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Abstract

Recent advancements in Large Language Mod-
els (LLMs) and Multi-Modal Models (MMs)
have demonstrated their remarkable capabili-
ties in problem-solving. Yet, their proficiency
in tackling geometry math problems, which ne-
cessitates an integrated understanding of both
textual and visual information, has not been
thoroughly evaluated. To address this gap, we
introduce the GeoEval benchmark, a compre-
hensive collection that includes a main subset
of 2000 problems, a 750 problem subset fo-
cusing on backward reasoning, an augmented
subset of 2000 problems, and a hard subset of
300 problems. This benchmark facilitates a
deeper investigation into the performance of
LLMs and MMs on solving geometry math
problems. Our evaluation of ten LLMs and
MMs across these varied subsets reveals that
the WizardMath model excels, achieving a
55.67% accuracy rate on the main subset but
only a 6.00% accuracy on the challenging sub-
set. This highlights the critical need for testing
models against datasets on which they have not
been pre-trained. Additionally, our findings in-
dicate that GPT-series models perform more
effectively on problems they have rephrased,
suggesting a promising method for enhancing
model capabilities.1

1 Introduction

Geometry math problems are a key component in
assessing the mathematical reasoning skills of K12
students, serving as a critical benchmark for evalu-
ating educational outcomes (Zhang et al., 2023c).
The complexity of solving these problems stems
from the requirement to interpret both textual and
visual information, in addition to applying mathe-
matical reasoning skills. This complexity has made
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1The code and data available are at https://github.com/
GeoEval/GeoEval.

Figure 1: Unique examples of our GeoEval benchmark.

geometry problem-solving a key area of interest for
researchers aiming to evaluate the capabilities of
AI models in this domain (Chou and Gao, 1996; Ye
et al., 2008; Zhang et al., 2023a; Trinh et al., 2024;
Zhang et al., 2024).

In recent years, several datasets, such as Geom-
etry3K (Lu et al., 2021), PGPS9K (Zhang et al.,
2023b), and GeomVerse (Kazemi et al., 2023), have
been developed to test the proficiency of AI mod-
els in solving geometry math problems. Yet, these
datasets often lack a standardized format and suf-
ficient diversity, complicating the assessment of
models’ genuine proficiency in geometry problem-
solving. Furthermore, these datasets typically fo-
cus on one type of geometry problem, such as flat
geometry, overlooking other crucial areas like solid
geometry. This oversight limits the ability to con-
duct a thorough evaluation across the full spectrum
of geometry problems.

Simultaneously, advancements in large language
models (LLMs) and multi-modal models (MMs)
have demonstrated significant potential in handling
complex reasoning tasks (Chen et al., 2022b; Wei
et al., 2022; Zhang et al., 2023d). This potential
has raised considerable interest in testing these ad-
vanced models across a variety of tasks, such as
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math word problem solving (Lu et al., 2023) and
physical problem solving (Sawada et al., 2023). De-
spite this interest, specific research on evaluating
these models’ effectiveness in geometry problem-
solving remains scarce. Therefore, it is critical
to develop a new, comprehensive benchmark that
can effectively assess LLMs and MMs in geome-
try problem-solving, especially considering the po-
tential exposure of existing public datasets during
model training (Sainz et al., 2023). Comparing the
performance of current LLMs and MMs on such a
benchmark is essential, as it could yield valuable
insights that further the development of models
capable of tackling complex reasoning tasks.

To prompt research towards assessing LLMs’
and MMs’ proficiency in geometry math problem-
solving, we introduce the GeoEval benchmark, a
comprehensive collection specifically designed for
this task. GeoEval features its Comprehensive Va-
riety, sourced from seven public datasets and for-
matted uniformly to encompass a wide range of
geometric shapes. It includes Varied Problems, cov-
ering flat, solid, and analytic geometry to challenge
models comprehensively. GeoEval supports Dual
Inputs, accommodating both diagrammatic and tex-
tual problem representations, making it suitable
for evaluating both LLMs and MMs. To counter
the potential overfitting to previously seen datasets,
GeoEval introduces Diverse Challenges through
backward reasoning, augmented, and hard subsets,
each designed to test different aspects of models’
geometry problem-solving abilities. Additionally,
GeoEval is annotated with Complexity Ratings, al-
lowing for a fine-grained analysis of model perfor-
mance across various difficulty levels, thus provid-
ing a robust framework for advancing AI capabili-
ties in understanding and solving geometry math
problems. Examples of geometry problems from
our GeoEval can be found in Figure 1.

In this paper, we conduct extensive experiments
using the GeoEval benchmark to evaluate the profi-
ciency of 10 LLMs and MMs in solving geometry
problems. This includes three LLMs: CodeGen2-
16B (Nijkamp et al., 2023), GPT-3.5 (OpenAI,
2022), and GPT-4 (OpenAI, 2023); two LLMs
specialized in mathematics: WizardMath-70B and
WizardMath-7B-V1.1 (Luo et al., 2023); and five
MMs: llava-7B-V1.5 (Liu et al., 2023), Qwen-VL
(Bai et al., 2023b), mPLUG-Owl2 (Ye et al., 2023),
InstructBLIP (Dai et al., 2023), and GPT-4V (Ope-
nAI, 2023). The findings reveal that GeoEval forms

a challenge benchmark, with both LLMs and MMs
struggling to resolve its complexities effectively.

Notably, our results indicate that: 1 Models
pre-trained on mathematical corpora, such as the
WizardMath models, deliver superior performance
across various GeoEval subsets (Section 4.3.1), es-
tablishing new benchmarks in the field. 2 One
advantages of these models is that they implicitly
encompass required mathematical knowledge de-
manded to solve the geometry math problems (Sec-
tion 4.6). 3 However, we also find that through
pre-training on a mathematical corpus is crucial
for solving geometry math problems, it may not
be enough (Section 4.3.4). 4 Additionally, we
observe that GPT series models exhibit enhanced
problem-solving efficiency when tackling geome-
try questions that they have previously rephrased
(Section 4.3.4). 5 Further analyses underscore the
value of incorporating descriptions of geometric
diagrams, which significantly aids LLMs in un-
derstanding and solving geometry problems (Sec-
tion 4.5). 6 Finally, our experiments show that
both performances LLMs and MMs decline as the
problem length and complexity of the problem in-
creases (Section 4.7). Through the GeoEval bench-
mark, we believe this research provides the first
comprehensive quantitative assessment of the lat-
est LLMs and MMs in the domain of geometry
problem-solving.

