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Abstract

This study focuses on enhancing the control precision and efficiency of a two-degree-of-freedom (2-DOF) space
manipulator used for active space debris removal. The unpredictable space environment introduces large uncertainties,
which introduces unique challenges beyond the capabilities of a standalone computed torque controller and degrades
control performance. To address this problem, a robust controller is developed, integrating traditional techniques such
as sliding mode and computed torque control with a Neural Network framework. This synergy leverages both methods'
strengths—conventional controls' accuracy and Neural Network's adaptability. The integration of Neural Network-
based sliding mode control complements the robustness of computed torque control by actively mitigating uncertainties
and disturbances inherent in the space environment. The 2-DOF manipulator's state variables model the system
dynamics, necessitating accurate relative motion estimation between the manipulator and debris. The global asymptotic
stability of the developed algorithm is demonstrated through the Lyapunov theorem, guaranteeing error convergence
to zero. The convergence, stability, precision, tracking errors, and responsiveness of the controller have been analysed
and validated by the MATLAB Simulink simulations. The novel approach's performance effectiveness is substantiated
by numerical simulations and a comparative analysis with conventional computed torque control. Outcomes highlight
the superior precision and efficiency in manipulator tracking the trajectory. validating the integrated controller's
potential for successful active space debris removal.

Keywords: Space Manipulator, Active Debris Removal, Intelligent Controllers, Neural Network, Sliding Mode

Controller, Computed Torque Controller.

1. Imtroduction

The term "space debris" refers to fragments of
human-made objects, including defunct satellites,
discarded rocket stages, and particles resulting from
collisions with other debris. These elements pose a threat
to satellites in Earth's orbit. Furthermore, these particles
have the ability to damage satellite and spacecraft
components, leading fto the creation of additional
fragments over time. The ongoing launch of more
satellites and spacecraft for diverse space missions is
contributing fo the steady growth of the space industry.

Spacecraft equipped with space manipulators play a
pivotal role not only in clearing space debris but also in
various on-orbit service missions, as well as the
assembly, maintenance, and repair of spacecraft. The
success of these missions relies on efficient control of
space manipulator systems. In the context of on-orbit
servicing, a space manipulator is tasked with executing
intricate operations that necessifate real-time intelligent
trajectory planning. However, the application of space
manipulators in active space debris removal faces
challenges.

When dealing with a non-controlled and tumbling
target object from a distance, such an object does not
convey any information to the spacecraft or chaser
satellite. This lack of information makes it difficult to
effectively employ space manipulators in missions
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focused on active space debris removal. Consequently,
this area remains an ongoing and open field of research.

Conventional spacecraft Guidance, Navigation, and
Control (GNC) systems are primarily designed to follow
commands from ground control with minimal onboard
autonomy (Hao et al., 2021). Intelligent control
techniques leverage artificial intelligence (AI)
approaches, such as neural networks, fuzzy logic, and
reinforcement learning to make real-time decisions,
particularly when system information integration into
traditional methods involving ground control becomes
challenging. However, a complete transition to Al-based
systems requires overcoming the challenges including
adaptability in dynamic space environments and the need
for extensive testing and validation to ensure safety and
reliability in space environments. Therefore, an
intermediate solution called an intelligent GNC system
with AI components is being explored to replace
conventional components for autonomous operations of
free-floating space manipulators.

The intelligent GNC system faces two primary
technical challenges: the limited computational power of
hardware in space's radiation environment and
constrained power supply. and the robustness of pre-
trained neural networks for real space missions (Hao et
al., 2021). Ensuring safety in manipulator operations
requires constraining the joint angles within a designated
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safe region, which adds another layer of complexity to
controller design. The literature reviews various space
robotics technologies for on-orbit services. For instance,
DLR has developed a method for capturing non-
cooperative, tumbling targets (Shan, Guo. and Gill,
2016), focusing on a single manipulator arm due to its
practicality for ground testing and higher technology
readiness level (TRL), despite drawbacks like collision
risks and rendezvous requirements. Pathak et al. (2008)
discuss diverse robust control strategies for free-floating
space manipulators, highlighting the challenges of
trajectory control for single-degree-of-freedom (DOF)
manipulators. Liu et al., (2018) present a robust
decentralised control strategy based on signal
compensation and back-stepping to reduce tracking
errors and demonstrate robustness. Zhang et al., (2022)
demonstrate a strong robustness in the control strategy
developed for controlling the motions of the space
manipulator using Time-Delay Estimation (TDE). The
combination of SMC and TDE improves tracking
accuracy and robustness.

