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A B S T R A C T
Diffeomorphic registration has become a powerful approach for seeking a smooth and
invertible spatial transformation between two coordinate systems which have been measured
via the template and reference images. While the pointwise volume-preserving constraint
det(∇𝝋(𝒙)) = 1 is effective for some problems, it is too stringent for many other problems
especially when the local deformations are relatively large, because it may lead to a poor
large-deformation for enforcing local matching. In this paper, we propose a novel bi-
variant diffeomorphic image registration model with the soft constraint of Jacobian equation
det(∇𝝋(𝒙)) = 𝑓 (𝒙) > 0, which allows local deformations to shrink and grow in a flexible
range 0 < 𝜅𝑚 < det(∇𝝋(𝒙)) < 𝜅𝑀 . The Jacobian determinant of the transformation is
explicitly controlled by optimizing the relaxation function 𝑓 (𝒙). To prevent deformation
folding and enhance the smoothness of deformation, we not only impose a positivity
constraint in optimizing the relaxation function 𝑓 (𝒙), but also employ a regularizer to ensure
the smoothness of 𝑓 (𝒙). Furthermore, the positivity constraint ensures that 𝑓 (𝒙) is as close
to one as possible, which helps to obtain a volume-preserving transformation on average. We
further analyze the existence of the minimizer for the variational model and propose a penalty
splitting method with a multilevel strategy to solve this model. Numerical experiments show
that the proposed algorithm is convergent, and the positivity constraint can control the
range of relative volume and not compromise registration accuracy. Moreover, the proposed
model produces diffeomorphic maps for large deformation, and achieves better performance
compared to the several existing registration models.

1. Introduction

Image registration is the process that attempts to seek an optimal transformation between two or more images to
establish a geometric correspondence. In the last few decades, a great number of popular registration models have
been developed to obtain reasonable transformations, including total variation (TV) model [23, 35], modified total
variation (MTV) model [12], total fractional variation (TFV) model [58, 27], diffusion model [19, 37], curvature
model [20, 21, 29], elastic model [22], viscous fluid model [11, 15], and optical flow model [32]. Although these
registration models can generate smooth transformations for relatively small deformations, not all models are
effective for large deformations. But, few models can be guaranteed to generate the diffeomorphic mappings.

The diffeomorphic demons algorithm works in the space of diffeomorphisms to enforce the transformation
invertibility. Vercauteren et al. [1, 50] shown that the demons algorithm [48] can be extended to represent the
complete spatial transformation in the log-domain. Yeo et al. [54] proposed the spherical demons method based
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on the mean curvature and average convexity to transform image surface. In addition, the large deformation
diffeomorphic metric mapping (LDDMM) [17, 5] is a popular registration framework, which can handle large
deformation and generate diffeomorphic transformation. Based on the LDDMM framework and shape analysis,
Charon et al. proposed a generalization of registration algorithms to non-oriented shapes [7] and an extension of
diffeomorphic registration to enable a morphological analysis of data structures with inherent density variations
and imbalances [34]. C. Chen [8] employed diffeomorphic optimal transportation that combines the Wasserstein
distance and the flow of diffeomorphisms, to build a joint image reconstruction and motion estimation model,
which is suitable for spatiotemporal imaging involving mass-preserving large diffeomorphic deformations.
Bauer et al. [4] proposed diffeomorphic density matching by optimal information transport and applied it to
medical image registration, building on connections between the Fisher–Rao information metric on the space of
probability densities and right-invariant metrics on the infinite-dimensional manifold of diffeomorphisms. Feydy
et al. [18] introduced a non-local geometric similarity measure based on unbalanced optimal transport methods
and fast entropic solvers to achieve robust and simple diffeomorphic registration. We also refer the readers to
[2, 5, 9, 10, 28, 36, 41, 46] for more details.

Several registration models have been developed to avoid mesh folding by restricting the Jacobian determinant
quantity det(∇𝝋) of the transformation 𝝋. Haber and Modersitzki [25] proposed an elastic registration model
subject to pointwise volume-preserving by restricting det(∇𝝋) = 1, which can ensure that the mapping is
diffeomorphic. Although such incompressibility has important applications in some fields, it is not necessary or
reasonable in others. To generate a more reasonable and practical mapping, Haber and Modersitzki then proposed
to relax the Jacobian determinant constraint into a certain interval 0 < 𝜅𝑚 < det(∇𝝋) < 𝜅𝑀 [26]. Lam and Lui
[38, 39] introduced a novel model involving a Beltrami coefficient term to obtain diffeomorphic image registration
via quasi-conformal maps. One of the most important features of this method is that the deformed Jacobian
determinant can be represented by the Beltrami coefficient. As pointed out, if the infinite norm of the Beltrami
coefficient is less than 1, thus the Jacobian determinant is greater than 0, so that such model can deal with large
deformation.

It is possible to reformulate the diffeomorphic image registration into a variational problem with an additional
penalty term relating to the deformed Jacobian determinant. Burger et al. [6] explicitly monitored det(∇𝝋) using
an unbiased function in the hyper-elastic model to ensure that the deformation is diffeomorphic. Rühaak et al. [47]
introduced a volume penalty function to control the change of det(∇𝝋), which prevented the formation of foldings
by keeping the det(∇𝝋) positive. Yanovsky et al. [52, 53] applied the symmetric Kullback–Leibler (sKL) distance
to quantify the deformation for seeking an unbiased diffeomorphic mapping. Some other work also involved
controlling det(∇𝝋) by penalty functions [30, 56, 57].
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In general, there are three main approaches for obtaining diffeomorphic maps. One approach is to find
deformation on the manifold of diffeomorphisms. An advantage of the method is computationally efficiency, but
it does not control the geometric properties of the deformation field and may result in deformation that is close
to being nondiffeomorphic. The second approach is to prevent nondiffeomorphic mappings by adding additional
constraints that equivalent to det(∇𝝋) > 0. This method can control the deformation explicitly and obtain the
diffeomorphic mappings without manual intervention. However, this may cause either over-preservation of volume
or the volume change to be large, resulting in mismatches or inaccurate registration. The third approach is to
indirectly control det(∇𝝋) via Beltrami (or Beltrami-like in 3D) coefficient. The advantage of this method is that
it can deal with large deformations well and obtain smooth deformations. However, this method works on the
Beltrami coefficient and deformation simultaneously, making the structure of energy functional too complex and
resulting in high computational expense, and convergence of the method cannot also be guaranteed.

Recently, deep learning-based methods have attracted considerable attention in image registration. Yuchen
Guo et al. [24] proposed a framework for the automatic landmark detection and registration of brain cortical
surfaces using quasi-conformal geometry and convolutional neural networks. Dongming Wei et al. [51] proposed
a recurrently usable deep neural network for infant brain MR image registration. Tony et al. [43] proposed a novel,
efficient unsupervised symmetric image registration method that maximizes the similarity between images in the
space of diffeomorphic maps and estimates both forward and inverse transformations simultaneously.

Deep learning-based methods harnesses the inductive capabilities of neural networks on the data set, shifting
the continuous iterative optimization inherent in traditional methods to the training process of deep learning. As
a result, deep learning-based image registration methods significantly outperform traditional methods in terms
of registration efficiency. However, deep learning-based methods lack rigorous mathematical theoretical support,
which limits their interpretability. Furthermore, it has poor processing capacity for large deformation registration
and is not guaranteed to generate diffeomorphism transformations [16]. In contrast, the traditional image
registration methods offer rigorous mathematical theoretical support and use precise mathematical expressions
to guide the registration process. It also has achieved success in large deformation registration and in maintaining
diffeomorphism. Although there are many research achievements on traditional registration methods, their
registration accuracy and efficiency (especially for 3D problems) still cannot meet people’s needs. The construction
of a new diffeomorphic registration model and the design of a highly accurate and fast registration algorithm still
face many difficulties and challenges.

In this work, we aim to reformulate a novel bi-variant diffeomorphic registration approach that uses a
variational minimization model, also provide an existence result of the minimizer for the variational model. This
approach generates smooth and invertible transformation, and the proposed model can be effectively applied to
large deformation registration. Our contributions are summarized as follows.
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1. We propose an image registration framework that imposes a soft constraint of Jacobian equation det(∇𝝋(𝒙)) =
𝑓 (𝒙) with a flexible function 𝑓 (𝒙) > 0 as a constraint, which can generate diffeomorphic mapping 𝝋(𝒙) by
optimizing the positive function 𝑓 (𝒙) that allows local deformations to shrink and grow in a flexible range
without compromising registration accuracy for large deformation.

2. We provide a positivity penalty term ∫Ω 𝜙(𝑓 (𝒙))𝑑𝒙 that could be integrated into the registration model
to optimize 𝑓 (𝒙) automatically. The control function 𝝓(⋅) is employed to enforce 𝑓 (𝒙) > 0 as close to
one as possible. Furthermore, the regularization term ∫Ω |∇𝑓 (𝒙)|2𝑑𝒙 is used to optimize the smoothness of
𝑓 (𝒙), which can indirectly improve the smoothness of transformation 𝝋(𝒙), and the existence of the optimal
solution of our model is theoretically guaranteed.

3. We design a penalty splitting algorithm with a multilevel strategy to solve the bi-variant variational model.
Numerical experiments show that the proposed algorithm is convergent, which not only controls the range of
det(∇𝝋(𝒙)) but also does not compromise registration accuracy. Moreover, the proposed model can produce
diffeomorphic maps for large deformation and achieve better performance compared to the several existing
registration models.

The rest of the paper is organized as follows. In Section 2, we review several popular models related to the
diffeomorphic image registration. In Section 3, we give the mathematical analysis and solving algorithm of the
newly proposed registration model. The numerical implementation of the proposed model is presented in Section 4.
We present 2D and 3D examples to evaluate the performance of our approach in Section 5. Finally, we summarize
this work in Section 6.

2. Reviews

Given a pair of images 𝑇 (⋅), 𝑅(⋅) ∶ Ω ⊂ ℝ𝑑 → ℝ (𝑑 = 2 or 3), the aim of image registration is to seek a suitable
transformation �̄�(⋅) ∶ ℝ𝑑 → ℝ𝑑 that satisfies 𝑇 (�̄�(𝒙)) ≈ 𝑅(𝒙). The updated transformation �̄�(𝒙)will be described
by simply adding the displacement field 𝒖(𝒙) into the current transformation 𝝋(𝒙), i.e., �̄�(𝒙) = 𝝋(𝒙) + 𝒖(𝒙). To
make the deformed image 𝑇

(

�̄�(𝒙)
) closer to the reference image 𝑅(𝒙), the similarity measure (𝒖) of image

registration can be minimized as

min
𝒖

{

(𝒖) ∶= 1
2 ∫Ω

[

𝑇
(

𝝋(𝒙) + 𝒖(𝒙)
)

− 𝑅(𝒙)
]2 𝑑𝒙

}

. (1)

A simple optimization of (1) leads to an ill-posed problem with unstable and nonsmooth solutions [25]. Hence a
regularizer  (⋅) is added to construct the well-posed problem

min
𝒖

{

 (𝒖) ∶= (𝒖) + 𝜏 (𝒖)
}

, (2)
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where 𝜏 > 0 is a constant to balance (𝒖) and  (𝒖). We refer readers to [31, 44, 14] for many classical similarity
measures, and [13, 19, 20, 22, 58, 59, 61] for the popular regularizers in image registration.

The diffeomorphism of the mapping �̄� = 𝝋+𝒖 is a significant requirement in image registration, and it can be
translated into its necessary condition (𝒖(𝒙)) = det(∇�̄�) > 0. A natural technique is to achieve (𝒖(𝒙)) > 0 as a
positivity constraint to explicitly safeguard against nondiffeomorphic mapping �̄� when minimizing the functional
 (𝒖). Therefore, the constrained model can be written as

min
𝒖

{

 (𝒖) = (𝒖) + 𝜏 (𝒖)
}

,

s.t. (𝒖(𝒙)) = det
(

∇(𝝋 + 𝒖)
)

> 0, ∀𝒙 ∈ Ω.
(3)

Before introducing our model, we review several recent work that imposes the Jacobian determinant positivity
constraint det (∇(𝝋 + 𝒖)

)

> 0 in some indirect ways.
• Haber and Modersitzki [25] proposed a pointwise volume-preserving image registration model, which is

followed by

min
𝒖

{

 (𝒖) = (𝒖) + 𝜏
2 ∫Ω

[

𝜇‖∇𝒖‖2 + (𝜆 + 𝜇)(∇ ⋅ 𝒖)2
]

𝑑𝒙
}

,

s.t. (𝒖(𝒙)) = 1, ∀𝒙 ∈ Ω,
(4)

where 𝜆 and𝜇 are the so-called Lamé constants. However, the pointwise volume preservation is not desirable
when the anatomical structure is compressible in medical imaging, so a soft inequality constraint that allows
local regions of the image to shrink or grow within a specified range is more practical.

