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Introduction

• Following on from the work of Khudiakov and Pukhov [1] examining 
laser-assisted injection from a foil at 45 degrees, we now look at a 
scheme employing normal incidence on the foil i.e. collinear with the 
driver

• We study this using FBPIC to carry out start-to-end simulations 
handling both the laser interaction with the foil, charge capture and 
subsequent acceleration

• We will present two specific cases, a low trapping potential/low 
charge case and a high trapping potential/high charge case

2[1] Phys. Rev. E 105, 035201 (2022)



Problem Setup
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Five major components, many free parameters to choose
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Simulation Parameters

• 200mJ Laser (a0 = 2) incident on 50 micron Al foil

• small Gaussian shaped preplasma ~1nc density for the laser to 
interact with

• Short proton driver passes through the foil and into uniform plasma 
ne = 7x1014 cm-3 first to excite a wake with 𝜙0 ≈ 0.2

• Hot electrons are kicked through the foil by the laser and captured by 
the wake

• Grid Resolution of 6 cells/λ0 or Δz = 133 nm
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Early stages – Wake Formation

• As the driver passes through the foil and enters the plasma, 
ponderomotive force pushes plasma electrons away from the foil in 
order to begin the oscillations of the wake
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Early stages – Particle Injection

• When the laser hits the foil, a large amount of charge is pushed 
through the foil and into the very tenuous plasma on the other side.

• The plasma electrons are blown out from the foil as the electrons 
stream through. 
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The preplasma, and its interaction with the laser is entirely responsible for the hot 
electrons

preplasma electrons foil electrons

Phasespaces of the Hot electrons by Source
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Delay Timing

• A scan of different delays between 
the driver and the laser were 
performed to examine the amount 
of charge captured

• Characterised by the position of 
the head of the bunch relative to 
the plasma wake phase

• The zero point here corresponds 
to the phase at which the wake 
swaps from being accelerating to 
decelerating

• Maximum charge capture round 
the zero point, as seen in previous 
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Acceleration Dynamics - Initial
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Acceleration Dynamics – 30cm
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10m Summary – Low charge / Low wake

11

After 10 meters of acceleration
• 15 pC charge
• 4.5 GeV
• 1.5% energy spread
• 10 μm normalised emittance



Trapping Conditions

• Khudiakov and Pukhov determine the conditions for trapping from a 
solid target for a particle with initial momentum pz, pr as

Describing an ellipse in pr-pz

Particles falling within this ellipse as they are injected into the wake are 
trapped, those that fall outside it are eventually lost
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Trapping – Simulation Results

• Particles sampled after 
50cm of propagation are 
traced back to their 
injection point using their 
unique IDs

• Initial particle momentum 
is plotted against the 
trapping conditions, 
showing good agreement

• In this simulation, ~15 pC
of charge is trapped Momentum of the trapped particles at the 

point of injection into the wake
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Parameter Scans

• The preplasma has a half-Gaussian shape centered on (0,0)

• We can vary σr and σz of the preplasma to determine optimal 
parameters for maximum charge capture

• We can also vary the laser amplitude and wake potential

Note: these simulation are still operating in a nonconverged regime for 
the laser – actual values will be underestimated!
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Scans – Preplasma longitudinal size
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Scans – Preplasma radial size
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Scans – Laser Amplitude
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Scans – Wake Potential
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High Trapping Acceleration Dynamics - Initial
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High Trapping Acceleration Dynamics – 30cm
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500pC bunch drives its own blowout

High Trapping Potential – High Charge

trapping conditions still give lower limits, but 
not all particles that 'should' be trapped are 

trapped

witness

• Wake 𝜙0 ≈ 0.5 - Accelerating fields ≈ 1 GV/m
• Nearly 1nC trapped charge expected,

Actually, we get about 500 pC
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10m Summary – High charge / High wake
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After 10 meters of acceleration
• 500 pC charge
• 8.6 GeV
• 6.5% energy spread
• 40 μm normalised emittance



Summary

• Colinear injection from a foil offers another alternative for injecting witness 
bunches with properties on par with existing laser-driven schemes

• Previously-derived trapping conditions provide a good estimate of the 
witness charge, but high resolution simulations are called for to verify this 
and examine the injection process in detail – specifically using a realistic 
preplasma profile would be most useful

• Toy model simulations on track to produce multi-GeV electrons after 10m 
with energy spread 1 – 10% and emittances in the 20- 50μm range, hybrid 
simulations to examine the full AWAKE beam would be interesting.

Thank you
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