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ABSTRACT   

This study uses a novel directional lighting approach to produce a computationally efficient five-channel Visual 

Geometry Group-16 (VGG-16) convolutional neural network (CNN) model for concrete crack detection and 

classification in low-light environments. The first convolutional layer of the proposed model copies the weights for the 

first three channels from the pre-trained model. In contrast, the additional two channels are set to the average of the 

existing weights along the channels. The model employs transfer learning and fine-tuning approaches to enhance 

accuracy and efficiency. It utilizes variations in patterned lighting to produce five channels. Each channel represents a 

grayscale version of the images captured using directed lighting in the right, below, left, above, and diffused directions, 

respectively. The model is evaluated on concrete crack samples with crack widths ranging from 0.07 mm to 0.3 mm. The 

modified five-channel VGG-16 model outperformed the traditional three-channel model, showing improvements ranging 

from 6.5 to 11.7 percent in true positive rate, false positive rate, precision, F1 score, accuracy, and Matthew’s correlation 

coefficient. These performance improvements are achieved with no significant change in evaluation time. This study 

provides useful information for constructing custom CNN models for civil engineering problems. Furthermore, it 

introduces a novel technique to identify cracks in concrete buildings using directed illumination in low-light conditions.  

Keywords: Multi-channel neural network, fine-tuning, convolutional neural networks, transfer learning, crack detection, 

directional lighting, deep learning, structural health monitoring. 

 

1. INTRODUCTION 

Structural Health Monitoring (SHM) is a technique, used to ensure the safety and longevity of aerospace, mechanical, 

and civil engineering infrastructures.1 In civil engineering, continuous monitoring of the structures is essential in order to 

identify defects like cracks at an early stage.2 Non-Destructive Testing (NDT) techniques identify the state of the 

concrete structures without causing any permanent damage.3 The use of technology, such as robots and cameras (visual 

inspection), to capture images4 is an effective non-destructive evaluation (NDE) approach for automatic detection of 

cracks in concrete structures;5 also it is faster and more accurate than the traditional manual inspection.5,6 This led to the 

development of two image defect identification systems: white-box (edge detectors and thresholding7) and black-box 

(machine learning, artificial neural networks8) techniques. Black-box methods are considered better for crack 

identification in concrete structures.9 The deep convolutional neural network (CNN) architecture, Visual Geometry 

Group (VGG) has been proven useful in detecting and classifying cracks in concrete structures.10 

Existing research on automated crack detection in low-light environments has focused solely on diffused light 

sources to highlight the scenes captured in images.11 However, the CNN technique is also developed in other 

experiments, allowing it to detect defects even under difficult light conditions.12 This study aimed to automate the 

process of concrete crack detection in low-light environments, with the goal of replacing the human inspectors. To 

achieve this objective, a customized five-channel VGG-16 CNN model is implemented using a robot equipped with a  

machine-vision camera that captures images by directing light onto a concrete surface from multiple angles and 

directions, thereby improving the models accuracy. The model uses transfer learning and fine-tuning13 approaches. 

Compared to the standard three-channel method, this technique greatly enhances crack identification and is a potential 

option for automated crack detection in real-world applications. 
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2. RESEARCH DESIGN 

The proposed method involves capturing images of the concrete slab under five lighting conditions: right, below, left, 

above and diffused. These images are cropped into a several blocks equal to the standard size of 224×224 pixels and 

further combined block-wise to form a single five-channel TIFF image, where each channel represents an image taken 

under a specific lighting direction. The pre-trained VGG-16 model is improved by utilizing transfer learning and  

fine-tuning methodologies to handle multi-channel input and detect cracks. Each stage of the approach is discussed in 

detail in the relevant sections. 

2.1 Image Acquisition 

The proposed model employs a unique inspection device comprising a camera and four angle-adjustable arms fitted with 

LED lighting strips. The inspection process is conducted in a dark environment. The LED lighting strips are attached to 

the angle-adjustable arms positioned at 50 degrees relative to the concrete surface to increase crack visibility by 

magnifying the shadows they cast. In this study, four directional lighting images are obtained by projecting light from the 

right (R), below (B), left (L), and above (A) onto the scene. In addition, using diffused (D) lighting, a fifth image is also 

captured. These images serve as the basis for the proposed crack detection method. A visual representation of these 

images is shown in Figure 1. 

 

                

                                               

Figure 1. Captured concrete slab areas with lighting from Right (R), Below (B), Left (L), Above (A) and Diffused (D) 

directions, respectively. 

 

2.2 Image Preprocessing 

The VGG-16 model accepts an input image of size 224×224 pixels.14 Therefore, to ensure that the images obtained 

during the crack detection process are compatible with the VGG-16 model, the large image in .jpg format  

(3458×5429 pixels) undergoes a preprocessing step where the images are cropped into several blocks equal to the 

standard input size of 224×224 pixels in .jpg format, before being used as an input to the proposed model. 