Survey papers also provide insight into existing work
on intelligent robots. He, Li. and Chen (2017) survey
human-centric intelligent robots' challenges, while
Moosavian and Papadopoulos (2007) delve into the
dynamics, modelling, planning, and control of free-
floating robots in space, explaining various control
algorithms. The following studies applied artificial
intelligence techniques to control the space manipulator
motions. Ertugrul and Kaynak, (1997a) demonstrate the
efficiency of a neural network-based adaptive sliding
mode confroller to control the SCARA robot
manipulator. Fuzzy-neural-network inherited sliding
mode controllers were developed by Rong-Jong Wai and
Muthusamy, (2013), Hui Hu and Peng-Yung Woo,
(2006), and Sun et al., (2019) and (Tian and Collins,
2005) demonstrated the fuzzy and neuro-fuzzy-based
control techniques for flexible manipulators. However,
these papers didn’t address uncertainties as a way to
improve the control performance of space manipulator.
This research will focus on developing an intelligent and
also robust controller to accurately control the motion of
the manipulator with uncertainties.

In on-orbit tasks, achieving precise trajectory
tracking using space manipulators encounters difficulties
due to uncertainties present in the space environment.
These uncertainties can be categorized into two main
types: aleatory and epistemic (Benke et al., 2018).
Distinguishing epistemic uncertainties from aleatoric
ones can be achieved by assessing whether additional
knowledge can eliminate the uncertainty. The term
"epistemic" originates from the Greek word "emotiun
(episteme)," which roughly translates to knowledge
(Hiillermeier and Waegeman, 2021). Epistemic
uncertainty within a classical neural network typically
refers to the uncertainty associated with neural network
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parameters that could be diminished with more essential
information provided by the dataset. On the other hand,
aleatoric uncertainty emerges from the probabilistic
prediction itself, as revealed through maximum
likelihood inference. In the context of nonlinear systems,
the design of manipulators and the selection of
controllers are significantly influenced by the presence of
these uncertainties. To tackle these uncertainties,
intelligent and robust controllers are essential, and the
advancement in this domain is still a challenge.
Robustness, denoting the ability of a closed-loop system
to remain unaffected by parameter variations, is one of
the most valuable properties of a controller (Pathak et al.,
2008). Hence, the study aims to develop an intelligent
and robust controller for precise and robust control of
space manipulators amidst disturbances like modelling
errors, noise, and variations in system behaviour. The
proposed controller, aided by Neural Networks, targets
the mitigation of uncertainties to enhance manipulator
control performance. It strives for rapid responsiveness
and global asymptotic stability, ultimately advancing
intelligent and robust control in space manipulators,
crucial for on-orbit tasks. Neural networks learn from
system behaviour and adapt controller parameters based
on observed uncertainties. They can approximate
nonlinear relationships between system inputs and
outputs, allowing the controller to adjust in real time to
varying conditions or uncertainties. By continuously
learning and updating the controller gains, neural
networks enhance the system's robustness against
uncertainties that might otherwise disrupt the
performance of traditional fixed-gain controllers.

The structure of this paper is organized as follows.
Section II presents the modelling of a space manipulator
by deriving its dynamic equations. Section III explains
the theoretical design of the proposed control scheme,
ensuring high-precision control in joint motions. In
Section IV, the simulation results of the proposed
controller are demonstrated, and a comparison is made
with the conventional controller. Finally, Section V
provides the concluding remarks of the paper.

2. Dynamical Modelling of a Space Manipulator

A spatial free floating 2-DOF space manipulator system
is considered as it is convenient to test the effectiveness
of the proposed controller, and it is illustrated in Fig. 1.
It consists of a spacecraft base, two revolute joints, and
an end effector used for capturing target objects. The
spacecraft body frame {x, y} and the end effector’s body
frame {x., y.} are attached to the spacecraft and end
effector aligned with the inertial principal axes of the
spacecraft and end effector, respectively. The revolute
joints have angle variables denoted as g and q». which
are perpendicular to the principal axes of the links.
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2-DOF Space
Manipulator
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Fig. 1. Two-Degree-of-Freedom Spatial Free-Floating
Space Manipulator System

2.1 Dynamical Equations of Motion for a Space
Manipulator
The equations of motion's dynamics are obtained

through the utilization of Lagrange's equation,
formulated as:
d (oL aL
Q== (6_‘31-) e (1)

In this equation, L denotes the Lagrangian of the
system, representing the difference between kinetic and
potential energy. @; represents non-conservative forces
acting on the system, 7 symbolizes time, and g; represents
the vector of generalized coordinates. For the dynamic
models used in this study, Q is considered a vector of
applied torques, represented as T. Thus, the dynamic
equation is simplified into matrix form:

M(q)4+h(q,q) + Ta =7 2)

Here, M(q) 1s the 2*2 inertia matrix, and h(q,q)
with 2*2 matrix represents the centrifugal and Coriolis
terms:

h(q,q) = C(q,4)q + G(q) 3)

