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Abstract6

This work investigates the application of a Local Search (LS) enhanced Ge-
netic Programming (GP) algorithm to the control scheme’s design task. The
combination of LS and GP aims to produce an interpretable control law as
similar as possible to the optimal control scheme reference. Inclusive Genetic
Programming (IGP), a GP heuristic capable of promoting and maintaining
the population diversity, is chosen as the GP algorithm since it proved suc-
cessful on the considered task. IGP is enhanced with the Operators Gradient
Descent (OPGD) approach, which consists of embedding learnable param-
eters into the GP individuals. These parameters are optimized during and
after the evolutionary process. Moreover, the OPGD approach is combined
with the adjoint state method to evaluate the gradient of the objective func-
tion. The original OPGD was formulated by relying on the backpropagation
technique for the gradient’s evaluation, which is impractical in an optimiza-
tion problem involving a dynamical system because of scalability and numer-
ical errors. On the other hand, the adjoint method allows for overcoming this
issue. Two experiments are formulated to test the proposed approach, named
Operator Gradient Descent - Inclusive Genetic Programming (OPGD-IGP):
the design of a Proportional-Derivative (PD) control law for a harmonic os-
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ofcillator and the design of a Linear Quadratic Regulator (LQR) control law for

an inverted pendulum on a cart. OPGD-IGP proved successful in both ex-
periments, being capable of autonomously designing an interpretable control
law similar to the optimal ones, both in terms of shape and control gains.

Keywords: Genetic Programming, Gradient Descent, Adjoint State7

Method, Control8

1. Introduction9

Genetic Programming (GP) [1] is a powerful algorithm to evolve com-10

puter programs, represented as trees, by iteratively selecting, recombining,11

and mutating a population of candidate solutions. Thanks to this symbolic12

representation, GP generates solutions that, differently to the ones achieved13

with other artificial intelligence (AI) techniques, may be interpreted (i.e.,14

when the GP trees present a limited number of nodes) by domain experts.15

Nevertheless, the search performed by GP operators (crossover and mutation)16

is solely syntactic. Thus, there is no explicit parameter optimization during17

the evolutionary process. This can lead to evident drawbacks, as pointed out18

by Castelli et al. [2]. For instance, let us consider the scenario where the19

evolutionary search led to an individual with the following syntax K(x) =20

x + sin(x), while the optimal solution is K∗(x) = 3.3x + 1.003 sin(0.0001x).21

Since there is no explicit parameters optimization, the solution K(x) might22

be easily lost during the selection phase, leading to a very inefficient process.23

Including a Local Search (LS) routine in traditional GP has proven to be24

an effective method to overcome this limitation [2, 3, 4]. The advantages of25

embedding a gradient-based approach as an LS method in the evolutionary26

GP flow have emerged clearly in tasks such as symbolic regression [5] and27

image classification [6].28

The objective of this study is to demonstrate that this combination can29

also play a critical role in control applications, where GP offers a compelling30

option for generating comprehensible control laws [7, 8], thus providing a ma-31

jor benefit with respect to other Artificial Intelligence (AI) alternatives, such32

as Neural Networks (NNs). Interpretability is especially relevant in control33

applications, where knowledge of the control equation can be used for eval-34

uating systems’ reliability and behaviour. For example, in linear systems,35

the knowledge of the control law expression is used to build the closed-loop36
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oftransfer function of the whole system [9]. This is then used to perform sta-37

bility analysis. Moreover, in the context of AI applied to control systems,38

having an interpretable control law helps increase the trust towards AI-based39

control systems, making the connection between input and output explicit40

[10]. The use of GP for control system generation has been previously doc-41

umented in the literature [11, 12]. Yet, it remains relatively infrequent, and42

to the best of the authors’ knowledge, this is the first application of a com-43

bination of GP and gradient-descent-based LS to the task of control system44

design. Specifically, the method developed by Pietropolli et al. [5], named45

Operators Gradient Descent (OPGD), has been used in this work, consider-46

ing the promising results reported in its previous application [5]. The idea47

underpinning OPGD is simple and yet effective: learnable parameters are48

embedded in GP programs, and the standard GP evolutionary approach is49

combined with a gradient-based refinement of the individuals. In this study,50

the method has been adequately modified to deal with control problems. In51

the original OPGD, the backpropagation technique was employed to eval-52

uate the gradient of the fitness function w.r.t. the GP parameters. The53

backpropagation is impractical to use in control problems since an implicit54

dependency between the state and control variables appears in the chain of55

derivatives. The implicit dependency is caused by the absence of the ana-56

lytic expression of the states, which results in the impossibility of evaluating,57

symbolically, the partial derivatives of the states w.r.t. the control variables.58