• Modersitzki et al. [26] then proposed the relaxed constraint to improve the registration model (4), namely,

min
𝒖

{

 (𝒖) = (𝒖) + 𝜏
2 ∫Ω

[

𝜇‖∇𝒖‖2 + (𝜆 + 𝜇)(∇ ⋅ 𝒖)2
]

𝑑𝒙
}

,

s.t. 𝜅𝑚 ≤ (𝒖(𝒙)) ≤ 𝜅𝑀 , ∀𝒙 ∈ Ω,
(5)

where the positive constants 𝜅𝑚 and 𝜅𝑀 are provided by the user as prior information in the specific
application. In particular, when 𝜅𝑚 = 𝜅𝑀 = 1, the model (5) degenerates to pointwise volume preserving
image registration (4).

• Yanovsky et al. [53] applied the symmetric Kullback-Leibler (sKL) distance to propose a log-unbiased fluid
image registration model as follow

min
𝒖

{

 (𝒖) = (𝒖) + 𝜆∫Ω

(

|(𝒖(𝒙))| − 1
)

log
(

|(𝒖(𝒙))|
)

𝑑𝒙
}

, (6)
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where 𝜆 > 0 is the regularization parameter. The corresponding Euler-Lagrange equation can be written as

𝒈(𝒙, 𝒖) ∶=[𝑇 (𝝋 + 𝒖) − 𝑅(𝒙)]∇𝑇

− 𝜆

⎡

⎢

⎢

⎢

⎣

− 𝜕
𝜕𝑥1

(

𝜕(𝝋2+𝒖2)
𝜕𝑥2

𝐿′
)

+ 𝜕
𝜕𝑥2

(

𝜕(𝝋2+𝒖2)
𝜕𝑥1

𝐿′
)

𝜕
𝜕𝑥1

(

𝜕(𝝋1+𝒖1)
𝜕𝑥2

𝐿′
)

− 𝜕
𝜕𝑥2

(

𝜕(𝝋1+𝒖1)
𝜕𝑥1

𝐿′
)

⎤

⎥

⎥

⎥

⎦

= 𝟎,

where 𝐿′ = 1+log
(

|(𝒖(𝒙))|
)

−1∕|(𝒖(𝒙))|. The authors use the idea of [15] obtaining the instantaneous
velocity 𝒗 = −𝐺𝜎 ∗ 𝒈 from the Gaussian kernel𝐺𝜎 ∗ 𝒈 (𝜎 is variance) of functional 𝒈, then the displacement
field 𝒖 is obtained by solving the material derivative of 𝒖 as follows

⎧

⎪

⎨

⎪

⎩

𝜕𝒖
𝜕𝑡 + (∇𝒖)𝒗 = 𝒗,

𝒖(𝒙, 0) = 𝟎.

The above log-unbiased registration can help to obtain an unbiased diffeomorphic transformation. Also see
[52] for more details.

• Burger et al. [6] used a penalty function 𝜙(𝑧) =
(

(𝑧 − 1)2∕𝑧
)2 to control det(∇�̄�(𝒙)) such that its shrinkage

and growth have the same price due to 𝜙(1∕𝑧) = 𝜙(𝑧). Then the penalty term of hyper-elastic registration
can be written as

 (𝒖) = ∫Ω

(

((𝒖(𝒙)) − 1)2

(𝒖(𝒙))

)2

𝑑𝒙, (7)

where one can explicitly show that the deformation is physically meaningful due to  (𝒖) → ∞ for
(𝒖(𝒙)) → 0.

• Rühaak et al. [47] also directly measured the change of (𝒖(𝒙)) by adding the volume change control term
∫Ω 𝜙

(

(𝒖(𝒙))
)

𝑑𝒙 in the energy functional, and 𝜙 was defined as

𝜙(𝑧) =

⎧

⎪

⎨

⎪

⎩

(𝑧−1)2
𝑧 if 𝑧 > 0,

+∞ otherwise.
(8)

• Zhang and Chen [56] proposed a Beltrami coefficient-based regularizer  (𝒖) to seek a diffeomorphic
mapping �̄� = 𝝋 + 𝒖, which was defined as

 (𝒖) = ∫Ω
𝜙(|𝜇|2)𝑑𝒙, with |𝜇|2 =

‖∇ (𝝋 + 𝒖) ‖2 − 2(𝒖(𝒙))
‖∇ (𝝋 + 𝒖) ‖2 + 2(𝒖(𝒙))

, (9)
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where 𝜙(𝑧) = 𝑧
(𝑧−1)2 or 𝑧2

(𝑧−1)2 .

3. The proposed image registration model

In this part, we first introduce the proposed diffeomorphic registration model, which can be potentially applied
to large deformation. We then give the mathematical analysis including the existence of the optimal solution of
our bi-variant variational model, and derive an optimization scheme to solve the proposed variational framework.

3.1. Proposed model

As described above, we can prevent folding of the transformation �̄� by restricting the Jacobian determinant
det

(

∇�̄�(𝒙)
)

> 0. We propose to construct diffeomorphic model by taking the Jacobian equation det
(

∇�̄�(𝒙)
)

=

𝑓 (𝒙) as a constraint, and maintaining the Jacobian determinant positive is equal to keeping the unknown relaxation
function 𝑓 (𝒙) > 0. Our new idea is to design a model that can allow 𝑓 (𝒙) to be flexible and yet ensures 𝑓 (𝒙) remain
positive. This way, our new model is much simpler than similar models in the literature and is equally effective.
Therefore, the proposed diffeomorphic registration model can be written as

min
𝒖∈ ,0<𝑓∈𝐿2(Ω)

{

(𝒖) +
𝜏1
2 ∫Ω

‖∇𝒖‖2𝑑𝒙
}

,

s.t. (𝒖(𝒙)) = det
(

∇(𝝋 + 𝒖)
)

= 𝑓 (𝒙), ∀𝒙 ∈ Ω,
(10)

where  is defined by

 ∶= {𝒗||
|

𝒗 ∈ [1(Ω)]𝑑 and 𝒗|𝜕Ω = 𝟎}.

Obviously, the positivity requirement of 𝑓 (𝒙) in (10) is not easy to maintain during the optimization
computation. To overcome this draw, we propose to combine a penalty term ∫Ω 𝜙

(

𝑓 (𝒙)
)

d𝒙 that can be integrated
into (10), so that 𝑓 (𝒙) can be automatically optimized. The registration model can be rewritten as

min
𝒖∈ ,𝑓∈𝐿2(Ω)

{

(𝒖) +
𝜏1
2 ∫Ω

‖∇𝒖‖2𝑑𝒙 + 𝜏2 ∫Ω
𝜙
(

𝑓 (𝒙)
)

d𝒙
}

,

s.t. det
(

∇(𝝋 + 𝒖)
)

= 𝑓 (𝒙), ∀𝒙 ∈ Ω,
(11)

where the control function 𝜙(⋅) is known and 𝜏2 > 0.
Here we introduce two choices of function 𝜙(⋅). One choice is to consider the form in [47] as

𝜙1(𝑓 ) =

⎧

⎪

⎨

⎪

⎩

(𝑓−1)2
𝑓 , if 𝑓 > 0,

+∞, otherwise.
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Note that 𝜙1(𝑓 ) is minimized when 𝑓 (𝒙) = 1. Therefore, the penalty term ∫Ω 𝜙
(

𝑓 (𝒙)
)

𝑑𝒙 in (11) can prevent
the formation of folding by keeping 𝑓 (𝒙) > 0, and 𝑓 (𝒙) is explicitly monitored because the control term will
be infinity when 𝑓 (𝒙) ≤ 0. Another choice is inspired by the work of log-unbiased image registration [53] that
associates deformations with their corresponding global density maps, in general, it applies the sKL distance to
quantify the magnitude of deformations. We propose to measure the magnitude of 𝑓 (𝒙) by means of the sKL
distance between 𝑓 (𝒙) and 1, namely,

𝜙2(𝑓 ) =

⎧

⎪

⎨

⎪

⎩

(𝑓 − 1) log(𝑓 ), if 𝑓 > 0,

+∞, otherwise.

It is easy to know that the control function 𝜙2(𝑓 ) is always non-negative, and its minimum is zero when 𝑓 (𝒙) = 1.
Similarly, 𝑓 (𝒙) ≤ 0 can also be explicitly restricted. As have been seen, the above choices can ensure that 𝑓 (𝒙) > 0

for any 𝒙 ∈ Ω and 𝑓 (𝒙) is as close to 1 as possible. It shows that the constraint condition det
(

∇�̄�(𝒙)
)

= 𝑓 (𝒙)

can indirectly restrict the range of the Jacobian determinant det (∇�̄�(𝒙)) so that the deformation tends to be
volume-preserving.

Finally, we add a diffusion regularizer for the positivity constraint 𝑓 (𝒙) into model (11) to improve its
smoothness. Let (Ω) = {𝝎 ∶= (𝒖, 𝑓 ) ∈ (Ω) ×(Ω)} ⊂ [1(Ω)]𝑑 × 1(Ω) = [1(Ω)]𝑑+1 denote the
solution constraints where (Ω) ∶= {𝑓 (𝒙)||

|

𝑓 ∈ 1(Ω) and 𝑓 |𝜕Ω = 1}, thus a novel bi-variant registration
model for computing large diffeomorphic transformation is presented as

min
(𝒖,𝑓 )∈(Ω)

{(𝒖, 𝑓 ) ∶= (𝒖) + (𝒖, 𝑓 )} ,

s.t. det
(

∇(𝝋 + 𝒖)
)

= 𝑓 (𝒙), ∀𝒙 ∈ Ω,
(12)

where (𝒖, 𝑓 ) = 𝜏1
2 ∫Ω ‖∇𝒖‖2𝑑𝒙 + 𝜏2 ∫Ω 𝜙

(

𝑓
)

𝑑𝒙 + 𝜏3
2 ∫Ω ‖∇𝑓‖2𝑑𝒙 is a combined regularizer and 𝜏3 > 0 is

a regulariztion parameter. The function space [1(Ω)]𝑑+1 is a reflexive Banach space, and its subset (Ω) ⊂

[1(Ω)]𝑑+1 is convex.

3.2. Existence of minimizers and optimization

The penalty method is one of the most popular ways to recast an equality constraint optimization problem (12)
to an unconstraint optimization problem [45], which is done by adding a penalty term to the objective functional
that penalizes the violation of the constraints. Then, a quadratic penalty functional that penalizes the constraints
of (12) in a Least-Squares (LS) sense is employed, leading to a modified bi-variant optimization problem which
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is given as follow

min
𝝎∈(Ω)

{

𝜆(𝝎) ∶= 𝜆[𝒖, 𝑓 ] = (𝒖) + (𝒖, 𝑓 ) + (𝒖, 𝑓 )
}

, (13)

where 𝜆 > 0 is a penalty parameter, and (𝝎) ∶= (𝒖, 𝑓 ) = 𝜆
2 ∫Ω

(

det
(

∇(𝝋+ 𝒖)
)

− 𝑓 (𝒙)
)2𝑑𝒙. Especially if 𝜆 is

chosen to be large enough, then the solution of (13) leads to an approximation solution that satisfies the equality
constraint optimization (12).
Lemma 1. Let Ω be an open bounded set of ℝ𝑑 , and (𝒖, 𝑓 ) ∈ (Ω), then

‖𝒖‖𝐿2(Ω) ≤ 𝑐1‖∇𝒖‖𝐿2(Ω), ‖𝑓 − 1‖𝐿2(Ω) ≤ 𝑐2‖∇𝑓‖𝐿2(Ω) (14)
for some constants 𝑐1 and 𝑐2 depending only on 𝑑 and Ω.

Proof 1. Refer to [3, Poincaré inequality].

