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Today’s diagnostics include devices such as pulse oximeters, blood pressure mon-
itors, and temperature measurements. These devices provide vital information to
medical personnel when making treatment decisions. Drawing inspiration from the
fundamental utility of pulse oximeters, we present a methodology for a robust low-
cost approach to imaging subsurface vasculature and monitoring heart rate. The
approach uses off-the-shelf equipment, set up in free space without physical contact
and exploits the nature of the interaction between light at near-infrared wavelengths
with tissue. Image processing algorithms extract heart rate information from the
snapshot and video sequence captured at a stand-off distance. The method can be
applied in a room with ambient light and remains robust to scenarios comparable to
medical situations. This research sets the platform for future diagnostic devices based
on imaging systems and algorithms for non-contact point-of-care investigations.
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Any medical scenario requires a quantitative assessment of an
anatomical metric. For diagnostics, vital signs such as heart
rate, temperature, oxygen saturation inform medical decisions
from outpatient visits to monitoring patient health during life-
saving surgeries. Further, some of these signs have become
a key indicator of health during the ongoing COVID-19 pan-
demic [1]. In the latter context, non-contact measurement of
temperature became a key aspect and utility of such devices
was, and remains, undeniable. Non-contact methods offer a
multitude of advantages such as ease of access, minimal train-
ing, reduction of equipment surrounding the patient, sterili-
sation of equipment prior to reuse, elimination of qualitative
determinations, improved comfort to the patient, and many
others [2].
Motivated by the need and advantages of remote detection of

vital signs, we explore a simple, easy-to-use system operating
in a free space arrangement for detection and monitoring vas-
cular activity. The research provides an approach that leverages
a laser-based, non-contact optical system to monitor vascular

activity. The interaction of tissue with light at near-infrared
wavelength is well researched. In the biophotonics domain, it
is well understood that optical diagnostics exploit the visible
and near-infrared wavelengths [3]. This window is limited by
ultraviolet wavelengths (< 400 nm due to the photo-chemical
reaction that causes melanogenesis) and the near-infrared on
the other end (> 1020 nm due to water absorption) [4]. This
non-ionising, skin-safe range of the spectrum offers innumer-
able diagnostic capabilities and quantitative imaging methods.
Years of fundamental and applied research of photonics

and optics show the utility of optical methods for biopho-
tonics [5]. The applications of optical technologies in medical
research are innumerable, could fill books and the state-of-
the-art capabilities are constantly being redefined [6–8]. While
these technologies are opening avenues of fundamental and
life-saving tools, there remains a constant search of low-cost
methods that can make diagnostics accessible the world over;
an objective of distinct priority of the research presented in this
article.
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1 BACKGROUND

In this research, the objective is to image the subsurface vas-
culature and monitor its behaviour. While Monte Carlo (MC)
assessment of light transport through the skin layers and into
the blood vessel was assessed in early research [9], Boles and
Chu (1997) [10] illustrated the possibility of personal authenti-
cation using images of the human palm. This initiated research
in both the biomedical [4,11–13] and biometric [14–29] domains.
The current research draws inspiration from biometric identifi-
cation methods and extends it to identification and monitoring
of blood vessels for non-contact heart rate measurement.
The applications of imaging blood vessel networks has seen

interesting applications such as banking and security; vessel
networks are unique to each individual. Subsequently, convolu-
tional neural networks (CNN) also found application in finger
vein recognition to avoid spoofing using carbon ink images that
can be used to defeat a vein recognition system [27]. A combi-
nation of ‘liveness detection’ to this system was done, without
CNN, by using imaging longer than a single snapshot as an
anti-spoofing strategy [28].
Subsequent work focused on infrared imaging at different

body sites. These methods suffered from interference from
ambient conditions and human body conditions when using the
far-infrared wavelengths, while the near-infrared transmission
was inconsistent due to skin and hair attenuation [14]. The trans-
missive arrangement was used extensively [16–18,23,26] while
other methods attempted to use data fusion combining visible
and near-infrared transmission images for imaging the veins
and the dorsal texture of the skin for identification [21] or com-
bining reflectance and transmission near-infrared data [24]. A
key review article in this domain was presented by Hashimoto
(2006) mentioning the advantages of non-invasive imaging,
safety from forgery or theft due to the veins being hidden under
the surface and the stability of vasculature allowing simplistic
methods to capture these patterns [15]. The article highlights the
advantages of transmissive imaging and using vein profiles in
greyscale images as a feasible option. These vein profiles are
the mainstay of the current study.
Vasculaturemapping is important in the biomedical domain,

