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Introduction

* Following on from the work of Khudiakov and Pukhov [1] examining
laser-assisted injection from a foil at 45 degrees, we now look at a
scheme employing normal incidence on the foil i.e. collinear with the
driver

* We study this using FBPIC to carry out start-to-end simulations
handling both the laser interaction with the foil, charge capture and
subsequent acceleration

* We will present two specific cases, a low trapping potential/low
charge case and a high trapping potential/high charge case

[1] Phys. Rev. E 105, 035201 (2022)



Problem Setup

Five major components, many free parameters to choose

preplasma

plasma driver ™
n,,o,0,




Simulation Parameters

* 200mJ Laser (a, = 2) incident on 50 micron Al foil

* small Gaussian shaped preplasma ~1n_density for the laser to
interact with

e Short proton driver passes through the foil and into uniform plasma
n,= 7x10%* cm first to excite a wake with ¢ = 0.2

* Hot electrons are kicked through the foil by the laser and captured by
the wake

* Grid Resolution of 6 cells/A\, or Az=133 nm
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Early stages — Wake Formation

* As the driver passes through the foil and enters the plasma,
ponderomotive force pushes plasma electrons away from the foil in
order to begin the oscillations of the wake
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Early stages — Particle Injection

 When the laser hits the foil, a large amount of charge is pushed
through the foil and into the very tenuous plasma on the other side.

* The plasma electrons are blown out from the foil as the electrons
stream through.
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Phasespaces of the Hot electrons by Source

The preplasma, and its interaction with the laser is entirely responsible for the hot
electrons
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Delay Timing

10° 4

* A scan of different delays between
the driver and the laser were
performed to examine the amount

of charge captured
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to the phase at which the wake
swaps from being accelerating to
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Acceleration Dynamics - Initial
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Acceleration Dynamics — 30cm
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10m Summary — Low charge / Low wake

After 10 meters of acceleration
e 15 pCcharge

e 4.5GeV

* 1.5% energy spread

10 um normalised emittance
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Trapping Conditions

e Khudiakov and Pukhov determine the conditions for trapping from a
solid target for a particle with initial momentum p,, p, as
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Describing an ellipse in p-p,

Particles falling within this ellipse as they are injected into the wake are
trapped, those that fall outside it are eventually lost



Trapping — Simulation Results

* Particles sampled after
50cm of propagation are
traced back to their
injection point using their
unique IDs

* Initial particle momentum
is plotted against the
trapping conditions,
showing good agreement

* In this simulation, ~15 pC
of charge is trapped

pz [Mec]

5.0

4.5

4.0
3.0 4%

2.0+

1.5 7

1.0

3.5 4 i

2.5 ?-.I-\.‘_‘ AT

T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

pr [mac]

Momentum of the trapped particles at the
point of injection into the wake

13



Parameter Scans

* The preplasma has a half-Gaussian shape centered on (0,0)

z2  r?
N,, =ne.expl ————
pp 7o

* We can vary o, and o, of the preplasma to determine optimal
parameters for maximum charge capture

* We can also vary the laser amplitude and wake potential

Note: these simulation are still operating in a nonconverged regime for
the laser — actual values will be underestimated!
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Scans — Preplasma longitudinal size
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Scans — Preplasma radial size
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Scans — Laser Amplitude
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Scans — Wake Potential
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High Trapping Acceleration Dynamics - Initial
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High Trapping Acceleration Dynamics — 30cm
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High Trapping Potential — High Charge

* Wake ¢y = 0.5 - Accelerating fields = 1 GV/m

* Nearly 1nC trapped charge expected,
Actually, we get about 500 pC

trapping conditions still give lower limits, but
not all particles that 'should' be trapped are
trf‘.;\ppﬁd{:ﬂ = 1322.355 [6.70 x 10~** s], 6=0°, mode = all

500pC bunch drives its own blowout
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10m Summary — High charge / High wake

After 10 meters of acceleration

le7

500 pC charge

8.6 GeV

6.5% energy spread

40 um normalised emittance

Ex [GEV]

10

&k [GeV]

15

2.0

2.5

3.0

3.5
§ [k,

4.0

4.5

5.0

5.5

=107
- 10°

- 10°

104

103

102

3°N/a&d&k [part. GeV ™! kp]



summary

* Colinear injection from a foil offers another alternative for injecting witness
bunches with properties on par with existing laser-driven schemes

* Previously-derived trapﬁing conditions provide a good estimate of the
witness charge, but high resolution simulations are called for to verify this
and examine the injection process in detail — specifically using a realistic
preplasma profile would be most useful

* Toy model simulations on track to produce multi-GeV electrons after 10m
with energy spread 1 — 10% and emittances in the 20- 50um range, hybrid
simulations to examine the full AWAKE beam would be interesting.

Thank you



