ -0.43 1.35 1.932 3.31 2.551

  FP 1.49 3.241 3.541 2.701

  SY 2.121 31 1.52
  BS 0.34 -0.74
  CZ -1.16
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LSC, HXZ, FP, and SY models. The rejection of UMV efficiency of the multifactor 
models is consistent with Ferson and Siegel (2009), and Ferson et al. (2024).

Second, the rejection of the UMV efficiency of the factor models is driven mainly 
by the dynamic trading in the test assets and factors. All of the Sh2 Diff2 measures are 
significantly positive and in most cases a lot higher than the Sh2 Diff1 measures. For the 
BS and CZ models, the PMV efficiency cannot be rejected in either set of test assets. 
Allowing dynamic trading in the factors leads to a significant increase in the maximum 
adjusted squared Sharpe measures, with a significant positive Sh2 Diff4 measures for 
all models. This is especially the case with the CZ model. The importance of dynamic 
trading is in evaluating factor models is consistent with Ferson and Siegel (2009) and 
Ferson et al. (2024).

Third, allowing dynamic trading in the factors has a significant impact on the rela-
tive model comparison tests. In most cases, there is a sizeable increase in the Sh2 Diff 
measures using the UMV frontier relative to the PMV frontier, and more of the Sh2 Diff 
measures are statistically significant. The CZ model has the highest maximum adjusted 
squared Sharpe measure and significantly outperforms all models, except the BS model. 
The difference in adjusted squared Sharpe measures of the CZ and BS models is size-
able but not statistically significant. The superior performance of the CZ model stems 
from the large increase in maximum adjusted squared Sharpe measure in moving from 
the PMV to UMV frontier, and complements the evidence in Chib and Zeng (2020).

Table 6   UMV Efficiency model comparison tests

1 Significant at 5%
2 Significant at 10%

Panel A:
Sh2 Diff FF5 FF6 LSC HXZ FP SY BS CZ CZZ

  FF3 0.082 0.165 -0.002 0.005 0.046 0.006 0.131 0.29 0.124
  FF5 0.083 -0.084 -0.077 -0.035 -0.076 0.049 0.209 0.042
  FF6 -0.167 -0.16 -0.118 -0.158 -0.033 0.126 -0.040
  LSC 0.007 0.049 0.009 0.134 0.293 0.126
  HXZ 0.041 0.001 0.126 0.286 0.119
  FP -0.04 0.085 0.244 0.077
  SY 0.125 0.284 0.118
  BS 0.159 -0.007
  CZ -0.166

Panel B:
t-statistic FF5 FF6 LSC HXZ FP SY BS CZ CZZ

  FF3 3.321 4.311 -0.08 0.18 1.662 0.21 3.781 6.251 1.922

  FF5 2.871 -2.491 -2.361 -0.93 -2.291 1.32 4.121 1.02
  FF6 -3.821 -3.61 -2.571 -3.751 -1.02 2.651 -1.10
  LSC 0.24 1.4 0.27 3.211 5.621 2.891

  HXZ 1.27 0.05 2.291 5.241 3.021

  FP -1.17 1.952 4.321 1.732

  SY 3.051 5.651 2.641

  BS 1.3 -0.22
  CZ -2.661
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My study suggests that testing UMV efficiency of linear factor models represents a 
much greater challenge for asset pricing models to pass, and it also has a significant impact 
on relative model comparison tests. The rejection of UMV efficiency suggests that none of 
the factor models are an “Appropriate Benchmark” to evaluate U.K. equity fund managers 
for clients with a quadratic utility function. My study has assumed the zero-beta return is 
given by the average return of the one-month U.K. Treasury Bill. An interesting exten-
sion would be to conduct model comparison tests where the optimal zero-beta return is 
estimated along the lines suggested by Ferson et al. (2024). My study has focused on mul-
tifactor models. An interesting extension would be to look at alternative stochastic discount 
factor models based on nonlinear models like the consumption CAPM, or the use of con-
ditional factor models following the approach in Ferson et  al. (2024). Recent studies by 
Ehsani and Linnainmaa (2022), and Chib et al. (2023) suggest alternative ways of forming 
the factors. An examination of the UMV efficiency of these factor models is also of inter-
est. I leave these issues to future research.

