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A B S T R A C T   

Structural health monitoring (SHM) is a technology that is used to improve the safety, stability, and availability 
of large engineering structures. One important aspect of SHM is the ability to perform real-time reconstruction of 
the full-field structural displacements, also known as shape sensing. The inverse Finite Element Method (iFEM) is 
a technique that has been used for three-dimensional shape sensing of structures using strain data. On the other 
hand, Isogeometric Analysis (IGA) is a method that utilizes smooth spaces of functions, such as non-uniform 
rational B-splines, to solve structural problems and has gained significant attention in recent times. In this 
study, the authors propose a new method for shape sensing of complex stiffened shell structures by combining 
IGA with the iFEM method. The goal of this research is to accurately reconstruct the complex geometry of the 
structure without the need for a fine numerical discretization or mesh. To achieve this, the authors have 
developed an isogeometric Mindlin-Reissner inverse-shell element (IgaiMin) to implement the coupling between 
IGA and iFEM. The proposed method is validated by solving problems involving simple plates, tee junctions, and 
partly clamped stiffened panels representing ship structures.   

1. Introduction 

Marine structures are subjected to harsh environmental conditions 
which can cause various damage mechanisms such as fatigue damage 
and corrosion. Such damage scenarios can result in catastrophic conse
quences such life losses, environmental pollution, and financial losses. 
Therefore, it is essential to take necessary actions to prevent such 
problems. One potential solution is utilising shape sensing and structural 
health monitoring techniques by collecting data from sensors located on 
the structure, processing this data, and making decisions based on the 
data. There exist different available approaches for shape sensing and 
structural health monitoring purposes. Amongst these, inverse Finite 
Element Method (iFEM) stands for a promising methodology since it 
doesn’t require loading information and can be applicable for moni
toring complex structures like marine structures. Moreover, iFEM is fast 
and it can be applicable for real-time monitoring. There has been a rapid 
progress on iFEM especially during the recent years. Tessler et al. 
(Tessler and Spangler, 2004) developed a three-node shell element 
(iMIN3) and proposed it for structural health monitoring of future 
aerospace vehicles (Tessler et al., 2011). Other aerospace related ap
plications of iFEM include monitoring of a UAS fixed wing (Papa et al., 

2017), complex aeronautical structure (Oboe et al., 2021), skin antenna 
structure (Niu et al., 2020), heavy-duty machine tool (Liu et al., 2018), 
and pipelines (Wang et al., 2021). Gherlone et al. (2012) utilised iFEM 
for shape sensing of 3-Dimensional frame structures. De Mooij et al. (De 
Mooij et al., 2019) presented several benchmark problems for solid in
verse elements. Kefal et al. (2016) introduced a four-node shell element 
with drilling degree-of-freedom (iQS4). It has been demonstrated that 
this element can be applied for monitoring of different marine structures 
such as chemical tankers (Kefal and Oterkus, 2016a), containerships 
(Kefal and Oterkus, 2016b), bulk carriers (Kefal et al., 2018a), sub
marines (Li et al., 2019), and offshore wind turbines (Li et al., 2020a, 
2023). iFEM has also been utilised for composite structures (Cerracchio 
et al., 2015; Kefal et al., 2018b). Damage identification is also possible 
within iFEM framework (Li et al., 2020b). Another important aspect is 
determination of optimum sensor locations which is explored in (Kefal 
et al., 2015). The ability to accurately represent the geometry of a real 
structure is an essential requirement for iFEM-based shape sensing 
analysis, especially in the case of curved structures. Flat shell elements 
such as iQS4 and iMIN3, which use standard polynomial-based shape 
functions, require a high-fidelity mesh to accurately represent the 
smooth geometry of a real structure in an iFEM analysis. However, the 
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generation of such a mesh is a time-consuming and labor-intensive 
process, and can lead to a need for a large number of strain sensors in 
the shape sensing analysis. As the number of inverse elements in the 
iFEM analysis increases, the amount of required measured strain data 
also increases, which can be impractical in many cases. NURBS basis 
functions with higher degrees, on the other hand, can provide higher 
continuity along element and edge interfaces, leading to smoother shape 
sensing. In order to address these challenges and extend the range of 
applicability of iFEM, the method of Isogeometric Analysis (IGA) can be 
employed to create novel isogeometric inverse elements. Besides, by 
utilising multi-patch framework, IGA can allow for the exact represen
tation of the complex stiffened structures. 

