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Abstract: Understanding component criticality in machinery performance degradation is important 
in ensuring the reliability and availability of ship systems, particularly considering the nature of 
ship operations requiring extended voyage periods, usually traversing regions with multiple cli-
mate and environmental conditions. Exposing the machinery system to varying degrees of load and 
operational conditions could lead to rapid degradation and reduced reliability. This research pro-
poses a tailored solution by identifying critical components, the root causes of maintenance delays, 
understanding the factors influencing system reliability, and recognising failure-prone components. 
This paper proposes a hybrid approach using reliability analysis tools and machine learning. It uses 
dynamic fault tree analysis (DFTA) to determine how reliable and important a system is, as well as 
Bayesian belief network (BBN) availability analysis to assist with maintenance decisions. Further-
more, we developed an artificial neural network (ANN) fault detection model to identify the faults 
responsible for system unreliability. We conducted a case study on a ship power generation system, 
identifying the components critical to maintenance and defects contributing to such failures. Using 
reliability importance measures and minimal cut sets, we isolated all faults contributing over 40% 
of subsystem failures and related events. Among the 4 MDGs, the lubricating system had the highest 
average availability of 67%, while the cooling system had the lowest at 38% using the BBN availa-
bility outcome . Therefore, the BBN DSS recommended corrective action and ConMon as mainte-
nance strategies due to the frequent failures of certain critical parts. ANN found overheating when 
MDG output was above 180 kVA, linking component failure to generator performance. The findings 
improve ship system reliability and availability by reducing failures and improving maintenance 
strategies. 
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1. Introduction 
The operations of marine platforms such as offshore platforms, ships, and boats are 

increasingly being scrutinised for emission controls and safety of operations. This is more 
so because ships are central to global trade, responsible for over 90% of the global carriage 
of goods and services [1]. In addition, ships provide very essential services in the installa-
tion and maintenance of all types of offshore renewable power generation systems, as well 
as services in the oil and gas and security sectors. In order to ensure safety of life and the 
reduced environmental impact of ships and other maritime platforms, original equipment 
manufacturers (OEM) and operators rely on reliability analysis tools and data driven 
methods onboard or handheld sensors to access machinery information. This way, the 
health and performance of the machinery can be monitored in real time or recoded for 
future use. The essence is to enable documentation that can either be used in real time or 
for future diagnosis and prognosis to help with evidence-based machinery maintenance 

Citation: Daya, A.A.; Lazakis, I.  

Systems Reliability and Data Driven 

Analysis for Marine Machinery 

Maintenance Planning and Decision 

Making. Machines 2024, 12, 294. 

https://doi.org/10.3390/ma-

chines12050294 

Academic Editors: Wilson Cesar 

SantʹAna, Helcio Francisco  

Villa-Nova and Erik Leandro 

Bonaldi 

Received: 12 February 2024 

Revised: 15 April 2024 

Accepted: 24 April 2024 

Published: 27 April 2024 

 

Copyright: © 2024 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Machines 2024, 12, 294 2 of 29 
 

 

approach. Moreover, the complexity of systems onboard is such that there is a lot of inter-
operational dependencies either in a machinery unit or system. 

Ships in general are built for different purposes and applications; each of these has 
its peculiarities with regard to maintenance and other regulations, which can vary from 
state to state [2]. Notwithstanding, all ships constitute intricate connections systems and 
equipment design and are constructed to move from one point to another and provide 
support for human and machine inhabitation, as well as engage in designated services. In 
accordance with Stopfordʹs [3] findings, it is generally observed that ships are constructed 
with an intended operational lifespan of approximately 25 years, with the potential for 
extension up to 35 years or beyond [4]. The life cycle management of ships and on-board 
systems is frequently not adequately prioritised, resulting in significant maintenance costs 
beyond the initial 5-year period [5,6]. 

In this regard, operators are burdened with substantial maintenance expenses and 
frequently find themselves in forced marriages or alliances with equipment producers, in 
some cases having to bear the burden of equipment upgrades and retrofits due to regula-
tions [7]. However, perception of maintenance activities differs among various operators, 
with many considering it to be a routine task that is only given significant attention in the 
case of a breakdown or when preparing for operations or exercises [8]. This approach 
contradicts the fundamental purpose of maintenance in that maintenance can be de-
scribed as a comprehensive set of activities encompassing technical, administrative, and 
managerial measures undertaken throughout the lifespan of an item with the aim of pre-
serving or reinstating its ability to fulfil the desired function [9]. It can therefore be inferred 
that maintenance, as a fundamental engineering service, plays a crucial role in operations, 
which significantly contributes to the achievement or failure of system availability in a 
fleet that could translate to revenue generation. 

On the other hand, performance degradation in machineries could result in increased 
emissions in some machineries such as marine diesel generators and main propulsion en-
gines, while in other systems such as pumps, this could lead to high levels of power con-
sumption. Conversely, the presence of numerous equipment units that operate entirely 
autonomously poses a significant challenge in terms of maintenance planning, which can-
not be effectively accomplished manually without some degree of data automation. In this 
regard, operators must create a maintenance strategy for condition monitoring that is ap-
propriate for its intended purpose. When evaluating various aspects, it is important to 
consider elements such as the capacity of maintenance staff, availability of spare parts, 
environmental conditions, mission needs, future job predictions on the platform or fleet, 
and data management and processing [10]. 

Thus, this paper will detail the impact of combining reliability analysis tools and a 
machine learning approach on machinery degradation and reliability analysis. In this re-
gard, the paper will be presented in 5 sections: Section 1 includes the introduction to the 
topic while the critical literature review focusing on machinery health degradation and 
component criticality analysis is presented in Section 2. The methodology on the hybrid 
approach is presented in Sections 3, and Section 4 presents the case study. Finally, the 
results and discussion are presented in Section 5, closely followed by the conclusions in 
Section 6. 

2. Critical Literature Review 
The performance degradation of mechanical systems diminishes with age and usage 

due to component wear, tear, or fatigue. This degradation in performance is usually ex-
hibited through a reduction in the ability to carry normal loads or an inability to operate 
for extended periods within the normal operational envelope and material conditions [11]. 
In this regard, system reliability analysis is enabled using historical failure and repair data, 
as well as the component and/or faults conditions responsible for machinery breakdown. 
However, wear and tear as well as other causes of machinery failure can be delayed or 
accelerated by some external or internal factors. External factors could include the 
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environment, human factors such as technical skills, maintenance practice, and quality of 
consumables; others could associate failure with faults from other machinery. Internal 
factors include material failure, component failure as a result of shelf life, contamination, 
design issues, overload, etc. [12,13]. In this regard, research in the field of maintenance has 
received a lot of attention, especially pertaining to the combination of reliability analysis 
and data driven methods to enable comprehensive reliability and diagnostic and prog-
nostic analysis [14–16]. Moreover, condition-based maintenance techniques, which are a 
viable replacement for planned or time-based maintenance concepts, largely underpin the 
effectiveness of reliability-centred maintenance. [17]. Nonetheless, the application of data-
driven methods in predictive maintenance techniques were widely researched by authors 
such as Li, Gebraeel [18,19] and Wang, Chen [16], providing efficient optimisation models 
for implementation. Similarly, the use of supervised and non-supervised learning for clus-
tering and anomaly detection-based machinery performance degradation on naval pro-
pulsion system was presented in [20,21].The use of data driven methods in machinery 
reliability and degradation analysis have been research in [6,22] where the authors have 
developed methodologies to improve reliability analysis outcomes using data-driven 
methods, especially in machinery performance degradation analysis. 

2.1. Degradation Analysis 
Performance degradation analysis thrives on the strength of data-driven methods en-

abled by machine learning. Maintenance strategies such as condition monitoring and pre-
dictive maintenance are popular due to their ability to provide real machinery conditions 
as well future machinery conditions based on current data. These achievement are all 
thanks to intelligent sensors as well as real-time data transmission enabled by the internet, 
commonly referred to as the internet of things of industry 4.0 [23]. Data-driven methods 
have provided the biggest push in machinery degradation analysis due to the use of qual-
itative sensor data, which can provide an unbiased image of machinery conditions. The 
importance of data-driven methods is found more in the maintenance strategy of critical 
machines and their components [24]. Therefore, data-driven methods have been used to 
establish machinery conditions that can be responsible for certain failures through indica-
tors such as vibration, temperature, acoustics, pressure, speed, etc. [25–27]. 