2 Related Work

Numerous benchmarks have been developed to as-
sess the capabilities of LLMs in geometry problem-
solving task. However, these benchmarks face lim-
itations, such as restricted access, like GEOS (Seo
et al., 2015) and GeoShader (Alvin et al., 2017)
datasets, or insufficient scale, as seen with GEOS++
(Sachan et al., 2017). Although recent efforts have
introduced new benchmarks like Geometry3K (Lu
et al., 2021), UniGeo (Chen et al., 2022a), and
PGPS9K (Zhang et al., 2023b), they still fall short
in offering a uniform format and embracing a wide
range of problem types. In response, we introduce
the GeoEval benchmark, featuring both compre-
hensive and challenging, aiming to advance the
evaluation of geometry problem-solving abilities.

Recently, LLMs (Peng et al., 2023; Touvron
et al., 2023; OpenAI, 2022) and multi-modal mod-
els (MMs) (Liu et al., 2023; Ye et al., 2023; Ope-
nAI, 2023) have achieved impressive results on
complex tasks, attracting research into their perfor-



mance across specialized tasks. Previous work like
MathVista (Lu et al., 2023) have concentrated on
scientific domains, likewise SEED (Li et al., 2023)
explores models’ understanding of temporal and
spatial relationships. Despite these advancements,
there remains a gap in the examination of mod-
els’ ability in solving geometry math problems.
Through the GeoEval benchmark, we aim to fill
this gap by offering a detailed assessment of both
LLMs’ and MMs’ abilities to tackle a variety of
geometry math challenges.

3 GeoEval Dataset

The GeoEval benchmark is structured into four sub-
sets: GeoEval-2000, comprising 2,000 problems;
GeoEval-backward, with 750 problems; GeoEval-
aug, containing 2,000 problems; and GeoEval-hard,
including 300 problems. The subsequent sections
will detail the collection process for each individual
subset, followed by an explanation of the unique
features of the GeoEval benchmark.2

3.1 Data Collection

3.1.1 Collection from Diverse Data Sources

We have compiled a comprehensive collection of
public geometry math problem datasets, with a
total of 24,912 geometry math problems from
sources such as Geometry3K (Lu et al., 2021),
PGPS9K (Zhang et al., 2023b), UniGeo (Chen
et al., 2022a), GeoQA+ (Cao and Xiao, 2022), Ge-
ometryQA (Tsai et al., 2021), as well as geome-
try problems from the MATH (Hendrycks et al.,
2021) and MathQA (Amini et al., 2019) datasets.
The first four datasets feature geometry questions
that include both problem texts and geometric dia-
grams, whereas the latter three datasets comprise
questions that only contain problem texts. Detailed
information about all source datasets is available in
Appendix B.

Building on the data gathered, we then se-
lected 2,000 geometry math problems to create our
GeoEval-2000 subset. This selection process was
guided by the aim to inclusively cover a wide range
of basic geometric shapes, ensuring a broad repre-
sentation of geometry concepts. The distribution
of geometric shapes within this subset is further
detailed in Appendix C.

2Statistics for the GeoEval benchmark are in Appendix A.

3.1.2 Backward Data Generation
In contrast to forward problems, backward prob-
lems use the answer from forward problems as a
starting point, posing a query to determine a spe-
cific number that was part of the forward problems
but is concealed in the backward problems (Jiang
et al., 2023). These types of questions are particu-
larly effective in assessing models’ capability for
multi-step reasoning. Following the methodology
of previous research (Yu et al., 2023), we selected
750 problems from the GeoEval-2000 subset and
created corresponding backward questions. This
process involved masking a number, the solution
of the forward problems, as "X". The prompt "The
correct answer is ansgold. Now please answer what
is the value of X?", where ansgold represents the
correct answer to the forward problems, is then
added. The example of backward problems can be
found in Appendix D.

3.1.3 Augmented Data Generation
To evaluate the resilience of current models and
mitigate the risk of data leakage that may occur dur-
ing the pre-training phase, we implement a context
learning strategy for rephrasing problems from the
GeoEval-2000 subset. Each problems is rephrased
into five variant candidates by GPT-3.5 (OpenAI,
2022), ensuring they retain the original problems’s
semantic essence while varying in lexical structure.
Out of these five alternatives, one is selected ran-
domly to substitute the original problems, forming
the GeoEval-aug subset.

3.1.4 Hard Data Collection
While the GeoEval-2000 subset comprises geom-
etry problems from a variety of source datasets, it
exhibits a lack of diversity in problem categories,
notably in solid geometry and analytic geometry.
To enhance the diversity of problem categories, we
introduce the GeoEval-hard subset, which includes
300 geometry problems specifically focusing on
solid geometry and analytic geometry, providing a
broader assessment scope. More details regarding
to the comparison between GeoEval-hard subset
with other datasets are in Appendix E.