For many years, many significant research studies have been pub
lished on the topic of NURBS algorithms (Piegl and Tiller, 1995; Rogers, 
2001). The concept of isogeometric analysis (IGA) was first introduced 
by Hughes et al. (2005) as a means of reducing the time and effort 
required for mesh generation in the field of computational mechanics. 
IGA has gained significant attention from various fields of computa
tional mechanics, particularly structural and fluid mechanics, due to its 
potential to greatly improve the efficiency and accuracy of numerical 
simulations. For instance, Cottrell et al. (2009) provide an overview of 
IGA and discuss its potential future developments. Additionally, the 
superiority of IGA over conventional methods has been demonstrated in 
the field of fluid-structure interaction (FSI) by Bazilevs et al. (2008), and 
it has also been shown to be effective in other areas such as shell and 
plate problems (Benson et al., 2010), contact formulations (Temizer 
et al., 2011), and optimization problems (Wall et al., 2008). Kefal and 
Oterkus, 2017, 2020 combined IGA and iFEM formulations and intro
duced the concept of isogeometric iFEM analysis. Following these 
studies, Zhao et al. (2020) utilised isogeometric iFEM for shape sensing 
of beam with variable cross-sections. Moreover, Chen et al. (2021) uti
lised this approach for shape sensing of Timoshenko beam subjected to 
complex multi-node loads. 

This study introduces a new method for performing shape sensing of 
complex stiffened shell structures using a multi-patch isogeometric in
verse finite element method (iFEM) formulation. The aim of this method 
is to accurately reconstruct the complex geometry of the structure 
without requiring a fine mesh and to achieve smoother shape sensing 
even when using fewer strain sensors. To achieve this, the authors have 
developed an isogeometric Mindlin-Reissner inverse-shell element 
(IgaiMin) that combines Mindlin-Reissner shell theory with non-uniform 
rational basis spline (NURBS)-based multi-patch isogeometric analysis. 
The IgaiMin element makes use of membrane and bending strain 

measurements and utilizes NURBS for both discretizing the geometry 
and performing analysis by using it as a tool for displacement domain 
discretization. This new element offers several benefits including higher 
continuity in the shape functions, accurate representation of the real 
structure, and the ability to use the same computer-aided design (CAD) 
geometry for both design and analysis. In addition, to the best of the 
authors’ knowledge, this is the first study in the literature to present a 
multi-patch isogeometric iFEM formulation. The structure of the paper is 
divided into four parts. The first part discusses the use of Mindlin- 
Reissner shell theory in orthogonal Cartesian coordinates to develop 
the multi-patch isogeometric iFEM formulation for flat stiffened shell 
structures. The second part presents the results of analysing several 
sample problems, including a simple plate, a tee junction, and a partly 
clamped stiffened panel, to demonstrate the shape sensing capabilities of 
the IgaiMin element formulation for multi-patch shells. The final part is 
a conclusion that summarizes the advantages of the isogeometric iFEM 
methodology and the IgaiMin element. 

2. Methodology: multipatch isogeometric iFEM formulation 

In this section, a general overview of multipatch isogeometric iFEM 
formulation for plate structures is provided. This includes a description 
of the kinematic relationships of the adopted structural shell theory, the 
calculation of experimental section strains, and the weighted least 
squares functional. In addition, the adoption of isogeometric analysis 
(IGA) for inverse multi-patch applications is discussed, including the 
isogeometric framework, patch transformations, and the construction of 
the solution matrix. This overview provides the necessary background 
information for understanding the development and validation of the 
novel isogeometric iFEM formulation presented in the following section. 