The emergence of advance sensor technology gave rise to big data management, as 
operators are able collect large amount of machinery health data at short intervals, ena-
bled by high-speed internet and wireless connectivity [28,29]. The combination of these 
technologies enables companies to monitor machinery in real time online, and in some 
cases, provide control and diagnosis [23]. Therefore, big data or industry 4.0 enables real-
time insights into equipment performance, scheduling optimization, and downtime re-
duction, hence revolutionising how maintenance operations are carried out across a vari-
ety of industries [30]. Companies can foresee equipment failure and carry out proactive 
maintenance by evaluating data from sensors and other sources, which lowers the possi-
bility of unscheduled downtime and boosts overall equipment efficiency [31]. 

Artificial Neural Networks 
In general, there two types of machine learning approaches, namely, supervised and 

unsupervised learning. The supervised machine learning is used to train a model with 
labelled data, that is, the features to be looked out for are already known; therefore, the 
algorithm is trained to look out for those features in the input data. On the other hand, 
unsupervised learning deals with unlabelled data, which means the algorithm will iden-
tify unique features in the data and partition it accordingly. Unsupervised learning is use-
ful for exploring data in order to understand the natural patten of the data, especially 
when there is no specific information about significant incidents in the data that can easily 
point to some fault indicators. Artificial neural networks (ANNs) have been applied in the 
field of maintenance for machinery health analysis and the prediction of machinery con-
ditions by various authors. As an unsupervised learning method, SOMs are effective for 
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data analysis and clustering, as demonstrated by their use in identifying nonlinear latent 
features from high dimensional data [32]. 

Therefore, riding on the existing success and procedures in the use of ANNs for ma-
chinery data analysis, this research will employ an ANN for fault classification and detec-
tion, fault/condition prediction, and machinery remaining useful life analysis [33]. An 
ANN approach for fault detection was applied with FTA to identify the critical component 
of a diesel generator in a research presented by [26,34]. In some cases, machinery fault 
data are recorded without identifying the fault signals; therefore, this requires data clus-
tering. Clustering is a form of unclassified machine learning that is applied in machinery 
diagnostics [26]. The advantages of using clustering models include helping identify pos-
sible clusters as well as the most influential clusters in the data. In the research, ANN self-
organising maps (SOMs) were used for clustering machinery log data of DG. SOMs con-
sist of competitive layers which can classify a dataset of vectors with any number of di-
mensions as the number neurons in the layer and are good for dimensionality reduction, 
as presented in [19,35]. 

Accordingly, ANNs are widely employed for multiple tasks such as clustering, fore-
casting, prediction, pattern recognition, classification, and feature engineering [36]. ANNs 
and Regression techniques were employed to estimate vessel power and fuel consumption 
where the model was able to predict actual vessel fuel consumption in real time [37]. The 
use of ANNs for fault classification has been employed by [34], using self-organising map 
ANN clustering algorithm to analyse the health parameter of a marine diesel engine, look-
ing at the exhaust gas temperature, piston cooling outlet temperature, and piston cooling 
inlet pressure. Therefore, the performance of ANNs in prediction and classification, as 
reviewed in [38,39], was presented to be good in handling nonlinear, high-dimensional 
data with a smaller dataset. In this regard, building on the success of ANNs, this work 
will apply the use of an ANN on labelled data for diagnostic analysis on 4 sets of marine 
diesel generators. Therefore, the feedback from the ANN is used in combination with the 
reliability analysis output to identify the dominant faults and most affected components. 

The success of a diagnostics analysis platform using artificial intelligence or machine 
learning depends on an efficient and standardised data management system, in particular 
when the information is needed for maintenance planning. To make sense of the infor-
mation available in a set of data collected from single or multiple machinery, it is im-
portant that there is a common platform and procedure understood by all within and out-
side the organisation. Moreover, [40] defines data as any reinterpretable representation of 
information in a formalised manner suitable for communication, hence the need to ensure 
that there is standardisation of data such that there is little or no interpretation needed at 
the point of use of analysis. While ship data as described in [41] is a measurement value 
from shipboard machine and equipment to which a time stamp is added, maintenance 
engineers have long depended on machinery data as their main source of information for 
understanding the present and future health condition of the machinery. Similarly, a 
broad methodology utilising various sensor data and technologies has been presented in 
the INCASS project, which provides research data and methodology for both ship ma-
chinery and structural risk analysis, enabled by the combination of sensor data and failure 
and repair data for machinery health and reliability analysis [42,43]. Nonetheless, these 
technologies present some challenges that companies need to be aware of, which are as 
follows [40]: 
1. Data quality: Successful implementation depends on the quality of data; therefore, it 

is important to ensure data accuracy, completeness, reflectiveness, and relevance to 
the requirement of the ship. 

2. Data Security: Appropriate security measures are needed to guard against cyberat-
tacks and unauthorised access when storing and transmitting significant amounts of 
data from sensors and other sources. 

3. Data Integration: In order to analyse and interpret big data from diverse sources, the 
right tools and technologies must be used. 
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4. Competence: Companies must ensure they have the right competence and tools in 
obtaining, analysing, and interpreting data so that they may make wise judgements; 
hence, ships must have the requisite expertise or hire one. 
In this regard, [19] discussed a system of predicting machinery health monitoring 

using ANNs and FTA for reliability analysis, the methodology has successfully identified 
and defined measurement for machinery data through step-by-step demonstration of the 
process and identification of the critical component using FTA. Moreover, ISO 19847 [44] 
and ISO19845 [45] provides standard guidelines and definition for onboard ship data col-
lection, storage, management, and transmission via the internet. Nonetheless, there al-
ready exists commonly understood formats for managing and collecting data onboard 
ships that are generated via various sources on board, as shown in Figure 1. Although 
there may be nomenclature differences, for instance, between merchant and naval ships, 
the records may still be referring to the same objective. It is a standard requirement for 
merchant ships to hold historical records of ship repair and maintenance being managed 
by classification society who also provide additional standards and guidelines for data 
collection and management [21,46]. These documents provide vital information on the 
location, speed, time, engine speed, and generator(s) online, as well as other systems op-
erational within a given time. The records provide hourly updates of the operational state 
and consumption rates of important machinery. Typically, machinery health consists of 
time series data points of some important parameters, such as temperature, pressure, vi-
bration, consumption rates, outputs, speed, load, deflections, and clearances. 

 
Figure 1. Ship Maintenance data Sources. 

2.2. System Reliability Analysis 
System reliability analysis is central to the successful implementation of any mainte-

nance strategy as it provides clear insight on machinery behaviour and the impacts of 
failure on the availability of machineries up to system levels. Accordingly, reliability anal-
ysis tools are widely used to support maintenance strategy selection or implementation 
in line with organisational objectives. Therefore, various maintenance strategy such as re-
liability-centred maintenance (RCM), risk-based maintenance, total productive mainte-
nance, risk- and reliability-based maintenance, etc., draw from existing maintenance ap-
proaches using system reliability analysis to provide a tailored maintenance system [27]. 
RCM was developed in the aviation industry and United States Navy in the 1970s [47] 
provides clear intersection on the combination of various maintenance strategy and used 
of reliability tools. Moreover, maintainability analysis carried out at the design stage of 
products or platforms such ships or aircraft and other complex machinery are carried out 
with the use of reliability analysis tools such as FTA, DFTA, BBN, etc. [8,12]. An overview 
of the adopted tools in this research is given. 
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2.2.1. Fault Tree Analysis 
Fault tree analysis (FTA) is a graphical method of analysing and presenting how a 

system or piece of equipment may fail. FTA was developed using a deductive approach 
that began with the main fault, known as TOP EVENT, and progressed to the propagated 
events, known as Primary or Basic Event [48]. Low-level events are further classified into 
basic, house, conditional, and underdeveloped events, which can be thought of as fault 
conditions that preside over the top event [49]. Simply put, the fault tree depicts the prop-
agation of lower-level events that result in a system-wide undesirable or top event. As a 
result, FTA uses logic gates and events to present failure patterns on systems or equipment 
for both quantitative and qualitative analysis. Fault tree analysis (FTA) is a static method 
for analysing component faults in systems or equipment by identifying all possible causes 
of likely failures and impacts on the system through the logical analysis of dependencies 
of basic events that lead to the undesired event, the top event of the fault tree [50]. 