The table reports summary statistics of test assets and factors between July 1983 and 
December 2022. Panel A of the table includes the average excess returns (%) and standard 
deviation (Std Dev) of the factors. The t-statistic column is the t-statistic of the null hypoth-
esis that the average excess factor returns are equal to zero. Panel B of the table includes 
the average excess returns (%) of the 16 size/BM portfolios, and 15 volatility/momentum 
portfolios.

The table reports the UMV efficiency tests of ten linear factor models in U.K. stock 
returns, and corresponding t-statistics. The Sh2 Diff measure is given by the difference 
between the adjusted maximum squared Sharpe measures of the UMV frontier of the test 
assets and factors and the PMV frontier of the factors. The t-statistic comes from Ferson 
et al. (2024). The CE is the Certainty Equivalent excess return and is given by (1/2γ)Sh2 
Diff, and γ is set equal to 5. In panel A, the test assets are 16 size/BM portfolios, and 
in panel B the test assets are 15 volatility/momentum portfolios. The zero-beta return is 
assumed to be given by the average returns of the one-month U.K. Treasury Bill. The sam-
ple period is between July 1983 and December 2022.

The table reports the decompositions of the UMV efficiency tests of Ferson et  al. 
(2024). The first decomposition in panel A reports Sh2 Diff1 = Sh2pmv(r,f) – Sh2pmv(f), Sh2 
Diff2 = Sh2umv(r,f) – Sh2pmv(r,f), and the corresponding t-statistics. The second decompo-
sition in panel B reports Sh2 Diff3 = Sh2umv(r,f) – Sh2umv(f), and Sh2 Diff4 = Sh2umv(f) 
– Sh2pmv(f), and the corresponding t-statistics. The test assets are 16 size/BM portfolios, 
and the zero-beta return is given by the average return of the one-month U.K. Treasury 
Bill. The t-statistics are estimated from Ferson et  al. (2024). The sample period is July 
1983 and December 2022.

The table reports the decompositions of the UMV efficiency tests of Ferson et  al. 
(2024). The first decomposition in panel A reports Sh2 Diff1 = Sh2pmv(r,f) – Sh2pmv(f), Sh2 
Diff2 = Sh2umv(r,f) – Sh2pmv(r,f), and the corresponding t-statistics. The second decompo-
sition in panel B reports Sh2 Diff3 = Sh2umv(r,f) – Sh2umv(f), and Sh2 Diff4 = Sh2umv(f) 
– Sh2pmv(f), and the corresponding t-statistics. The test assets are 15 volatility/momentum 
portfolios, and the zero-beta return is given by the average return of the one-month U.K. 
Treasury Bill. The t-statistics are estimated from Ferson et al. (2024). The sample period is 
July 1983 and December 2022.

The table reports relative model comparison tests between the linear factor models using 
the PMV frontier. Panel A includes the difference between the adjusted maximum squared 
Sharpe measures of the model in the column and the model in the row (Sh2 Diff). Panel B 
includes the corresponding t-statistics which are estimated from Ferson et al. (2024). The 
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zero-beta return is given by the average return of the one-month U.K. Treasury Bill. The 
sample period is July 1983 and December 2022.

The table reports relative model comparison tests between the linear factor models using 
the UMV frontier. Panel A includes the difference between the adjusted maximum squared 
Sharpe measures of the model in the column and the model in the row (Sh2 Diff). Panel B 
includes the corresponding t-statistics which are estimated from Ferson et al. (2024). The 
zero-beta return is given by the average return of the one-month U.K. Treasury Bill. The 
sample period is July 1983 and December 2022.