2.1. Inverse problem 

The inverse problem is defined on a plate structure with a thickness 
of 2h which is specified along the z-axis of orthogonal Cartesian co
ordinates as illustrated in Fig. 1. The midplane of the plate structure is 
considered as located at z = 0 and the strain data is collected from the 
top and bottom surfaces of the plate by strain sensors as a result of 
deformation caused by the external in-plane and/or out-of-plane load
ings as depicted in Fig. 1. This inverse problem aims to determine the 
displacement and stress fields in the plate structure from the measured 
strain data. This information can be used to assess the structural health 
of the plate and identify any potential damage or defects. 

2.2. Shell kinematics 

In this study, kinematics of the first order shear deformation theory 
(FSDT) is used to develop the Isogeometric Inverse Mindlin element 
(IgaiMin) formulation. The orthogonal components of the displacement 
vector, ux, uy, and uz, corresponding to any material point within the 
plate as shown in Fig. 1, can be described in accordance with the FSDT as 

ux(x1, x2, z) = u(x1, x2) + zθ1(x1, x2)

uy(x1, x2, z) = v(x1, x2) + zθ2(x1, x2)

uz(x1, x2, z) = w(x1, x2)

(1)  

where u, v, w, θ1, and θ2 are mid-plane displacements and rotations. 

2.3. Processing of measured strains 

To utilize iFEM, firstly, in situ strain data should be collected by 
using the strain sensors (rosettes), which are placed at the top, “+”, and 
bottom, “-”, sides of the shell (see Fig. 2). Then, the collected strain data 
are used to calculate the membrane strains, Е, and bending curvatures, 
Κ, as: 

Fig. 1. Shell structure with strain sensors and defined degree-of-freedoms 
(DoFs) shown on the orthogonal Cartesian Coordinates (Kefal et al., 2016). 
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The number of sensor sets, consisting of top and bottom sensors, is 
represented by n. Note that transverse shear strains cannot be calculated 
straightforwardly. However, in marine structures, the majority of the 
shell structures are thin shells. Therefore, it is possible to make 
assumption of plane stress condition. For that reason, the transverse 
shear strains G can safely be ignored. 

2.4. Weighted least squares functional 

In this section, a general overview of iFEM is briefly presented. As 
part of the iFEM methodology, inverse elements are used to discretize 
the target geometry in the numerical domain to perform structural 
health monitoring. For each inverse element a least-squares functional 
Φe is created by utilising measured element strains εe

k from the actual 
structure, and analytical element strains εk where k indicates the number 
of independent strain constituents obtained in accordance with the 
implemented structural theory for the corresponding inverse element as 

Φe(u) =
∑

k
we

kΦe
k (5)  

where Φe
k is defined as 

Φe
k ≡

1
n

∑n

i=1

[
εk(i)(ue) − εe

k(i)

]2
(6) 

For each inverse element, n number of strain measurements can be 
used. Weighting coefficients we

k helps to eliminate potential issues 
related with elements with no strain measurement and provide option to 
emphasize specific independent strain measures. Therefore, the 
following least-squares functional for the current isogeometric inverse 
shell element can be written as 

Φ(u) =
∑8

α=1
wα φα (7)  

φα ≡
1
n

∑n

i=1

⃒
⃒eα(u)i − Eαi

⃒
⃒2

(α = 1, 2, 3) (8)  

φα ≡
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2

n
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⃒2
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φα ≡
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⃒
⃒gα(u)i − Gai
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⃒2

(wα = λ), (α = 7, 8) (10) 

Furthermore, if an experimentally measured strain component is not 
available for a particular element, equations will be reduced to L2 
squared norms of only analytical section strains as 

φα ≡
1
A

∫

A

|eα(u)|
2dA (wα = λ), (α = 1, 2, 3) (11)  

φα ≡
(2h)

2

A

∫

A
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φα ≡
1
A

∫

A

|gα(u)|
2dA (wα = λ), (α = 7, 8) (13)  

with the weighting coefficient is set to be a small number, e.g., λ = 10−5. 

2.5. Isogeometric approximation 

In this study, non-uniform rational basis spline (NURBS) basis 
functions are used to model shell structures because they are the most 
commonly used functions within computer-aided design (CAD) software 
packages used in industry. Therefore, using NURBS surfaces which are 
also called NURBS patches, is sufficient for the calculations. 