The primary objective of fault tree analysis (FTA) is to assess the likelihood of the top 
event occurring and illustrate the sequence of events that could lead to the occurrence of 
the top event [51]. Before entering numerical data into a fault tree, it is advisable to con-
duct a qualitative analysis using the FTA logic structure. Therefore, to calculate the likeli-
hood of the top event happening, it is necessary to generate quantitative information 
about the system’s reliability and maintainability, such as the probability of failure, failure 
rate, or repair rate. This information will then be used as inputs for the qualitative analysis 
of failures. However, FTA has some shortcomings regarding sequence dependencies, tem-
poral order of occurrence, and redundancies due to standby systems; consequently, DFTA 
was developed to overcome these constraints in the static FTA. 

2.2.2. Dynamic Fault Tree Analysis 
Dynamic FTA is an improvement over the static FTA tool; it is an equally important 

tool for reliability and risk analysis as it provides critical information on system compo-
nent failure development. DFTA is so significantly improved over the static FTA such that 
in addition to prioritising the importance of the contributors to the undesired events, it 
also considers time and sequence dependencies [52]. Moreover, it uses Boolean law by 
applying gates and events to describe faulty components and possible event(s) that could 
develop a fault, as well as Markov Chains for the state probability occurrence among mul-
tiple events [53], hence accounting for sequence- and time-dependent analysis. The dy-
namic gates, which include the priority and gate (PAND), sequence enforcing gate (SEQ), 
functional dependency gate (FDEP), spare gate (SPARE), and the spare event, when added 
to the FTA structure, become dynamic FTA [50]. 

In the PAND gate, events are prioritized from left to right such that the left most event 
(fault) is considered first before the next; similarly, SEQ considers events in left to right 
fashion; however, rather than prioritizing, it enforces, thus ensuring that events follow the 
expected failure mechanism [54]. On the other hand, FDEP evaluate events from left to 
right considering the occurrence of primary or causal event, which is independent of other 
faults to the right [55]. The SPARE gate and event have unique attributes and functions; 
though events are evaluated from left to right as obtained in other gates, the dormancy 
factor feature of the spare event makes lot of difference. The dormancy factor is a measure 
of the ratio between failure and operational rate of the spare event in the standby mode 
[50]. A cold spare has dormancy factor 0, a hot spare has dormancy factor 1, and a warm 
spare has a dormancy factor between 0 and 1 [52]. 

Overall, DFTA provides a platform that is capable of analysing reparable systems 
while considering other factors such as dependencies and temporal behaviour or partially 
operating state analysis [55–57]. Therefore, this makes it very relevant in analysing system 
improvements as presented in [24,55–58]. Overall, these additional gates provided more 
scope in DFT analysis [54,59], which can be used to factor repair or improvements due to 
routine maintenance. Moreover, additional outputs such as the reliability importance 
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measures and minimal cuts sets in the DFTA are equally influenced by the logic structure 
such of the model, meaning the output of static FT and dynamic in those output will be 
significantly different and reflective of whatever dependencies exist in the model. 

2.2.3. Bayesian Belief Network 
Bayesian belief networks (BBNs) provide a good platform for dependability analysis, 

and cause, effect, and inferential analysis in a wide range of sectors covering health care, 
human reliability, machinery system reliability, and decision support systems. BBNs are 
represented as a direct acyclic graph (DAG) which consist of chance nodes (variables) rep-
resenting possible outcomes of system states and a given set of arrows (connections) indi-
cating dependability/relationships. The nodes can take variable inputs in BBN analysis 
which can be continues or discreet and are not restricted to single top events, thus provid-
ing great flexibility unlike fault tress or RBD [60]. BBNs can be used to represent cause 
and effect between parts of systems or equipment by identifying potential causes of fail-
ure. Authors have used BBNs for fault and diagnostic analysis as well decision support 
system (DSS), for instance Jun et al. [61] presented a Bayesian-based fault identification 
system for CBM by discretising continues parameters based on maximum likelihood esti-
mation (MLE) to identify failure conditions; the research used the discretised feature as 
binary inputs for the BBN conditional probability table (CPT). Similarly, to address port 
energy efficiency towards the reduction ships emission during port calls, a strategy using 
BBNs was presented in [62]. This research also explains how BBN conditional probability 
can efficiently in-cooperate to expert knowledge to provide vital inputs in decision mak-
ing variables in areas where there is inadequate data or literature. 

Bayesian updating or inference provides bases for the use of influence diagrams in 
decisions analysis by computing the impact of new evidence to the probability of events 
and the influence on all related nodes [63]. As such, BNs provide a good platform for DSS, 
especially in maintenance strategy when considering several dependent and independent 
factors. Conducting system reliability and maintenance analysis demands inputs from 
multiple sources which the BN platform can accommodate, as compared to other tools. 
Papers by Jun et al. [61] and Li et al. [64] provide methodologies for the use of BBNs in 
reliability analysis; however, while [61] focused on fault diagnosis, [64] emphasises com-
ponent reliability with limited analysis on factors affecting the reliability. Furthermore, 
BBNs have been used to provide inferential analysis in conjunction with other tools such 
as the Markov chain and Petri-nets, especially in risk and reliability analysis [60,65–67]. 
BBN-based DSS are widely applied in maritime industry to handle operational issues such 
as human factors, and procedural issues such as maintenance [67,68]. Similarly, in the field 
of ship system reliability analysis, Lazakis et al. [56] have presented on the use of BBNs 
and FTA for ship machinery cooling system reliability analysis and DSS. Likewise, Ba-
hooToroody et al. [69] applied a combination BBN and Markov chain Monte Carlo simu-
lation to analyse machinery reliability estimation onboard autonomous ships to help 
maintenance planning and decision. 

Overall, the critical literature review has established the prevalence of the use of mul-
tiple tools in reliability and diagnostic analysis by several authors, especially in mainte-
nance planning, to overcome certain restrictions or provide further layers of validation 
[5]. Therefore, a combination of multiple tools for system reliability analysis has been in 
practice by many authors, this combination is necessitated by the complex dynamics of 
fault development and organisational maintenance challenges [24,70]. In this regard, some 
of the identified gaps in the literature addressed by this paper include assessing the im-
portance of components in relation to system availability, choosing maintenance decisions 
based on the operator’s sentiment, and using IM obtained from DFTA to build a mainte-
nance DSS using BBN. Therefore, a novel methodology was developed which uses the 
DFTA outputs as inputs for the BBN maintenance DSS. Similarly, a fault detection model 
was developed to diagnose the prevalent causes of failure to aid maintenance DSS. 
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3. Methodology 
The research methodology utilises the combined strength of reliability analysis tools 

for system reliability and criticality, artificial neural network for diagnosis and fault pre-
diction, and Bayesian belief networks for maintenance decision support systems. Mainte-
nance, repair, overhaul, and machinery log data obtained from onboard ship system and 
machinery were analysed so as to understand the courses of failure in diesel generators, 
identify the most critical component, and provide possible ways to improve maintenance 
on board ships. This process would assist both onboard technical staff as well as shore 
support units. The process of the research involves the collection of machinery data from 
an offshore patrol vessel (OPV) which were then analysed to generate outputs relevant to 
machinery health performance indicators. The research has three broad areas which are 
used as inputs or in combination to analyse the condition of machinery health, as shown 
in the Figure 2 below. As shown in the figure below, the three areas are the system relia-
bility analysis using DFTA, fault detection and prediction using ANNs, and BBNs for de-
veloping a maintenance decision support system. 

 
Figure 2. Methodology. 

The data used in this study were obtained through a data collection campaign con-
ducted onboard a Nigerian Navy OPV. It encompassed machinery health and historical 
data, such as maintenance and overhaul records, repair data, and machinery health rec-
ords. The dataset covered the machinery log for a period of up to 12 calendar months, 
along with historical records spanning up to 18 months. The collected machinery log data 
and a portion of the maintenance and overhaul records were in manuscript form, which 
necessitated conversion into electronic format. In this regard, data pre-processing played 
a pivotal role in handling challenges related to missing values and outliers. Various sta-
tistical methods were used to interrogate the data; therefore, missing values were filled 
using linear interpolation, as it provides a more consistent approach for time series data. 
On the other hand, outlier detection methods were applied based on the specific parame-
ter under analysis. In this regard, given the multidimensionality of the data, a flexible 
approach to outlier cleaning was adopted, involving the use of the interquartile range 
(IQR) for natural number values and an iterative approach for numbers less than one. This 
ensured the cleaned data remained consistent with the original dataset. 
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3.1. Maintenance and Machinery Health Data Preprocessing 
Nonetheless, the approach in data pre-processing helped to address some challenges 

with regard to missing values, outliers, or ‘not a number’ (NAN) entries. The main ap-
proach that used outlier detection was the interquartile range (IQR). Missing values were 
filled using linear interpolation and, in some cases, forward fill/backward fill was used, 
especially on variables representing temperature as they can change in no particular pat-
ten. Therefore, using this method would help retain the randomness in the time series as 
regard fault development. These actions were carried out using the MATLAB R2023b soft-
ware application. Additionally, the feature engineering process to identify the most rele-
vant variables to MDG faults was developed using correlation analysis and is presented 
in the ANN diagnostics section. 