The Coriolis term € (g, ¢) and the gravity term G(q)
are included in the control system to develop a more
accurate dynamical model. The term T, represents a
disturbance in the system dynamics and is depicted as a
sine wave function in the MATLAB-Simulink
simulation. Sine waves functions are often used to
simulate external disturbances in the control theory as
they represent the oscillatory disturbances, which are
suitable for modelling various types of disturbances
encountered in a real-world system (Cordero et al., 2022
and Kim et al., 2013). Additionally, 7(t) corresponds to
the control torque applied to the space manipulator's
joints. Several properties of the space manipulator are
outlined as follows:
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e Property 1: By appropriately defining the matrix
C(q,q). M(q) — 2€(q,q) is skew-symmetric and
fulfils the condition:

o For any vector x, x”[M(q) — 2C(q, ¢)|x =
0,vx e R™

o C(q,q) q is quadratic with respect to ¢ and
bounded as to [IC(q,q) gl < pus(@)llgll. is
a positive constant for revolute links.

e  Property 2: The inertia matrix M is symmetric,

positive definite, and satisfies the condition:
o MT=m.
o Boundedas o, I, < M(q) <ot I,
Vq € R™ where o;and 5 are positive
constants. For revolute links, they remain
constants. I,, e R™™ denotes the identity
matrix.

e  Property 3: The gravity term G is bounded as
G ()]l <4 (q). where o<, (q) is a positive
constant for revolute links. It is independent of g.

3. Design of Controllers

The traditional control methodologies explored in this
study comprise sliding mode control (SMC)., and
computed torque control (CTC). A novel strategy is
developed. by merging both sliding mode control and
computed control with a neural network, to derive a
combined torque responsible for governing the joint
movements of the space manipulator. The complex
nonlinear dynamical model of space manipulators
presents a challenge in effectively controlling them using
conventional methods. Despite the competence of classic
controllers, the inherent uncertainties in manipulators
remain substantial. To address this, an infelligent
approach involving a neural network is applied. This
integration aims to mitigate uncertainties, sustain the
controllers' robustness, enhance convergence speed, and
elevate overall performance through uncertainty
reduction. The workflow diagram illustrating the
integration of neural network-based sliding mode control
and computed torque control, termed NSMCTC, is
presented in Fig. 2. The input for the trajectory in terms
of g,q and § is given to the controllers. The combined
torque of the neural network and sliding mode controller
is added to the computed torque from CTC to achieve a
100% convergence rate. The overall output of this
proposed controller is given to the space manipulator to
control its motions.
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Fig. 2. Workflow Diagram of Proposed Controller,
NSMCTC

3.1 Sliding Mode Control (SMC)

The sliding mode control methodology proves to be a
potent approach for creating robust controllers suited for
high-order nonlinear dynamic models operating within
uncertain conditions. This technique originated in the
former Soviet Union approximately four decades ago and
has gained substantial international recognition over the
past two decades. SMC offers distinct advantages
including robustness, finite-time convergence, and
reduced-order compensated dynamics. The fundamental
principle of SMC involves constraining the manipulator's
trajectory onto a hyperplane, skilfully guiding it to an
asymptotic equilibrium point through controlled sliding.
To enhance robust control performance, it is theoretically
feasible to employ a high switching gain within the
discontinuous function (Liu et al., 2021). However, this
technique can lead to chattering issues characterized by
undesirable oscillations with finite frequency and
amplitude centered around a predefined switching
manifold.

Chattering arises due to two primary reasons (Young,
Utkin, and Ozguner, 1999):

e  The presence of parasitic dynamics in the control
system leads to high-frequency oscillations with
limited amplitude. Consequently, this type of
chattering can often be ignored during controller
design.

e Switching non-idealities, such as delays in
sampling time and fransmission delays in
networked control systems, can introduce high-
frequency oscillations. These non-idealities need
to be addressed as they contribute to the
controller's excessive high-frequency
oscillations.

o The unmodeled system dynamics present in the
control system might trigger high-frequency
chattering within the SMC. Therefore, the
effectiveness of SMC is closely tied to a
comprehensive  understanding of system
uncertainties and dynamics.

Consider the design of a nonlinear sliding variable
using simple error dynamics. The tracking error, known
as the filtered tracking error, can be defined as follows:

e=q—qq )
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Upon taking the first and second derivatives, the
following expressions emerge:

é=q—aa )
é=i—da ©)

where e represents the error between the desired
position and the measured position. e and é are assumed
to remain bounded. In this context, q4. ¢4 and g, denote
the vectors corresponding to the desired position,
velocity, and acceleration of the joint.

The pivotal aspect of SMC design revolves around
creating a sliding manifold, sliding surface, or
hyperplane. The formulation for the sliding surface is
given by:

s=Ae+eé (7

Here, A is a constant positive definite diagonal

matrix, denoted as A = diag(A,, ...,A,) A;> 0. The

reference state can be expressed as:
¢Gr=q—s=q—Ne—é=qs—Ne ®)
Gr=G—5=G—Ne—&=ig—Né ©)

Equations (4) and (5) are functions reliant on the
manipulator dynamics, involving tracking position error
and velocity error. The time derivative of the sliding
surface is denoted by (Hui Hu and Peng-Yung Woo,
2006):