NURBS basis functions are created by utilization of B-spline func
tions. In 1-D, a NURBS curve is created with a knot vector Ξ = {ξ1, ξ2, .

.., ξm+p+1} and a vector of control points C = {C1, C2, ..., Cm} in which m 
represents number of control points which is equal to the number of 
basis functions, and p represents the order of NURBS functions. 

When it comes to creating a NURBS patch, linear combination of 
two-variable NURBS basis functions Rpq

ij (ξ, η) with coordinate matrix 
Cij(ξ, η) of control points is utilised as 

S(ξ, η) =
∑

i

∑

j
Rpq

ij (ξ, η)Cij =
∑

i

∑

j

Ni,p(ξ)Nj,q(η)wij
∑

k
∑

lNk,p(ξ)Nl,q(η)wk,l
Cij (14)  

where 

Ni,0 =

{
1 if ξi ≤ ξ < ξi+1,

0 otherwise,
(15) 

For p = 1, 2, 3, …, they are defined as 

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (16) 

Note that in Eq. (16) it is defined as zero when 0/0 occurs. Herein
after, in order to prevent any misunderstandings caused by the comma 
symbol that is traditionally used in subscripts to indicate partial de
rivatives, the subscript of any B-spline basis function will no longer 
include the degree p. The B-spline basis functions are positive valued 
across their entire domain, and a basis function with a degree of p can 
cover a range of up to p + 1 elements. 

Fig. 2. Rosette placement of the shell structure with the thickness of 2h.  
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A NURBS curve R(ξ) can be defined by associating the control point 
with the basis function as 

R(ξ) =
∑Ncp

i=1
Ri(ξ) Ci ≡

∑

i
Ri(ξ) Ci (17) 

Note that in Eq. (17), Ncp that represents the number of control points 
is not included when writing the sums that involve basis functions in 
order to make them more concise. 

2.6. Isogeometric inverse shell element 

For the isogeometric inverse shell element, the orthogonal compo
nents of the mid-surface displacement vector u is obtained by interpo
lating the ones of the control points by using NURBS basis functions 
Ri(ξ, η) given in Eq (12) as, 
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Then the same NURBS basis functions Ri(ξ, η) are used for the 
physical geometry discretization. Strain-displacement relationships can 
be expressed as: 
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By using Eq. (18) strain-displacement relationships can be rewritten 
as: 
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From Eq. (22) following relationships can be obtained as: 
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where the displacement vector ue contains translational DOFs of all the 
control points, and the matrices Bα ≡ Bα(ξ, η) (α = 1 − 8) are functions 
of in-plane coordinates (ξ, η) and contain the derivatives of the NURBS 
basis functions. The explicit form of these matrices can be defined as 
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where R is the NURBS basis function, which is utilised as a shape 
function within the formulation of IgaiMin as a normal practice of 
application of isogeometric framework on iFEM elements. 

Once the strain values are calculated by using Eqs. (2) and (3), the 
weighted least-squares functional, which previously given in Eq (6) can 
be established as 
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All strain compatibility relations are explicitly satisfied based on 
these assumptions, therefore Eq. (6) can be minimized with respect to 
displacement vector u of IgaiMin element as 

∂Φe(ue)

∂ue =
1
n

∑n

i=1

(
∑3

α=1
wα

∂
⃒
⃒ea(ue)i − Eai

⃒
⃒2

∂ue + (2h)
2

∑6

α=4
wα

∂
⃒
⃒κα(ue)i − Kai

⃒
⃒2

∂ue

+
∑8

α=7
wα

∂
⃒
⃒ga(ue)i − Gai

⃒
⃒2

∂ue

)

= 0

(33) 

By substituting Eqs. 29–31, Eq. (33) can be written as 

∂
⃒
⃒ea(ue)i − Eai

⃒
⃒2

∂ue = 2[Ba(xi)ue − Eai]
T Ba(xi) (α = 1, 2, 3) (34)  