In order to use the compactness results of [55] while still dealing with minimization problem (13), we obtain
inequality property from Lemma 1 as follows:

‖𝝎‖(Ω) ∶= ‖𝒖‖𝐿2(Ω) + ‖∇𝒖‖𝐿2(Ω) + ‖𝑓‖𝐿2(Ω) + ‖∇𝑓‖𝐿2(Ω) ≤ 𝑐3𝜆[𝒖, 𝑓 ] + 𝑐4, (15)

for some constants 𝑐3 and 𝑐4 depending only on 𝑐1, 𝑐2, 𝜏1 and 𝜏3. Hence the coercive property of 𝜆 holds because

𝜆(𝝎) → +∞ as ‖𝝎‖(Ω) → ∞, 𝝎 ∈ (Ω). (16)

The boundedness of (Ω) plays an important role in [55, Proposition 38.12]. Similarly, we also introduce
this frequently used trick which reduces the minimum problem (13) on the unbounded set (Ω) of the Banach
space [1(Ω)]𝑑+1 to an equivalent minimum problem

min
𝝎∈𝝎0 ,𝑟(Ω)

𝜆(𝝎), (17)

where 𝝎0,𝑟(Ω) ∶= (Ω) ∩ �̄�
(

𝝎0, 𝑟
) and �̄�

(

𝝎0, 𝑟
) def

=
{

𝝎 ∈ [1(Ω)]𝑑+1 ∶ ‖

‖

𝝎 − 𝝎0
‖

‖(Ω) ≤ 𝑟
}

. Thus,
𝝎0,𝑟(Ω) is bounded.
Lemma 2. For the functional 𝜆(𝝎) ∶ (Ω) ⊆ [1(Ω)]𝑑+1 → [−∞,∞], where 𝝎0 ∈ (Ω), the minimum
problem min

𝝎∈(Ω)
𝜆(𝝎) (i.e., the problem (13)) is equivalent to (17) when (16) holds and 𝑟 is chosen sufficiently

large.

Proof 2. Let 𝜆(𝝎) ≢ +∞. By (16) there exists an 𝑟 > 0 such that 𝜆(𝝎) > 𝜆(𝝎0) holds for all 𝝎 with
‖

‖

𝝎 − 𝝎0
‖

‖(Ω) > 𝑟. Refer readers to [55, Corollary 38.14] for more details.
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To proceed, we make the following assumptions.
Assumption 1. For any 𝒙 ∈ Ω, 𝝋 ∈ 𝓁+1(Ω) (𝓁 ≥ 0) and 𝝎 ∈ (Ω) (especially, 𝝎 ∈ 𝝎0,𝑟(Ω)), there exists
a constant 0 > 0, the following assumptions hold:

1) assume that two images 𝑇 (𝒙) and 𝑅(𝒙) satisfy

max
{

‖𝑇 ‖𝐿∞(Ω), ‖𝑅‖𝐿∞(Ω), ‖∇𝑇 ‖𝐿∞(Ω),
‖

‖

‖

∇2𝑇 ‖‖
‖𝐿∞(Ω)

}

< 0 < +∞, (18)

hence ‖𝑇 − 𝑅‖𝐿∞(Ω) < 20;

2) assume that the positivity constraint function 𝜙
(

𝑓
)

is continuous when 𝑓 > 0.

Next, let us analyze the properties of the energy functional 𝜆(𝝎).
Lemma 3 (Lower semi-continuity of (𝝎) and (𝝎)). The bi-variant regularization functional(𝝎) ∶= (𝒖, 𝑓 )
in (17) and the penalty functional (𝝎) ∶= (𝒖, 𝑓 ) satisfy lower semi-continuity, i.e., let 𝝎𝑗 ∈ (Ω) and

𝝎𝑗
∗

⟶
L1(Ω)

𝝎 (𝑗 → +∞); then

(𝝎) ≤ lim
𝑗→+∞

(𝝎𝑗), and (𝝎) ≤ lim
𝑗→+∞

(𝝎𝑗). (19)

Proof 3. Define 1(𝝎) ∶= 1(𝒖, 𝑓 ) =
𝜏1
2 ∫Ω ‖∇𝒖‖2𝑑𝒙+ 𝜏3

2 ∫Ω ‖∇𝑓‖2𝑑𝒙. Since 1 is convex, epi(1) = {(𝝎, 𝑡) ∈
dom(1) ×ℝ ∶ 1(𝝎) ≤ 𝑡} is convex. Hence, we can get that epi(1) is weakly sequentially closed, which implies
that 1 is weakly sequentially lower semi-continuous (LSC). Combined with the continuity of 𝜙

(

𝑓
)

in Assumption
2), so (𝝎) is weakly sequentially LSC.

For any 𝒙 ∈ Ω, 𝝋 ∈ 𝓁+1(Ω) (𝓁 ≥ 0) and 𝝎 ∈ (Ω) (especially, 𝝎 ∈ 𝝎0,𝑟(Ω)), there exists a constant
1 > 0, one has ‖(∇�̄�𝜃)∗‖𝐿∞(Ω) < 1 < +∞ and 𝑐5 = ‖ det(∇�̄�𝜃) − 𝑓‖𝐿∞(Ω) is boundedness, hence the
following inequality holds

|(𝝎) − (𝝎0)| ≤𝜆𝑐5
(

∫Ω
|⟨(∇�̄�𝜃)∗,∇(𝒖 − 𝒖0)⟩|𝑑𝒙 + ∫Ω

|𝑓 − 𝑓0|𝑑𝒙
)

≤𝑐6‖𝝎 − 𝝎0‖(Ω),
(20)

where �̄�𝜃 = 𝝋 + 𝜃𝒖 + (1 − 𝜃)𝒖0 for any 𝜃 ∈ (0, 1), 𝑐6 = 𝜆𝑐5 ⋅ max(1, 1) and (∇�̄�𝜃)∗is the adjoint matrix
of ∇�̄�𝜃 ∈ ℝ𝑑×𝑑 , which can also be seen from Lemma 6. The inequality (20) implies that the penalty functional
(𝝎) ∶= (𝒖, 𝑓 ) satisfies lower semi-continuity.

Lemma 4 (Lower semi-continuity of 𝜆). Assume that 𝑇 (𝒙) is differentiable with respect to 𝒙. Then the func-
tional (𝒖) is lower semi-continuous, and consequently 𝜆(𝝎) from (17) is also LSC; i.e., for each 𝜖 > 0 and
𝝎 = (𝒖, 𝑓 ) ∈ (Ω) with (𝒖) < ∞, there exists a 𝛿𝜖 > 0 such that for all �̄� = (�̄�, 𝑓 ) ∈ (Ω) satisfying
‖𝒖 − �̄�‖𝐿2(Ω) < 𝛿𝜖 , the inequality (𝒖) < (�̄�) + 𝜖 holds.

Proof 4. Since the function 𝑇 (𝒙) is differentiable, there exists a real number 𝜃 ∈ (0, 1) such that

𝑇 (𝝋 + 𝒖) = 𝑇 (𝝋 + �̄�) + ∇𝑇 (𝒔) ⋅ 𝒉,

where 𝒔 = 𝝋 + 𝜃𝒖 + (1 − 𝜃)�̄� and 𝒉 = 𝒖 − �̄�. Hence we have

(𝒖) = (�̄�) + ∫Ω

(

(𝑇 (𝝋 + �̄�) − 𝑅(𝒙))(∇𝑇 (𝒔) ⋅ 𝒉) + 1
2
𝒉𝑇

(

∇𝑇 (𝒔)∇𝑇 (𝒔)𝑇
)

𝒉
)

𝑑𝒙.

From (18), the above equation leads to

|(𝒖) −(�̄�)| ≤ 𝑐1‖𝒖 − �̄�‖𝐿2(Ω) + 𝑐2‖𝒖 − �̄�‖2𝐿2(Ω), 𝑐1 ≥ 0, 𝑐2 ≥ 0.
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In this case, we have, if taking 𝛿(𝜖) =
(

−𝑐1 +
√

𝑐21 + 4𝜖𝑐2

)

∕
(

2𝑐2
)

,(𝒖) < (�̄�) + 𝜖. Consequently, combined

with Lemma 3, i.e., the lower semi-continuity of (𝝎) and (𝝎), the functional 𝜆(𝝎) from (17) is LSC. This
proves the lemma.

The following Theorem illustrates that a more frequently used condition than Proposition 38.12. in [55] may
be necessary to guarantee existence of minimizers of 𝜆(𝝎) over (Ω) in (13).
Theorem 1 (Existence). A functional 𝜆(𝝎) ∶ 𝝎0,𝑟(Ω) ⊂ [1(Ω)]𝑑+1 → [−∞,∞] on the convex, closed, and
nonempty subset 𝝎0,𝑟(Ω) of the real reflexive Banach space [1(Ω)]𝑑+1 satisfies (16), and is weak sequentially
lower semi-continuous. Thus, the problem (17) possesses a minimum, in other words, the minimizatiom problem
(13) admits a minimum.

Proof 5. Based on [55, Proposition 38.12(c)], the problem (17) has minimum because of the lower semi-continuity
of 𝜆, the closed boundedness and convexity of 𝝎0,𝑟(Ω) and reflexivity of the Banach space [1(Ω)]𝑑+1. From
Lemma 2, we further show that the minimizatiom problem (13) admits a minimum.

To deal with the stability of the solution scheme, we add a “proximal point" term into (13), leading to the
iterative minimization problem defined by

min
(𝒖,𝑓 )∈(Ω)

{

𝑘
𝜆[𝒖, 𝑓 ; 𝒖

𝑘] =(𝒖) +
𝜏1
2 ∫Ω

‖∇𝒖‖2𝑑𝒙 + 𝜏2 ∫Ω
𝜙
(

𝑓 (𝒙)
)

d𝒙 +
𝜏3
2 ∫Ω

|∇𝑓 (𝒙)|2𝑑𝒙

+ 𝜆
2 ∫Ω

(

det
(

∇(𝝋 + 𝒖)
)

− 𝑓 (𝒙)
)2𝑑𝒙 + 1

2𝛾 ∫Ω
‖𝒖 − 𝒖𝑘‖2𝑑𝒙

}

,
(21)

where 𝛾 > 0. Further, we split (21) into two subproblems as follows.

• The 𝒖-subproblem

𝒖 = argmin
𝒖∈

{

(𝒖) +
𝜏1
2 ∫Ω

‖∇𝒖‖2𝑑𝒙

+ 𝜆
2 ∫Ω

(

det
(

∇(𝝋 + 𝒖)
)

− 𝑓 (𝒙)
)2𝑑𝒙 + 1

2𝛾 ∫Ω
‖𝒖 − 𝒖𝑘‖2𝑑𝒙

}

.
(22)

• The 𝑓 -subproblem

𝑓 = argmin
𝑓∈

{

𝜏2 ∫Ω
𝜙
(

𝑓 (𝒙)
)

𝑑𝒙 +
𝜏3
2 ∫Ω

|∇𝑓 (𝒙)|2𝑑𝒙

+ 𝜆
2 ∫Ω

(

det
(

∇(𝝋 + 𝒖)
)

− 𝑓 (𝒙)
)2𝑑𝒙

}

.
(23)
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Hence, the 𝑘-th update formulas of solving problem (21) are as follows

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝒖𝑘+1 = argmin
𝒖∈

{

1
2 ∫Ω

(

𝑇 (𝝋𝑘 + 𝒖) − 𝑅
)2𝑑𝒙 +

𝜏1
2 ∫Ω

‖∇𝒖‖2𝑑𝒙

+𝜆𝑘

2 ∫Ω

(

det
(

∇(𝝋𝑘 + 𝒖)
)

− 𝑓𝑘)2𝑑𝒙 + 1
2𝛾 ∫Ω

‖𝒖 − 𝒖𝑘‖2𝑑𝒙
}

,

𝑓𝑘+1 = argmin
𝑓∈

{

𝜏2 ∫Ω
𝜙(𝑓 )𝑑𝒙 +

𝜏3
2 ∫Ω

|∇𝑓 |2𝑑𝒙

+𝜆𝑘

2 ∫Ω

(

det
(

∇(𝝋𝑘 + 𝒖𝑘+1)
)

− 𝑓
)2𝑑𝒙

}

,

𝜆𝑘+1 = 𝜌𝜆𝑘, 𝝋𝑘+1 = 𝝋𝑘 + 𝒖𝑘+1,

(24)

where 𝜌 > 1 is the growth factor of penalty parameter 𝜆.
Next, we will derive the Gâteaux derivative of Jacobian determinant constraint in (24). Here we take the 2D

case as an example, which can easily be extended to the 3D case. We first present three Lemmas as follows.
Lemma 5. Let constant 𝜖 be small enough and vector 𝒗 ∈  be a suitable perturbation of 𝒖 ∈  , assume that
det(∇𝝋) ≠ 0, then one has

lim
𝜖→0

det(∇𝝋 + 𝜖∇𝒗) − det(∇𝝋)
𝜖

= det(∇𝝋)trace
(

∇𝒗(∇𝝋)−1
)

= det(∇𝝋)(∇𝝋)−⊤ ⋅ ∇𝒗,

where 𝐴 ⋅ 𝐵 denotes the matrix inner product ∑2
𝑖,𝑗=1 𝐴𝑖𝑗𝐵𝑖𝑗 between 𝐴 ∈ ℝ2×2 and 𝐵 ∈ ℝ2×2.