$=NMNq —qa) —Ga+ M (q)[t —h(q,q) — Td](lo)
Here, T stands for unmodeled uncertainty, assumed
to be bounded to ensure adequate control performance.
From property 1, M(q) — 2C(q, q)q constitutes a
skew matrix satisfying x'[ M(q) — 2C(q,4)q]x = 0.
Consequently, by multiplying both sides of the equation
by M. the following equation is derived:

Ms =1 —h(q,q) — M(q)ga + M(q)Aé — T4 an

Using equation (3) in (11), the following equation is
derived:

$=1—-C(q,9)q — G(q) — M(q)ga + M(g)Aé —
Tq (12)

Substituting equation (12) into the relation between

q . {4 and s from equation (8). the following equation is
obtained:
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Ms =1—-C(q,4)4a — G(q) —M(q)4a +
M(q)N\e — T, (13)

When the state trajectory approaches the sliding
surface, s = 0. This leads to the equation:

T—C(q,9)qa — G(q) — M(q)dq + M(q)\é —
T;=0 (14)

Assuming no external interference 74, the modified
control input 7 is formulated as follows:

T = Tgye + asin(s) + As (15)

In equation (15), the term As is introduced to
expedite the approach of the state towards the switching
manifolds and ensure the convergence of tracking error
in finite time. The presence of noise outside the sliding
manifold can result in increased tracking errors or
inconsistencies between the desired and actual
trajectories. This deviation might cause the system to
exhibit undesired behaviours, leading to less precise
control and potentially impacting overall system
performance. The robust terms o and A4 is tuned to
mitigate the effects of uncertainties by ensuring the
trajectory remains within the sliding manifold. When the
trajectory is within the sliding manifold, noise affects can
be reduced (Husek, 2016).

By substituting equation (14) into (15), the
following equation derived:

C(q,9)qr + G(q) + M(q)(Ga — Neé) + Ty =
Tome + asin(s) + As (16)

Consequently, the control signal for SMC is given as
follows:

Tsue = M(@)d, + C(q, Q)4 + G(q) + T4 —
a sin(s) — As (17)
where a = diag(c,, ..., %,,) is a positive diagonal
definite matrix, bounded as per property 2. Similarly,
sin(s) = [sin(s;), ..., sin(s,)]" and A =
diag(a,, ..., a,) denotes a positive matrix where
sTks >0Vs #0.

3.2 Computed Torque Control (CTC)

Computed torque control (CTC) is a well-established
motion control approach ensuring global asymptotic
stability for space manipulators. However, due to
challenges in acquiring precise dynamical models in
practical scenarios, this study innovatively integrates
CTC with a neural network sliding mode controller,
aiming to enhance joint motion regulation. This novel
hybrid approach addresses the limitations of
conventional CTC by leveraging neural networks for
improved performance. The integration of neural
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network (NN) based SMC with CTC stems from several
reasons; CTC alone cannot accurately handle chattering
arising in the system, NN excels in learning complex
patterns and non-linear relationships. allowing CTC to
adapt to varying conditions.

From equation (2) and (3), the expression for § is
given as follows:
G =M(q@)(t—h(q,9) (18)
Upon substituting § from equation (18) into (6), the
equation takes the following form:
é=Ga—M(q@)(t—h(q,9) (19)
The formulation of the control input function is
established as follows (Lewis, Abdallah, and Dawson,
2018):
u=¢é=ga—M(q@(t—h(q9) (20)
Derived from equation (20)., the computed joint
torque is expressed through the following equation:

T =M(q)(a —w) + h(g,9)q @D

The control signal denoted as "u" embodies
proportional-derivative feedback, and its formulation is
given as follows:
u=—Kzé —Kye (22)
By substituting equation (22) info equation (21), the
following formulation for the computed torque control
law is derived:
Tere = M(q)(Ga + Kaé + Kpe) +h(q,4)q  (23)
where the relationship between derivative gain (Ky)
and proportional gain (K}) is defined as K; = 2,/K,, and
K, = K2/4. Based on a trial-and-error method, the
controllers’ gains are initially tuned to achieve the
desired control performance. However, neural network
learns from the initial tuning process and, continuously
adjust the gains to respond to external disturbances. Then
these gains are automatically tuned to improve the
response of the control system to the changing conditions
and maintain stability, which indirectly contributes to
reducing the tracking errors by minimising the
oscillations and overshoots.

3.3 Neural Network

Intelligent control methods such as fuzzy control and
neural networks have the capability to approximate
nonlinear systems, making them suitable for adaptive
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applications (Fei and Ding, 2012). Neural networks, in
particular, are well-suited for adaptive tasks due to their
capacity to learn and approximate a wide range of
nonlinear functions. While conventional control
techniques often rely on a deep understanding of a
process's dynamics and its operational context, neural
networks shine in nonlinear control domains such as
space manipulator control. However, their effectiveness
can be compromised when dealing with poorly modelled
and unspecified processes or environments. The neural
network architecture selected for this research is shown
in Fig. 3. It consists of input layer, hidden layer and
output layer. There are 10 neurons in the hidden layer and
2 neurons each in the input and output layers based on the
number of inputs and outputs. The inputs to the neural
network x;; and x;,. the output of the neural network
Tyy are derived in section 3.4. Different weights
(Wl and WJ are added to each layer and they are also
defined in the section 3.4.