∂
⃒
⃒κα(ue)i − Kai

⃒
⃒2

∂ue = 2[Ba(xi)ue − Kai]
T Ba(xi) (α = 4, 5, 6) (35)  
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∂
⃒
⃒ea(ue)i − Gai

⃒
⃒2

∂ue = 2[Ba(xi)ue − Gai]
T Ba(xi) (α = 7, 8) (36)  

∂Φe(ue)

∂ue = 2(Keue − εe) = 0 (37)  

Keue = εe (38)  

where Ke and εe are the left-hand-side matrix and strain vector for an 
IgaiMin element, which can explicitly be calculated as 

Ke =
1
n

∑n

1

(
∑3

a=1

[

wa[Ba(xi)]
T Ba(xi)

]

+ (2h)
2

∑6

a=4

[

wa[Ba(xi)]
T Ba(xi)

]

+
∑8

a=7

[

wa[Ba(xi)]
T Ba(xi)

])

(39)  

εe =
1
n

∑n

1

(
∑3

a=1

[
wa[Ba(xi)]

T Eai
]

+ (2h)
2

∑6

a=4

[

wa[Ba(xi)]
T Kai

]

+
∑8

a=7

[

wa[Ba(xi)]
T Gai

]) (40)  

2.7. Multi-patch inverse isogeometric framework 

When the target structure involves combination of multiple in
tersections, modelling it by using a single NURBS patch becomes highly 
cumbersome or impossible. For such problems, utilization of multiple 
patches within the numerical domain, i.e. multi-patch assembly, is 
essential. 

In the multipatch framework, the analysis procedure involves an 
additional level of calculation targeting the assembly of the patches 
which can involve multiple inverse isogeometric elements individually. 

For each patch, a specific input data is read to construct the inverse 
isogeometric elements for the particular patch. After creating the 
patches with their elements, an assembly process is followed (see Fig. 3). 
During that assembly process, the patches are seamlessly connected at 
their interfaces, allowing for higher continuity and improved accuracy 
in the analysis. This is achieved by using matching degrees of freedom at 
the interfaces between patches, which ensures that the displacement and 
stress fields are continuous across the patches. Additionally, the use of 
higher-order basis functions allows for higher continuity along the 
element and edge interfaces, further improving the accuracy of the 
analysis. 

To achieve a seamless connection between the patches created by 
using IgaiMin elements, the degrees of freedom need to be matching at 
the conjunctions. However, the FSDT based formulation of IgaiMin 
element provides 5 DoF solution without drilling DoF for each control 
point of the patch. This creates a problem when the patch normals are in 
different directions in 3-D space. To solve this problem, IgaiMin element 
involves a sixth degree of freedom with the extension of stiffness matrix 
and related vectors. Within this procedure, an arbitrary coefficient is 
inserted to patch stiffness matrix as suggested by Onate et al. (Oñate, 
2013) to avoid the singularity problem as shown below: 

Kij =

[
Ke

ij 0
0 Kθz

]

(41)  

where Kθz is selected on the order of 2hAe1011 where h is the half 
thickness of the shell and Ae is the area of the element. This approach is 
adopted from (Oñate, 2013) for iFEM based approach, and it is deter
mined that the selected arbitrary value of Kθz has no observable effect on 
the analysis results as long as it is selected other than zero. 

2.8. Isogeometric flat patch transformation 

The patch transformation maps the coordinates of a point in one 

Fig. 3. Flow-charts of single-patch (left) and multi-patch (right) analyses (Cottrell et al., 2009).  
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patch to the coordinates of the corresponding point in another patch. 
This allows for the seamless connection of the patches at their interfaces, 
ensuring that the displacement and stress fields are continuous across 
the patches. The patch transformation is typically defined using a 
combination of translation, rotation, and scaling transformations, which 
can be used to align the patches with one another and match their de
grees of freedom at the interfaces. 

Since patches utilised within our inverse isogeometric framework are 
flat, the first step is to obtain the local patch coordinate system (x, y, z)

relative to the global coordinate system (X,Y, Z). Corner control points 
of the patch are required to be identified, as shown in Fig. 4. 