2.3 Formation of Five-Channel Tag Image File Format (TIFF) image 

The VGG-16 network expects an input image of size (224, 224, 3), where the three channels are red, green, and blue, 

respectively.14 This specific input size works optimally with the VGG-16 architecture. Tag Image File Format (TIFF) is a 

popular file format for storing high-quality, high-resolution photos or images with a deep color depth.15 The proposed 

deep learning model uses a five-channel TIFF image as an input, which is obtained by combining the grayscale versions 

of the original images captured in five different lighting conditions (R, B, L, A, and D). The final image format is TIFF 

and has dimensions of (224, 224, 5).  
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2.4 Modifying the pre-trained VGG-16 model for Binary classification 

VGG-16 is a well-known convolutional neural network trained on more than one million images from the ImageNet 

database.14,16 When the number of channels in the input image increases from three to five, it only affects the trainable 

parameters in the first convolutional layer, leaving the subsequent convolutional layers unchanged. The weights of all 

convolutional layers except the first one are transferred to the customized VGG-16 model. The weight values for the first 

three channels of the first convolutional layer are obtained from the original VGG-16 model and the weights for the extra 

two channels are calculated by taking the average across the existing channel weights.17 To improve the performance of 

the model in classifying the five-channel dataset (as crack or no crack), transfer learning and fine-tuning approaches are 

employed. Specifically, the pre-trained VGG-16 model weights are leveraged, and then fine-tuned to adjust to the 

characteristics of the new dataset, allowing the model to quickly learn the features of new dataset.13 The step-by-step 

implementation of the customized five-channel model is explained in detail in Section 3.3. 

 

3. RESEARCH IMPLEMENTATION 

The analysis of the suggested model consists of various procedures required to evaluate the models efficacy. The 

following are the crucial steps in evaluating the proposed models effectiveness and ability to improve automatic crack 

detection procedures.  

1. Initially, combine the cropped images, directional-wise, into a single TIFF image with five-channels. This is 

used as an input to the proposed model. This multi-channel input improves crack detection, classification 

accuracy, and efficiency in concrete structures.  

2. Create a dataset to train and test the models accuracy. The dataset should include positive and negative cases, as 

the model is a binary classifier.  

3. Implement the five-channel VGG-16 model that takes advantage of the variations in patterned lighting to 

produce five channels. 

4. Establish a benchmarking process to evaluate the proposed models performance. This compares the proposed 

model with the existing model regarding true positive rate, false positive rate, precision, F1 score, accuracy, and 

Matthew’s correlation coefficient. Subsequent sections provide detailed explanations for each of these steps. 

3.1 Creation of TIFF image  

To produce a five-channel TIFF image, the first step is to convert the original three-channel images taken under five 

different lighting directions: right, below, left, above, and diffused into grayscale images. Once the grayscale images are 

created, they are combined to form a single five-channel image by stacking them along the third dimension. Each 

grayscale image is allocated its own channel, resulting in a multi-channel image that collects information from all five 

lighting directions. The final step involves saving the combined image in TIFF format, i.e. the multi-channel image is 

saved with .tiff extension, as shown in Figure 2. This format is very useful for the revised VGG-16 model, whose input 

shape is (224, 224, 5).  
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Figure 2. Summary results of the five-channel TIFF image obtained using directional lighting approach. The three-channel 

images captured using directional lighting are converted to corresponding grayscale images, and further combined to form a 

single five-channel TIFF image (grayscale). The visualization of the five-channel grayscale image is also shown.  

 

3.2 Data Preparation 

In our laboratory facilities, four large and thin concrete slabs of dimensions 500×500×10 mm were cast, and cracks are 

generated by applying forces at the edges. The crack widths on these samples range from 0.07 mm to 0.3 mm, making 

the dataset representative of the cracks typically observed in concrete structures. The dataset used in this study comprises 

high-resolution images of concrete surfaces with visible cracks captured when the lighting was directed at a 50-degree 

angle to the surface, resulting in five images. These five images are captured under various lighting conditions including 

Right, Below, Left, Above and Diffused; for each inspection area, using our directional lighting apparatus. The images 

are then pre-processed as detailed in Section 2.2 and combined into five-channel TIFF image as outlined in Section 2.3, 

to facilitate the input to customized VGG model explained in Section 3.3. 

3.3 Model customization (Five-Channel VGG-16 CNN model) 

In this implementation, we take a pre-trained VGG-16 model,14 originally trained on the ImageNet16 dataset with three 

input channels, and modify it to accept five input channels. The goal is to demonstrate how to fine-tune a pre-trained 

model for a specific binary classification task with five input channels. Figure 3 shows the process of implementation of 

five channel VGG-16 convolutional neural network model. 
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Figure 3. Implementation of five-channel VGG-16 convolutional neural network model. 