Appendix

All of the data is collected from LSPD and Refinitiv Worldscope. The accounting data 
comes from Worldscope, and all the remaining data come from LSPD. In forming the test 
assets and factors, the following corrections are made. Foreign companies, investment 
trusts,18 and secondary shares are excluded. The delisting bias of Shumway (1997) is cor-
rected following the approach of Dimson, Nagel and Quigley (2003). Where a company 
dies valueless according to LSPD, then we allocate a -100% return on the death event 
month. When calculating the portfolio returns used to form the factors, I allocate missing 
values, for things such as temporary suspension, to 0 as in Liu and Strong (2008). The prior 
month-end market values are used to calculate value weights in the portfolios used to form 
the factors.

Test assets

A) Size/BM portfolios

I form 16 size/BM portfolios similar to Fama and French (2012). At the start of July each 
year between 1983 and 2022, all stocks are ranked on the basis of their size, and BM ratio. 
Stocks are allocated to one of four size groups using breakpoints of 2%, 5%, and 10% of 
aggregate market capitalisation (Small to Big), and stocks are allocated to four BM groups 
(Growth to Value) using quartile breakpoints from the BM ratios of Big stocks (largest 
90% of market value). Sixteen portfolios are then formed using the intersection of compa-
nies of the 4 × 4 sorts. For each portfolio, the value weighted monthly returns are calculated 
for the next year. The BM ratio is calculated using the book value of equity (WC03501) 
during the previous calendar year and the year-end market value. Size is measured by the 
market value at the end of June. Companies with negative book values are excluded. The 
average number of stocks (rounded) across the portfolios ranges between 33 and 519.

b) Volatility/Momentum portfolios

The motivation for this set of portfolios stems from Kirby and Ostdiek (2012a, b). At the 
start of each month between July 1983 and December 2022, all stocks are grouped into 
quintile portfolios based on their average absolute returns during the past t-12 to t-2 months 

18  Investment trusts are equivalent to closed-end funds.
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as in Kirby and Ostdiek (2012b). Within each quintile volatility portfolio, companies are 
further sorted into three portfolios on the basis of their cumulative buy and hold return 
during the past t-12 to t-2 months. All portfolios have an equal number of companies as 
an approximation. The value weighted portfolio return is then calculated during the next 
month. Companies with missing returns during the past 12 months are excluded. The aver-
age number of stocks within each portfolio is 114.

Factors

A) FF6 Factors

I form the market index following a similar approach to Dimson and Marsh (2001). At 
the start of July each year between 1983 and 2022, all stocks on LSPD that are alive are 
allocated to the market index. I then calculate the value weighted monthly returns during 
the next 12 months. I calculate the excess returns on the market index using the monthly 
returns of the one-month U.K. Treasury Bill.

I form the HML factor following a similar approach to Fama and French (2012). At the 
start of July each year between 1983 and 2022, all stocks are ranked on the basis of their 
market value and BM ratio. I allocate stocks into two size groups (Small and Big), where 
Big stocks are the top 90% by market value and small stocks are bottom 10% by market 
value. I also allocate stocks to three BM groups (Growth, Neutral, Value) using the BM 
breakpoints of 30% and 70% percentiles of the BM ratios of the Big stocks. I create 6 port-
folios at the intersection of the independent 2 × 3 sorts (SG, SN, SV, BG, BN, and BV), and 
then calculate value-weighted monthly returns during the next 12 months.

The HML factor is calculated as the average of the HMLS and HMLB portfolios, where 
HMLS = SV-SG and HMLB = BV-BG. I exclude companies with negative book values. 
From the 6 portfolios, I also calculate a SMBHML factor as the average return of 3 Small 
stock portfolios minus the average return of 3 Big stock portfolios.