10 Neurons

2Neurons Wi O W, 2 Neurons

B N7
.0 e

Input Layer Hidden Layer Output Layer
Fig. 3. Neural Network Architecture for the Proposed
Controller

The novelty of the developed neural network
approach lies in its utilization to improve robustness and
controller performance. Specifically, the substitution of a
switching function with a constant slew rate (a’ = a * 4)
and constant amplitude (4), by an equivalent activation
function (sine), addresses the "chattering" phenomenon.
This enhancement method distinguishes and outperforms
the proposed neural network approach from existing
works, contributing significantly to the adaptability and
stability of control in uncertain environments.

3.4 Design of NSMCTC

To address concerns about convergence and
computational complexity, the proposed neural network
approach incorporates a multi-layer architecture with
adaptive weights. Initially, these weights adjust the
sliding surface's slope, the gains associated with sliding
mode control (SMC), and the control input, derived from
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(e L

error and its rate of change. The inputs of the first input
layer are given as follows:

X = [e; €; )" (24)
é&=q"—gq (25)
fj’ = q + KNdé + KNpe (26)

The updated values of Ky, and Ky will be derived
in the cost function section. The first input layer's output
is expressed as:

Vi= e+ ;6= A x; 27

Here, A, and A, denote the respective gains of e;
and &;. This modified sliding surface is computed as:

s; = i)

where f; represents the activation function of the
respective neuron in the neural network.
The first hidden layer's input is formulated as:

(28)

T
Xiz = [Si1 Siz KnpKnal (29)

With s;; =s;. si = sin(s;) . while Ky, and Kyp
serve as offset signals compensating the control input
signal. The first hidden layer's output for SMC is defined
as:

Uy = —Aysy — AyKy, (30)
U, = —Aynsi; — AyKng (31)
Usmc = [U; Uz] (32)

The CTC relies on inverse dynamic control to
determine the manipulator's real joint acceleration vector
using the given torque, . This approach results in the
system's dynamics being derived as:

4 =ga +Kqé + Kpe (33)
By substituting the expression for §; from equation
(33) into equation (6), the following is obtained:
€= q4—q4—Ksé—Kpe (34)
é+Ksé+Ke=0 (35)
Equation (35) signifies that in the absence of external
disturbances, the control input is zero. When the
proportional gain K, and derivative gain Kjare suitably
chosen, the error asymptotically approaches zero. This
equation serves as the control system's error in the
NSMCTC approach. This derived control input from

equation (35) is reformulated as follows (Jung and Hsia,
1995):
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d(t) = Gq +K4(qq — q) + Kp(qa — q) (36)

The presence of equation (36) makes CTC method
invalid, leading to difficulties in achieving convergence
and stability of the manipulator. Consequently. the
control aim of this study is to establish an SMC-based
control law to act as a compensator for CTC, thereby
enabling the manipulator's joint motions, as described by
equation (2), to align with desired trajectories. Equation
(36)'s right-hand side is represented by SMC, adhering to
the fundamental notion of SMC acting as the inverse of
the manipulator under CTC. This arrangement ensures
that the manipulator's motion closely follows the desired
path while achieving minimal distortion and optimal
control response.

By combining equations (2) and (36), the following
equation is derived:

Ga + Ka(Ga — @) + K,(qa — ) = M~ (AM§ +
Ah + T,) (37
To analyse the overall performance of the NSMCTC
controller, ideal outputs are represented as E; = q4 .
E; =gy and E; = 4. By defining the tracking error,
equation (37) is transformed into:
Ga+Ka(Ga—q) +Kp(qa—q) =6 (38)
where M~1(AM§ + Ah + T;) =& . signifying the
collective contribution of NN outputs to the tracking
error in  equation (38). NSMCTC outputs are
incorporated into desired trajectories, resulting qy =
Ed + qq. C-IN = Ed + qd and (:j'N —= Ed + qd Slletll'l.ltmg
this relation into equation (37). the following equation is
derived:
é+Ke+K,e= 6 (39)
Upon controller convergence e = 0. ideal outputs
satisfy the relationship:
§=0 (40)
From equation (40), it is clear that neural network
must counteract the manipulator model's uncertainties.

The hidden layer's output for CTC is expressed as
follows:

Uerc = 2N xiW

(41)

An adaptation rule for the weighting factor is based
on Lyapunov analyses:
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W = a(k,e + kyé) (42)

k, and k, are the learning parameters. The hidden
layer’s weight is automatically adjusted to minimize the
cost function:

1
W; =5 (i — 42)° (43)
The overall neural network output is given by:
vy = Usmyc * Ucre * Wi (44)

The absence of the signum function in the control
input torque from the neural network eliminates
chattering in the controllers.