3.2. Dynamic Fault Tree Analysis 
Dynamic fault tree analysis (DFTA) is an extension of standard fault tree analysis 

(FTA) that provides time or sequence dependent analysis and can also prioritise events for 
analysis. Its flexibility calculation nature allows it to handle failure sequence and time 
dependent events especially in reparable mechanical systems. Moreover, the spare gates 
provide the DFTA a unique future that is useful for modelling failures in active, inactive, 
or warm standby repairable systems. Overall, the addition of four gates and one basic 
event in the FTA structure has provided a much more flexible way of modelling faults/fail-
ures in complex systems with respect to sequence and dependencies in the DFTA. These 
additions made it possible to consider the temporal order of the occurrence of events in-
cluding the dependencies in analysis. DFTA is selected for this study in order to utilise its 
system-dependent relationship on the effect of component failures. 

Accordingly, failure and maintenance data over a period of six calendar years, ob-
tained from the maintenance records, were processed to generate components failure rates 
(⋌) based on Equation (4). The model structure was built suing both static and dynamic 
FT gates and events to reflect the mode of failures and, in other cases, dependency and 
sequence. Therefore, top events and sub-events were modelled using dynamic gates while 
gates connecting to the main system were modelled using static FTs; this procedure is 
necessary to reduce memory usage and improve calculation time. The probabilities for the 
static gates used were generally AND gate Equation (5), OR gate Equation (6), and voting 
gate Equitation (1): ⋌= 𝑛𝜏  (1)

where n is number of failures (106) and 𝜏 is aggregated time in service of individual DG. 
The results from the DFTA provides several outputs in addition to the reliability out-

comes; further manipulation of the gates such as the spare gates could also be used to 
model the impact of standby systems and spares, while additional improvements in 
maintenance activities can also be captured through these processes. Additionally, results 
that can be obtained from the analysis include the minimal cut set and reliability im-
portance measures. 

3.2.1. Importance Measures 
Reliability importance measures (IMs) are a means to identify the most critical com-

ponent or situation that contributes to the occurrence of the basic event leading up to 
equipment failure or top event occurrence [48,71]. In essence, the IMs help the operators, 
maintenance crew, and administrators including regulatory agency in the prioritisation 
of actions that could improve equipment or system reliability. These IMs include Birn-
baum (Bir), Fussell-Vesely (F-V), and Criticality (Cri). The Bir IM evaluates the occurrence 
of the top events based the probability of basic event occurring or not occurring, hence the 
higher the probability of the basic events the high chances of top event occurring. Critical-
ity (Cri) IMs are calculated in a similar way to the Bir IM except that it considers the 
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probability in the occurrence of the basic event to the occurrences of the top event. On the 
other hand, the F-V calculation adopts an entirely different approach in that it uses the 
minimal cut set summation i.e., the minimum number of basic events that contribute to 
the top event. Therefore, the F-V Ims consider the contribution of the basic event to occur-
rence of the top event irrespective of how it contributes to the failure. 

In this regard, using the Bir IM robust criticality analysis generates more than 290 
basic events modelled at component level failures per individual MDG. The Bir calcula-
tion method provides more accurate results compared to the other 2 Ims; this is because 
it considers all possible failures based on their individual contributions and occurrence. 
Moreover, the use of dynamic gates also provides additional complexity to the calculation 
in that the location of the event and the type and position of the gates must be considered 
to calculate the reliability of the component. For instance, some of the drawbacks with the 
Cri and F-V is the possibility of overlooking or overemphasising faults, which might give 
rise to high reliability or low reliability. The cut set approach used to determine criticality 
in F-V method could give rise to false high reliability depending on the connection of the 
events to the top gate, especially when using non dynamic gates, as it tends to consider 
only the probability of occurrence against sequences and dependencies. On the other 
hand, Bir IMs measure the increase in probability of the top event due to the occurrence 
of an event A, which lies on the critical path of a likely failure event, as presented in Equa-
tion (2). Equation (3) solves for local or sub-system level component criticality. 𝐼 (𝑖|𝑡) = ( ( ))( ) = ℎ 1 ,𝑝(𝑡) − ℎ 0 ,𝑝(𝑡)   (2)

where 
IB(i|t) = Birnbaum criticality at time t; 
h (1i, p(t)) = system reliability when system is functioning. 
h (0i, p(t)) = system reliability when system has failed. 𝑙 (𝐴) = (𝑃 𝑋|𝐴 − 𝑃 |𝑋|~𝐴 )  (3)

where 𝑙 (𝐴) = Birnbaum importance measures of for event A; 
A = the event whose importance is being measured; ~𝐴 = the event did occur; 
X = top event. 

3.2.2. Minimal Cut Set 
A minimal cut set (MCS) is the smallest set of events, which, if they all occur, cause 

the top event to occur [72]. The qualitative analysis is conducted utilising the DFTA struc-
ture, which relies on the logical properties of the gates. On the other hand, the quantitative 
analysis is based on MRO data, including failure rate, MTBF, and frequency. The quanti-
tative analysis outputs are objective results that include system unreliability, unavailabil-
ity, and reliability importance measures which provide critical components failures. How-
ever, the MCS evaluation is based on the output evaluated using the logic combination of 
the top event occurrence usually from left to right. Therefore, to obtain the MCS, the DFTA 
structure representing each MDG was built based on the functional relationship and sys-
tem boundary of the sub-systems on the respective marine MDGs. 

Accordingly, the product of the MCS derived from the evaluated fault tree was used 
to identify or isolate important failures in a system or sub-system. Moreover, considering 
that a single basic event can equally form a cut set depending on the arrangement of the 
fault tree, it goes to show how important the qualitative evaluation of fault trees can be. 
Figure 3 provides some instance of MCS, such that sub-system 1 having an AND gate fails 
only when all the events have occurred however the intermediate OR gate fail when any 
of its BEs occur, while in the case of sub-system 2, the occurrence of BE 7 or BE 8 is an 
MCS. On the other hand, sub-system 3 has all the BEs as MCS due to the AND top gate. 
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This highlights potential area where improvements can be achieved either through rede-
sign or simply altering the system to improve its reliability. 

 
Figure 3. Example of alternative methods of minimal cut set formation. 

Using Figure 3 above, the cut sets associated with each of the top events can be cal-
culated as follows: 𝐶  = 𝐶 ,  , 𝐶 ,  , … , 𝐶 ,  =    (4)𝐶  = 𝐶 ,  , 𝐶 ,  , … , 𝐶 ,  = 𝑈 𝐶 ,    (5)𝐶  = 𝐶 ,  , 𝐶 ,  , … , 𝐶 ,  = 𝑈 𝐶 ,     (6)

where 𝐶 ,  = the basic event in the group of minimal cut set. 
Thereafter, the probabilities of occurrence of the top events can be obtained using 

Equation (7): 𝑃(𝑇𝐸) = 𝑃 𝐶 ⋃ 𝐶 … . ⋃ 𝐶  = 𝑃 ⋃ 𝐶    (7)

where 
P(TE) = the probability of the occurrence of the top event; 
(Ci …m, i ≠ 0) = cumulative summation of all minimal cut set. 

3.3. ANN Diagnostics 
Machinery failures frequently exhibit early indicators, enabling operators to foresee 

potential problems, which, if addressed, could enhance the availability, reliability, and 
cost-effectiveness of maintenance management. Therefore, gaining comprehension of 
these indicators can result in enhanced maintenance and operational procedures. A neural 
network analysis was performed in conjunction with system reliability analysis on MDGs 
to detect faults associated with system failures. The ANN fault detection model, utilising 
FFNN, offers comprehensive insights into significant causes of failures. 