The creation of the GeoEval-hard subset be-
gins with web scraping to gather approximately
10,000 authentic geometry problems from online
resources. An initial selection is made using a rule-
based engine equipped with a keyword list, target-
ing solid and analytic geometry problems. This
step yields around 3,100 potential problems, identi-



Dataset Comprehensive
Variety

Varied
Problems

Dual
Inputs

Diverse
Challenges

Complexity
Ratings

MathQA (Amini et al., 2019) n/a flat text ✗ ✗
GeometryQA (Tsai et al., 2021) n/a flat text ✗ ✗
Geometry3K (Lu et al., 2021) n/a flat text + diagram ✗ ✗
GeoQA+ (Cao and Xiao, 2022) n/a flat text + diagram ✗ ✗
MATH (Hendrycks et al., 2021) n/a flat text ✗ ✗
UniGeo (Chen et al., 2022a) n/a flat text + diagram ✗ ✗
PGPS9K (Zhang et al., 2023b) n/a flat text + diagram ✗ ✗
GeomVerse (Kazemi et al., 2023) n/a flat text + diagram ✗ ✓

MathVista (Lu et al., 2023) 4 flat text + diagram ✗‡ ✗
GeoEval 7 + 3 (new) flat, solid, analytic text + diagram ✓ ✓

Table 1: Comparison between GeoEval benchmark and other datasets. Under Comprehensive Variety, MathVista
and GeoEval stand out as collective datasets, while the rest, denoted as ’n/a’. GeoEval includes problems from seven
public datasets and three newly created ones. Varied Problems categorizes problems into "flat geometry", "solid
geometry", and "analytic geometry", For Dual Inputs, ’text’ signifies problems presented only in text format, whereas
’text + diagram’ encompasses problems with both texts and diagrams. In Diverse Challenges, the symbol ‡ indicates
that MathVista introduces three new datasets, which, however, are unrelated to the geometry problem-solving task.

fied as GeoEval-hard-raw. A manual review further
narrows these down to 300 problems specifically
related to solid and analytic geometry. The clean-
ing and manual inspection process, is documented
in Appendix F.

3.2 Features of GeoEval

The GeoEval benchmark is specifically designed
for assessing the ability of models in resolving ge-
ometric math problems. This benchmark features
five characteristics: Comprehensive Variety, Varied
Problems, Dual Inputs, Diverse Challenges, and
Complexity Ratings, with each attribute exempli-
fied in the Appendix G. For an insightful contrast,
Table 1 offers a comparative analysis of GeoEval
against earlier datasets.

Comprehensive Variety GeoEval consists of a
diverse collection of geometry problems sourced
from seven most recent datasets. Therefore, the
problems in GeoEval cover a wide range of geo-
metric shapes, offering a comprehensive view of
varied geometry math challenges.

Varied Problems The GeoEval benchmark en-
compasses three distinct categories of geometry
math problems, namely flat geometry, solid geome-
try, and analytic geometry.

Dual Inputs GeoEval features problems in two
formats: those accompanied by diagrams and those
consisting solely of text. This versatility makes it
suitable for evaluating models that process either
digrams or text-based inputs.

Diverse Challenges In addition to gathering pub-
lic datasets, GeoEval also generates its own out-of-
distribution dataset aimed at addressing data leak-
age problems. This includes a backward reasoning
subset, an augmented subset, and a hard subset, all
created by us.

Complexity Ratings GeoEval is equipped with
annotations indicating the complexity level for each
problem, serving as a guideline to evaluate models’
proficiency in solving these tasks.3

4 Experiments

4.1 Experimental Setup

In this study, we deliberately select state-of-the-art
LLMs and MMs that are widely recognized for
their advanced capabilities, including:

• LLMs Specialized in Programming Code:
We include CodeGen2-16B model (Nijkamp
et al., 2023), which is renowned for its profi-
ciency in understanding and generating pro-
gramming code, offering insights into its
adaptability to solve geometry math problems.

• LLMs with a Focus on Mathematics:
This includes WizardMath-7B-V1.1 and
WizardMath-70B (Luo et al., 2023), explicitly
pre-trained on mathematical corpora. Their
inclusion allows for an assessment of models
that have been fine-tuned to tackle complex
mathematical problems.

3Algorithm for classifying complexity is in Appendix H.



• LLMs Designed for a Broad Range of Top-
ics: Models such as GPT-3.5 (OpenAI, 2022)
and GPT-4 (OpenAI, 2023) exemplify the ad-
vanced commercial LLMs engineered to en-
compass a broad range of topics.

• Multi-Modal Models (MMs) with Diverse
Decoders: Given the ubiquity of ViT archi-
tecture (Dosovitskiy et al., 2021) as the vision
encoder in MMs, we select models that in-
tegrate ViT with various LLMs as decoders.
This includes llava-7B-V1.5 (Liu et al., 2023)
with Vicuna (Peng et al., 2023), Qwen-VL
(Bai et al., 2023b) using Qwen (Bai et al.,
2023a), mPLUG-Owl2 (Ye et al., 2023) with
LLaMA (Touvron et al., 2023), InstructBLIP
(Dai et al., 2023) with Vicuna (Peng et al.,
2023), and GPT-4V (OpenAI, 2023).

These models are evaluated through a zero-
shot approach, utilizing straightforward instruction
prompts to directly assess their geometry problem-
solving capabilities without further fine-tuning
specifically for our benchmark.4

4.2 Evaluation Metric

Building upon the approach by MathVista (Lu et al.,
2023), we first input the generated sequence from
the model into GPT-4 to extract the target value
or option letter. To enhance the precision of our
answer extraction, we formulate intricate rules for
post-processing the outcomes in cases where GPT-
4 falls short. This approach has enabled us to attain
an extraction accuracy surpassing 97%, similar to
the success rate reported in MathVista (Lu et al.,
2023). Details on the crafted prompts and the ex-
traction guidelines are available in Appendix J.

The extracted results are compared against the
golden answers to determine the final performance
metric. Given the model’s intention to produce re-
sponses in varying formats, either as the precise an-
swer (for instance, "3.15") or as the corresponding
option letter (such as "A"), we regard a prediction
as accurate if it either matches the golden answer
or the golden option letter.

4.3 Experimental Results

In this section, we present the accuracy achieved by
models on our GeoEval benchmark. Table 2 high-
lights that models pre-trained on a math-specific

4Details on the prompt design and the hyperparameters
used for these models are available in Appendix I.

corpus tend to outperform others. Furthermore, ex-
cept for llava-7B-V1.5 and Qwen-VL, multi-modal
models (MMs) generally exceed the performance
of large language models (LLMs). Notably, In-
structBLIP exhibits exceptionally high accuracy
scores across all subsets, yet its results raise some
concerns, and we have chosen to exclude the In-
structBLIP model. The rationale behind this deci-
sion is detailed in Appendix K.