The RMW and CMA factors are formed as follows. At the start of July each year 
between 1983 and 2022, all stocks are ranked on the basis of their market value and either 
their gross profitability (GP) or investment growth (Inv). All stocks are then grouped into 
two size groups (Small and Big), three GP groups (Weak, Neutral, Robust), and three Inv 
groups (Conservative, Neutral, Aggressive). The GP and Inv groups are sorted by 30% and 
70% percentiles of the GP and Inv measures of Big companies. Six size/GP (size/Inv) port-
folios are formed at the intersection of the 2*3 sorts as SW, SN, SR, BW, BN, and BR (SC, 
SN, SA, BC, BN, and BA), and value weighted monthly returns on each portfolio is calcu-
lated over the next 12 months.

The RMW factor is then calculated as the average returns of RMWS and RMWB port-
folios, where RMWS = SR – SW, and RMWB = BR – BW. The CMA factor is calculated 
as the average return of the CMAS and CMAB portfolios, where CMAS = SC – SA, and 
CMAB = BC – BA. I exclude companies with zero total assets. The GP of a company is 
calculated as the difference between sales revenue (WC01001) and the cost of goods sold 
(WC01051) divided by the total assets (WC02999) from the prior fiscal year t-1. Inv is 
defined as the annual change in total assets in years t-1 and t-2 divided by lagged total 
assets at t-2. From the 6 portfolios in each sort, I calculate SMBRMW, and SMBCMA factors, 
and the final SMB factor is the average return of the SMBHML, SMBRMW, and SMBCMA 
factors.
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The MOM factor is formed as follows. At the start of each month between July 1983 
and December 2022, all stocks are ranked on the basis of their market value and cumula-
tive buy and hold returns from months t-12 to t-2. All stocks are grouped into two size 
groups (Small and Big), and three momentum groups (Losers, Neutral, Winners) using 
breakpoints of 30% and 60% of the past returns of Big stocks. Six portfolios are formed 
at the intersection of the 2*3 sorts (SL, SN, SW, BL, BN, BW), and value weighted return 
is calculated over the next month for each portfolio. The MOM factor is calculated as 
the average returns of the MOMS and MOMB portfolios, where MOMS = SW – SL, and 
MOMB = BW – BL. Companies with incomplete returns during for the prior year are 
excluded.

b) LSC Factors

The factors in the LSC model of Clarke (2022) come from 16 portfolios formed on the 
basis of their expected excess return from a Fama and MacBeth (1973) cross-sectional 
regression of monthly excess returns on a set of stock characteristics. I use a similar set 
of characteristics to Clarke (2022), which is similar to the model 2 set of characteristics of 
Lewellen (2015). The stock characteristics at time t include:

1.	 Size – the log of prior month-end market value.
2.	 BM – the log of the monthly BM ratio. For each month between July of year t to June of 

year t + 1, the BM ratio is the book value of the company from the fiscal year-end of t-1 
divided by the prior month-end market value.19 Companies with negative book values 
are excluded.

3.	 Momentum – cumulative returns from month t-12 to t-2. Companies are only included 
if they have 12 past return observations.

4.	 Net stock issues – log of the one-year growth of split adjusted shares outstanding from 
year t to year t-1.

5.	 Accruals – is given as change in operating working capital per split-adjusted share from 
t-2 to t-1 divided by book value per split-adjusted share (WC05476) at time t-1. Oper-
ating working capital is current assets (WC02201) minus cash and short-term invest-
ments (WC02001) minus current liabilities (WC03101) plus debt in current liabilities 
(WC03051).

6.	 Gross profitability – the same as for the RMW factor.
7.	 Asset growth – the same as for the CMA factor.

The stock characteristics 1 to 4 are available monthly. The stock characteristics 5 to 7 
are available annually and so the same characteristic is used between the July of year t to 
June of year t + 1.

For each month between July 1983 and Dec 2022, Fama and MacBeth (1973) cross-
sectional regressions are estimated of individual stock excess returns on a constant and the 
seven characteristics. The characteristic premiums are calculated as the average slope coef-
ficients over time. Given the characteristic premiums, expected excess returns of the stocks 
is calculated each month using the prior month stock characteristic values multiplied by 
the characteristic premiums. Fama and French (2015) point out that using monthly slope 

19  This is the same characteristic used in the more timely factor of Asness and Frazzini (2013).
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coefficients instead of the average premiums would largely capture the unexpected varia-
tion in expected excess returns.20 On the basis of their expected excess return, all stocks are 
allocated to 16 portfolios, with an equal number of stocks in each portfolio as an approxi-
mation and value weighted return of each portfolio is calculated for the next month.