Proof 6. Firstly, from the properties of determinant, we easily know

det(∇𝝋 + 𝜖∇𝒗) − det(∇𝝋) = det
(

∇𝝋 + 𝜖∇𝒗(∇𝝋)−1∇𝝋
)

− det(∇𝝋)

=
(

det
(

𝑰𝑑 + 𝜖∇𝒗(∇𝝋)−1
)

− 1
)

det(∇𝝋).

Secondly, assume that ∇𝒗(∇𝝋)−1 =∶
(

𝑎11 𝑎12
𝑎21 𝑎22

)

, we can deduce

det
(

𝑰𝑑 + 𝜖∇𝒗(∇𝝋)−1
)

− 1 =
|

|

|

|

1 + 𝜖𝑎11 𝜖𝑎12
𝜖𝑎21 1 + 𝜖𝑎22

|

|

|

|

− 1

= 𝜖𝑎11 + 𝜖𝑎22 + 𝜖2𝑎11𝑎22 − 𝜖2𝑎12𝑎21,
(25)

then it is easy to check that

lim
𝜖→0

det
(

𝑰𝑑 + 𝜖∇𝒗 (∇𝝋)−1
)

− 1
𝜖

= 𝑎11 + 𝑎22 = trace(∇𝒗(∇𝝋)−1),

hence we obtain

lim
𝜖→0

det(∇𝝋 + 𝜖∇𝒗) − det(∇𝝋)
𝜖

= det(∇𝝋)trace
(

∇𝒗(∇𝝋)−1
)

. (26)

Finally, assume that ∇𝒗 ∶=
(

𝑣11 𝑣12
𝑣21 𝑣22

)

and (∇𝝋)−1 ∶=
(

𝑏11 𝑏12
𝑏21 𝑏22

)

, we have

trace
(

∇𝒗(∇𝝋)−1
)

= 𝑣11𝑏11 + 𝑣12𝑏21 + 𝑣21𝑏12 + 𝑣22𝑏22
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and

(∇𝝋)−⊤ ⋅ ∇𝒗 =
(

𝑏11 𝑏21
𝑏12 𝑏22

)

⋅
(

𝑣11 𝑣12
𝑣21 𝑣22

)

= 𝑣11𝑏11 + 𝑣12𝑏21 + 𝑣21𝑏12 + 𝑣22𝑏22.

Therefore, we can deduce that

trace
(

∇𝒗(∇𝝋)−1
)

= (∇𝝋)−⊤ ⋅ ∇𝒗, (27)
which shows the assertion.

Lemma 6. Let 𝝂 ∈  be an arbitrary perturbation of 𝒖. Thus, the Gâteaux derivative of (𝒖) ∶= ∫Ω(det(∇(𝝋 +
𝒖)) − 𝑓 )2𝑑𝒙 is given by

𝜕(𝒖)
𝜕𝒖

𝝂 = ∫Ω
⟨−2∇ ⋅ (𝒖)(𝒙), 𝝂⟩ 𝑑𝒙,

where  (𝒖)(𝒙) ∶= det(∇(𝝋 + 𝒖))(∇(𝝋 + 𝒖))−⊤(det(∇(𝝋 + 𝒖)) − 𝑓 ).

Proof 7. For any 𝒖, 𝝂 ∈  , let us define outer normal vector 𝒏 on boundary 𝜕Ω and any small enough constant
𝜖, from (26) and (27) in Lemma 5 one has

∫𝜕Ω

⟨

𝜕 (𝒖)(𝒙)
𝜕𝒏

, 𝝂
⟩

𝑑𝒔 = 0,

and

𝜕(𝒖)
𝜕𝒖

𝝂 = lim
𝜖→0

[𝒖 + 𝜖𝒗] − (𝒖)
𝜖

= lim
𝜖→0∫Ω

[det(∇(𝝋 + 𝒖) + 𝜖∇𝝂) − det(∇(𝝋 + 𝒖))]
𝜖
⋅ [det(∇(𝝋 + 𝒖) + 𝜖∇𝝂) + det(∇(𝝋 + 𝒖)) − 2𝑓 ]𝑑𝒙

(26)
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐∫Ω

[det(∇(𝝋 + 𝒖)) ⋅ 𝑡𝑟𝑎𝑐𝑒(∇𝝂(∇(𝝋 + 𝒖))−1)[2 det(∇(𝝋 + 𝒖)) − 2𝑓 ]𝑑𝒙

(27)
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐∫Ω

2
⟨

det(∇(𝝋 + 𝒖))(∇(𝝋 + 𝒖))−⊤(det(∇(𝝋 + 𝒖)) − 𝑓 ),∇𝝂
⟩

𝑑𝒙

=∫Ω
2 ⟨ (𝒖)(𝒙),∇𝝂⟩ 𝑑𝒙 − ∫𝜕Ω

2
⟨

𝜕 (𝒖)(𝒙)
𝜕𝒏

, 𝝂
⟩

𝑑𝒔

=∫Ω
⟨−2∇ ⋅ (𝒖)(𝒙), 𝝂⟩ 𝑑𝒙,

which proves the assertion.

Lemma 7. Let 𝒖 ∈  be a suitable perturbation of 𝝋, then one has

∇ ⋅
[

det(∇(𝝋 + 𝒖))(∇(𝝋 + 𝒖))−⊤
(

det(∇(𝝋 + 𝒖)) − 𝑓
)]

=det(∇(𝝋 + 𝒖))(∇(𝝋 + 𝒖))−⊤∇
(

det(∇(𝝋 + 𝒖)) − 𝑓
)

.

Proof 8. Since we have the inclusion from the property of the determinant

det(∇(𝝋 + 𝒖))(∇(𝝋 + 𝒖))−⊤ = (∇(𝝋 + 𝒖))∗⊤ ∶=
(

(𝜑2 + 𝑢2)𝑥2 −(𝜑2 + 𝑢2)𝑥1
−(𝜑1 + 𝑢1)𝑥2 (𝜑1 + 𝑢1)𝑥1

)

, (28)

so it is easy to obtain

∇ ⋅
[

det(∇(𝝋 + 𝒖))(∇(𝝋 + 𝒖))−⊤
]

= 𝟎. (29)
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In particular, the formula (29) is also true for the 3D case. Finally, we simplify

∇ ⋅
[

det(∇(𝝋 + 𝒖))(∇(𝝋 + 𝒖))−⊤
(

det(∇(𝝋 + 𝒖)) − 𝑓
)]

=
(

det(∇(𝝋 + 𝒖)) − 𝑓
)

∇ ⋅
[

det(∇(𝝋 + 𝒖))(∇(𝝋 + 𝒖))−⊤
]

+ det(∇(𝝋 + 𝒖))(∇(𝝋 + 𝒖))−⊤∇
(

det(∇(𝝋 + 𝒖)) − 𝑓
)

=det(∇(𝝋 + 𝒖))(∇(𝝋 + 𝒖))−⊤∇
(

det(∇(𝝋 + 𝒖)) − 𝑓
)

,

which proves the assertion.

To obtain the optimal solution of the 𝒖-subproblem, we consider its Euler–Lagrange equation, which is
equivalent to solving

(

𝑇 (𝝋𝑘 + 𝒖) − 𝑅
)

∇𝑇 − 𝜏1Δ𝒖 + 1
𝛾
(𝒖 − 𝒖𝑘)

− 𝜆𝑘 det
(

∇(𝝋𝑘 + 𝒖)
)(

∇(𝝋𝑘 + 𝒖)
)−⊤∇

[

det
(

∇(𝝋𝑘 + 𝒖)
)

− 𝑓𝑘] = 𝟎.
(30)

The above nonlinear systems (30) with the boundary condition 𝒖 = 𝟎 can be written as

⎧

⎪

⎨

⎪

⎩

−𝜏1Δ𝒖 + 1
𝛾 𝒖 = 𝒓(𝒖), in Ω,

𝒖 = 𝟎, on 𝜕Ω,
(31)

where 𝒓(𝒖) = −
(

𝑇 (𝝋𝑘 + 𝒖) −𝑅
)

∇𝑇 + 𝜆𝑘 det
(

∇(𝝋𝑘 + 𝒖)
)(

∇(𝝋𝑘 + 𝒖)
)−⊤∇

[

det
(

∇(𝝋𝑘 + 𝒖)
)

− 𝑓𝑘] + 1
𝛾 𝒖

𝑘. The
nonlinear partial differential equations (31) are difficult to be directly solved, here a simple linearization technique
is used, leading to the systems as follows

⎧

⎪

⎨

⎪

⎩

−𝜏1Δ𝒖 + 1
𝛾 𝒖 = 𝒓(𝒖𝑘), in Ω,

𝒖 = 𝟎, on 𝜕Ω.
(32)

Once the solution 𝒖𝑘+1 of (32) is obtained, we minimize the 𝑓 -subproblem by fixing 𝒖𝑘+1. In other words, we
look for 𝑓𝑘+1(𝒙) by solving the Euler–Lagrange equation

𝜏2𝑑𝜙(𝑓 ) − 𝜏3Δ𝑓 − 𝜆
(

det
(

∇(𝝋𝑘 + 𝒖𝑘+1)
)

− 𝑓
)

= 0, (33)

where 𝑑𝜙(𝑓 ) ∶= 𝑑𝜙1(𝑓 ) = 1 − 1∕𝑓 2 and 𝑑𝜙(𝑓 ) ∶= 𝑑𝜙2(𝑓 ) = log(𝑓 ) + 1 − 1∕𝑓 for the functions 𝜙1(𝑓 )

and 𝜙2(𝑓 ), respectively. Combined with the boundary condition 𝑓 (𝒙) = 1 on 𝜕Ω, the optimal solution of the
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𝑓 -subproblem can be seen as the solution of the system defined by

⎧

⎪

⎨

⎪

⎩

−𝜏3Δ𝑓 + 𝜆𝑓 = 𝜆 det
(

∇(𝝋𝑘 + 𝒖𝑘+1))
)

− 𝜏2𝑑𝜙(𝑓𝑘), in Ω,

𝑓 = 1, on 𝜕Ω.
(34)

Remark 1. As described above, our model can theoretically ensure that 𝑓 (𝒙) > 0. However, 𝑓 (𝒙) may not be
almost positive everywhere due to the multiple modeling parameter choices and not better handling the nonlinear
part of (34). To avoid grid folding, we adopt the deformation correction technique in numerical implementation
(refer to Section 4.1.2 for more details).

4. Numerical implementation

Before we describe the numerical algorithm for solving the proposed model, we first briefly introduce the
discretization of the systems (32) and (34). Without loss of generality, we focus on the discretization of two-
dimensional space. Such a discretization technique is easily extended to three-dimensional space.