4.3.1 Comparison among LLMs

When reviewing the performances of LLMs as de-
tailed in Table 2, it becomes evident that mod-
els pre-trained on mathematical corpora demon-
strate superior efficacy in solving geometry math
problems compared to those trained on general
corpora. Specifically, evaluating on all problems
of GeoEval-2000 subset (marked as "A" in the
table), WizardMath-70B leads with an accuracy
of 55.67%, while WizardMath-7B-V1.1 closely
follows with a 54.78% accuracy, outperforming
other LLMs. Conversely, GPT-4, GPT-3.5, and
CodeGen2-16B report notably lower accuracies, all
under 30.00%. Focusing on questions solely based
on problem text within the GeoEval-2000 subset
(indicated as "T" in the table), GPT-4 emerges as
the frontrunner, securing the highest accuracy of
43.86%, with WizardMath models also surpassing
the 32.00% accuracy. These findings underscore
the enhanced proficiency of models pre-trained on
math-specific corpora in tackling geometry math
problems, particularly when problems are well-
described textually, as evidenced by GPT-4’s lead-
ing performance.

In the GeoEval-backward subset, WizardMath-
7B-V1.1 excels with the highest accuracy of
32.66%, closely followed by WizardMath-70B at
28.66%. This significant drop in performance
across all LLMs, compared to the GeoEval-2000
results, highlights a collective weakness in back-
ward reasoning capabilities. For the GeoEval-aug
subset, WizardMath-7B-V1.1 again tops the leader-
board with an accuracy of 47.75%, with GPT-4 not
far behind at 45.75% accuracy. Lastly, within the
GeoEval-hard subset, all models, excluding GPT-
3.5, exhibit relatively low accuracies, indicating a
broad difficulty in addressing the most challenging
solid geometry and analytic geometry problems.



GeoEval-2000 GeoEval-backward GeoEval-aug GeoEval-hard
Model A (%) T (%) A (%) A (%) A (%)

CodeGen2-16B ♢ 28.76 22.06 5.10 8.50 5.66
GPT-3.5 ♢ 24.71 21.27 22.66 41.25 22.33
GPT-4 ♢ 27.95 43.86 26.00 45.75 10.10

WizardMath-70B ♢ 55.67 34.20 28.66 37.75 6.00
WizardMath-7B-V1.1 ♢ 54.78 32.76 32.66 47.75 6.00

llava-7B-V1.5 12.80 21.01 11.33 20.25 20.30
Qwen-VL 25.60 25.97 5.66 22.25 21.66
mPLUG-Owl2 37.76 n/a 35.33 38.00 22.66
InstructBLIP † 52.18 n/a 15.66 35.00 70.30
GPT-4V 37.22 43.86 ‡ 26.00 45.75 10.10

Table 2: Accuracy scores of models on our GeoEval benchmark. The "♢" refers to all LLMs. The "A" signifies the
overall accuracy across all problems, while "T" denotes the accuracy for problems containing only texts without
diagrams. "n/a" indicates that scores are unavailable due to models cannot process text-only inputs. The "†" shows
our doubt on the high accuracy rates reported by the IntructBLIP model, our point is elaborated in Section 4.3. The
"‡" notes that the accuracy figures for GPT-4V are derived from GPT-4, as GPT-4V does not support image-free
inputs. Detailed reporting on model performance, segmented by dataset origins, is available in Appendix L.

4.3.2 Comparison among Multi-Modal
Models

Table 2 shows that among the MMs, GPT-4V and
mPLUG-Owl2 consistently outperform their coun-
terparts across all subsets. Specifically, within the
GeoEval-2000 subset, mPLUG-Owl2 leads with an
accuracy of 37.76%, closely followed by GPT-4V
at 37.22%, with the remaining MMs fall behind
at lower accuracies. Specifically, Qwen-VL and
llava-7B-V1.5 achieve accuracies of 25.60% and
12.80%, respectively. When examining problems
that only involve texts, GPT-4V achieves a 43.86%
accuracy, significantly surpassing llava-7B-V1.5
(21.01%) and Qwen-VL (25.97%).

In the GeoEval-backward subset, mPLUG-Owl2
tops with the accuracy of 35.33%, with GPT-4V
following at 26.00% accuracy. This performance
shows a notable lack in backward reasoning skills,
as illustrated by the diminished results of llava-
7B-V1.5 and Qwen-VL in this category. Moving
to the GeoEval-aug subset, GPT-4V leads with
an impressive 45.75% accuracy, with mPLUG-
Owl2 at the second place with 38.00% accuracy.
Both Qwen-VL and llava-7B-V1.5 show compa-
rable performances in this subset. Lastly, within
the GeoEval-hard subset, mPLUG-Owl2 demon-
strates the highest efficacy with a 22.66% accuracy,
closely followed by Qwen-VL and llava-7B-V1.5.
Surprisingly, GPT-4V records a lower accuracy of
just 10.10%, highlighting the challenging nature of

GeoEval-hard subset and the varied capabilities of
MMs in addressing the most difficult problems.

4.3.3 Comparison between LLMs and
Multi-Modal Models

In the GeoEval-2000 subset, specifically for prob-
lems that only include texts, GPT-4’s performance
exceeds the top MMs, Qwen-VL, by 17.89%. This
is attributed to the MMs’ inability to access geo-
metric diagrams, which likely hinders their com-
prehension of the problems. Moreover, when eval-
uating across all problems of the GeoEval-2000
subset, WizardMath-70B surpasses the best MMs,
Qwen-VL, by 17.91% in accuracy. However, MMs
like GPT-4V and mPLUG-Owl2 achieve signifi-
cantly higher accuracy than LLMs not pre-trained
on mathematical content. This underscores the
value of mathematical pre-training for excelling
in geometry problem-solving. Notably, GPT-4V’s
accuracy on all GeoEval-2000 problems is 9.27%
higher than GPT-4’s, suggesting GPT-4V’s supe-
rior capability in solving geometry problems with
diagrams.