Feedforward Neural Network 
Diagnostics analysis involves recognising patterns in the data that indicates the pres-

ence of variations pointing to a change in the normal health parameters of the system or 
machinery of interest. A supervised ANN feedforward neural network was implemented 
for the classification analysis. Feedforward ANN is a time series algorithm that can be 
used for both function fitting and pattern recognition [73]. The feedforward networks usu-
ally have single or multilayer hidden sigmoid neurons followed by a series of output neu-
rons. Multiple layers of neurons with nonlinear transfer functions enable the network to 
learn nonlinear relationships between input and output vectors [74]. 
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A two-layer feedforward network with sigmoid activation and SoftMax output neu-
rons were adopted for the study based on Equation (8). The sigmoid activation function, 
Equation (9), helps to improve the prediction capability of the neurons by adding bias and 
non-linearity while the SoftMax activation function, Equation (10), is a probability func-
tion with values between 0 and 1, that determines the similarity of the output to the input 
class. Therefore, highest probability being 1 and vice-versa, both the sigmoid and SoftMax 
are used for classification problems, and they help improve the model’s capability [36]. 𝑦  (𝑥, 𝑤) =  𝜎 ∑ 𝑤 ( ) ℎ ∑ 𝑤 ( ) + 𝑤( ) + 𝑤( )       (8)

𝜎(𝑥) =      (9)

 ( ) ∑  ( )    (10)

4. Case Study 
Machinery repair and maintenance data, as well as operational health monitoring 

data, over a period of six calendar years, were obtained from the power generation system 
(PGS) of an offshore patrol vessel (OPV). The PGS is only used for electricity generation 
onboard and is the main source of power to both at sea and at the harbour. The system 
was design without an emergency MDG; therefore, the four generators are run as main 
MDGs. These MDGs are rated at 440 Volts, 60Hertz 3 Phase with a steady load speed of 
1800 RPM. The MDGs are 12-cylinder V arrangement and turbo charged with direct sea 
water intercooler. The main type of fuel type used onboard is low-sulphur fuel oil bun-
kered via fuel tankers. 

4.1. Case Study: Vessel Mission Profile 
The vessel selected for this research belongs to the Centenary Class OPVs of the Ni-

gerian Navy. The vessel is mainly engaged in patrol duties typically lasting 3–4 weeks at 
sea and 2 weeks at harbour. In addition to normal patrols, the vessel can conduct search 
and rescue operations, oil spill clean-up, and helicopter recovery and launching. There-
fore, the MDGs play a central role in the vessel’s operation safety and efficiency, especially 
during rescue and helicopter operations. As such, the MDGs play a pivotal in the vessel’s 
overall ability to achieve its operational objectives. Consequently, it is a standard practice 
in the Navy to run on parallel MDGs while transiting through a channel or in areas with 
restricted traffic and during close-up situations; hence, this explains the accrued long 
hours of operation of the MDGs. 

It is therefore clear that the MDGs were in high demand, making the PGS the most 
critical system onboard. Overall, the MDGs have an average monthly running hour of 
about 160 h per generator. It therefore becomes important to ensure their availability while 
efficiently putting in place a maintenance strategy that considers the environment. Figure 
4 presents utility obtained from the PGS to some major users onboard. 
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Figure 4. Power generation system utility service consumers. 

4.2. Case Study: Assumptions and Limitations 
Some necessary assumptions were made to enable a more generalised implementa-

tion of the methodology on the collected data. In particular, the reliability analysis was 
conducted using failure rate obtained from MRO of the MDGs over a period of 78 calendar 
months; hence, the analysis assumes equal operational time distribution among the 
MDGs. Therefore, failure rates for individual MDGs were assumed to be constant withing 
the period, while multiple components such as the injector nozzles, valves and tappets 
were assumed to have identical failure rates. In this regard, these components were model 
as repeated faults not as individual distinct failures. The quality of maintenance and repair 
was assumed to be the same irrespective of whether the component was repaired or re-
placed. 

As stated earlier, data collected include MRO and sensor data on machinery health 
parameters. The MRO was used to generate failure rate for individual MDGs, while the 
sensor data provided information for machinery diagnostic analysis. Some other details 
extracted from MRO were on maintenance or repair action taken and possible causes of 
certain failures; however, these data lack details on routine services and the extent of work 
performed. Therefore, based on the data collected, the analysis did not explicitly consider 
issues such as human factors, quality of spares, and environmental impacts on machinery 
performance or fault. Additionally, performance degradation to establish machinery life 
was difficult to establish. In this regard, the research only considered machinery health 
parameters for faut identification in relation to component reliability analysis limited to 
the case study data. 

4.3. Case Study Data Presentation 
The case study data obtained from individual MDGs provide details on failure rates, 

date failure occurred, and action taken as regards either repair or replacement, while the 
machinery health data contain information on temperature, pressure, and power output. 
On the other hand, the data did not provide evidence on performance degradation on the 
MDGs due to the frequency of repair and replacement that are often not clearly captured 
by the maintenance crew. Consequently, the case study covers mainly reliability and fault 
identification due to data constraints. In this regard, using the generated data, system re-
liability and criticality measures are obtained from the DFTA results. The failure rate data 
obtained from the maintenance records covering about six calendar years were used as 
input for the DFTA analysis; summary of the failure rates for 4 MDGs is shown Table 1. 
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Table 1. Component failure rate per 10,000/hours for the case study MDGs. 

Components   Frequency 
 Failure Type Action Taken MDG1 MDG2 MDG3 MDG4 

Turbo charger Black smoke Replaced, Repaired 8 10 12 12 

Lub oil cooler 
Oil leakage 

1. Replaced 
2. Cleaned and zinc anode re-
placed 

16 18 15 16 

External leakage  10 8 8 12 
Oil cooler valve failed Remove/repaired 1 1 2 1 

Cylinder head 

1. Oil leakage 
2. Fresh water leakage 
from A2 exhaust 
3. Unable to start 

1.Liner, O-ring replaced (G1&G3) 
2. Cylinder replaced (G3&G2) re-
placed gasket (G3) 

20 19 
1× (A1&A2) 3 × (A2, 
liner) 2 × (A2 head)  

1 × (A3&B2 gskt) 
21 

Guide bushing 20 14 20 20 
O-ring 28 32 23 23 
Holding bolts 18 17 17 16 

Cylinder 
jacket/sleeve 

1.Scuffed × 4 
2. Cracked × 2 

Replaced 11 12 11 12 

Piston Rings Replaced 12 13 13 14 
cooling/crown  8 13 15 14 

ConRod 
bent  7 9 8 9 
Gudgeon pin  8 6 8 6 

Drive belt failed Replaced 8 8 9 11 
Torn(wear) Replaced 11 5 9 3 

Mech Injector 
pump 

1. Cracked bolts 
2. Broken bolts 
3. Broken shims 

1. Replaced bolt and drive 
(G1&G3) 
2. Replaced bolt, pulley, and set 
injector timing (G1&G2) 
3. Replaced shims 

16 12 12 13 

Drive defects 22 20 21 24 

Using the failure rate data, the unreliability in the system as well as the machinery 
were established, while identifying the most critical component in the system or machin-
ery. In addition, the MCS function of the DFTA is relevant in analysing the failure path 
and possible ways of mitigating them. Furthermore, the output from the DFTA tool, 
namely, component criticality and cut set, are going to form a very important input for 
the BBN analysis while the ANN uses parametric data for fault detection analysis. Overall, 
the MDGs have an average monthly running hours of about 160 h per generator; conse-
quently, it is important to ensure their availability while efficiently putting in place a 
maintenance strategy that ensures reduced emission from both primary and secondary. 

Case Study Diagnostic Data Analysis 
In addition to the MRO data, which provide data for the DFTA, machinery health log 

data for the four MDGs was accessed for the purpose of diagnostics analysis. In this re-
gard, fault identification analysis was carried out using ANN feedforward networks. Ma-
chinery health parameters and their limits are presented in Table 2. However, to improve 
model quality, a correlation analysis was conducted to extract the most relevant futures 
for the diagnostics analysis; details are provided in Section 5.4. 
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Table 2. MDG safe health parameters and alarm limit range used for diagnostics. 

No Parameter Abbreviation Operating Ranges Alarm 
   Min Max  
1 Lubricating Oil Pressure LoP 0.4 Mpa 0.55 Mpa >0.6 
2 Cooling Fresh Water Temperature FWT(A/B) 75 °C 80 °C >85 °C 
3 Lubricating Oil Temperature LoT 30 °C 110 °C >120 °C 
4 Fresh Water Pressure FWP 0.02 Mpa 0.25 Mpa >0.3 
5 Exhaust Gas Temperature EGT(A/B) 220 °C 400 °C >520 
6 Engine Speed RPM 1789 RPM 1850 RPM 2052 RPM 
7 Power Output KW 0 440 KVA 440 Kva 
8 Generator Running Hours HRS ≥2000 h   

Therefore, machinery log data collected from the case study ship were used to de-
velop a diagnostic model. Input and response variables were obtained based on the out-
come of feature engineering, Table 3 presents the response and predictor variables. The 
predictor variables represent the most sensitive parameters to the response variable con-
sidering the thermodynamics behaviour of diesel engines. 