 

3.4 Performance Evaluation 

A training and testing dataset is used to evaluate the performance of the proposed five-channel VGG-16 model. First, 

train the modified model on the training dataset for 10 epochs, using a batch size of 32. Next, use the trained model to 

make predictions on the testing dataset and convert the predicted probabilities to binary class labels using a threshold of 

0.5. Next, evaluate the models performance using a confusion matrix generated by comparing the predicted labels to the 

actual labels of the testing dataset. Next, calculate the values for true positive (TP), true negative (TN), false positive 

(FP), and false negative (FN) values, which represent the number of correctly and incorrectly classified instances from 

the confusion matrix.18 Finally, these values are utilized to calculate various evaluation metrics18 shown in Table 1. 

 

Table 1. Performance metrics for a classifier 

Metric Description Equation 

True positive rate 

(TPR) (recall) 

The proportion of true 

positive predictions out 

of all actual positive 

instances.  

 
 

False positive rate 

(FPR)  

The proportion of false 

positive predictions out 

of all actual negative 

instances. 

 
 

Positive 

predictive value 

(PPV) (precision) 

The proportion of true 

positive predictions out 

of all positive 

predictions. 
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F1 score (F1) The harmonic mean of 

precision and recall. 
 

Accuracy The measure of the 

models ability to 

correctly predict the 

outcomes. 

 

 
 

Matthew’s 

correlation 

coefficient (MCC) 

The measure of the 

correlation between 

predicted and actual 

labels, accounting for 

true or false, both 

positive and negative 

predictions. 

 

 

 

 

4. EMPIRICAL ANALYSIS 

The performance of the five-channel VGG-16 model is compared to the traditional three-channel VGG-16 model.14 To 

evaluate the effectiveness of each model, we use performance metrics in Table 1. Figure 4 compares the performance 

metrics for the traditional VGG-16 three-channel model and the proposed VGG-16 five-channel model for crack 

detection and classification. It’s observed that the five-channel model has a higher performance in several metrics than 

the three-channel model. 

 

 

Figure 4. A comparison of the performance metrics between the existing method and the proposed method. The acronyms 

are explained in Table 1. 
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The five-channel model has a higher TPR of 0.80 than the three-channel model TPR of 0.69, indicating that the  

five-channel model is better at detecting positive cases. The five-channel model has a lower FPR of 0.02 compared to the 

three-channel model FPR of 0.03, indicating that the five-channel model is better at correctly identifying negative cases. 

The five-channel model has a higher Precision of 0.98 compared to the three-channel model Precision of 0.95 indicating 

that the five-channel model is better at avoiding false positive predictions. The five-channel model has higher F1 Score 

of 0.88 than the three-channel model F1 Score of 0.80, indicating that the five-channel model is better at balancing the 

trade-off between precision and recall. The five-channel model has a higher accuracy of 0.89 than the three-channel 

model accuracy of 0.83, indicating that the five-channel model is more accurate in correctly identifying positive and 

negative cases. Finally, the five-channel model has a higher MCC of 0.80 than the three-channel model MCC of 0.68, 

indicating that the five-channel model has no imbalance in true positive and false positive predictions. In conclusion, the 

five-channel model outperforms the three-channel model regarding TPR, FPR, precision, F1 score, accuracy, and MCC. 

These metrics suggest that the five-channel model is better at detecting positive cases, reducing false positive 

predictions, balancing precision and recall, and accurately identifying positive and negative cases than the traditional 

three-channel model. 

 

5. CONCLUSION 

The proposed five-channel VGG-16 convolutional neural network model demonstrated significant improvements over 

the traditional three-channel model in various metrics, including TPR (recall), FPR, precision, F1 score, accuracy, and 

Matthew’s correlation coefficient (MCC). These results indicate the potential of the five-channel model in accurately 

detecting and classifying cracks in concrete structures in low-light environments, with widths ranging from 0.07 mm to 

0.3 mm. The use of directional lighting, transfer learning and fine-tuning approaches significantly enhanced the 

performance of the proposed model. The methodology used in this study has potential applications in other image-based 

classification problems, such as object detection, segmentation, and tracking in fields such as medical imaging, 

autonomous driving, and surveillance systems. The evaluation time for the three-channel and five-channel models are 

comparable, and Graphics Processing Unit (GPU) can further improve processing time. Future work will involve 

comparing deep learning models and architectures by incorporating additional input channels to enhance the models 

accuracy. The study develops a bespoke deep learning model that analyzes the images captured under different lighting 

conditions to detect cracks that are not visible to the naked eye. This improves the accuracy and efficiency of SHM and 

supports civil engineers in identifying potential issues early, lowering the risk of failure and increasing the life span of 

structures.  
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