This pattern persists in the GeoEval-aug sub-
set, where WizardMath-7B-V1.1, a model trained
on a mathematical corpus, achieves the highest
accuracy at 47.75%. Conversely, mPLUG-Owl2
leads in the GeoEval-backward and GeoEval-hard
subsets, with accuracies of 35.33% and 22.66%,
respectively. Given that GeoEval-aug rephrases



questions from GeoEval-2000, it implies both sub-
sets might have been exposed to the models dur-
ing their pre-training phase. In contrast, GeoEval-
backward and GeoEval-hard subsets are less likely
to have been previously exposed. This suggests that
WizardMath-7B-V1.1 excels with familiar geom-
etry math problems, while mPLUG-Owl2 demon-
strates a robust capability in tackling unseen ge-
ometry problems. This is further evidenced by
the low performance of WizardMath models on
the GeoEval-hard subset, where both models only
achieve an accuracy of 6.00%.

4.3.4 Analysis on the Best Model

Table 2 shows that GPT-4, the leading LLMs,
records the highest accuracy on the GeoEval-aug
subsets, though it only secures a 27.95% accuracy
on the GeoEval-2000 subset. A similar pattern
of improvement is noted for the GPT-3.5 model,
which sees its accuracy jump from 24.71% on the
GeoEval-2000 subset to 41.25% on the GeoEval-
aug subset. This improvement aligns with the in-
volvement of GPT-3.5 in generating the GeoEval-
aug subset, suggesting that the capabilities of GPT-
3.5 and GPT-4 in addressing geometry math prob-
lems significantly benefit from their use in rephras-
ing geometry question texts.

While WizardMath-70B and WizardMath-7B-
V1.1, both pre-trained on a mathematical corpus,
demonstrate superior performance on the GeoEval-
2000 subset, they show a marked decline in accu-
racy across the other subsets, with the most sig-
nificant decreases observed on the GeoEval-hard
subset. This indicates that although pre-training
on a mathematical corpus is crucial for solving
geometry math problems, it may not be enough.

In contrast to the significant variances in ac-
curacy observed among LLMs across different
subsets, the top-performing multi-modal model,
mPLUG-Owl2, maintains relatively stable accura-
cies with scores of 37.76% on the GeoEval-2000,
35.33% on the GeoEval-backward, and 38.00% on
the GeoEval-aug subsets. Additionally, the per-
formance of GPT-4V on the GeoEval-aug subset
surpasses its accuracy on the GeoEval-2000 subset,
mirroring the trends observed with GPT-4 and GPT-
3.5, further illustrating the enhanced effectiveness
of GPT-series models when engaged in rephrasing
the content of geometry questions.

Figure 2: Detailed accuracy scores for models across
various academic subjects.

4.4 Results Across Different Subjects

Figure 2 displays the performance of models across
various subjects, revealing distinct strengths. The
WizardMath-7B model significantly outperforms
others in flat geometry problems, such as length
and lines. Conversely, in solid geometry prob-
lems like cuboids and spheres, GPT-4V surpasses
WizardMath-7B, indicating its superior capability
in addressing solid geometry questions.

4.5 Benefit from the Geometric Diagram
Descriptions

Models ✗ ✓

GPT-4V 40.28 45.61 (+5.33)
WizardMath-7B 38.10 56.83 (+18.73)

Table 3: Comparison of models with (✓) and without
(✗) geometric diagram descriptions.

To assess the impact of including geometric di-
agram descriptions on models’ ability to compre-
hend geometric diagrams and solve related prob-
lems, we selected a sample of 300 questions with
geometric diagram descriptions from the GeoEval-
2000 subset. We then evaluated the performance
of two models, GPT-4V and WizardMath-7B-V1.1,
on these questions, both with and without the use
of geometric diagram descriptions. The results in
Table 3 indicate that GPT-4V’s accuracy decreases
by 5.33% without the diagram descriptions. More
significantly, WizardMath-7B’s accuracy falls by
18.73% in the absence of these descriptions. This
evidence suggests that supplemental geometric di-
agram descriptions significantly enhance models’
efficiency in solving geometry math problems, par-
ticularly benefiting LLMs.



4.6 External Knowledge Required

Figure 3: Comparison of models requiring external
knowledge ("w" in blue color) and those do not ("w/o"
in orange color).

In the GeoEval benchmark, certain questions
require external knowledge, such as the value of
π, which is not typically included in the problem
text. This necessitates models to have pre-existing
knowledge to accurately solve these problems. Fig-
ure 3 assesses the performance of four models on
problems differentiated by the need for external
knowledge, identified through a heuristic approach
that classifies problems according to whether its
solutions requires constants.

Figure 3 shows that the WizardMath-7B-V1.1
model maintains consistent accuracy on GeoEval-
2000 subset, regardless of the requirement for ex-
ternal knowledge, unlike other models, which per-
form better on problems without such requirements.
This consistency in WizardMath-7B-V1.1’s perfor-
mance is likely due to its pre-training on a math-
specific corpus, providing it with the necessary
knowledge to resolve geometry math problems ef-
fectively. In contrast, models trained on general
corpora may not possess this specialized mathemat-
ical knowledge, hindering them from solving the
problems correctly.

4.7 Performances According to Different
Problem Lengths and Varied Complexities

Figure 4 shows how models perform with inputs
of different lengths. Performance slightly varies
for problems ranging from 80 to 100 characters,
but there’s a clear trend of decreasing accuracy
as problem length increases. This is expected, as
longer questions typically involve more complex
geometry math problems, challenging the models
more as the length grows. The figure also points
out that the WizardMath-7B-V1.1 model is notably
more adept at handling longer questions, with GPT-

Figure 4: Models performances on GeoEval-2000 sub-
set according to different question lengths.

4V and GPT-4 showing relatively stable accuracy
for increased question lengths. On the other hand,
GPT-3.5 and CodeGen2-16B perform less effec-
tively on lengthy questions.

Figure 5: Model performances on GeoEval-2000 subset
according to different complexity levels.