4.1. Discretization

In this part, we exploit the optimize-discretize method to solve the diffeomorphic model (13). Here, a uniform
Cartesian grid of 𝑚 × 𝑛 is constructed on the image domain Ω ∶= [0, 1]2. We assume that each pixel is a box
of lengths ℎ𝑥 = 1∕𝑚 and ℎ𝑦 = 1∕𝑛, identifying pixels with cell-centered grid points. Thus the discrete image
domain is denoted by Ωℎ = {(𝑥𝑖, 𝑦𝑗) | 𝑥𝑖 = (𝑖 − 1∕2)ℎ𝑥, 𝑦𝑗 = (𝑗 − 1∕2)ℎ𝑦, 𝑖 = 1,⋯ , 𝑚, 𝑗 = 1,⋯ , 𝑛}, and (𝑖, 𝑗)

denotes the index of the coordinate (𝑥𝑖, 𝑦𝑗).
Typically, the finite difference scheme is used to approximate the first- and second-order derivatives in image

processing. We denote the discrete schemes applied to functions 𝑣 ∈ ℝ and 𝒖 = (𝑢1, 𝑢2)⊤ ∈ ℝ2 at the grid point
(𝑖, 𝑗) by

(∇𝑣)𝑖,𝑗 = (𝛿𝑥𝑣𝑖,𝑗 , 𝛿𝑦𝑣𝑖,𝑗)⊤, (∇ ⋅ 𝒖)𝑖,𝑗 = 𝛿𝑥𝑢
1
𝑖,𝑗 + 𝛿𝑦𝑢

2
𝑖,𝑗 ,

(Δ𝑢𝓁)𝑖,𝑗 = 𝛿𝑥𝑥𝑢
𝓁
𝑖,𝑗 + 𝛿𝑦𝑦𝑢

𝓁
𝑖,𝑗 , (Δ𝒖)𝑖,𝑗 =

(

(Δ𝑢1)𝑖,𝑗 , (Δ𝑢2)𝑖,𝑗
)⊤ ,

where 𝓁 = 1 or 2, and

𝛿𝑥𝑣𝑖,𝑗 = (𝑣𝑖+1,𝑗 − 𝑣𝑖−1,𝑗)∕(2ℎ𝑥), 𝛿𝑦𝑣𝑖,𝑗 = (𝑣𝑖,𝑗+1 − 𝑣𝑖,𝑗−1)∕(2ℎ𝑦),

𝛿𝑥𝑥𝑢
𝓁
𝑖,𝑗 = (𝑢𝓁𝑖−1,𝑗 − 2𝑢𝓁𝑖,𝑗 + 𝑢𝓁𝑖+1,𝑗)∕ℎ

2
𝑥, 𝛿𝑦𝑦𝑢

𝓁
𝑖,𝑗 = (𝑢𝓁𝑖,𝑗−1 − 2𝑢𝓁𝑖,𝑗 + 𝑢𝓁𝑖,𝑗+1)∕ℎ

2
𝑦.
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4.1.1. The discrete forms of two subproblems

To proceed, let us define  = det
(

∇(𝝋 + 𝒖)
)

− 𝑓 . Based on the above definitions, the finite difference
approximation 𝑘

𝑖,𝑗 of  at the grid point (𝑖, 𝑗) can be denoted as

𝑘
𝑖,𝑗 ∶=

[

det
(

∇(𝝋𝑘 + 𝒖𝑘)
)

− 𝑓𝑘]|
|

|𝑖,𝑗
=
|

|

|

|

|

|

|

𝛿𝑥(𝜑
1,𝑘
𝑖,𝑗 + 𝑢1,𝑘𝑖,𝑗 ) 𝛿𝑦(𝜑

1,𝑘
𝑖,𝑗 + 𝑢1,𝑘𝑖,𝑗 )

𝛿𝑥(𝜑
2,𝑘
𝑖,𝑗 + 𝑢2,𝑘𝑖,𝑗 ) 𝛿𝑦(𝜑

2,𝑘
𝑖,𝑗 + 𝑢2,𝑘𝑖,𝑗 )

|

|

|

|

|

|

|

− 𝑓𝑘
𝑖,𝑗

= (𝛿𝑥𝜑
1,𝑘
𝑖,𝑗 + 𝛿𝑥𝑢

1,𝑘
𝑖,𝑗 )(𝛿𝑦𝜑

2,𝑘
𝑖,𝑗 + 𝛿𝑦𝑢

2,𝑘
𝑖,𝑗 ) − (𝛿𝑦𝜑

1,𝑘
𝑖,𝑗 + 𝛿𝑦𝑢

1,𝑘
𝑖,𝑗 )(𝛿𝑥𝜑

2,𝑘
𝑖,𝑗 + 𝛿𝑥𝑢

2,𝑘
𝑖,𝑗 ) − 𝑓𝑘

𝑖,𝑗 .

See also Section 4.1.2 for more details. From Equation (28), it is easy to obtain

det
(

∇(𝝋 + 𝒖)
)(

∇(𝝋 + 𝒖)
)−⊤∇

=
⎛

⎜

⎜

⎝

𝛿𝑦(𝜑2 + 𝑢2) −𝛿𝑥(𝜑2 + 𝑢2)

−𝛿𝑦(𝜑1 + 𝑢1) 𝛿𝑥(𝜑1 + 𝑢1)

⎞

⎟

⎟

⎠

(𝛿𝑥, 𝛿𝑦)⊤

=
(

𝛿𝑥 ⋅ 𝛿𝑦(𝜑2 + 𝑢2) − 𝛿𝑦 ⋅ 𝛿𝑥(𝜑2 + 𝑢2),−𝛿𝑥 ⋅ 𝛿𝑦(𝜑1 + 𝑢1) + 𝛿𝑦 ⋅ 𝛿𝑥(𝜑1 + 𝑢1)
)⊤

,

hence the finite difference approximation of the 𝒖-subproblem (32) is given by

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−𝜏1(𝛿𝑥𝑥 + 𝛿𝑦𝑦 +
1
𝜏1𝛾

)𝑢1,𝑘+1𝑖,𝑗 = − (𝑇 𝑘 − 𝑅)𝑖,𝑗𝛿𝑥𝑇 𝑘
𝑖,𝑗 +

1
𝛾
𝑢1,𝑘𝑖,𝑗

+𝜆𝑘
[

(𝛿𝑦𝜑
2,𝑘
𝑖,𝑗 + 𝛿𝑦𝑢

2,𝑘
𝑖,𝑗 )𝛿𝑥

𝑘
𝑖,𝑗 − (𝛿𝑥𝜑

2,𝑘
𝑖,𝑗 + 𝛿𝑥𝑢

2,𝑘
𝑖,𝑗 )𝛿𝑦

𝑘
𝑖,𝑗
]

,

−𝜏1(𝛿𝑥𝑥 + 𝛿𝑦𝑦 +
1
𝜏1𝛾

)𝑢2,𝑘+1𝑖,𝑗 = − (𝑇 𝑘 − 𝑅)𝑖,𝑗𝛿𝑦𝑇 𝑘
𝑖,𝑗 +

1
𝛾
𝑢2,𝑘𝑖,𝑗

−𝜆𝑘
[

(𝛿𝑦𝜑
1,𝑘
𝑖,𝑗 + 𝛿𝑦𝑢

1,𝑘
𝑖,𝑗 )𝛿𝑥

𝑘
𝑖,𝑗 − (𝛿𝑥𝜑

1,𝑘
𝑖,𝑗 + 𝛿𝑥𝑢

1,𝑘
𝑖,𝑗 )𝛿𝑦

𝑘
𝑖,𝑗
]

,

(35)

where 𝑇 𝑘 ∶= 𝑇 (𝝋𝑘 + 𝒖𝑘) and the finite difference approximation of the 𝑓 -subproblem (34) is given by

−𝜏3(𝛿𝑥𝑥 + 𝛿𝑦𝑦)𝑓𝑘+1
𝑖,𝑗 + 𝜆𝑘𝑓𝑘+1

𝑖,𝑗 = 𝜆𝑘
(

𝛿𝑥𝜑
1,𝑘
𝑖,𝑗 + 𝛿𝑥𝑢

1,𝑘
𝑖,𝑗 )(𝛿𝑦𝜑

2,𝑘
𝑖,𝑗 + 𝛿𝑦𝑢

2,𝑘
𝑖,𝑗 )

− 𝜆𝑘(𝛿𝑦𝜑
1,𝑘
𝑖,𝑗 + 𝛿𝑦𝑢

1,𝑘
𝑖,𝑗 )(𝛿𝑥𝜑

2,𝑘
𝑖,𝑗 + 𝛿𝑥𝑢

2,𝑘
𝑖,𝑗

)

− 𝜏2𝑑𝜙(𝑓𝑘
𝑖,𝑗),

(36)

where 𝑑𝜙1(𝑓𝑘
𝑖,𝑗) = 1 − 1

(𝑓𝑘
𝑖,𝑗 )

2 or 𝑑𝜙2(𝑓𝑘
𝑖,𝑗) = log(𝑓𝑘

𝑖,𝑗) + 1 − 1
𝑓𝑘
𝑖,𝑗

.

4.1.2. Discretizing the Jacobian determinant

Similar to our previous work [60], the Jacobian determinant det(∇𝝋)|𝑜 of the deformation 𝑜 ∶= 𝜑𝑖,𝑗 at the cell
center (𝑖, 𝑗) (see Figure 1) is given by

det(∇𝝋)|𝑜 =
|

|

|

|

|

|

|

𝛿𝑥𝜑1
𝑖,𝑗 𝛿𝑦𝜑1

𝑖,𝑗

𝛿𝑥𝜑2
𝑖,𝑗 𝛿𝑦𝜑2

𝑖,𝑗

|

|

|

|

|

|

|

=
1

4ℎ𝑥ℎ𝑦

|

|

|

|

|

|

|

𝜑1
𝑖+1,𝑗 − 𝜑1

𝑖−1,𝑗 𝜑1
𝑖,𝑗+1 − 𝜑1

𝑖,𝑗−1

𝜑2
𝑖+1,𝑗 − 𝜑2

𝑖−1,𝑗 𝜑2
𝑖,𝑗+1 − 𝜑2

𝑖,𝑗−1

|

|

|

|

|

|

|
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=
1

4ℎ𝑥ℎ𝑦

⎛

⎜

⎜

⎝

|

|

|

|

|

|

|

𝜑1
𝑖+1,𝑗 − 𝜑1

𝑖,𝑗 𝜑1
𝑖,𝑗+1 − 𝜑1

𝑖,𝑗

𝜑2
𝑖+1,𝑗 − 𝜑2

𝑖,𝑗 𝜑2
𝑖,𝑗+1 − 𝜑2

𝑖,𝑗

|

|

|

|

|

|

|

+
|

|

|

|

|

|

|

𝜑1
𝑖,𝑗+1 − 𝜑1

𝑖,𝑗 𝜑1
𝑖−1,𝑗 − 𝜑1

𝑖,𝑗

𝜑2
𝑖,𝑗+1 − 𝜑2

𝑖,𝑗 𝜑2
𝑖−1,𝑗 − 𝜑2

𝑖,𝑗

|

|

|

|

|

|

|

+
|

|

|

|

|

|

|

𝜑1
𝑖−1,𝑗 − 𝜑1

𝑖,𝑗 𝜑1
𝑖,𝑗−1 − 𝜑1

𝑖,𝑗

𝜑2
𝑖−1,𝑗 − 𝜑2

𝑖,𝑗 𝜑2
𝑖,𝑗−1 − 𝜑2

𝑖,𝑗

|

|

|

|

|

|

|

+
|

|

|

|

|

|

|

𝜑1
𝑖,𝑗−1 − 𝜑1

𝑖,𝑗 𝜑1
𝑖+1,𝑗 − 𝜑1

𝑖,𝑗

𝜑2
𝑖,𝑗−1 − 𝜑2

𝑖,𝑗 𝜑2
𝑖+1,𝑗 − 𝜑2

𝑖,𝑗

|

|

|

|

|

|

|

⎞

⎟

⎟

⎠

=
1

2

(

𝑅𝑖,𝑗
Δ𝑜𝑏𝑑 + 𝑅𝑖,𝑗

Δ𝑜𝑑𝑎 + 𝑅𝑖,𝑗
Δ𝑜𝑎𝑐 + 𝑅𝑖,𝑗

Δ𝑜𝑐𝑏

)

,

where 𝑅𝑖,𝑗
Δ𝑜𝑏𝑑 is an area ratio of the triangle signed area

1
2

|

|

|

|

|

|

|

𝜑1
𝑖+1,𝑗 − 𝜑1

𝑖,𝑗 𝜑1
𝑖,𝑗+1 − 𝜑1

𝑖,𝑗

𝜑2
𝑖+1,𝑗 − 𝜑2

𝑖,𝑗 𝜑2
𝑖,𝑗+1 − 𝜑2

𝑖,𝑗

|

|

|

|

|

|

|

to the area element ℎ𝑥ℎ𝑦.

Figure 1: Finite difference computation involved the Jacobian determinant det(∇𝝋)|𝑜 of the deformation 𝑜 ∶= 𝜑𝑖,𝑗 at
the cell center (𝑖, 𝑗) for 𝑑 = 2.