From the monthly returns of the 16 portfolios, an eigenvalue decomposition is per-
formed, and three factors are formed from the largest eigenvalues. The first factor is a Level 
factor, where the eigenvector of the largest eigenvalue is rescaled to sum to 1, and puts a 
similar weight across the 16 portfolios. The second factor is the Slope factor, and the third 
factor is the Curve factor. In addition to the exclusions already mentioned, financials are 
excluded and stocks are only included where company has the data on the seven character-
istics from the prior month.

c) HXZ Factors

I form the ME, ROE, and IA factors as follows. At the start of July each year between 1983 
and 2022, all stocks are ranked independently by size (ME), investment growth (IA), and 
the return on equity (ROE). Stocks are grouped into two size groups Small and Big using 
a breakpoint of 10% of aggregate market capitalization. Stocks are also grouped into three 
ROE and IA groups using breakpoints of 30% and 70% of the ROE and IA measures of Big 
companies. There are then 18 portfolios formed at the intersection of the 2*3*3 groups and 
value weighted portfolio returns are calculated for the next 12 months.

Size is the market value at the end of June in year t. IA is calculated as the change in 
total assets between the fiscal years t-1 and t-2 all divided by the total assets in year t-2. 
The ROE is calculated as net income (WC01551) divided by book value from the prior fis-
cal year t-1. I also exclude financials, companies with negative book values, or zero total 
assets.

The ME, ROE, and IA factors are estimated from the 18 portfolio returns. The ME 
factor is the difference between the average returns of 9 Small portfolios and the average 
returns of 9 Big portfolios. The IA factor is the difference between the average returns of 
the six low IA portfolios and the six high IA portfolios. The ROE factor is the difference 
between the average returns of the six high ROE portfolios and the six low ROE portfolios. 
My approach differs from Hou et al. (2015) who use a monthly portfolio revision, with a 
quarterly ROE. However a recent study by Hanauer (2020) also use an annual revision for 
forming the ROE factor in international stock markets.

d) BAB Factor

I form the BAB factor in Frazzini and Pedersen (2014) as follows. At the start of each 
month between July 1983 and December 2022, all stocks are ranked by the beta at the end 
of the previous month. The betas are provided by LSPD. All stocks are assigned ranks (zi) 
and z is the average rank. The weights in the low beta portfolios are given by k(zi – z)−, 
and the weights in the high beta portfolio are given by k(zi – z)+, where k is a normalizing 
constant.21 The – and + take the min(weights,0) and max(weights,0) respectively. Given the 

20  There is a look-ahead bias in this approach but given the poor performance of the LSC model, it unlikely 
has a major impact.
21  Frazzini and Pedersen (2014) set k = 2/sum(abs(zi – z)).
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weights, I then calculate the portfolio return for the next month and portfolio beta for each 
group. The BAB factor is given by long the low beta portfolio and short the high beta port-
folio given by (1/βlow)(rlow – Rf) – (1/βhigh)(rhigh – Rf), where βlow and βhigh are the portfolio 
betas using the weights above, rlow and rhigh are the corresponding portfolio returns, and Rf 
is the one-month Treasury Bill return.

e) SY Factors

The Size, MGMT, and PERF mispricing factors are formed from market anomalies. Stam-
baugh and Yuan (2017) use 11 market anomalies. I follow a similar approach but exclude 
the O-score and distress measures. Lu, Stambaugh and Yuan (2017) also exclude these 
variables in their study of anomalies in international stock returns. To estimate the MGMT 
factor, at the start of July each year between 1983 and 2022, all stocks are ranked indepen-
dently on the basis of six characteristics. The characteristics include net stock issues, com-
posite equity issues, accruals, net operating assets, asset growth, and investment to assets. 
For each characteristic, all stocks are ranked between 0 and 1, and the average (P1) ranking 
is estimated for each stock. To be included, I require all stocks to have the relevant charac-
teristic data.