For simulation purposes, the NSMCTC's overall
inputs are [e é & U Ugpc]. where € = § — . The neural
network outputs, denoted as [W;xinput of NN] ,
incorporate the adjusted weight factor (W;) crucial for
minimising the cost function. Fig. 2 provides the visual
representation of this integration. The neural network's
outputs are seamlessly integrated info SMC, contributing
to the NSMCTC control inputs. This integration
strategically aims to counteract manipulator model
uncertainties and eliminate chattering. The combined
control output provided to the space manipulator for joint
motion control is derived as follows:

Tnsmc = Tsmc + Tan (45)

To = Tere + Tnsmc (46)

where 11 represents the torque generated by CTC,
and Tgye 1 the compensating torque produced by
NSMCTC.

3.5 Cost Function

For a neural network, the cost function represents the
accumulation of errors across each layer. Individual
errors are computed at each layer and summed to
determine the total error. The role of the cost function is
to quantify how effectively the models are performing.
Its purpose is to evaluate the overall error resulting from
predictions. The objective is to minimize the cost
function, as the smaller value of the cost function
indicates a closer match between predicted and actual
values (Meel, 2023).

In the study by (Ertugrul and Kaynak, 1997), the
controller gains of Computed Torque Control (CTC) are
treated as the weights of the neural network. These gains
are automatically updated by the neural network to
minimize the cost function. The adjusted weights are
calculated as demonstrated in equation (43).
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The updated gains are obtained using the following
equations:

Ky,i(t) + ng, AK,;(t) (47)

Kgi(t +1) = Kg;(t) + ng , AK 4 (t) (48)

where Nk, and 7y, are learning rates for the
proportional and derivative gains, and AK;(t) and
AKy; (t) represent changes in the gains calculated using a
steepest descent method:

— oW, _ oW da; du dwi _ .ﬂ‘h
‘(t) Ky dq dn dw; 9Kp ( si)
(49)
oW, _ oW da: On  dwi _
AKy(t) = Kz  dq; 9t du; 9Ky
—e;4% (—sin(s;) (50)
These equations involve the sliding surface

parameters. Thus, equations (47) and (48) are redefined
as:

KN;pi (t + 1) l(t) + T?K,, qr S: (5 1)

. Aq; .
Kyai(t +1) = Kgi(t) + g, 91'91&_15111(3:') (52)

Similarly, changes in the slope of the sliding surface
are calculated using:

Ay (E+1) = A (0) + N, AN ) (53)
Ay (E+1) = A1) + UAZMiz(t) (549
AA(E) = BW _0W; 9q; Ot; 0s;

! " dq; 0t; 0w; A,

'ﬂ 1 a 15
= % (—K,,i - Kat 2520 fre, (55)
For convenience, consider Sai 24 g
aT; At
aw; Aq; 4725
an, _Eiﬂ_""'i( K ~ Ka (1+e_zsn) )E’-
(56)
ancey - W __ W a0, dug 05, oy,
6A dq; dt; ou; ds; dy; OA,
Ag; 3( (()
- —eir;(—Kpi K55 frer (57)
aw; Ag; 4e” 25 .
e = (K~ Kty
(58)
TAC-23-A1.23

These changes in slope are used to adjust the sliding
surface parameters:

Ag;
Ay +1) = Ay(6) — 1, o7 22 (K —

ae—251
K, — 59
) (59)
_ . Ag;
Apz(t +1) = Ay(t) — 14, eielﬂ__ri(_K‘pi -
Ky—2—', ) (60)
di (1+e‘2‘i)2
 Awa(erD) _
N — Anz(t+1) i—eqv (61)

Equation (61) represents the reaching law that
accelerates convergence. The sliding surface slope is
adjusted to increase the equivalent slope, promoting
optimal convergence where errors are minimized.

3.6 Stability Analysis

Regarding stability analysis, the study examines the
stability of SMC along with the neural network as a
compensator for CTC. In the presence of uncertainties
and disturbances, the system (joints) deviates from the
sliding manifold. SMC intentionally modifies its
structure using discontinuous control to steer the phase
trajectory to a stable sliding surface. To ensure the
manipulator's trajectory stays close to the sliding
manifold, a Lyapunov function is introduced. which
could demonstrate that the tracking error eventually
converges to a neighbourhood of zero with its time
derivative being negative. The Lyapunov function is
represented as follows (Hui Hu and Peng-Yung Woo,
2006):

V= %sTMs (62)

where M is a symmetric and positive definite matrix,
and Vis a positive scalar function of the vector s and time
t. The derivative of V' is expressed as:

V=sTMs (63)
Substituting equation (10) into equation (63), the
following is obtained:

V=s"[t—h(qq) —M@)(Ga—Ne)—Ta (649

By introducing the relationship g, = §; — Aé from
equation (9), equation (64) becomes:

V =25T[r — h(q,q) — M()dy + T4] (65)

The system's stability is demonstrated if the
controller’s gains of the switching controller surpass the
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upper bound of the uncertainties. By substituting
equation (17) into equation (65), the following equation
is obtained:

V =—sTasin(s) —sTks + sTT, (66)

Assuming bounded derivatives, i.e., ||T4]l <
Tipouna- the system's stability is ensured, and the
derivative of the Lyapunov function is negative:

V< —sTasin(s) —sTks+s'T; <0
- sTasin(s) + sTks = s"Typouna (67)

where  Tapouna = f(X) = fiX + fosin(%) and, f;
and f, are the positive constant matrices.