Automatic differentiation could be used to avoid the symbolic evaluation59

of the aforementioned partial derivative, but it would require performing the60

backpropagation through the ODE solver, which leads to a high memory cost61

and introduces additional numerical errors [13]. A different approach that62

would avoid the backpropagation through the solver and that scales efficiently63

to large problems is the adjoint state method [14] applied in this work. To64

test the suitability of this OPGD variant, two control problems were chosen:65

a harmonic oscillator controlled by a Proportional-Derivative (PD) control66

law and an inverted pendulum on a cart controlled by a Linear Quadratic67

Regulator (LQR) control law. Experimental results confirm the validity of68

the proposed algorithm: the produced control laws are well-performing in69

terms of fitness and control task, and the integration of a local search strat-70

egy leads to a substantial improvement in both the desired control structure71

and the associated parameters compared with others GP-based approaches72

without any LS mechanism and a feedforward NN.73

This paper is structured as follows: Section 2 reviews previous work on74
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tion 3 describes the overall framework introduced in this work, comprising76

a detailed description of the OPGD technique, IGP algorithm, and adjoint77

state method, and how they are combined. Subsequently, Section 4 de-78

scribes the two control problems chosen to test the ability of the GP-based79

algorithm, and Section 5 discusses the results of the experimental campaign.80

Finally, Section 6 summarizes the main contribution achieved in this study81

and provides directions for future works.82

2. Related Works83

This section reviews existing work related to the method developed in84

this study. In particular, Section 2.1 outlines contributions concerning the85

combination of GP and local search strategies and then presents recent papers86

in which gradient-descend-based algorithms have been coupled with the GP87

evolutionary process. Subsequently, Section 2.2 briefly discusses different88

approaches for the design of control laws, highlighting the reason for using a89

GP-based approach in this paper.90

2.1. GP with local search and gradient-based algorithms91

A refinement process consists of embedding a LS strategy in the evolu-92

tionary process. In particular, the additional LS operator considers one or93

more individuals and searches for the local optima near them. These tech-94

niques are a simple type of memetic algorithm [15], which exploits the fact95

that Evolutionary Algorithms (EAs) can explore large areas of the search96

space while local optimizers improve solutions gradually and steadily. Their97

complementary strengths have inspired a lot of novel research in recent years98

[16, 17, 3, 4, 18].99

While several works linking EAs and LS can be found in the literature, the100

ones that focus on the combination of GP and LS constitute a limited subset101

[16]. In Eskridge and Hougen [19], authors introduced the LS directly on the102

GP crossover operator, named memetic crossover, that allows individuals to103

imitate the observed success of others. Later, in Wang et al. [20], authors104

proposed a new GP algorithm with local search strategies, named Memetic105

Genetic Programming (MGP), for dealing with classification problems. An-106

other example can be found in Muñoz et al. [3], where authors proposed a107

sequential GP memetic structure with Lamarckian inheritance. In this case,108
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squares parameter estimation.110

Focusing on the combination of GP and gradient-descent-based algo-111

rithms, examples can be found in the literature [21, 6, 5, 22]. Nevertheless,112

existing contributions deal with a specific task or focus on particular compo-113

nents of the evolutionary search. For instance, in Topchy et al. [21], the au-114

thors complemented a genetic search for tree-like programs at the population115

level with terminal values optimization via gradient descent at the individ-116

ual level. Experimental results show that tuning random constants, besides117

improving fitness results, requires minimal computational overhead. Zhang118

and Smart [6] applied a gradient descent algorithm to the numeric parame-119

ter terminals in each individual program for object classification problems.120

Two methods (an online gradient descent scheme and an offline gradient de-121

scent scheme) are developed and compared with the basic GP. Experimental122

results demonstrated that introducing this kind of LS outperforms standard123

GP in terms of classification accuracy and training time. Another application124

dealing with constant values optimization can be found in Graff et al. [23],125

where authors considered the problem of time series forecasting, specifically126

wind speed time series.127

The first example of the inclusion of weight parameters at the internal128

nodes level is described in the work of Smart and Zhang [24]. Here, a pa-129

rameter called the inclusion factor is assigned to each node, and a gradient130

descent search is applied to the inclusion factors. This method obtained131

promising results, but the experimental study only considered classification132

tasks. Moreover, the GP system was evaluated using an unusually narrow133

function set (only sum and multiplication), which is an unrealistic config-134

uration. Later, in Kommenda et al. [25], a gradient-based non-linear least135

squares optimization algorithm, i.e., Levenberg Marquardt, is used for ad-136

justing constant values in symbolic expression trees during their evolution.137

Additionally, artificial nodes are inserted in the symbolic expression tree to138

account for the linear scaling terms.139

In Trujillo et al. [17], a Lamarckian memetic GP incorporates LS strategy140

to refine GP individuals. A simple parametrization for GP trees, where141

the same functions share the same coefficients, is proposed with different142

heuristic methods to determine which individuals should be subject to the LS.143

More recently, in Harrison et al. [26], authors investigate how gradient-based144

techniques can optimize coefficients in symbolic regression tasks. Lastly, in145

Pietropolli et al. [5], the authors proposed embedding learnable parameters in146
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gradient-based refinement of the individuals employing the Adam optimizer.148