In particular, if one of the ratios𝑅𝑖,𝑗
Δ⋅ is negative and the others are positive, the Jacobian determinant det(∇𝝋)|𝑜

may also be positive although a twist has occurred. At this time, box-based area measures do not detect twists. To
prevent twists and singular points, we propose a signed area minimum ratio indicator 𝑅𝑖,𝑗 that can detect twists
of the grid

𝑅𝑖,𝑗 = min
{

𝑅𝑖,𝑗
Δ𝑜𝑏𝑑 , 𝑅

𝑖,𝑗
Δ𝑜𝑑𝑎, 𝑅

𝑖,𝑗
Δ𝑜𝑎𝑐 , 𝑅

𝑖,𝑗
Δ𝑜𝑐𝑏

}

. (37)

Once 𝑅𝑖,𝑗 is negative, we will exploit the deformation correction strategy to correct the triangles with negative
area ratios. Firstly, we collect the grid folding points, such as points 𝑔, 𝑜 and 𝑏 in Figure 2(a). Then we choose
a folding key point with a large folding degree, where the folding degree Deg(p) is defined as the number of
edges containing point p in a triangle with a negative area ratio. For example, point 𝑏 is a folding key point due to
Deg(𝑏) = 5,Deg(𝑔) = Deg(𝑜) = 3 in Figure 2(a). Finally, we move point 𝑏 to 𝑏′ to ensure that the grid unfolding
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(a) Seeking the folding key point (b) Moving the folding key point (c) Checking five adjacent cell centers

Figure 2: Grid folding correction.

indicators of the five adjacent center points (𝑒, 𝑓 , 𝑔, 𝑜 and 𝑏′ respectively) are all positive, see Figure 2(b) and
Figure 2(c). The corresponding grid correction strategy has been presented in the Algorithm 1. Obviously, this
approach can be easily extended to 3D, see [60] for more details.
Algorithm 1 Deformation correction
Input: 𝝋;

1 Initialization: 𝜖 = 10−2;
2 Compute {

𝑅1, 𝑅2, 𝑅3, 𝑅4
}

∶=
{

𝑅△𝑜𝑏𝑑 , 𝑅△𝑜𝑑𝑎, 𝑅△𝑜𝑎𝑐 , 𝑅△𝑜𝑐𝑏
} and

𝑅𝑖,𝑗 ∶= min
{

𝑅1(𝑖, 𝑗), 𝑅2(𝑖, 𝑗), 𝑅3(𝑖, 𝑗), 𝑅4(𝑖, 𝑗)
};

3 Find 𝑆 ∶= {(𝑖, 𝑗) | 𝑅𝑖,𝑗 < 𝜖} and the folding points set 𝑃 causing the overlaps
𝑃 ∶=

{

𝑃𝑖,𝑗 ∈ {(𝑖, 𝑗), (𝑖 − 1, 𝑗), (𝑖, 𝑗 − 1), (𝑖 + 1, 𝑗), (𝑖, 𝑗 + 1) | (𝑖, 𝑗) ∈ 𝑆}
};

4 if 𝑃 = ∅ then
5 Exit this algorithm;
6 else
7 foreach (𝑖, 𝑗) ∈ 𝑃 do
8 Optimize 𝝋𝑖,𝑗 such that min{𝑅𝑖,𝑗 , 𝑅𝑖−1,𝑗 , 𝑅𝑖,𝑗−1, 𝑅𝑖+1,𝑗 , 𝑅𝑖,𝑗+1} ≥ 𝜖;
9 end

10 end
11 𝑅𝑚𝑖𝑛 = min{𝑅𝑖,𝑗};

Output: 𝝋, 𝑅𝑚𝑖𝑛.

4.2. Numerical algorithms

In general due to the nonconvexity of the optimization problem (12), seeking global minimum of the
displacement field 𝒖-subproblem is difficult and computationally challenging. Here, we first introduce the
algorithm based on the penalty algorithm, which solves the proposed diffeomorphic registration model with
the deformed Jacobian equation constraint where 𝑓 (𝒙) is an unknown optimized variant. Then, we extend our
paradigm to address multilevel registration between two arbitrary volumes on liver CT scans, called image-to-
image registration.

Firstly, the diffeomorphic image registration algorithm that employs the penalty method and combines with
the deformation correction technique is designed. The detailed steps of solving the diffeomorphic registration
model with Jacobian determinant constraint are summarized in Algorithm 2.
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Algorithm 2 Diffeomorphic image registration based on penalty method (DIRPM)
Input: 𝑅, 𝑇 ,𝝋1, 𝑓 1, 𝜏1, 𝜏2, 𝜏3, 𝜆1, 𝛾, 𝜌,𝑀𝑎𝑥𝐼𝑡𝑒𝑟;

1 Initialization: 𝒖1 = 𝟎, 𝜖 = 10−3, 𝜖𝑢 = 10−2;
2 for 𝑘 = 1,⋯ ,𝑀𝑎𝑥𝐼𝑡𝑒𝑟 do
3 Determine displacement field 𝒖𝑘+1 by solving the equation (32);
4 Update deformation field 𝝋𝑘+1 = 𝝋𝑘 + 𝒖𝑘+1;
5 Correct 𝝋𝑘+1 and obtain grid unfolding indicator 𝑅𝑘+1

𝑚𝑖𝑛 by Algorithm 1;
6 Determine 𝑓𝑘+1 by solving the equation (34);
7 Update the penalty factor 𝜆𝑘+1 = 𝜌𝜆𝑘;
8 if ‖𝑘

𝜆(𝒖
𝑘+1,𝑓𝑘;𝒖𝑘)−𝑘

𝜆(𝒖
𝑘,𝑓𝑘;𝒖𝑘)‖

‖1
𝜆(𝒖

1,𝑓 1;𝒖1)‖
≤ 𝜖 or ‖𝒖𝑘+1−𝒖𝑘‖

‖𝒖1‖ ≤ 𝜖𝑢 then break; ;
9 end

10 𝑇 𝑛𝑒𝑤 = 𝑇 (𝝋𝑘+1);
11 𝝋𝑛𝑒𝑤 = 𝝋𝑘+1;
12 𝑓 𝑛𝑒𝑤 = 𝑓𝑘+1;

Output: 𝑇 𝑛𝑒𝑤,𝝋𝑛𝑒𝑤, 𝑓 𝑛𝑒𝑤.

Secondly, since the proposed model is non-convex and highly non-linear, then a solving algorithm based on the
multilevel strategy, which is a standard approach used to avoid getting trapped in a meaningless local minimum, is
proposed for the optimization to reduce the overall computational cost of the solution scheme. We hierarchically
decompose the original finest level registration problem into different coarsened multilevel subproblems which
are then fast and easier to be solved than the original one. Its general idea is to provide an initial approximation on
a finer grid by the interpolation of approximated solutions on coarser grids. In fact, this principle simply means
that a coarser discretization level is used to provide a good initial approximation for the iteration on the next finer
discretization level [49]. The multilevel scheme is summarized in Algorithm 3.
Algorithm 3 Multilevel Registration
Input: 𝑅, 𝑇 , 𝐿, 𝜏1, 𝜏2, 𝜏3, 𝜆, 𝛾, 𝜌,𝑀𝑎𝑥𝐼𝑡𝑒𝑟;

1 Initialization: 𝑅1 = 𝑅, 𝑇1 = 𝑇 ,𝝋𝐿 = 𝒙, 𝑓𝐿 = 1;
2 for 𝓁 = 2,⋯ , 𝐿 do
3 Compute the reference and template images for the 𝓁-level coarse grid:

𝑅𝓁 = 𝐼𝐻ℎ 𝑅𝓁−1, 𝑇𝓁 = 𝐼𝐻ℎ 𝑇𝓁−1;
4 end
5 for 𝓁 = 𝐿,⋯ , 1 do
6 Call the diffeomorphic image registration Algorithm 2 based on penalty method:
7 [𝑇 𝑛𝑒𝑤

𝓁 ,𝝋𝑛𝑒𝑤
𝓁 , 𝑓 𝑛𝑒𝑤

𝓁 ] = DIRPM(𝑅𝓁 , 𝑇𝓁 ,𝝋𝓁 , 𝑓𝓁 , 𝜏1, 𝜏2, 𝜏3, 𝜆, 𝛾, 𝜌,𝑀𝑎𝑥𝐼𝑡𝑒𝑟);
8 if 𝓁 > 1 then Interpolation (or prolongation): 𝝋𝓁−1 = 𝐼ℎ𝐻𝝋𝑛𝑒𝑤

𝓁 , 𝑓𝓁−1 = 𝐼ℎ𝐻𝑓 𝑛𝑒𝑤
𝓁 ;

9 end
Output: 𝑇 𝑛𝑒𝑤

1 ,𝝋𝑛𝑒𝑤
1 .

5. Numerical experiments

To evaluate the performance of the proposed method and the other popular methods for 2D and 3D images,
we will show visualizations of registration results as qualitative evaluations, such as the registered images, the
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errors between the registered image 𝑇 (�̄�(𝒙)) and 𝑅(𝒙), the deformation grids, the displacement fields, and the
Jacobian determinant hotmaps of the deformation fields. Besides, we also provide quantitative assessments using
the popular metrics, including

i.) the grid unfolding indicator 𝑅min and the grid folding ratio (GFR) which are defined by

𝑅min = min
𝑖,𝑗

𝑅𝑖,𝑗 , and GFR =
♯ ()
♯(Ωℎ)

,

where ♯ () and ♯(Ωℎ) denote the numbers of nodes in  and Ωℎ, respectively.

ii.) the Jacobian determinant measures are defined by

det(∇�̄�)|𝑖,𝑗 , det(𝐽 (�̄�)) = 1
𝑚𝑛

∑

𝑖,𝑗
det(∇�̄�)|𝑖,𝑗 ,

detmin(𝐽 (�̄�)) = min
𝑖,𝑗

det(∇�̄�)|𝑖,𝑗 , detmax(𝐽 (�̄�)) = max
𝑖,𝑗

det(∇�̄�)|𝑖,𝑗 .

iii.) the relative sum of squared differences (Re−SSD), which is defined by

Re_SSD(𝑇 ,𝑅, 𝑇 (�̄�)) =

∑

𝑖,𝑗(𝑇 (�̄�𝑖,𝑗) − 𝑅𝑖,𝑗)2
∑

𝑖,𝑗(𝑇𝑖,𝑗 − 𝑅𝑖,𝑗)2
.

iv.) the ssim and psnr metrics are widely used to describe the degree of structure distortion and pixel blurring,
respectively. We use them here for comparing the registered images with the other popular methods. In
general, the registration results are better if their ssim and psnr values are higher.

5.1. Comparisons of different penalty functions

In this part, two examples are implemented to investigate how sensitive the proposed registration model (11)
is with respect to different control functions 𝜙1 and 𝜙2. In local large deformation image registration problems,
the uniform Jacobian determinant constraint leads that the transformation between the template and the reference
may not be optimal: if the value det(∇�̄�) = 1 is fixed at each pixel, then the corresponding deformation field �̄�(𝒙)

is pointwise volume-preserving, but it may be a poor transformation for local matching between reference and
template images. Alternatively, the relaxation constraint det(∇�̄�) = 𝑓 (𝒙) depends on the values of the function
𝑓 (𝒙) over the entire image range Ω, so the transformation �̄� is non-local volume-preserving. Therefore, the choice
of suitable 𝜙 is very important because it is a penalty measure to guarantee that 𝑓 (𝒙) is positive, and it significantly
affects the qualities of transformation grids as well as the image registration performance.
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Figure 3: Registration of 2D images with penalty function 𝜙1: (a) template images; (b) reference images; (c) registered
results; (d) the hotmap of 𝑓 (𝒙); (e) the hotmap of the Jacobian determinant; (f) the deformation grids. Parameters
of the two sets of images. UT(𝜙1): 𝜏1 = 1.20, 𝜏2 = 1𝑒− 03, 𝜏3 = 5𝑒− 02, 𝜆 = 1.2, 𝜌 = 1.2, 𝛾 = 120; UT(𝜙2): 𝜏1 = 1.40,
𝜏2 = 1𝑒− 03, 𝜏3 = 5𝑒− 02, 𝜆 = 1.2, 𝜌 = 1.2, 𝛾 = 100; Brain(𝜙1): 𝜏1 = 0.32, 𝜏2 = 1𝑒− 03, 𝜏3 = 1𝑒− 02, 𝜆 = 0.6, 𝜌 = 1.1,
𝛾 = 100; Brain(𝜙2): 𝜏1 = 0.32, 𝜏2 = 1𝑒 − 03, 𝜏3 = 1𝑒 − 02, 𝜆 = 0.6, 𝜌 = 1.1, 𝛾 = 100.