as much as it is used in the biometrics domain. One of themany
instances, where it is a good tool, is the usage of near-infrared
light to visualise the subsurface vasculature for simpler with-
drawal of blood in children [12]. The developed device, Vascu-
Luminator, also considers the implications of skin types and
performs well under ambient conditions, claiming an overall
drop of 13-20% of first attempt failures to extract blood from
children under the age of six [12].
The objective encapsulates a simple inquiry – using lasers

and a low-cost imaging system to monitor the cardiac activity
of a target in motion. Of the many algorithms, a choice was

made to apply two methods: maximum curvature from image
profiles [30] and repeated line tracking [31]. The choice was sup-
ported by the high degrees of accuracywhen compared to other
algorithms used for similar biometric analyses [18,19].

2 OPTICAL INVESTIGATION

The experimental conditions were constant for all the par-
ticipants 1. The participants remained comfortably seated to
acclimatise to the room for 15 minutes, prior to data collec-
tion. The image sequence data collected from the participants,
wherein the participant holds their finger steady and a sequence
of frames where the finger moves, perpendicular to the beam’s
direction. The intention with this data acquisition is to test the
algorithm for detection and monitoring to remain robust when
the finger moves inherently and differently to each individual.
During data capture, an off-the-shelf pulse oximeter (Berry
Pulse Oximeter, Type: BM2000A) was attached to the partici-
pant’s index finger on the other hand for measuring their heart
rate.

FIGURE 1 The imaging system comprises of a monochrome
camera (DCC1545M, Thorlabs Inc.) and a machine vision
lens (MVL4WA, Thorlabs Inc.). The sources used are con-
tinuous wave near-infrared (CPS980, Thorlabs, Inc.) and red
(CPS670F, Thorlabs, Inc.) laser diode modules. The simple
setup exploits the interaction of light with human tissue to
measure the heart rate.

The study investigates the in vivo transmission of red and
near-infrared light through the index finger of 12 participants,
spanning across Fitzpatrick’s dermatological classification of
skin types [32]. To understand the implications of skin tone, if
any, in these experiments, the participants were placed in three

1The ethics approval for conducting this research was obtained prior to exper-
imental procedures from the University’s ethics committee (CURES/2208/2017).
Written consent from the participants was collected prior to experimentation.



Kallepalli ET AL 3

groups along Fitzpatrick’s scale; 4 participants in group 1 (I
and II on Fitzpatrick’s classification scale), 3 participants in
group 2 (III and IV on Fitzpatrick’s classification scale) and 5
participants in group 3 (V andVI on Fitzpatrick’s classification
scale). However, this grouping is not factored into the experi-
ment in any way except for a qualitative comparison after data
processing and analysis. Due care must be taken when draw-
ing inferences from this study as an n = 12 size cannot be used
for larger generalisations.
The focus of this research is the detection of the vascular

bundle and the determination of heart rate. We chose off-
the-shelf equipment and a relatively simple approach for data
collection, followed by data analysis that can be integrated
into the data collection approach for real-time monitoring in
the future. The experiments were done using an imaging sys-
tem comprised of a monochrome camera and lens system, and
skin-safe lasers.The intensity of transmitted light is imaged
while using a single wavelength laser source, removing the
directional uncertainty that occurs when using diffuse light
sources [30,31]. The light sources used in this study are con-
tinuous wave near-infrared (CPS980, Thorlabs, Inc.) and red
(CPS670F, Thorlabs, Inc.) laser diodemodules. The laser pow-
ers (Class 3R) were confirmed with the Lasermet ADM 1000
power meter to ensure the incidence of the skin is substantially
lower than the maximum permissible exposure (MPE) limit.
The light is incident on the dorsal side of the finger and the
transmitted light is imaged directly behind the finger by aUSB-
operated monochrome CMOS camera (DCC1545M, Thor-
labs, Inc.). The camera is paired with a machine vision lens
(MVL4WA, Thorlabs, Inc.), of focal length 3.5 mm operating
with an f -number of 1.4 (f /1.4), to capture the transmittance in
a light-tight room (Figure 1 ).
The laser and the camera is stationary through the course

of the experiment, with the only movement being the partici-
pants’ horizontal hand movement. The data collected includes
horizontal movement and any minor movements inherent to
each participant. Combined, all the motion in the imaged
region are the challenges that this studywill overcome to image
the subsurface vasculature and monitor the heart rate.