All stocks are then ranked independently by size and their average P1 ranking. Two 
size groups are formed as before and three P1 groups are formed (Low, Medium, and 
High) based on the 30% and 70% percentiles average P1 ranking across all stocks. Six 
portfolios are formed at the intersection of the size and P1 groups (SL, SM, SH, BL, BM, 
and BH) and value weighted buy and hold portfolio returns are calculated over the next 
12 months using prior month-end market values. The MGMT factor is given by the average 
return of the SL and BL portfolios minus the average return of the SH and BH portfolios. 
A SMBMGMT factor is calculated as the average return of the three Small stock portfolios 
minus the average return of the three Big stock portfolios.

The stock characteristics used for the MGMT factor are:

1.	 Net Stock Issues—the log of the adjusted number of shares at end of June in year t 
divided by the adjusted number of shares at end of June in year t-1.

2.	 Composite Stock Issues—calculated as log(MEt/MEt-1) – r(t-1,t), where MEt is market 
value at the end of June in year t, MEt-1 is the market value at the end of June in year 
t-1, and r(t-1,t) is the cumulative log returns over the prior 12 months. Stocks require 
continuous returns over the prior 12 months.

3.	 Accruals—calculated as in the LSC model.
4.	 Net operating assets—(Operating assets minus operating liabilities)/Total assets. Operat-

ing assets equals total assets minus cash and short-term investment (WC02001), oper-
ating liabilities equals total assets minus debt in current liabilities (WC03051) minus 
long-term debt (WC03251) minus common equity minus minority (non-controlling) 
interests (WC03426) minus preferred stocks (WC03451). Companies with zero total 
assets are excluded.

5.	 Asset growth—calculated as for the CMA factor.
6.	 Investment to assets—the change in gross property, plant and equipment (WC02501) 

and change in inventory (WC02101) between years t-1 and t-2 divided by total assets.

A similar approach is followed for the PERF factor, except only three stock characteris-
tics are used based on momentum, gross profitability, and return on assets. All stocks are 
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given a rank between 0 and 1 for each characteristic, and then the average P2 ranking is 
calculated for each stock. Two size groups and three P2 groups are formed as above and 
size portfolios are formed at the intersection of the size and P2 groups (SL, SM, SH, BL, 
BM, and BH) and value weighted buy and hold portfolio returns are calculated over the 
next 12  months using prior month-end market values. The PERF factor is given by the 
average return of the SH and BH portfolios minus the average return of the SL and BL 
portfolios. To be included in the six portfolios, I require all stocks to have the relevant 
characteristic data. A SMBPERF factor is calculated as the average return of the three Small 
stock portfolios minus the average return of the three Big stock portfolios. The Size factor 
is given as the average return of the SMBMGMT and SMBPERF factors.

The stock characteristics used in the PERF factor are:

1.	 Momentum—calculated as for the MOM factor.
2.	 Gross profitability—calculated as for the RMW factor.
3.	 The return on assets (ROA)—net income before extraordinary items in year t-1 divided 

by total assets in year t-1.

f) HMLT Factor

Asness and Frazzini (2013) propose the more timely value (HMLT) factor. At the start of 
each month between July 1983 and Dec 2022, all stocks are ranked by their size and BM 
ratio. Big stocks are the top 90% by market value and small stocks are bottom 10% by 
market value (Small and Big). The BM breakpoints are 30% and 70% percentiles of the 
BM ratios of the Big stocks (Growth, Neutral, Value). Six portfolios are then formed at the 
intersection of the independent 2 × 3 sorts (SG, SN, SV, BG, BN, and BV). Value-weighted 
portfolio returns are then calculated for the next month.