In the following procedure, the indices numbering (1 − 4) corre
sponds to the corner control points in the order i, j, n, m, respectively. 

Xi = [ Xi Yi Zi ]
T

(i = 1 − 4) (42) 

Each patch edge length di and the global coordinates of patch edge 
mid-points ci can be calculated as 

di =
⃦
⃦xj − xi

⃦
⃦ (43)  

ci =

(
xj − xi

)

2
(44)  

(i = 1, 2, 3, 4; j = 2, 3, 4, 1) (45) 

The global coordinates of the patch centroid can be calculated as 

C =

∑4
k=1ckdk

∑4
k=1dk

(46) 

Unit normal vector to plane (along local z) n and unit vectors along 
local y- and x-axes, p and l, can respectively be computed as 

n =
A × B

‖A × B‖
, (47)  

p =
A + B

‖A + B‖
, (48)  

l = p × n (49)  

where 

T =
[

lT pT nT
]

(50)  

A = x3 − x1 (51)  

B = x4 − x2 (52)  

are diagonal vectors with A pointing out from control point i to n, 
whereas B pointing out from control point j to m. Local coordinates of 
the control points within the patch can be calculated as 

xi = (Xi − C)⋅l (53)  

yi = (Xi − C)⋅p (54)  

(i = 1, 2, 3...# of control points in the patch)

The transformation matrix for the patch Tp can be defined as 

Tp =

⎡

⎣
T … T
⋮ ⋱ ⋮
T ⋯ T

⎤

⎦ (55)  

where 

T =
[

lT pT nT
]

(56) 

The size of Tp is determined according to the number of control 
points within the patch suitably that each control point has 6-DoF to be 
transformed as shown in Fig. 5. For example, the required trans
formation matrix for a patch with 16 control points (see Fig. 5) is 
calculated as a 96 by 96 matrix with 32 T submatrices in the diagonal. 

3. Numerical examples 

In the following section, the application and validation of the Igai
Min element is demonstrated through the analysis of three numerical 
examples. The first two examples, a simple plate and a Tee junction, are 
used to show that the IgaiMin element is functional for problems 
involving membrane and bending for both single and multi-patch 
frameworks. The third example, a stiffened panel problem represent
ing a ship structure, is used to further investigate the capabilities of the 
IgaiMin element in providing accurate results for complex structures 
involving intersecting members. This problem is commonly used in the 
study of shell elements because it exposes the element to various com
plex stress states. By demonstrating the effectiveness of the IgaiMin 
element in these examples, the validity of its use in inverse finite 
element analysis of shell structures is demonstrated. 

3.1. Single patch geometry 

The IgaiFEM analysis presented in this example involves a simple 
plate with dimensions of 1x1x0.01m and material properties of Elastic 
modulus, E = 210 GPa and Poisson’s ratio, v = 0.3. The plate is dis
cretized using iFEM discretization of 2x2, 3x3, and 4x4 IgaiMin ele
ments, and one set of sensors is assigned to each element. The plate is 
subjected to four different loading scenarios, including membrane ten
sile loading, membrane shear loading, transverse bending loading, and 

Fig. 4. Control point numbering and identified corner control points of the 
patch, which involves one 3rd order (in both directions) flat isogeometric 
shell element. 

Fig. 5. Control point DoFs corresponding to the local patch coordinates (x,y,z).  
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asymmetrical loading for torsional bending effect. For all cases the left 
edge of the plate is fixed. 

For each inverse element, synthetic strain data is obtained (see 
Fig. 6) from the finite element analysis (FEA) model with 625 elements 
and NURBS shape functions’ polynomial degrees p and q are set as 6. 
Therefore, for each element, two strain gauges are placed on the top and 
bottom surfaces. The maximum displacement values acquired by using 
the high-fidelity FEM analysis of the structure are given in Fig. 7a–d. 