3 VEIN MAPPING AND MONITORING

The differential interaction of light with tissue and blood ves-
sels at different wavelengths results in ‘shadow’ image (Figure
2 ) wherein the vessel network can be mapped and quantified.
The image processing and analysis was done using MAT-
LAB (R2018b). The images are processed using two algo-
rithms (Figure 3 ) for performance analysis and comparison –
repeated line tracking and maximum curvature methods.

FIGURE 2 Near-infrared wavelengths are absorbed by the
blood vessels while the remaining light scatters through and
propagates to the imaging system behind the finger. The result-
ing “shadow” image allows mapping of vasculature and, in
this study, monitoring them as a function of expanding and
contracting blood vessels.

Themaximum curvature method uses approaches to localise
the finger boundary from the background [33]. In the maximum
curvature method, the variation of pixel values across blood
vessels are used. As the blood vessels absorb near-infrared
light, they create darker profiles and therefore, a lower value
in the vertical profile of pixel values (in a column of pixels
in the image). The subsequently created ‘valley’ of pixel val-
ues not only represents the blood vessel size and location, but
also also oscillates as a function of the heartbeat (ref. to Miura
et al. 2005 [30] for a detailed description of the algorithm).
This approach, iterated over an entire image, results in a vas-
cular bundle map in each image. Once the finger region is
localised and the features are extracted, morphological anal-
yses are applied. Morphological analyses comprise a broad
range of image processing operations that use the information
regarding the shapes in the image and adjust every pixel based
on its neighbourhood. In this case, we use a dilation opera-
tion to the results of the maximum curvature method as a step
toward extending the broken vessel mapping. Subsequently,
the misidentified pixels are removed with a median filter
(Figure 4 ). The resulting outputs of morphological analyses
is illustrated in Figure 4 (A, C).
On the other hand, the repeated line tracking approach is

used to detect features in a relatively random manner. The
algorithm randomly ‘picks’ pixels and explores the neighbour-
hood for similar values. When found, the algorithm extends
the similar pixels and joins them to create lines (vasculature, in
this case). Due to the random nature of this algorithm, it is far
more susceptible to noise. After the vessels are identified and
extracted, a median filter is used to remove the misidentified
pixels. These, with a specific filter window, removes pixels that
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FIGURE 3 The methodology is illustrated here; The data collected from the imaging system is processed using two algorithms
for vein mapping: maximum curvature and repeated line tracking methods. The results of these methods are processed with
morphological analysis (using dilation and open filters) with noise removed using median filters. The results of this step are
assessed for heart rate measurement using peak smoothing, Savitzky-Golay filtering and trend analysis.

FIGURE 4 The image processing in this workflow use the
intrinsic properties of the vein identification algorithm out-
come to improve the vascular maps. These include using
morphological approaches in pixel neighbourhoods and treat-
ing random identifications in the vessel detection algorithms
as noise. Consequently, the results of the maximum curvature
method (A) are dilated and median filter is used to remove
noise (C). For the repeated line tracking method (B), a median
filter is used to remove noise and morphologically eroding and
dilating the pixels to enhance the maps (D).

are not a part of an extended vessel from the repeated line track-
ing method. As a result, fewer noisy pixels and an extended
vasculature map can be visualised (Figure 4 (B, D)).
At this stage of processing, the images have been converted

into binary images consisting of vasculature maps, along with
information of vertical profiles from which the maps are cre-
ated. Once again, vertical profiles are drawn across the image.
From these profiles, the locations of the blood vessels in each
frame of the video sequence are identified based on the location

of the peaks (Fig. 5 (A)). The methodology picks the loca-
tion of the blood vessel from each frame of the video sequence
using the information from these vertical profiles and plots the
degree of variation of vasculature width in all the frames of the
dataset (Fig. 5 (B)). This step is the mainstay for removing
motion artefacts from the monitoring process as every frame
of the video is treated as an individual image. For every image,
blood vessels are identified, morphological analyses are per-
formed to enhance the vasculature map and the trend of the
blood vessel in terms of pixel values is quantified.
The variation trend is smoothed with a Savitzky-Golay filter