Size is the market value at the end of the previous month. The monthly BM ratio from 
July of year t to June of year t + 1 is given by the book value from the calendar year t-1 
divided by the market value at the end of the previous month. The HMLT is equal to the 
average returns of HMLS minus the average return of HMLB, where HMLS = SV-SG and 
HMLB = BV-BG. Companies with negative book values are excluded.

g) QMJ Factor

Asness et  al. (2019) propose the Quality Minus Junk (QMJ) factor. They build a qual-
ity score for each company using four composite proxies including Profitability, Growth, 
Safety, and Payout. The stock characteristics used in each of the four composite proxies 
are:

1.	 Profitability

a.	 Gross profitability – same as for the RMW factor.
b.	 ROE – same as for the ROE factor.
c.	 ROA – same as for the PERF factor.
d.	 Cash flow over assets—net income plus depreciation(WC01148) capital 

expenditures(WC04601) at year t-1 minus changes in working capital between years 
t-1 and t-2 all divided by total assets at year t-1. Working capital is current assets 
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minus current liabilities minus cash and short-term investments plus short-term debt 
(WC03051) and income taxes payable (WC01451).

e.	 Gross margin—gross income (WC01100) at year t-1 divided by net sales at year 
t-1.

f.	 Accruals—is minus (change in working capital-depreciation between years t-1 and 
t-2) divided by total assets at year t-1.

2.	 Growth is the growth rate on the profitability ratios above between years t-1 to t-6.
3.	 Safety

a.	 Market beta – the market beta from LSPD at the end of June of year t.
b.	 Residual volatility – the residual volatility from LSPD at the end of June of year t.
c.	 Leverage—is total debt divided by total assets at year t-1.22 Total debt is long-term 

debt plus debt in current liabilities plus minority interest plus preference shares at 
year t-1.

4.	 Payout

a.	 Net equity issuance – same as used in the LSC model.
b.	 Net debt issuance—is minus the log of total debt at time t divided by total debt at 

time t-1. c. Total net payout—is the sum of (net income minus changes in book 
equity) over past 5 years divided by total profits over last 5 years.

At the start of July each year between 1983 and 2022, all stocks are ranked indepen-
dently by size and their Quality score. For each characteristic, all stocks are ranked and 
then standardized. The average rank is calculated for each of the four groups, and then the 
average rank is calculated across the four groups. Companies are allowed to have missing 
characteristic data. Stocks are allocated to two size groups (Small and Big), and three Qual-
ity groups (Junk, Medium, and Quality) using breakpoints of 30% and 70% of the Quality 
scores of Big companies. Six portfolios are then formed at the intersection of the size and 
Quality groups (SJ, SM, SQ, BJ, BM, and BQ) and value weighted portfolio returns are 
calculated over the next 12 months. The QMJ factor is calculated as the average return of 
the SQ and BQ portfolios minus the average return of the SJ and BJ factors.

h) PEAD Factor

To form the PEAD factor, all stocks at the start of each month between July 1983 and 
Dec 2022 are ranked independently by size and standardized unexpected earnings (SUE). 
Big stocks are top 90% by market value and Small stocks are the bottom 10% by market 
value. All stocks are allocated to three PEAD groups (Low, Medium, and High) using 30% 
and 70% breakpoints of the SUE measures of Big companies. Six portfolios are formed at 
the intersection of the size and PEAD groups (SL, SM, SH, BL, BM, and BH) and value 
weighted buy and hold portfolio returns are calculated over the next month.

The PEAD factor is given by (SH + BH)/2-(SL + BL)/2. The SUE is calculated in a sim-
ilar way to Foster, Olsen and Shevlin (1984). For each month t, SUE is equal to the differ-
ence in annual adjusted EPS at month t-1 and month t-13 divided by standard deviation of 

22  I do not use O-score, Z-score, and earnings volatility.
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the monthly annual difference in adjusted EPS over the past 24 months. The EPS comes 
from Datastream and financials are excluded.
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