4. Results and Discussion

In this section, the controllers outlined in equations
(17)., (23), and (44) are assessed using MATLAB-
Simulink to demonstrate the performance of the proposed
approach. The sinusoidal desired or reference trajectories
are defined as follows and then tested within the
MATLAB Simulink environment:

—§+§sin(zﬂ) (E) and ~E,
9a =75 77 10 2 Ta = 7

85 | 2nt b . .
- sin (E) — (;) These trajectories represent the

desired positions of the system over time in the
subsequent plots. To assess the controllers’ performance,
the trajectories are tested within the MATLAB-Simulink
environment. In the desired trajectory equations, the sine
function is introduced to represent the unmodeled
uncertainties, allowing for the investigation of the
robustness of the combined controller. The outcomes
obtained for each controller, SMC., CTC and NSMCTC,
are displayed in Fig. 4, Fig. 5, and Fig. 6. The presented
results illustrate that the controllers accurately track the
provided trajectory. Fig. 5 particularly reveals that the
proposed CTC has achieved convergence. However, Fig.
6 exhibits chattering, which stems from the uncertainties

and noise inherent in the system.
300 - !

250}
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Fig. 4. Sliding Mode Control’s Output Torque
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Fig. 6. Tracking Performance with Chattering

The Levenberg Marquardt (LM) algorithm is a widely
used optimisation technique for training neural networks
(Mystkowski et al., 2023). LM is known for ifs
robustness, efficiency and ability to handle a wide range
of optimisation problems. In this research, the objective
of LM is to minimise the error between the network’s
predictions and the desired position provided in the
training data. To address the issue of chattering and
reduce the magnitude of error, the following parameters
are fine tuned in the neural network:

e SMC

o Slope of the sliding surface: A; =
[100 0.05] fori=1, 2.
o Robust terms: 4 =[12.5, 15] and @ =

[0.05 0.05].
o Offset signal compensating the control
mput: Kjp =[0.001, 0.001].
o Disturbance: 7, =[0.002, 0.2].
e CTC
o Proportional and derivative gains: K, =
12.5and K;=12.5.
¢ NSMCTC
o Learning rates: k&; =k, =[100, 100].
o Learning rates for minimizing the cost

function (explained in the next section):
MKy = MKy = Mg = Na, = [0.7 0.7].

Neural network-based tuning allows for dynamical
optimization of control parameters, by enabling the
controller to adapt to changes in the system or
environment, reducing the impact of uncertainties on
system performance. With these carefully adjusted
parameters, the enhanced tracking performance is
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illustrated in Fig. 7. The outcomes clearly showcase that
the manipulated space system attains a high level of
control precision in terms of tracking, effectively
eliminating chattering and reducing the impact of noise.

o 1 T T T, ~—Input Trejectary:1 -
\ -Input Trajectary:2

=Y. B8 e e Space Manipulator:1_|
= /.-" P ‘\\ Space Manipulator2
O 3 e el 1
5,
[} \
Z1 A \

oL - |

0 1 2 3 4 5 6 7
Time (s)
Fig. 7. Tracking Performance of NSMCTC Without
Chattering

The overall control performance based on the position
and velocity is demonstrated in Fig. 8 and Fig. 9. The
desired trajectory has a good convergence rate of 4.999
seconds and has good resposniveness to the system.

Sr —Input Trajectory:1
2l " T Spaca M'anlp.ulatom |
3t o ace | sulator2 |
=3
1F - ) ) 4
o~ —
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Fig. 8. The Performance Evaluation of Position
Control g

=
o i /l
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Fig. 9. The Performance Evaluation of Velocity
Control ¢

The error performance of NSMCTC is demonstrated

in Fig. 10. The errors are significantly small and are
converged to zero with a convergence rate of 4.994 s.

IAC-23-A1.23

—Space Manipulator ]

Time (s}

Fig. 10. The Performance evaluation of Tracking
Error e.

The stability of the proposed controller is tested in the
MATLAB-Simulink environment. The Lyapunov
derivative V is —7.957 X 1076 | ensuring that the
controller has achieved stability.

NSMCTC is also tested with polynomial trajectory in
Simulink environment using the polynomial reference
trajectory and the results are demonstrated in Fig. 11 and
12. The tracking performance is similar with that of the
sinusoidal reference, as demonstrated in Fig. 7 and Fig.
11. However, the tracking error is slightly larger than that
of the sinusoidal reference, as show in Fig. 10 and Fig.
12. The errors are converged at 5.002s and 4.994s for the
polynomial and sinusoidal trajectory. respectively.