(Figure 5 (C)). The Savitzky–Golay filter provides the advan-
tage of preserving the position and width of the peaks by fitting
subs-sets of adjacent data points with minimal distortion of the
trend. This is important as small variations between frames can
be smoothed but the overall trend must be preserved. Finally,
the trend function is differentiated to obtain a ‘rate of change’
of the blood vessel’s width, resulting in a measure of the heart
rate (Figure 5 (D)). Since the frame rate of the camera acqui-
sition is known, the heart rate can now be represented as a
function of time (Figure 5 (E)), with the peaks representing
the heartbeat. The number of peaks in the final output of the
algorithm workflow represents the heart rate and, confirmed
by a pulse oximeter, they are accurate within +∕− 5 beats per
minute (bpm).
The combination of the smoothing algorithm and observing

the rate of change of the vessel thickness is key in removing
the errors that could arise from the motion of the finger. It
is important to note that the outcome of the workflow is not
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FIGURE 5 Once the image data is captured, vascular maps are generated and improved with morphological analyses, the data
analysis is done using filtering and trend analysis. The positions of the veins are detected using vertical profiles across binary
images (A). The choice of veins for monitoring the heart rate is made approximately from the central part of the profile as this
has the highest probability for an accurate identification. Once identified, the vein thickness is measured in terms of number of
pixels across the entire acquisition (B). This output is smoothed to give (C), which is further smoothed using Savitzky-Golay
filtering. Subsequent trend analysis results in the algorithm output, as shown in (D). The frames are converted to equivalent time
periods to illustrate the cardiac activity (E) and successfully compared with pulse oximeter readings. Note that the result is not
fitted to a sinusoidal pattern, which is done by commercial devices.

post-processed or fit to a sinusoidal function as is done by com-
mercial devices. Although this is a simple step, the results are
kept in this format to include the vasculature size variations
that are inherently a part of this heart rate measure.

4 RESULTS AND DISCUSSIONS

The method described above focuses on imaging finger vascu-
lature and extracting their pattern. Subsequently, the patterns
and the vasculature would be used to monitor cardiac activity.
The left index finger was used for imaging. An image of the
near-infrared illuminated finger, the output of the maximum
curvature and repeated line tracking algorithms is given in the
Supplementary Material through figures S1 – S12.
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FIGURE 6 The vasculature monitoring results of the complete methodology for USP001 compares the results from both pattern
mapping algorithms. The results show a clear trend but a better consistency of sinusoidal fit using the repeated line tracking
method (B). Both methods detect 77 peaks, i.e. beats within the duration of capture of less than 90 seconds. The resting heart
rate was confirmed using a pulse oximeter with a margin of +∕− 5 beats per minute.

When comparing the results (from before the image pro-
cessing step) qualitatively, the maximum curvature method
by far outperforms the repeated line tracking method, qual-
itatively. The binary images generally have fewer erroneous
identifications when using the maximum curvature method.
The repeated line tracking method is very susceptible to noise
and this is evident (Fig. 4 and Supplementary figures S1 –
S12). However, the contrast with which the veins are identified
is far more significant in the repeated line trackingmethod. The
results in the figures S1–S12 (Supplementary Material) show
different participants with different skin types and overall fin-
ger thickness at different positions of the finger successfully
being imaged and processed to extract vasculature.
In skin types I–IV, a certain degree of lateral scattering was

seen with brightness being distributed away from the point
where the light from the laser diode module is incident on
the dorsal side of the finger. In previous studies, the images
of the finger were taken from a device set up with LEDs and
a near-infrared camera system but restricts the movement of
the body site (the finger in most biometric applications) and
is not a non-contact system [16,21,26,29–31] except for visualisa-
tion systems [12]. Using a laser as an illumination source allows
conservation of directionality of the light and using a CMOS
camera in the visible-near-infrared region keeps the overall
cost of the system low.
We compare the results across methods, illumination wave-

length and two of the participants (additional comparisons and
the data is available upon reasonable request). In Figure 6 ,