Table 1

Quantitative comparisons between registration results of both different penalty functions 𝜙(⋅). The best value is

highlighted by the bold.

Examples 𝜙(⋅) 𝑅𝑚𝑖𝑛 det(𝐽 (�̄�)) detmin(𝐽 (�̄�)) detmax(𝐽 (�̄�)) ssim Re−SSD psnr

UT
𝜙1 + 1.000 0.23 2.23 0.9961 0.080% 35.49

𝜙2 + 1.000 0.09 2.10 0.9953 0.083% 35.34

Brain
𝜙1 + 1.000 0.22 3.00 0.9868 2.67% 26.89

𝜙2 + 1.000 0.30 2.78 0.9866 2.72% 26.81

Here, UT and Brain images with a resolution of 128 × 128 are used for this experiment. To make the
comparison fairer, we set parameter configurations that make the registration results optimal for different penalty
functions 𝜙(⋅). Table 1 presents the quantitative evaluations for the two penalty functions. Both schemes provide
the corresponding diffeomorphic solutions with𝑅𝑚𝑖𝑛 > 0, and yield small ranges of volume changes. However, the
differences between the models with different control functions are observable in several quantitative indicators.
The penalty function 𝜙1 yields better Re−SSD, ssim, and psnr values. Therefore, we adopt the penalty function
𝜙1-based model as the default version throughout all following experiments.

Figure 3 evaluates the visualizations of the registered results obtained by the proposed model with penalty
function 𝜙1, including the template and reference images, the transformed template images, the hotmaps of the
relaxation function 𝑓 (𝒙) and the Jacobian determinant det(∇�̄�), and the transformed grids. One can observe
that the proposed scheme with 𝜙1 penalty term produces a transformed template that is visually identical to the
reference, essentially the same hotmap distributions for the Jacobian determinant det(∇�̄�) and function 𝑓 (𝒙),
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and smooth deformation grids. This also illustrates that the proposed method is robust to the heavy occlusion of
illumination and large background clutters.

5.2. Sensitivity tests for the penalty parameter 𝜏2
The aim of using the penalty term ∫Ω 𝜙(𝑓 (𝒙))𝑑𝒙 of the relaxation function 𝑓 (𝒙) is to prevent foldings and

implausible volume change. In this part, we are interested in the contribution of the penalty term, we analyze
it by setting the parameter 𝜏2 to zero or nonzero, while fixing all other optimal parameters. The effect of the
term ∫Ω 𝜙(𝑓 (𝒙))𝑑𝒙 in modeling registration is assessed based on Circle-Square and Watermelon images with a
resolution of 128 × 128 as well as BrainMR images with a resolution of 256 × 256.

Table 2

The relevant metrics are obtained from the three sets of experiments. “yes" and “no" represent the results of performing

deformaton correction and not performing deformaton correction, respectively. The best value is highlighted by the

bold.

Examples 𝜏2 Correction GFR detmin(𝐽 (�̄�)) detmax(𝐽 (�̄�)) ssim Re−SSD psnr

Circle-Square

0 no 18.66% -4.98 21.56 0.9981 0.052% 37.51

0.01 no 3.17% -1.00 14.09 0.9981 0.042% 38.40

0 yes 0 0.03 5.21 0.9956 0.135% 33.33

0.01 yes 0 0.75 1.95 0.9984 0.036% 39.01

Watermelon

0 no 0.97% -0.10 3.19 0.9530 0.892% 24.50

0.001 no 0 0.34 2.17 0.9620 0.695% 25.58

0 yes 0 0.08 3.88 0.9571 0.780% 25.07

0.001 yes 0 0.34 2.17 0.9620 0.695% 25.58

BrainMR

0 no 2.44% -11.30 21.64 0.9550 7.904% 16.99

0.001 no 0 0.07 8.67 0.9651 3.699% 20.25

0 yes 0 0.02 15.96 0.9601 3.998% 19.90

0.001 yes 0 0.30 8.12 0.9648 3.785% 20.16

To discuss the influence of the penalty term, we first perform numerical experiments using 𝜏2 = 0 and 𝜏2 ≠ 0

without imposing deformation correction, and then conduct the same experiments with deformation correction. In
particular, we compare the indicator of grid folding ratio in the experiments. Table 2 presents how the registration
results are affected with and without using the penalty term ∫Ω 𝜙(𝑓 (𝒙))𝑑𝒙. It can be seen from Table 2 that the
local grid folding cases (detmin(𝐽 (�̄�)) < 0 or GPR > 0) are presented in all three examples without imposing the
deformation correction when the hyper-parameter 𝜏2 = 0 of the function 𝜙(⋅) is already fixed. Compared with it,
the grid folding ratio can be reduced or eliminated when 𝜏2 ≠ 0, and the registration accuracy can be improved.
However, the grid folding still occurs when using the penalty term in the Circle-Square example. As has been
pointed out in Remark 1, the unsuitable choices of hyper-parameters and the unsatisfactory numerical solution
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Figure 4: Registration results with and without control function using the deformaton correction: (a) template images;
(b) reference images; (c) registered images with control function; (d) registered images without control function; (e)-
(f) a visualization of the deformed grids with and without control function. Parameters of the three sets of images.
Circle-Square: 𝜏1 = 0.3, 𝜏2 = 1𝑒 − 02, 𝜏3 = 1𝑒 − 03, 𝜆 = 0.8, 𝜌 = 1.08, 𝛾 = 18; Watermelon: 𝜏1 = 0.2, 𝜏2 = 1𝑒 − 03,
𝜏3 = 1𝑒 − 03, 𝜆 = 1.06, 𝜌 = 1.06, 𝛾 = 16; BrainMR: 𝜏1 = 0.4, 𝜏2 = 5𝑒 − 03, 𝜏3 = 1𝑒 − 03, 𝜆 = 0.4, 𝜌 = 1.16, 𝛾 = 20.

technique of nonlinear equation in practice may result in 𝑓 (𝒙) < 0, which leads to grid folding. Moreover, the
grid correction in Algorithm 1 can be employed to generate a desirable diffeomorphic deformation.

Next, we illustrate the registration results for three examples with or without the penalty term ∫Ω 𝜙(𝑓 (𝒙))𝑑𝒙

where the deformation correction is adopted. As illustrated in Figure 4, the proposed model with the penalty
term not only generates better registered images but also produces smoother and more realistic transformations.
The reasons are two-fold. Firstly, the penalty term limits the range of 𝑓 (𝒙) to be near 1 as far as possible, and
indirectly determines the range of det (∇�̄�(𝒙)). Secondly, the more smoother nature of the image deformation
is strongly required in practice, the regulariztion term ∫Ω |∇𝑓 (𝒙)|2𝑑𝒙 in this work ensures the smoothness of
𝑓 (𝒙), which also relate to smoothness of the transformation �̄�(𝒙). These confirm that the penalty term with the
relaxation function 𝑓 (𝒙) is important for the proposed model, which makes the deformation smoother and tends
to volume-preserving.

5.3. Comparisons for algorithm convergence

We further compare the proposed algorithm with the diffusion- and curvature-based registration algorithms to
demonstrate the convergence and volume-preserving using the IC example. For fair, all three methods are iterated
100 steps at each level. In Figure 5, we plot the change curves of the similarity measure (𝒖), relative objective
function ̂𝓁,𝑘 ∶= 𝓁,𝑘

𝐿,1 (𝓁,𝑘 represents the objective function value of the 𝑘-th iteration at the 𝓁-th level and
𝐿,1 represents the initial objective function value of the coarsest 𝐿-th level), and average Jacobian determinant
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(a) Similarity measure (b) Relative objective function (c) Average Jacobian determinant

Figure 5: Convergence and volume-preserving comparisons of the proposed, diffusion, and curvature models for the
IC example. (a) similarity measure (𝒖) (the y-coordinate is logarithmic); (b) relative objective function ̂𝓁,𝑘 (the
y-coordinate is logarithmic); (c) average Jacobian determinant det(𝐽 (�̄�)). The red solid, black dash, and blue dot lines
indicate the results of the proposed, diffusion, and curvature models, respectively.

det(𝐽 (�̄�)) of three methods with respective to the number of iterations. From Figure 5(a)-(b), we observe that
the similarity measure and relative objective function value of the proposed algorithm decreased monotonically at
each level and gradually stabilized. This indicates that the proposed algorithm is converged. Although the diffusion
and curvature methods converge faster than that of the proposed method, their similarity measures and relative
objective function values are worse than ours. This means that our method is more satisfactory. Moreover, it can
be seen from Figure 5(c) that the proposed algorithm can guarantee det(𝐽 (�̄�)) ≈ 1, which is consistent with the
conclusion of volume-preserving in the average sense.

5.4. Comparisons to diffusion- and curvature-based methods

In this part, we validate the proposed diffeomorphic registration method using IC image of size 200 × 200,
Lena and Hand images of size 128 × 128 as three sets of examples. Our results are compared quantitatively and
qualitative with the diffusion and curvature registration methods described in [42]. Here, we use a multilevel
strategy (𝐿 = 3) and set MaxIter = 200 for all models.

In Figure 6 and Figure 7, we compare the visualizations of the registered results obtained by the proposed
model with the diffusion and curvature registrations, including the template and reference images with zoom-in
regions, the transformed template images, the registration errors of 𝑇 (�̄�) − 𝑅(𝒙), the hotmaps of the Jacobian
determinant det(∇�̄�), and transformations �̄�. In our model, all three examples produce desirable registration
results where the diffeomorphism of the transformations is kept. However, one can observe that the diffusion and
curvature models failed to obtain a good registration for the IC and Lena examples (see the zoom-in regions in
Figure 6(b)). In particular, the transformation grids of the two models are seriously folding for the IC example.
Moreover, it can be found by observing the deformation of Lena and Hands examples that the deformation
generated by the curvature model is smoother than ours. The main reason is that the curvature model applied
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Figure 6: Comparisons of the proposed, diffusion, and curvature models. (a) the reference and template images
(Synthetic and Lena); (b) the deformed template images of the three classical models with the optimal parameters
(Synthetic: 𝜏1 = 3, 𝜏2 = 1𝑒 − 2, 𝜏3 = 1𝑒 − 3, 𝜆 = 1, 𝛾 = 100, 𝜌 = 1.06 for the proposed model; 𝛼 = 8800 for diffusion
model; 𝛼 = 200 for curvature model. Lena: 𝜏1 = 0.6, 𝜏2 = 1𝑒−2, 𝜏3 = 1𝑒−3, 𝜆 = 0.2, 𝛾 = 200, 𝜌 = 1.02 for the proposed
model; 𝛼 = 400 for the diffusion model; 𝛼 = 1 for curvature model); (c) the registration errors of 𝑇 (�̄�) − 𝑅(𝒙); (d)
the Jacobian determinant hotmaps of the deformation fields; (e) the deformation grids.

the second-order derivatives to the regulariztion of the displacement field, while our regularizer considers the
first-order derivatives.
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Figure 7: Comparisons of the proposed, diffusion, and curvature models. (a) the reference and template images;
(b) the registered results of the three classical models with the optimal parameters (Hands: 𝜏1 = 0.4, 𝜏2 = 1𝑒 − 2,
𝜏3 = 1𝑒− 3, 𝜆 = 0.2, 𝛾 = 400, 𝜌 = 1.02 for the proposed model; 𝛼 = 500 for diffusion model; 𝛼 = 0.2 for the curvature
model); (c) the registration errors of 𝑇 (�̄�) − 𝑅(𝒙); (d) the Jacobian determinant hotmaps of the deformation fields;
(e) the deformation grids.

Table 3

The quantitative evaluation comparisons of the proposed, diffusion, and curvature models. The negative Jacobian and

best metrics values are highlighted by the underline and bold.