T T T T T T

Input Trajectory:1
—Input Trajeclory:2
—Space Manipulator:1

T —8pace Manipulator:2

3 4
Time (s)

Fig. 11 Tracking Performance of NSMCTC with a
polynomial input Trajectory

—Space Manipulator;1
—Epace Manipulator:2

3 4
Time (s}

Fig. 12 Error Performance of NSMCTC with a
polynomial input Trajectory
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However, the controller accurately tracks the desired
trajectory and has significantly smaller error in
polynomial trajectory too. This indicates the efficiency of
NSMCTC’s control action generation and feedback
correction  mechanisms. The neural network
automatically tunes the controller’s parameters to
achieve similar performance. Additionally, NSMCTC’s
adaptability allows it to adjust control actions based on
specific trajectory characteristics, ensuring effective
performance. The results demonstrate NSMCTC’s
robustness, adaptability, and generalization capability of
accurately and predictably controlling of the space
manipulator, which indicates its suitability for real-world
applications.

4.1 Comparison

This study presents a comparison between the control
outcomes of the traditional CTC and our proposed CTC,
as shown in Fig. 13. In control systems dealing with
uncertainties and assumed variables, the performance of
the traditional CTC is notably degraded, exhibiting a
reduction in control effectiveness when faced with
unknown variables. However, the novel controller
employs adaptive principles from Equation (42),
allowing it to achieve the anticipated control
performance even when variables are uncertain. The
controller gains are adjusted to attain the desired control
performance. Equation (37) provides a mathematical
representation of how the control effectiveness of
traditional CTC is anticipated to decrease when dealing
with uncertainties. The comparison indicates that the
proposed CTC surpasses the traditional CTC concerning
convergence, accuracy in tracking, stability, and
responsiveness. Fig. 14 and 15 visually demonstrate the
enhanced convergence speed of the proposed CTC
compared to the conventional CTC. Unlike the
conventional approach, the proposed CTC maintains a
steady state post-convergence. These outcomes were
achieved through the self-learning capabilities of the
neural network, confirming its effectiveness in enhancing
the control performance of the space manipulator. Unlike
traditional position-based computer torque control
schemes, NSMCTC demonstrates superior control
outcomes without imposing a heavy computational
burden. This combination of effectiveness and
computational efficiency positions NSMCTC as a
promising approach for advanced control applications in
space manipulators.

IAC-23-A1.23
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The performance of tracking error against the time is
demonstrated in Fig. 16. The results shows that the
tracking error of the proposed CTC consistently
converges to zero across all time intervals, confirming
the attainment of global asymptotic stability. The
behaviour of the proposed CTC closely resembles that of
an ideal controller, as evidenced by the near absence of
tracking error.

o 1 2 3 4 5 8 71
Time (s)

Fig. 16. The Performance Evaluation of Tracking

Errore
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In Fig. 17, a slight overshoot in the tracking error rate
is observed due to the substantial learning rate, which
aids rapid convergence. Notably, the NSMCTC
controller achieves both zero tracking error convergence
and enhanced responsiveness, illustrated in Fig. 16 and
Fig. 17.

—Pmi: w2

ok ! —Comve2

Time (s)

Fig. 17. The Performance Evaluation of Rate of
Tracking Error é

5. Conclusion

This study developed neural network based sliding
mode computed torque control approach for robust
position tracking of space manipulators. The primary
goal was to address uncertainties stemming from
disturbances and unmodelled dynamics. By combining
sliding mode control, computed torque control, and
neural networks, NSMCTC demonstrated enhanced
performance in terms of precision in trajectory tracking,
reduced chattering and rapid convergence compared to
conventional methods. The Lyapunov stability theorem
validated its uniform and ultimate boundedness and
global asymptotic stability.

Extensive MATLAB-Simulink simulations verified
the effectiveness of NSMCTC in accurately tracking
space manipulator positions, achieving precise joint
motion control and demonstrating improved
responsiveness. The approach's key advantage lies in its
self-learning capability, enabling adaptation to the
system's dynamic model without prior knowledge.
Additionally, NSMCTC offers simplicity and low
computational complexity, setting it apart from
traditional position-based computed torque control
schemes.

This research sheds light on the NSMCTC's potential
application in spacecraft manipulator attitude control,
particularly for mmltidimensional dynamics and safe
object capture with collision avoidance. By incorporating
image recognition systems, the controller could enhance
the capture of uncooperative objects, further expanding
its utility in space missions.
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1.

Neural network-based sliding mode computed torque control (NSMCTC) approach ensures
precise space manipulator position tracking.

NSMCTC reduces chattering and improves convergence for enhanced trajectory control in
dynamic space environments.

Lyapunov stability theorem validates uniform and ultimate boundedness, ensuring global
asymptotic stability.

Self-learning capability and low computational complexity distinguish NSMCTC from
traditional computed torque control methods.

Potential applications extend to spacecraft manipulator attitude control, offering adaptability
for safe debris capture in multidimensional dynamics.
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