Upon the analysis in Figure 5, similar to the ob-
servations made in Figure 4 regarding input lengths,
we delve into the models’ performances as they re-
late to the complexity of geometry math problems.
Figure 5 presents the performance of models across
varying levels of problem complexity. It is evident
that as the complexity of geometry problems esca-
lates, the accuracy of the models correspondingly
diminishes.

5 Conclusion

In this study, we present GeoEval, a benchmark
developed to assess the geometry problem-solving
capabilities of large language models (LLMs) and
multi-modal models (MMs). GeoEval comprises
four distinct subsets, each designed to facilitate a
thorough evaluation. Through our assessment of
ten cutting-edge LLMs and MMs using the GeoE-
val benchmark, we underscore the critical role of
mathematical corpus pre-training for effective ge-
ometry problem resolution. This is exemplified by
the WizardMath model’s leading performance on
the GeoEval-2000 subset, achieving an accuracy of



55.67%. However, the WizardMath model’s chal-
lenges with GeoEval-hard subset suggest a need
for enhanced reasoning skills. Additionally, our
analysis reveals that GPT-series models exhibit im-
proved performance on geometry problems they
have rephrased, pointing to the potential benefits
of self-rephrasing in problem-solving.

6 Limitations

This study, while providing significant insights into
the capabilities of large language models (LLMs)
and multi-modal models (MMs) in solving geome-
try problems, has certain limitations.

One primary constraint is that our evaluation pre-
dominantly focuses on quantitative metrics of ac-
curacy, potentially overlooking qualitative aspects
of model reasoning and explanation that are crucial
for educational applications. The performance of
models on the hard subset also highlights a gap in
advanced reasoning abilities, suggesting that cur-
rent LLMs and MMs, including those pre-trained
on mathematical corpora, may still struggle with
highly complex or novel problem types.

Moreover, this work reveals the effectiveness of
rephrased problems by GPT-series models suggests
a specific interaction effect that may not general-
ize across all types of geometry problems or other
LLMs and MMs, indicating a need for broader
research to fully understand the implications of
rephrasing on model performance.
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A Statistic Analysis

Table 4 presents a statistical breakdown of the Geo-
Eval benchmark. This benchmark encompasses a
total of 5,050 geometry math problems, categorized
into four subsets: GeoEval-2000 (2,000 problems),
GeoEval-backward (750 problems), GeoEval-aug
(2,000 problems), and GeoEval-hard (300 prob-
lems). Besides the problem text, each problem in
the dataset includes at least one of the following:
a geometric diagram, a description of the diagram,
or both. The majority of the correct answers are
numerical values, with a minority comprising ex-
pressions, coordinates, or option letters, primary in
the GeoEval-hard subset.

Total Numbers
- GeoEval-2000 2,000
- GeoEval-backward 750
- GeoEval-aug 2,000
- GeoEval-hard 300

Input Types
- text + description 1,120
- text + diagram 1,120
- text + description + diagram 1,166

Answer Types
- number 5,050
- expression 232
- coordinate 68

Problem Types
- flat geometry 5,050
- solid geometry 272
- analytic geometry 28

Others
- average problem length 28
- average description length 34
- geometry shapes 12

Table 4: Statistics of GeoEval benchmark.

Figure 6: Distributions of source datasets.
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B Source Datasets

Table 5 provides details on the source datasets
that contribute to the GeoEval-2000 subset, includ-
ing information on their content and characteris-
tics. Meanwhile, Figure 6 visualizes the propor-
tional contributions of these source datasets to the
GeoEval-2000 subset, showcasing the variety and
scope of the geometry problems collected from
each source.

Source Dataset Diagram Diagram Descriptions Quantity

Geometry3K ✓ ✓ 3001

PGPS9K ✓ ✓ 9022

UniGeo ✓ ✗ 4998 †

GeoQA+ ✓ ✗ 2518

GeometryQA ✗ ✗ 1398

MATH ✗ ✗ 1349 ‡

MathQA ✗ ✗ 2625 ‡

Table 5: The information of source datasets for GeoEval-
2000 dataset. The "†" symbol indicates that proving
problems from the UniGeo dataset have been excluded.
The "‡" sign specifies that the count only pertains to
geometry problems within the dataset, focusing on prob-
lems directly relevant to the GeoEval-2000’s scope.

C Distributions of Different Geometric
Shapes

Figure 7 illustrates the varied distribution of ge-
ometric shapes within the GeoEval-2000 subset,
highlighting the diversity of geometry concepts
represented in this collection.

Figure 7: Distributions of different geometric shapes.

D Backward Question Example

Figure 8 is an example from the GeoEval-backward
subset.

Figure 8: Example for the backward question.

E Comparison between GeoEval-hard
subset and other public datasets

To thoroughly assess the models’ abilities in grasp-
ing concepts of solid and analytic geometry, the
GeoEval-hard subset was created to include a
diverse range of visual elements, such as three-
dimensional views, across a spectrum of topics
in solid geometry. The distinctions between the
GeoEval-hard subset and other publicly available
datasets are detailed in Table 6, demonstrating the
unique coverage and complexity of the GeoEval-
hard subset in comparison.

F Inspection of GeoEval-hard subset

To ensure the GeoEval-hard dataset’s high quality
and accuracy, we form a team of six reviewers, each
holding at least a Master’s degree, to scrutinize ev-
ery question. This evaluation process is structured
in three phases: individual review, swap review,
and candidate review. The primary focus lies on
two key standards: the completeness and relevance
of the geometric diagrams, and the reasonableness
of the answers provided.