The first scenario, i.e. membrane tensile loading, involves a structure 
subjected to a distributed tensile force of 1 MN applied at the right edge 
as shown in Fig. 7a. The maximum deformation is 0.0000476 m. The 
percentage errors for IgaiMin are 2.18% for a 2x2 grid, 0.06% for a 3x3 

grid, and 0.13% for a 4x4 grid (see Fig. 8). For the traditional iFEM 
element iQS4 (Kefal et al., 2016), the errors are 2.53% for a 2x2 grid, 
0.87% for a 3x3 grid, and 0.46% for a 4x4 grid. iQS4 results are not given 
for conciseness of the paper. In this case, IgaiMin generally outperforms 
iQS4, particularly for the 3x3 and 4x4 grid sizes. 

In the second scenario, i.e. membrane shear loading, a displacement 
boundary condition of 0.010 m is set at the right edge as shown in 
Fig. 7b. The maximum deformation reaches 0.011 m. The percentage 
errors for IgaiMin are 18.22% for a 2x2 grid, 5.22% for a 3x3 grid, and 
0.49% for a 4x4 grid (see Fig. 9). For IQS4, the errors are 17.94% for a 
2x2 grid, 5.62% for a 3x3 grid, and 0.99% for a 4x4 grid. In this case, 
both methods have similar percentage errors. 

Fig. 6. Placement of rosettes on the structure.  

Fig. 7. FEM total displacement results for (a) the tensile loading case, (b) the membrane shear loading case, (c) the transverse bending loading case, (d) the 
asymmetrical transverse loading case. 
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For the transverse bending loading scenario, the structure is fixed 
from the left edge, and a distributed transverse force of 60N is applied at 
the right edge (see Fig. 7c), resulting in a maximum deformation of 
0.0011 m. The percentage errors for IgaiMin are 5.30% for a 2x2 grid, 

2.17% for a 3x3 grid, and 0.89% for a 4x4 grid (see Fig. 10). For IQS4, 
the errors are 4.71% for a 2x2 grid, 2.02% for a 3x3 grid, and 1.41% for a 
4x4 grid. 

Lastly, the fourth scenario features asymmetrical loading for the 

Fig. 8. Total displacement result for the tensile loading case.  

Fig. 9. Total displacement result for the membrane shear loading case.  

Fig. 10. Total displacement result for the transverse bending loading case.  

Fig. 11. Total displacement result for the asymmetrical transverse loading case.  
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torsional bending effect (see Fig. 7b). The membrane is fixed from the 
left edge, and a point transverse force of 10 N is applied at the right 
bottom corner. The maximum deformation is 0.000256 m. The per
centage errors for IgaiMin are 0.39% for a 2x2 grid, 2.60% for a 3x3 grid, 
and 1.09% for a 4x4 grid (see Fig. 11). For IQS4, the errors are 0.60% for 
a 2x2 grid, 0.34% for a 3x3 grid, and 0.20% for a 4x4 grid. 

3.2. Multi patch tee geometry 

In this iFEM analysis, three different discretization cases are 
considered by dividing the edges of the structure by 3 IgaiMin elements. 
NURBS shape functions’ polynomial degrees p and q are set as 3 and C1- 
continuity is provided along each one of the models. The target structure 
consists of three 10 mm thick plates with dimensions of 1 × 1 m. The 
inverse model is discretized into 27 patches, each consisting of 27 third- 
order IgaiMin elements and each of them is fed with a strain data 
collected from the FEM model representing a sensor set consists of two 
strain rosettes at both sides of the shell structure. The elastic modulus of 
the material used in the model is E = 210 GPa, and the Poisson ratio is ν 

= 0.3. The left edge of the model is fixed. 
In the first scenario, Case 1, the structure is subjected to bending 

loading with a point load of 60 kN as depicted in Fig. 12a iFEM and 
reference FEM results are given in Figs. 13 and 14. The percentage errors 
for IgaiMin shape sensing in this case are as follows: 1.92% for u, 0.16% 
for, v, and 0.64% for w. 

In the second scenario, Case 2, the structure undergoes torsional 
loading with a point load of 60 kN as illustrated in Fig. 12b iFEM and 
reference FEM results are given in Figs. 15 and 16. The percentage errors 
for IgaiMin shape sensing in this case are: 0.54% for u, 6.01% for v, and 
2.58% for w. 