Examples Methods det(𝐽 (�̄�)) 𝑅𝑚𝑖𝑛 detmin(𝐽 (�̄�)) detmax(𝐽 (�̄�)) ssim Re−SSD psnr

IC

Proposed 0.999 + 0.29 3.84 0.9828 0.23% 27.85

Diffusion 0.677 − -0.30 1.70 0.9775 3.51% 15.80

Curvature 0.504 − -0.14 1.07 0.9553 3.67% 15.73

Lena

Proposed 0.999 + 0.46 3.09 0.9193 3.31% 25.09

Diffusion 1.013 − -1.39 4.38 0.8614 8.05% 21.23

Curvature 1.012 + 0.56 2.02 0.8520 7.86% 21.35

Hands

Proposed 1.000 + 0.32 6.33 0.8943 3.04% 18.46

Diffusion 1.008 − -0.09 3.34 0.8845 4.20% 17.14

Curvature 1.011 − -0.05 2.81 0.8829 5.00% 16.24

In Table 3, we can see that there are significant portions of transformations where the global volume-preserving
assumption (i.e., det(𝐽 (�̄�)) = 1) is reasonable, and even object in template that is smaller than one in reference,
such as IC example, has been successfully registered as such for the purpose of analysis and inference. We can also
observe that the diffeomorphism principle det(∇�̄�) > 0 is clearly violated when the diffusion-based and curvature-
based methods are applied in many manual and natural images. By using the diffusion-based model, Table 3

Yanyan Li et al.: Preprint submitted to Elsevier Page 26 of 36



A Bi-variant Variational Model for Diffeomorphic Image Registration with Relaxed Jacobian Determinant Constraints

Figure 8: Comparisons of diffeomorphic models for the Bigcircle example. (a) the reference and template images
(Bigcircle example); (b) the registered results of these models with the optimal parameters (Bigcircle: 𝜏1 = 2.2,
𝜏2 = 2𝑒 − 2, 𝜏3 = 1𝑒 − 3, 𝜆 = 1, 𝛾 = 160, 𝜌 = 1.02 for the proposed model, 𝛼 = 650 for the LDDMM model, 𝛼1 = 18,
𝛼2 = 90, 𝛼3 = 0, 𝛼4 = 6 for the Hyper-elastic model, 𝜎𝑓𝑙𝑢𝑖𝑑 = 2.6, 𝜎𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 = 1.3, 𝜎𝑖 = 1, 𝜎𝑥 = 2 for the Log Demons
model); (c) the displacement fields; (d) the Jacobian determinant hotmaps; (e) the deformation grids.

numerically shows det(∇�̄�) ∈ [−0.3, 1.7] in the IC example, det(∇�̄�) ∈ [−1.39, 4.38] in the Lena example,
and det(∇�̄�) ∈ [−0.09, 3.34] in the Hands example, which illustrates that �̄� is not diffeomorphic. The curvature
registration also generates nondiffeomorphic mapping �̄� for the IC and Hands examples. But the proposed model
not only yields the diffeomorphic transformations with det(∇�̄�) ∈ [0.29, 3.84], det(∇�̄�) ∈ [0.46, 3.09], and
det(∇�̄�) ∈ [0.32, 6.33] for the three examples, but also achieves best Re−SSD, ssim, and psnr scores. The results
demonstrate that the proposed method can prevent the grid folding and achieve very good registration performance.

5.5. Comparisons with other diffeomorphic models

In this part, we also conducted the registration experiments of the popular diffeomorphic models on Bigcircle,
Pineapple, and Abdomen images (the resolution of the Bigcircle example is 200×200 and the other two examples
are 128× 128). We compare our approach with the state-of-the-art diffeomorphic models including Hyper-elastic
[6], LDDMM [41], Log Demons [40], and Hsiao model [33]. For all registration models, we use a 𝐿-level
multilevel strategy (𝐿 = 5) and set MaxIter = 100.
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Table 4

The quantitative evaluation comparisons of the proposed and diffeomorphic models. The best metrics values are

highlighted by the bold.

Examples Methods det(𝐽 (�̄�)) 𝑅𝑚𝑖𝑛 detmin(𝐽 (�̄�)) detmax(𝐽 (�̄�)) ssim Re−SSD psnr Time(s)

Bigcircle

Proposed 1.004 + 0.70 5.56 0.9652 0.08% 21.93 10.77

LDDMM 2.665 + 0.05 39.88 0.9905 0.33% 15.88 27.33

Hyperelastic 1.935 + 0.14 6.02 0.9436 9.48% 3.86 34.96

Log Demons 1.293 + 0.003 3.25 0.7908 48.68% 1.14 11.53

Hsiao 2.011 + 0.001 4.22 0.8819 19.42% 2.32 52.43

Pineapple

Proposed 1.001 + 0.24 3.65 0.9770 0.26% 31.16 4.71

LDDMM 1.072 + 0.11 3.73 0.9538 1.06 % 25.03 4.20

Hyperelastic 1.040 + 0.06 2.53 0.9244 1.75% 22.84 22.66

Log Demons 1.112 + 0.002 3.40 0.8955 1.52 % 19.49 6.02

Hsiao 1.077 + 0.38 2.11 0.8178 9.06% 15.66 17.47

Abdomen

Proposed 1.000 + 0.51 2.32 0.9516 3.53% 17.91 5.40

LDDMM 0.958 + 0.12 6.27 0.9227 7.62% 14.44 5.79

Hyperelastic 0.944 + 0.20 2.63 0.9146 8.49% 13.95 24.01

Log Demons 1.023 + 0.58 1.86 0.8997 7.86% 12.37 7.21

Hsiao 1.027 + 0.65 1.50 0.8763 13.43% 11.97 17.03

The registered results in Figure 8-Figure 10 clearly show the effectiveness of the proposed method over
the other four methods. As can be apparently seen from the Figure 8, Hyper-elastic, Log Demons, and Hsiao
models fail to register the alphabet C. Although LDDMM presents an acceptable result, it produces a drastic
volume change. However, the proposed method perfectly registers the sharp edges of the large deformation
image and produces a smooth deformation, which can be observed from the visualization of deformation grid in
Figure 8(e). Besides, Figure 9(b)-Figure 10(b) illustrate that the proposed method is better at "low-contrast" regions
registration. The zoom-in regions show that inner structure of the registered images obtained by our method are
almost the ground truth reference images. While the other four methods have not given satisfactory registration
results.

To further validate the effectiveness of our approach, we evaluate the average value of the Jacobian determinant
det(𝐽 (�̄�)), the range of the Jacobian determinant, and registration accuracy. In Table 4, all the methods yield
diffeomorphic transformations. It is worth noting that the average Jacobian determinant obtained by our approach
is closest to 1. Also, compared with LDDMM and Hyper-elastic methods, our approach almost has a smaller
range for the Jacobian determinant, such as det(∇�̄�) ∈ [0.05, 39.88] of LDDMM, det(∇�̄�) ∈ [0.14, 6.02] of
Hyper-elastic, and det(∇�̄�) ∈ [0.70, 5.56] of the proposed model for the Bigcircle example. This is because
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Figure 9: Comparisons of diffeomorphic models for the Pinealpple example. (a) the reference and template images;
(b) the registered results of these models with the optimal parameters (Pinealpple: 𝜏1 = 0.2, 𝜏2 = 1𝑒 − 3, 𝜏3 = 1𝑒 − 4,
𝜆 = 0.08, 𝛾 = 130, 𝜌 = 1.01 for the proposed model, 𝛼 = 100 for the LDDMM model, 𝛼1 = 28, 𝛼2 = 22, 𝛼3 = 0,
𝛼4 = 1 for the Hyper-elastic model, 𝜎𝑓𝑙𝑢𝑖𝑑 = 2.2, 𝜎𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 = 1.2, 𝜎𝑖 = 1, 𝜎𝑥 = 2 for the Log Demons model); (c) the
displacement fields; (d) the Jacobian determinant hotmaps; (e) the deformation grids.

the proposed model explicitly controls and penalizes volume change so that deformation tends to be volume-
preserving and is smoother. Furthermore, the proposed method obtains significantly state-of-the-art results by
comparing to Re−SSD, ssim, and psnr scores. In particular, our approach obtains the best Re−SSD of 0.08% and
psnr of 21.93 for the Bigcircle example. On the other hand, the proposed method has competitive advantages
in terms of registration time; especially the proposed and LDDMM methods have less time overheads for the
Pineapple and Abdomen examples. In conclusion, many such comparisons confirm the superiority of our approach
over these state-of-the-art diffeomorphic registration models in terms of the capability of accurately handling large
deformations and the volume-preserving in the average sense.
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Figure 10: Comparisons of diffeomorphic models for the Abdomen example. (a) the reference and template images;
(b) the registered results of these models with the optimal parameters (Abdomen: 𝜏1 = 1.4, 𝜏2 = 1𝑒 − 2, 𝜏3 = 1𝑒 − 2,
𝜆 = 2, 𝛾 = 220, 𝜌 = 1.02 for the proposed model, 𝛼 = 30 for the LDDMM model, 𝛼1 = 16, 𝛼2 = 20, 𝛼3 = 0, 𝛼4 = 1 for
the Hyper-elastic model, 𝜎𝑓𝑙𝑢𝑖𝑑 = 2.6, 𝜎𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 = 0.6, 𝜎𝑖 = 1, 𝜎𝑥 = 2 for the Log Demons model); (c) the displacement
fields; (d) the Jacobian determinant hotmaps; (e) the deformation grids.

Table 5

The quantitative evaluation comparisons of the proposed and diffeomorphic models for 3D experiment. The best

metrics values are highlighted by the bold.

Example Methods det(𝐽 (�̄�)) 𝑅𝑚𝑖𝑛 detmin(𝐽 (�̄�)) detmax(𝐽 (�̄�)) ssim Re−SSD psnr Time(s)

Brain

Proposed 1.000 + 0.2201 2.26 0.9865 2.25% 24.64 1091.96

LDDMM 0.959 + 0.0008 3.14 0.9822 3.19% 22.99 1961.95

Log Demons 1.001 + 0.0315 2.80 0.8368 22.13% 14.90 398.43

Hsiao 1.001 + 0.6881 2.08 0.8560 25.46% 14.18 4698.91

5.6. 3D registration experiment

In Figure 11 and Table 5, we compare our approach with state-of the-art diffeomorphic methods including
LDDMM, Log Demons, and Hsiao models when tested on Brain images of 128 × 128 × 128. In this experiment,
we use a multilevel strategy (𝐿 = 5) and set MaxIter = 200 for all models.
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Figure 11: 3D visualization of the registration problem for the brain images. (a) shows the reference image, template
image and deformed template images generated by these four models. (b) visualize the registered images from slice
planes.

By observing the texture and sharp edges of the brain surface in Figure 11 (see marked elliptical region), we
can see that the registration results of our scheme are closer to the reference image than those of other methods.
This demonstrates that our method has more advantages in dealing with complicated details. The results in Table 5
show that all methods produce diffeomorphic transformations while our approach has a relatively small Jacobian
determinant varying range (det(∇�̄�) ∈ [0.22, 2.26]). As illustrated in Table 5, the proposed model can consistently
achieve the best values for the Re−SSD, ssim, and psnr scores. In addition, the Log Demons method has the lowest
time cost because it does not need to solve the system of linear equations, which is usually the computational
bottleneck of large-scale 3D registration problems. Among the remaining methods, the proposed method has a
lower time cost, taking only 1091.96 seconds. Hence, this example demonstrates that our approach can be applied
to 3D image registration problems, and produce the top-ranked results with diffeomorphic transformations and
small volume change.
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6. Conclusions

In this paper, we propose a novel registration model with the relaxation constraint of Jacobian equation
det(∇𝝋(𝒙)) = 𝑓 (𝒙) > 0 to obtain smooth and diffeomorphic mapping for the large transformation image
registration problems. We note that the relaxation function 𝑓 (𝒙) can limit the range of the Jacobian determinant
det(∇𝝋(𝒙)). Thus, instead of controlling the Jacobian determinant of the transformation directly, controlling 𝑓 (𝒙)

is also a good alternative providing the same but indirect control. To obtain diffeomorphic and volume-preserving
deformation, we propose a novel penalty term ∫Ω 𝜙(𝑓 (𝒙))𝑑𝒙 to control the relaxation function automatically
so that 𝑓 (𝒙) is positive and as close to one as possible. Also, we present a regularization term ∫Ω |∇𝑓 (𝒙)|2𝑑𝒙

to improve the smoothness of 𝑓 (𝒙), thereby indirectly enhancing the smoothness of deformation. Furthermore,
we analyze the existence of the optimal solution for the proposed variational model and provide a numerical
algorithm for the model which combines penalty splitting and multilevel schemes. This algorithm can also detect
grid foldings and automatically correct them. Finally, numerical experiments show that the proposed model with
the penalty term can generates volume-preserving on average and smoother transformation, and the convergence
comparisons of our algorithm with other algorithms are illustrated. Compared with the classical registration
models, the proposed model produces diffeomorphic transformations and obtains better performance for the large
deformation 2D and 3D images. In future work, we will extend our scheme to multimodal registration model.
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