In the first phase, "individual review", each re-
viewer is randomly assigned 50 geometry math
problems from the GeoEval-hard dataset. Their
task is to assess the geometry math problems based
on the standards, marking any that fail to meet
these standards. During the "swap review" phase,
these sets of 50 geometry math problems are ex-
changed among reviewers for a second evaluation.
To ensure unbiased assessment, we hide the re-
sults of the initial review. Here, reviewers again
highlight geometry math problems not conforming
to the standards. The final phase, "candidate re-
view", involves selecting geometry math problems
for the dataset based on the outcomes of the first
two phases. Geometry math problems unmarked in



Dataset Solid Geometry Analytic Geometry

#solid geometry shapes #question type #number of knowledge points #geometry curve knowledge #question types #grade

UniGeo (Chen et al., 2022a) ✗ caculate/prove – ✗ – 6-12
GeoQA (Cao and Xiao, 2022) ✗ caculate – ✗ – 6-12
Geometry3K (Lu et al., 2021) ✗ caculate – ✗ – 6-12
PGPS9K (Zhang et al., 2023b) ✗ caculate/judge – ✗ – 6-12
MathVista(Geometry Part) (Lu et al., 2023) ✗ caculate/judge – ✗ – –
MathVista(FunctionQA Part) (Lu et al., 2023) ✗ caculate/judge – ✓ judge –

GeoEval-hard ✓ judge/caculate/reason – ✓ judge/caculate/reason 9-12

Table 6: Comparison between GeoEval-hard with other public datasets.

both phases are retained, those marked in both are
discarded, and those highlighted in only one phase
undergo further examination by the entire review
team, with the majority decision determining their
inclusion.

G Examples from GeoEval Representing
Five Features

G.1 Comprehensive Variety

Figure 9 present sample data from the GeoEval-
2000 subset, illustrating its diversity in terms of
data sources.

G.2 Varied Problems

Figure 10 displays examples of three distinct prob-
lem types in the GeoEval benchmark: flat geometry,
analytic geometry, and solid geometry.

G.3 Dual Inputs

Figure 9 shows that the GeoEval benchmark com-
prises geometry math problems that contain both
diagrams and textual descriptions, as well as prob-
lems that include textual descriptions alone.

G.4 Diverse Challenges

Figure 11 showcases examples from the GeoEval-
2000, GeoEval-backward, GeoEval-aug, and
GeoEval-hard subsets, illustrating the diverse chal-
lenges within the GeoEval benchmark.

G.5 Complexity Ratings

Every problem in the GeoEval benchmark is anno-
tated with a complexity rating, indicating the level
of skill necessary to solve it, as shown in Figure 12.

H Algorithm for Classifying Geometry
Math Problems Complexity

Algorithm 1 details our methodology for classi-
fying each geometry math problem into distinct
levels of complexity.

Algorithm 1 Algorithm for Classifying Geometry
Math Problems Complexity
Require: Problem Texts T , Diagram Descriptions D, Solu-

tion Programs S

lenT ← lengths of all T in dataset + lengths of all D
lenS ← lengths of all S in dataset
IT,D ← length of descriptions of the given problem
IS ← length of solutions of the given problem

Complexity CI ← α× (IT,D−min(lenT ))

max(lenT )−min(lenT )
+(1−α)×

IS−min(lenS)
max(lenS)−min(lenS)

if 0.0 ≥ CI ≤ 0.2 then
CI ← "Easy"

else if 0.2 ≥ CI ≤ 0.6 then
CI ← "Middle"

else if 0.5 ≥ CI ≤ 1.0 then
CI ← "Hard"

end if

I Evaluation Details

I.1 Model Hyperparameters
Table 7 presents the complete list of hyperparame-
ters applied to the models throughout the evaluation
phase.

I.2 Instruction Prompt Used for Evaluating
Models

Prior to employing instruction prompts to steer
model responses, we combine the problem texts,
diagram descriptions, and choice lists from an ex-
ample, as depicted in the "Merge" row of Table 8.
Following this combination, as illustrated in the
"Instruction" row of Table 8, we incorporate in-
struction prompts into the merged texts and then
forward these to the models to generate responses.

J Prompt & Heuristic rules For Answer
Extraction

We detail the prompts utilized for extraction us-
ing GPT-4, which include an extraction instruction
alongside various sample prompts. The extraction
instruction and the constructed samples are pre-
sented in Table 9 and Table 10, illustrating the
methodology behind the extraction process.



Figure 9: Examples from GeoEval-2000 dataset. The golden answer choice is highlighted in red color.



Figure 10: Examples of the flat geometry problem, the analytic geometry problem, and the solid geometry problem
in GeoEval benchmark.

Figure 11: Examples of GeoEval-2000, GeoEval-backward, GeoEval-aug, GeoEval-hard subsets.



Figure 12: Example for a problem annotated with complexity in the GeoEval benchmark.

Model Name Generation Parameters Comments

CodeGen2-16B do_sample=True, top_k=0.5, top_p=0.5, max_tokens=512 model=""Salesforce/codegen2-16B"

WizardMath-7B-V1.1 temperature=0.0, top_p=1, max_tokens=1024 vLLM package

WizardMath-70B temperature=0.0, top_p=1, max_tokens=1024 vLLM package

GPT-3.5 temperature=0.7, max_tokens=512 version="gpt-3.5-turbo-0125"

GPT-4 temperature=0.7, max_tokens=512 version="gpt-4-1106-preview"

llava-7B-V1.5 temperature=0.0, max_new_tokens=512 llava package

Qwen-VL temperature=0.0, max_new_tokens=512 model="Qwen/Qwen-VL"

mPLUG-Owl2 do_sample=True, top_p=0.7, max_tokens=512 model="mPLUG-Owl2"

InstructBLIP do_sample=False, num_beams=5, max_tokens=512, top_p=0.9, temperature=1.0 model="Salesforce/instructblip-vicuna-7b"

GPT-4V temperature=0.0, max_tokens=512 version="gpt-4-vision-preview"

Table 7: The hyperparameters for the models used in the evaluation are detailed. When the "comments" section
includes the format model = "", it signifies that the model was loaded from the transformer package. The vLLM
package indicates that models are implemented by the vLLM package, where more details can be found in
https://github.com/vllm-project/vllm. For models other than OpenAI’s GPT, custom codes were utilized
for evaluation unless specified otherwise in the comments.