Table 3. Diagnostics input Variables. 

Variable Abbreviations Remarks 
Fresh Water Temperature A-Bank FWTA Response Variable 
Fresh Water Temperature B-Bank FWTB Response Variable 
Exhaust Gas Temperature B-Bank ETB(EGTB) Response Variable 
Exhaust Gas Temperature A-Banks ETA (EGTA) Response Variable 
Lubricating Oil Temperature LoT Response Variable 
Lubricating Oil Pressure LoP Response Variable 
Power Output Kw Predictor Variable 

In this regard, the performance of the training process to develop the diagnostic using 
FFNN is presented in the below figures. Overall, the predictor variables consist of 1090 
observations from 7 features, from which only one was used, while the response variable 
includes 1090 observations from 3 classes. The data was then split into 70% training, 15% 
validation, and 15% test. 

Accordingly, details on the training performance are given in the confusion matrix 
of the training, validation, and test partitions. The matrices provide the percentage accu-
racy at each level of the model development, as well as a combined or generic matrix for 
the 3 levels. Overall, each of the classes had an over 80% score in matrices, which suggest 
a strong model performance. Furthermore, the combined output of the matrices, as shown 
in Figure 5, show a collative score for the classes at 83.7%, which proves the quality of the 
data and the choice of response predictor variables. The overall picture on model accuracy 
based on the confusion matrix for the diagnostic training model is presented Figure 5. 
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Figure 5. Training confusion matrix. 

5. Results and Discussion 
This section discusses the results of the case study findings as developed in the meth-

odology section, which began by presenting the DFTA results of the reliability importance 
measures and the minimal cut set (MCS). The MCSs were used as input for the building 
maintenance decision support platform using BBN. Thereafter, feature selection and fault 
identification analysis using FFNN was presented. 

5.1. Importance Measures 
Reliability importance provide significant insight on component that greatly impacts 

system failures. The information from the IM can be considered collectively as all subsys-
tems are analysed individually, hence helping to isolate the most critical component to 
each system, though with the downside of common cause failures. Therefore, using the 
information from the IM data the maintenance department can help us glean very im-
portant aspects on component prone to certain failures, which can help generate spares 
holding based likely usage patten for onboard usage and shore technical stores. Therefore, 
instead of considering a single MDG, a collection of all critical components can be made 
at the fleet level while at the ship or platform MDGs can be considered individually. This 
brings to light the importance of component criticality to faults mapping, as implemented 
in this research. Moreover, the overall maintenance platform being developed is geared 
towards a more flexible maintenance approach that can be updated based on actual ma-
chinery operating condition either through manual or automated data imputation. Over-
all, the IMs in Table 4 represent components that have at least contributed more than 50% 
of all failures within the period analysed that are common to all the MDGs in the PGS. 
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Table 4. Component High Criticality Across MDGs. 

Component Criticality 
Valve Clearance  0.50 
Oil Inlet Hose  0.52 
Primary Fuel Lift Pump  0.53 
Air Filter  0.55 
Primary Fuel Filter  0.56 
Pulley Bolts  0.58 
Fuel Injection Pump Erratic 0.60 
TBC Seal Lub  0.63 
Crank Shaft Main Bearing 0.63 
Top Cylinder Gasket 0.71 
Top Cylinder Bolts 0.73 
Fresh Water Heat Exchanger Tubes (fouled) 0.78 
Crankshaft Journal Failure 0.82 
High Pressure Fuel Pipe  0.82 
Cylinder Block Damage 0.88 
Lub Oil Pump  0.99 
Cylinder Damage 1 
Fresh Water Circulation Pump  1 
Fresh Water Heat Exchanger Tubes (leakages) 1 

The results in the above table provide a list of 19 components that contribute to most 
failures. Additionally, the components are equally among the most challenging with re-
gard to cost and repair time, except for the oil filter, which is easily replaceable. However, 
missing the replacement of oil filters could result in undesirable impacts on the condition 
of the filter that may lead collapse or constriction. These situations can bring about dis-
ruption in oil supply to other major parts of the MDG. Consequently, this points to addi-
tional risk factors associated to component failures. Therefore, it also becomes important 
that failures associated with this component are identified, which can be achieved through 
the MCS. 

5.2. Minimal Cut Sets 
MCSs obtained through DFTA for individual subsystems had dual purposes: the first 

was its relevance within the DFTA framework and the second was its use as input to build 
the BBN probability analysis. The adoption of the MCSs as inputs for the BBN was to 
ensure that the maintenance DSS is consistent or to translate findings of the DFTA to ac-
tionable maintenance decisions. Having this in mind, the MCSs provide very valuable 
inputs to the maintenance decision support, especially considering the failure relations, 
such as failures triggered by a fault in another system. Hence, the relevance of investigat-
ing interrelationships in component failures becomes critical. Moreover, a lot of failures 
in main machineries are as result of primary failures in a performance supporting system. 
An example of this is the crank case failure of the MDGs investigated, which exhibited a 
concerning low level of reliability due to faults initiated in other system and the crankcase 
seemed not designed to handle such faults, particularly faults originating from the lubri-
cation and freshwater cooling as well as the air distribution system. This makes it difficult 
to isolate failure to faults, so the approach in this research is to identify the MCSs, and link 
the components and their percentage of occurrence, as shown in Table 5. This way, the 
operators can prioritise maintenance and identify spare parts shortages, as necessary. 
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Table 5. Most critical MCSs to MDG availability. 

DG1 % DG2 % DG3 % DG4 % 
Crankshaft Journal Fail-

ure 49 Fuel Injection Pump Me-
chanical Failure 82 Crankshaft Journal Fail-

ure 78 HP Fuel Pipe Leakages 85 

Fuel Filter (1&2) 87 
FW Heat Exchanger 

Fouling 67 
FW Heat Exchanger 

Fouling 94 
FW Heat Exchanger 

Tube Fouling 70 

Sea Chest Blockage 71 Tappet Clearance (Inlet 
and Exhaust Valves) 

82 RW Impeller Damage 84 Rocker Arm and Tap-
pets Clearance 

86 

Tappet Clearance (Inlet 
and Exhaust Valves) 52 Burnt Top Cylinder Gas-

ket 86 Turbo Charger Lub Fail-
ure 75 Governor Drive 77 

Cylinder Head Sealing 75 Clogged Air Filter 75 
Cylinder Head Gasket 

Damage 72 Intercooler Fins Fouling 53 

Fuel Lift Pump Defects 82 Injector Nozzle Faults 74 Injector Nozzles Cylinder 72 Turbo Charger 52 
Turbo Charger Leak-

ages 
54 Clogged Air Filter 76 Blacked Fuel Filter 76 Cylinder Head Gasket 

Damage 
73 

Cylinder Jacket Cracks 50 Oil Filter 46 Piston Crown Damage 87 Loose Cylinder Head 
Bolts 64 

Low Fuel Pressure 63 No Fuel Supply 78 Tappet Clearance 80 Clogged Air Filter 65 

RW Water Impeller 84 Defective Fuel Pump 82 
Loose Cylinder Head 

Bolts 68 
Injector Camshaft Fail-

ure 54 

Overall, MCSs capture fault formations based on the qualitative structure of the 
DFTA, thus providing a more structured understanding of failure and fault relationships. 
For instance, in Table 5, heat exchanger fouling or scaling remains one of the dominant 
faults, which can be linked to reduced cooling efficiency and possibly failures due to over-
heating. Similarly, failures related to the top cylinder gasket can be associated with over-
heating problems due to sea water or freshwater cooling problems. Therefore, we can es-
tablish the relationship between a fault and failure based on the percentage influence of 
the cut set. Failures do not always result in components becoming critical to maintenance, 
but once they are, these kinds of critical faults can be well planned for, either by adding 
more repair or inspection or by offering backup systems. Emphasising these kinds of 
measures could improve monitoring and quick intervention. Moreover, the ability to effi-
ciently identify faults and their possible courses can help address the challenges associ-
ated with extended downtime, the cost of repairs, and repair capability, which are major 
concerns for operators. 