3.3. Multi patch stiffened panel geometry 

To demonstrate the applicability of IgaiMin element for ship struc
tures, the stiffened panel design given by Ming Cai et al. (Xu and Guedes 
Soares, 2013) is investigated in this section (see Fig. 17). The material 
properties are decided to be chosen for a realistic marine SHM case to be 
established. Therefore, the material is chosen as EH36 with elastic 

Fig. 12. Sensor placement and the loading condition for (a) Case 1, (b) and (c) Case 2.  

Fig. 13. FEM displacements for Case 1: (a) along x-axis (u), (b) along y-axis (v), (c) along z-axis (w), (d) total displacement.  
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Fig. 14. IgaiMin displacements for Case 1: (a) along x-axis (u), (b) along y-axis (v), (c) along z-axis (w), (d) total displacement.  

Fig. 15. FEM displacements for Case 2: (a) along x-axis (u), (b) along y-axis (v), (c) along z-axis (w), (d) total displacement.  
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Fig. 16. IgaiMin displacements for Case 2: (a) along x-axis (u), (b) along y-axis (v), (c) along z-axis (w), (d) total displacement.  

Fig. 17. Dimensions of the stiffened panel.  

Fig. 18. (a) Clamped boundary condition and the applied load on the structure (b) synthetic strain locations from the FEM model.  
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modulus of 210 GPa and Poisson’s Ratio of 0.3. The loading scenario is 
chosen as cantilever bending case after application of 9 kN of vertical 
loading from one end as shown in Fig. 18a. By applying such loading, the 
resulting deformation of the structure involves torsion in addition to a 
global bending, since the problem is not symmetrical, and it makes the 
problem more complicated compared to a simple bending scenario. 

The structure is divided by 57 IgaiMin elements. NURBS shape 
functions’ polynomial degrees p and q are set as 5 and C1-continuity is 
provided along each one of the models. Furthermore, unlike in the 
previous problem, a practical scenario is considered for sensor place
ment. Hence, 10 of 57 inverse elements are subjected to strain data 

provider to perform shape sensing analysis. The strain data is generated 
by performing FEA with a fine mesh model as given in Fig. 19. The total 
number of finite elements is 1425 in the FEA model. The locations of the 
sensors are chosen such that the sensor are placed only on the flange 
parts of the structural members as shown in Fig. 18b. Therefore, the base 
plate which may represent the outer shell of the hull will not have strain 
rosettes which can be exposed to harsh marine conditions. For each of 
those 10 elements, two strain gauges are placed. The maximum 
displacement values acquired by using the high-fidelity FEM analysis, 
iFEM analyses of the structure by using IgaiMin and IQS4 are given in 
Figs. 20–22, respectively. The percentage errors for IgaiMin shape 
sensing in this case are: 1.87% for u, 0.70% for v, 0.20% for w, and 0.22 
for total displacement. However, for IQS4 element the errors are 7.31% 
for u, 0.27% for v, 2.49% for w, and 2.38% for total displacement. 

4. Conclusions 

In this study, a new isogeometric Mindlin-Reissner inverse-shell 
element (IgaiMin) that combines Mindlin-Reissner shell theory with 
NURBS-based multi-patch isogeometric analysis is introduced as part of 
a new method for shape sensing analysis of complex stiffened structures. 
This new element demonstrated its effectiveness on shape sensing and 
benefits of utilization higher continuity in the shape functions, accurate 
representation of the real structure, and the ability to use the same 
computer-aided design (CAD) geometry for both design and analysis. By 
solving several sample problems, including a simple plate, a tee junc
tion, and a partly clamped stiffened panel, and by making comparisons 
of the results achieved using newly developed IgaiMin and IQS4 
demonstrate the shape sensing capabilities of the IgaiMin element 
formulation for multi-patch shells. 

Fig. 19. FEM model of the structure.  

Fig. 20. FEM displacements for the stiffened panel: (a) along x-axis (u), (b) along y-axis (v), (c) along z-axis (w), (d) total displacement.  
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