Template Example

Merge
Here are the basic description of the diagram: ${diagram descriptions},
${problems texts},
The Choices are: ${choice list}

Please solve this math problem:
Here are the basic description of the diagram:
line B A, line C A, line B C\nCA \\perp BC on C,
BA = c, BC = a, AC = b, m \\angle ABC = 60,
m \\angle BAC = 30\nIf c = 5,
find b.
The Choices are: [1.7, 2.6, 3.5, 4.3]

Instruction
Please solve this math problem:
${Merge}
### Problem-solving Bot:

Please solve this math problem:
Here are the basic description of the diagram:
line B A, line C A, line B C\nCA \\perp BC on C,
BA = c, BC = a, AC = b, m \\angle ABC = 60,
m \\angle BAC = 30\nIf c = 5,
find b.
The Choices are: [1.7, 2.6, 3.5, 4.3]
### Problem-solving Bot:

Table 8: Templates and examples provided illustrate the process of merging and instruction creation. The placeholder
"${Merge}" represents the combined texts of "diagram descriptions," "problems texts", and "choice list". In cases
where "diagram descriptions" are absent, the phrase "Here are the basic description of the diagram:" is omitted.

https://github.com/vllm-project/vllm


Element Prompt

Task description
You are a result extraction bot. I will provide you with geometry questions and a model
output, and you will help me extract the reference answers from the model’s output.

Example 1

Question: As shown in the figure, in triangle ABC, AB = AC, ∠A = 40◦, DE is the
perpendicular bisector of AB. What is the degree measure of ∠DBC? ()
Choices: (A) 30.0 (B) 20.0 (C) 15.0 (D) 10.0
Model response: Given that ∠A = 40◦, AB = AC, we can conclude
that ∠ABC = ∠ACB = 70◦. Also, since DE is perpendicular and bi-
sects AB, we have DB = AD and ∠ABD = ∠A = 40◦. Therefore,
∠DBC = ∠ABC − ∠ABD = 70◦ − 40◦ = 30◦. The answer is option A.
Extracted answer: A

Example 2

Question: As shown in the diagram, the lateral surface area of a cone with a radius of the
base r equals 6 cm and a height h equals 8 cm is ().
Choices: (A) 94.2 (B) 150.8 (C) 188.5 (D) 251.3
Model response: Given h = 8 cm and r = 6 cm, the length of the generatrix of the cone can
be set as l. Using the Pythagorean theorem, we have l =

√
62 + 82 = 10 cm. The lateral

area of the unfolded cone is Sside = 0.5× 2× 6π × 10 = 60π cm2. Therefore, the lateral
area of the cone is 60π cm2. Therefore, the answer is C.
Extracted answer: C

Example 3

Question: In triangle ABC, F is the midpoint of BC and point E is on the AC side. AC = 10.
What is the length of AE?
Choices: (A) 3.0 (B) 4.0 (C) 5.0 (D) 4.5
Model response: Since F is the midpoint of BC, EF is parallel to AB, so EF is the median of
triangle ABC. Therefore, point E is the midpoint of AC. Therefore, AE = 0.5 × AC. Since
AC = 10, AE = 5. Therefore, the answer is C.
Extracted answer: C

Table 9: Task specific instruction used for extracting the answer, and three examples.

Regular expressions Demonstration Examples

value of (\w+) is\s*([\d.]+) The value of x is 3.5.
correct answer is\s*(.+). correct answer is C."
answer is\s*([\d.]+) answer is 17.1."
answer should be\s*(.+) degrees Therefore, the answer should be choice D."
answer to (.+) is (.+) degrees The answer to the angle ABC is 60◦

answer to the problem is\s*(.+) The correct answer to problem is y = x2 + 2x+ 3."
The closest (.+) is (.+). So we got the area is 13.1. The closest answer is D."
the (.+) is equal to (.+). The degree measure of angle ABC is 35 degrees.
(.+) is approximately (.+) units So, the length of the line segment is approximately 10 units."

Table 10: Regular expressions used for extracting the answers that GPT-4 cannot tackle.

K Reason for Removing InstructBLIP
from the Comparison

As shown in Figure 13, InstructBLIP’s responses
on the GeoEval-2000 subset are typically scalar,
lacking any intermediate reasoning steps. This sug-
gests that InstructBLIP may have been exposed to
GeoEval-2000 questions during its pre-train phase,
leading to memorization of answers. This is sup-
ported by the observed performance decline from
GeoEval-2000 to GeoEval-aug, which falls from
52.18% to 35.00%. Additionally, InstructBLIP
tends to directly generate option letters (e.g., "A")
for the GeoEval-hard subset without any reasoning
process, resulting in an improbably high accuracy
rate of 70.30% for this subset. Consequently, in

our subsequent analysis and discussions, we have
chosen to exclude the InstructBLIP model.

L Models Performances across Different
Data Sources

Table 11 shows models performances on GeoEval-
2000 subset according to different original dataset.
We can observe that WizardMath models still
achieve the best accuracy scores on almost all
datasets.



Figure 13: One example of InstructBLIP prediction on GeoEval-2000 subset.

GeoEval-2000 Data Sources
Models MATH (Geometry) (%) GeometryQA (%) GeoQA+ (%) PGPS9K (%) UniGeo (%) MathQA (Geometry) (%)

CodeGen2-16B 0.36 0.35 0.44 0.18 0.41 0.25
GPT-3.5 0.35 0.31 0.19 0.27 0.23 0.26
GPT-4 0.58 0.74 0.27 0.28 0.27 0.44

WizardMath-7B-V1.1 0.58 0.53 0.59 0.55 0.54 0.35
WizardMath-70B 0.54 0.58 0.62 0.54 0.57 0.35

llava-7B-V1.5 0.26 0.4 0.12 0.15 0.12 0.19
Qwen-VL 0.29 0.46 0.27 0.22 0.32 0.24
mPLUG-Owl2 0.27 n/a 0.29 0.46 0.27 0.0
InstructBLIP 0.0 n/a 0.59 0.48 0.57 0.0
GPT-4V 0.45 0.61 0.34 0.38 0.45 0.38

Table 11: The accuracy scores achieved by models on different sources datasets constituting the GeoEval-2000
subset.