5.3. BBN Results 
The BBN model for each of the four MDGs was created in two stages. The first stage 

involved analysing the availability of the subsystem, while the second stage was develop-
ing the maintenance decision support system (DSS). The analysis of component availabil-
ity was conducted using data from MCSs for components that contribute more than 50% 
chance to the top events occurrence as identified in the DFTA. The CPT tables were filled 
with data derived from the MCS percentage rates obtained from the DFTA and the corre-
sponding influence of those faults on the components. The BBN also offers the ability to 
simulate and quantify the influence of CCF on various parts and systems. Thus, minimis-
ing redundancy and improving the evaluation of faults’ consequences. 

The BBN availability model’s purpose is to investigate the availability of key compo-
nents in the PGS. This is particularly important because it directly affects the safety of 
operators, passengers, equipment, and cargo. As a result, the model investigated various 
failure types and their influence on component availability and MDG. We obtained the 
components used in the model from DFTA MCS and determined their probability of fail-
ure based on the collected MRO data. This input was used to determine the availability of 
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individual MDGs, as presented in Table 6. The overall MDG availability is determined by 
subsystem availability; this explains the low availability of MDG 3 and 4, which seemed 
to be influenced by low numbers in fuel and lubricating systems, both of which would 
have a significant impact on the MDG’s performance and ability to take significant loads. 
In general, subsystem availability serves as a guide for determining the focus of mainte-
nance efforts. However, to enhance maintenance decision-making, it is necessary to take 
into account additional factors that impact on the delivery and quality of maintenance. 

Table 6. BBN MDG and component availability. 

MDG  MDG1 MDG2 MDG3 MDG4 
Individual Availability 50% 53% 48% 47% 
Subsystem Availability     
Cylinder Block 47% 43% 44% 44% 
PTO 60% 56% 50% 60% 
Cooling  37% 39% 39% 37% 
Fuel System 43% 45% 44% 44% 
Air Distribution  50% 52% 52% 42% 
Lubrication 62% 75% 56% 55% 
Inlet and Exhaust 60% 63% 62% 58% 
Alternator 59% 52%  59% 57% 

The maintenance DSS was developed using two major input sources, namely, the 
availability for the BBN and RPN from the FMECA. It is pertinent to note that the FMECA 
analysis and results used for the DSS were presented in earlier research by the author. 
Therefore, details of the FMECA can be obtained via [75]. The relevance of the FMECA is 
in providing subjective inputs regarding operator sentiment on mission critical compo-
nent failures to help provide intuition to the overall DSS. Accordingly, four maintenance 
strategy options were adopted for developing the maintenance DSS; these are corrective 
action, condition monitoring (ConMon), planned maintenance system (PMS), and delay 
action. The allocation of an MDG to any of the maintenance strategies is determined by 
the cumulative availability of the subsystems measured against RPN with a value between 
0–100, as defined in Table 7. 

Table 7. Developed maintenance strategy definitions and RPN ranges. 

Maintenance 
Strategy Definition RPN Range 

(0–100) 

Corrective Action 
This is recommended for very high to high mission critical component or faults for ex-
ample sea water supply pump impeller, fuel supply pump, automatic voltage regulator 
faults, etc.  

75–100 

Condition Moni-
toring 

This strategy serves as intervention to ensure system availability targeted at component 
or failures whose early identification could avert major operational delays.  55–75 

Planned Mainte-
nance System 

The PMS maintenance choices prioritise time dependent component failures with no 
immediate impacts to availability repair requirements.  

35–55 

Delay Action 
Delay action maintenance choice is directed at those components with good resilience 
or sufficient redundancy such that there is little or no danger personnel and system 
safety.  

0–35 

The assigned target value for each of the strategies determines how maintenance ac-
tion, planning, and monitoring should be prioritised. This allows for flexibility regarding 
the distribution of resources such as personnel, spare parts, logistics, and operational de-
ployment. Furthermore, the high criticality ranking for ConMon indicates the need for 
additional monitoring approaches, which can include the addition of sensors, increased 
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inspection frequency, or watchkeeping attention. The strategy prioritisation enables place-
ment of the MDGs in the maintenance DSS as a representation of the MDGs cumulative 
sub-system non-availability. Consequently, the higher the MDG score in a certain strat-
egy, the greater its position within it and the level of maintenance or monitoring required. 
In this regard, all the MDGs belong to one or all of the four strategy types based on which 
the maintenance department can plan and make projections. 

Figure 6 presents maintenance DSS allocation for the four MDGs, which shows all 
the MDGs having some form of presence in all of the four strategy types. Overall, the 
results indicate that corrective action and ConMon are the prepared options for all of the 
MDGs, with the exception of MDG 1, which has low ConMon values but high PMS. On 
the other hand, MDG1 and MDG2 were the only ones to appear within the delay action 
while showing elevated values for both corrective action and ConMon. These findings 
indicate that the two generators require a significant amount of maintenance. Addition-
ally, MDG1 has a corrective action rate of approximately 54%, while MDG2 has a rate of 
about 58% in ConMon. However, MDG3 and MDG4 have similar levels of priority, except 
in PMS, where the numbers for MDG4 are significantly higher than those for MDG3. One 
possible explanation for this is that MDG1 and MDG2 are situated in the same engine 
room, just like MDG3 and MDG4. Consequently, owing to the utilisation of common re-
sources like sea chest, ventilation, fuel line, and local stress such as vibration, the genera-
tors are prone to experiencing similar patterns of failure. Though some of these findings 
were not evident to the operators before this research, they were nevertheless consistent 
with comparable research findings in the shipping industry. 

 
Figure 6. Maintenance DSS choice for all MDGs. 

Generally, the analysis indicates how each of the MDGs aligned to a certain mainte-
nance strategy regime as a reflection of its reliability or failure pattens. Therefore, the main 
determinants are to identify what influences faults leading to failures or high level of un-
availability in subsystems. Similarly, the ability to repair the MDGs when failed is an im-
portant consideration to make, hence the need to carry out further investigation regarding 
MDG health parameters to conduct machine learning analysis for fault detection. 

5.4. Fault Detection 
The fault identification analysis using a feed-forward ANN with two layers based on 

sigmoid and SoftMax activation functions was used for the classification analysis. A time-
series data of about 1000 data points was used; the data were divided into three categories: 
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70% for training, 15% for validation, and 15% for testing. The anomaly data labels were 
used for the initial training using MDG 1; this was executed to develop a single model for 
all four MDGs. Hence, the labelled fault data using temperature fault codes (Temp) was 
used for fault detection, which contains three fault classes. Accordingly, overall training 
data utilised 20% of the data from all MDGS added to MDG1 data before splitting, as 
highlighted earlier. To enable the fault detection model, data threshold values were estab-
lished, as shown in Table 8. 

Table 8. Limits of data labels used for fault identification. 

Fault Fault Identity Fault Parameter Temperature Ranges (°C) Operating State 

Normal Temperature NTM Normal Lubricating Oil 
Temperature 

80–110 Normal 

High Temperature HTM 
High Lubricating Oil 

Temperature 110–115 Abnormal  

Overheating OVH Engine Overheating  Max 120 Fault/Failure 

For the initial training using MDG 1, we used the anomaly data labels presented in 
Table 9, aiming to develop a single model for all four MDGs. Hence, the labelled fault data 
using temperature fault codes (Temp) was used for fault detection, which contains three 
fault classes. Accordingly, overall training data utilised 20% of the data from all MDGS 
added to MDG1 data before splitting, as highlighted earlier. 

Table 9. Fault labels. 

RPM LoP FWTA FWTB LoT FWP EGTA EGTB RH KW Fault Temp 
1800 0.458 72.9 75.4 90 0.067 332.1 319.5 5234 115 Normal NML 
1800 0.465 72.8 75.3 89.9 0.068 335.3 323.9 5235 120 Normal NML 
1800 0.59 72.01 74.06 89.3 0.068 329.5 316.7 5236 115 Fault HTM 
1800 0.53 70.7 73.2 87.6 0.068 310.2 29.4 5262 100 Normal NML 
1800 0.58 78 80.68 96.2 0.066 366.1 355.9 5294 150 Abnormal OVH 
1801 0.58 75.8 78.6 94.6 0.067 360.4 351.7 5298 140 Abnormal HTM 
1800 0.504 76.2 79.1 95 0.067 361.2 353.1 5299 140 Normal HTM 
1800 0.58 78.6 78.7 94.5 0.067 359.1 350.1 5300 140 Abnormal HTM 
1800 0.502 76.2 79.1 94.8 0.067 358.3 351 5201 140 Normal HTM 
1800 0.499 75.8 78.8 95.6 0.067 360.1 353.7 5302 150 Normal NML 
1800 0.488 77.8 80.5 96.1 0.066 374.2 363.3 5203 140 Normal OVH 
1800 0.498 77.3 80 95.8 0.066 364.3 354.3 5204 150 Normal HTM 

Therefore, having established the fault labels for the diagnostic analysis, it is neces-
sary to identify which of the variables can be used a good health indicator. Accordingly, 
a correlations analysis was conducted for feature selection using the R-values with strong-
est correlation; this was also backed by personal experience and established industry prac-
tice for diagnostic feature selection on MDG. Hence, this provides the foundation for the 
variable used for the diagnostic analysis, as seen in Figure 7. 
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Figure 7. Correlation Matrix. 