the final cardiac activity output compares both pattern map-
ping algorithms for the same video sequence captured from
USP001. Both methods identify the vasculature and success-
fully monitor it to quantify the heart rate-related variations
(with an margin of +∕− 5 bpm). For participant USP002, the
comparison is made for red illumination with the maximum
curvature method (A) and repeated line tracking method (B) in
Figure 7 . The use of light at red wavelengths with the capa-
bility of detecting vasculature could allow direct application
of pulse oximetry principles to calculate the oxygen saturation
in the blood in addition to the heart rate measurement, as seen
in this case. However, the number of peaks (corresponding to
beats per minute) are not identified with the same degree of
accuracy when comparing the red illumination-maximum cur-
vature method combination against other methods. The pulse
oximeter measured a 77 beats for the imaging duration, which
is within the margin of error of the other two instances, i.e.
Figure 7 (B, C). Red wavelength did not facilitate the iden-
tification and monitoring of blood vessel patterns with all the
participants’ data but did work for USP002. For these results,
the methodology was used to process and output the detected
cardiac activity. Visually, the repeated line tracking method
functions better in this scenario as well, with the identification
of the blood vessel being a concern for the maximum curvature
method. The pattern in Figure 7 (B) can be fitted to a sinu-
soidal pattern better and the method successfully identifies the
vein position in every frame of the data capture.
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FIGURE 7 The results of vasculature mapping and monitoring for USP002 are compared for red illumination using both
algorithms (A, B). However, the red illumination was not useful for all the participants. (C) shows the near-infrared illumination
scenario combined with repeated line tracking method to present a sinusoidal-like pattern. The overall detection and monitoring
has been seen to be better with repeated line tracking as the pattern detection algorithm (C).

In comparison, using near-infrared illumination source, the
repeated line tracking algorithm performs much better and
more consistently (Figure 7 (C)) in comparison to the sce-
nario using a red laser source. Using near-infrared illumination
and repeated line tracking method for vasculature mapping
prior to image processing performs better once again, and in
other participants as well. This data, when fitted to a consistent
pattern would replicate the familiar oximeter outputs seen by
medical personnel from standard devices. Also, the number of
peaks (= 75) in the Figure 7 (C) scenario corresponds to the
heart rate of the participant, which was confirmed in this case
with a pulse oximeter in the laboratory. Similarly, the previous
scenarios were also compared and a +∕− 5 beats bpm mar-
gin was observed. Note that the acquisition scenarios of fig. 7
(A, B) and fig. 7 (C) are different with different illumination
wavelengths and exposure times. An innate difference with the
motion of the finger is also probable as identical positioning
and movement are nearly impossible.

5 CONCLUSION

We illustrated a simple and low-cost methodology for using a
laser source and a CMOS-based imaging system for detecting
and monitoring vascular activity. The algorithms for recogni-
tion of subsurface vasculature were adopted from the domain
of biometric recognition and extended to monitor vascular
activity. The methodology is not affected by motion of the
finger. A successful interdisciplinary method was developed
and tested on multiple, healthy participants. In this study, bio-
metric pattern detection algorithms are successfully applied to
diagnostics, enhancing the possibility for future research using
low-cost equipment and non-contact methods. Specifically, the
maximum curvature method performs better when identifying
the vasculature pattern within the finger but its output does not
provide a stable source for blood flow monitoring.
Repeated line tracking method, on the other hand, has a

generally higher accuracy for eventual identification and mon-
itoring vascular activity. The method’s outputs are far more
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robust to exposure time and finger movement variations. How-
ever, it is susceptible to noise which can be visibly seen in
the outputs and requires consideration in post-processing. The
ideal scenario for vascular activitymonitoringwithin the scope
of this study was found to be the higher exposure time, near-
infrared illumination and repeated line tracking method. The
overall system and method is affected by anatomical varia-
tions of skin type and finger thickness. In combination, the
methodology is biased towards skin types I-IV in this current
configuration using a visible camera with low sensitivity in the
near-infrared regions. However, imaging with a near-infrared
enhanced camera and cut-off filters has shown promise. While
clinical application is the eventual goal, the current research
illustrates the potential of a simple and low-cost approach to
for point-of-care diagnostics.
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Graphical Abstract Text
Validated by both ease of measurement and the ongoing
COVID-19 pandemic, low-cost and remote solutions of vital
signs is essential for any diagnostic process. Inspired by novel
biometric solutions, we illustrate a robust methodology that
extracts vasculature distributions in the finger without motion
artefacts. Further, we extend the approach to monitoring heart
rate. Future work could provide valuable information in many
fields, with postnatal monitoring being one such application.
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