In view of the above, fault identification limits were determined by utilising the 
threshold values specified in Table 8. Therefore, a model was trained using data from 
MDG 1 and was partitioned as earlier explained. Among the six response variables, LoT 
had a good R-score against KW, which is the predictor variable, as can be seen in       
Figure 7. In this regard, the original model training was conducted with LoT as the re-
sponse variable and KW as the predictor. The model accuracy based on the true positive 
rate (TPR) and false negative rate (FNR) classes is presented in Figure 8. Overall, the model 
has achieved more than 97% accuracy between the true and predicted classes in identify-
ing the three classes, namely NML, HTM, and OVH. 

 
Figure 8. Training model accuracy. 

The results of the original model using MDG 1 are shown in Figure 9. The fault iden-
tification scatter plot indicates that the MDG was operating with relatively elevated 
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temperatures, usually above 80 degrees. Similarly, an indication of abnormally operating 
condition is the region of overheating situation around 60 kw to 100 kw, as indicated in 
Figure 9. Moreover, the selection of the LoT as a predictor is premised on its fidelity to 
indicate performance degradation, as well as the overall health of internal combustion 
engines especially within the normal operating range as well in overload conditions. 

 
Figure 9. Original Data Model. 

Following the original dataset diagnostics outcome using the LoT, the model was 
tested using the held partitioned data for the test. The test model prediction of the fault 
class performed well above 96%, as presented in Figure 10. Going by the test model accu-
racy, the model seemed to generalise well with major fault classes and is not very different 
from what was presented in the original model prediction. 

 
Figure 10. Test model accuracy. 

The model was deployed on the combined data of the MDGs, and the result remains 
consistent with both the validation and test data results earlier presented. The prediction 
model shows more fault detections with improved accuracy, mainly because of improved 
data presented during both the test and validation phases. Figure 11 shows predictions 
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using the combined data from the MDGs; the plot indicate challenges with the MDGs 
operating temperature especially around >100 kw. This information provides important 
confirmation on the operational temperature disparity between the OEM and operator. In 
this regard, additional investigations were carried out with other response variable to pro-
vide some level of validation between the different response variables. 

 
Figure 11. Model prediction with LoT. 

Figure 12 is a diagnostic plot using ETA with the KW predictor variable. The scatter 
positions are generally similar to that of the LoT, in particular with HTM positions domi-
nate around 100–150 KW output. On the other hand, there seem to be no health indications 
beyond 180 KW, suggesting that the MDGs hardly produce up to 200 KW. Moreover, the 
only few scatter positions above 200 KW are that of OVH and possibly misclassified NML. 

 

Figure 12. Combined MDG data prediction using ETA. 

Overall, scatter plots using the LoT and ETA diagnostic models, as presented in this 
research, have good fitness for fault detection. Though each of the plots presented varying 
levels of intensity regarding the fault classes and common regions that the MDGs tend to 
deviate from an acceptable or normal operating range, the two plots clearly identified the 
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HTM positions at nearly the same points in the plot, though with varying clarity. Accord-
ingly, the findings confirm the low reliability and criticality of both the cooling and lubri-
cating systems, thereby establishing a reasonable ground for relatively MCS outcomes as 
well as concerns regarding the cooling system and cylinder head bolts. Therefore, the link 
between component reliability and fault can be established based on the fact that the 
MDGs operate most of the time at relatively high temperatures, above the normal operat-
ing range but below alarm levels. 

Furthermore, the component reliability analysis identified components such as the 
sea chest, FW heat exchanger, tappet clearance, and turbo charger as the most critical to 
MDG reliability. In the MDG, all of the stated components can be associated with temper-
ature increases and performance degradation. However, since the MDGs are run most of 
the time at the harbour or when the ship is alongside, this could explain the reliability 
issues with the sea chest and due to objects in the water. 

The fault identification analysis has played a crucial role in pinpointing failure con-
ditions that are associated with reliability outcomes. These results would significantly re-
inforce the reliability analysis outcome but would also raise the issue of the performance 
of the MDGs above 50% of the rated output. In fact, the LoT diagnostics analysis and ETA 
fault identification analysis have both identified the maximum loads the MDGs overheat. 
In general, using both ETA and LoT, the safe working load for the MDGs was between 160 
kw and 200 kw, suggesting the MDGs could have been overrated. Therefore, with this 
finding, it is safe to say that the MDGs are overrated; hence, the operator can decide to 
take this up with the OEM. 

6. Conclusions 
This paper presents a hybrid approach that combines dynamic fault tree analysis 

DFTA, BBNs, and ANNs to analyse system reliability and machinery health degradation. 
The methodology introduced in the paper serves as a valuable tool for operators and asset 
managers to enhance maintenance strategies by offering a detailed assessment of compo-
nent criticality and related faults based on collected data. As the shipping industry faces 
increasing scrutiny and regulations related to emissions control, efficient maintenance ap-
proaches that ensure equipment availability and system reliability while minimizing 
emissions become crucial. Traditional maintenance methods may not suffice to address 
these complex challenges. In this regard, to tackle these issues, the study highlights the 
potential of sensor technologies, reliability, and data analysis in offering efficient solutions 
for ship maintenance. The hybrid methodology employing DFTA, BBNs, and ANNs was 
developed to determine component criticality and identify faults. 

A case study was conducted on the power generation system of an OPV, which iden-
tified critical components and their corresponding faults. These faults had a significant 
impact on vessel availability and overall system performance. The utilisation of BBN anal-
ysis, which includes inputs from the DFTA criticality and MSC, enabled the analysis of 
sub-system availability and the development of a maintenance decision support system 
(DSS). The study also assessed the accessibility of MDGs by analysing their individual 
components and suggesting strategies for upkeep. Overall, corrective action and ConMon 
were the most preferred options among most MDGs, although their availability differed. 
Ultimately, an artificial neural network (ANN) was utilised to detect faults, with LoT and 
ETA serving as a response and KW as predictor. The results indicated that the majority of 
malfunctions took place when the power output was slightly above 150 KW and associ-
ated to high temperature faults. Overall, the main issues identified are overheating and 
low load carrying capacity of MDGs, contributing to frequent failures affecting key com-
ponents such as heat exchanger tubes, crankshaft journals, cylinder head bolts and fresh-
water circulation pump. 
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ABS(NS) American Bureau of Shipping (Nautical System) ISM code International Safety Management  
ANN Artificial Neural Network MCS Minimal Cut Set 
BBN Bayesian Belief Network MTTF Mean Time to Failure 
BE Basic Event MTBF Mean Time Between Failure  
BSI British Standards Institution MDT Mean Down Time 
CBM Condition-Based Maintenance MRO Maintenance, Repair, and Overhaul 
CMMS Computerised Maintenance Management System NASA National Aeronautics and Space Administration 
CPT Conditional Probability Table ISO International Standard Organisation 
RPN Risk Priority Number  OEM Original Equipment Manufacturer 
OREDA Offshore and Onshore Reliability Data OPV  Offshore Patrol Vessel 
MDG  Marine Diesel Generator PAND Priority-AND 
ETA Event Tree Analysis DFTA  Dynamic Fault Tree Analysis 
DSS Decision Support System PMS Planned Maintenance System 
GHG Green House Gas RCM Reliability-Centred Maintenance 
CII Carbon Intensity Index UN United nations 
EEXI Energy Efficiency Existing Ship Index RPM Revolution Per Minute 
SOM Self-Organising Maps LoP Lubricating Oil Pressure 
FFNN Feedforward Neural Network FWT(A/B) Fresh Water Temperature (Bank A/B) 
FDEP Functional Dependency  LoT Lubricating Oil Temperature 
FMEA Failure Mode and Effect Analysis FWP Fresh Water Pressure 
FMECA Failure Mode Effect and Criticality Analysis EGT(A/B) Exhaust Gas Temperature (Bank A/B) 
FTA Fault Tree Analysis RH Running Hours 
IM Importance Measure  KW Kilo Watt 
IMO International Maritime Organisation  HRS Hours 
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