Two different algorithms (that differ in how these parameters are shared in149

the expression operators) are proposed and subsequently tested on real-world150

problems, demonstrating proficiency in significantly outperforming plain GP.151

Due to its simplicity, this GP tree embedding can be easily integrated into152

other GP approaches, as done in this work. Specifically, in this study, this153

LS strategy has been applied to a variant of GP, namely the IGP developed154

by Marchetti and Minisci [27]. IGP was specifically developed for control155

problems, where it is used to design a control law. Its peculiarity is the capa-156

bility to promote and maintain population diversity during the evolutionary157

process. Moreover, it proved superior to a standard GP algorithm, both on158

control law design and regression tasks. A more detailed description of the159

IGP is provided in Subsection 3.2.160

2.2. GP and other AI-based approaches for the control laws design161

The use of GP to design a control law is not novel in the literature. Koza162

himself [28] pointed out the capability of GP to automatically design human163

competitive control laws. Other recent examples can be found in the work of164

Verdier and Mazo, Jr. [29], where GP is employed to automatically produce165

a control Lyapunov function and the modes of a switched state feedback166

controller. In  Lapa et al. [30], the authors applied GP to evolve a Propor-167

tional Integral Derivative (PID) based controller resistant to noise. To this168

end, they used a Genetic Algorithm (GA) to optimize the parameters in a169

GP control law. Another interesting example of GP based Symbolic Regres-170

sion (SR) used to design a controller is presented in the work of Danai and171

La Cava [31], where the authors applied a variant of GP, the Epigenetic172

Linear Genetic Programming (ELGP), to produce the models describing the173

open-loop input for a desired plant output. This inverse solution approach174

allows for avoiding the time-consuming closed-loop controller evaluation by175

performing algebraic evaluations. Diverging from the approaches highlighted176

in the aforementioned works, the method described in this manuscript em-177

ploys a gradient-based LS technique relying on the adjoint state method178

for gradient computation. This methodology generates optimal control laws179

both in terms of shape and parameters. Moreover, this combination results in180

reduced computational times compared to the utilization of a GA for the LS181

phase. Additionally, as described in the subsequent sections, this approach182
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environment and represents a novelty in the literature.184

Aside from GP, other AI techniques can be used to design control laws,185

for example, NNs. Plenty of research exists on this topic. Some early appli-186

cations are described in the book of Irwin et al. [32], while a recent survey187

of NN control systems applied to aerospace vehicles can be found in [33]. A188

work closely related to this work is AI Pontryagin of Böttcher et al. [34].189

AI Pontryagin is an NN-based control framework capable of designing opti-190

mal control laws. Nonetheless, the models produced by this method are not191

interpretable. Because of the lack of interpretability produced by NNs or192

other AI algorithms, a thorough comparison of the proposed approach with193

these techniques was not performed. In fact, the objective of this study is to194

produce interpretable control laws that resemble the optimal control law of195

reference, both in terms of shape and parameters.196

Nonetheless, alternative AI-based approaches for designing interpretable197

control laws are documented in the literature. Notably, Hein et al. have198

undertaken a series of studies incorporating Reinforcement Learning (RL)199

combined with GP [35, 36, 37]. In [35], they introduced the Fuzzy GP Re-200

inforcement Learning (FGPRL) algorithm, utilizing GP to generate Fuzzy201

Logic (FL) control policies within an RL framework, while [36] explores the202

use of GP to directly learn algebraic control policies in an RL framework.203

Lastly, [37] presents a comparative analysis of these approaches against tra-204

ditional PID and LQR control schemes, as well as other non-conventional205

methodologies.206

Several differences emerge between the proposed work and the approaches207

presented by Hein et al. Primarily, the learning framework is different, as208

they evaluated the fitness of the individuals within an RL context. To this209

end, they generated a database of transition tuples and then used a NN to210

create a surrogate model of the environment. They showed that GP can effec-211

tively learn state-action correlations within this framework. Conversely, the212

proposed methodology employs a quadratic objective function to evaluate the213

entire trajectory derived from a GP-based control policy, simulating a tra-214

jectory using an available analytical model to directly assess the GP model’s215

performance. While Hein et al.’s approach is well-suited to systems lacking216

analytical models, their research acknowledges the limitations of directly ap-217

plying GP to data, as evidenced in [36], where such application results in218

diminished performance. Contrarily, the findings of this work indicate that219

integrating the impact of the control policy on the generated trajectory into220
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more, the goal of this work is to develop control policies that are optimal222

in both structure and parameters through the application of gradient-based223

local search to refine the GP models during and after the evolutionary phase.224

This aspect is only partially addressed in the work of Hein et al., where the225

emphasis primarily lies on creating structurally optimal models. However, in226

[35], a local search is performed at the end of the evolutionary process to fine-227

tune the parameters of the generated FL control policy. It can be argued228

that performing LS only at the end of the evolutionary process may yield229

suboptimal results. This is motivated by the observation that poorly per-230

forming individuals may result from suboptimal parameter settings. Hence,231

in this work, it is proposed that these parameters be adjusted throughout232

the evolutionary process to facilitate more effective exploitation.233

3. Parametrized GP with Adjoint State Method234

This Section contains a detailed explanation of the building blocks form-235

ing the OPGD-IGP algorithm introduced in this work. The OPGD and IGP236

algorithms are described along with a detailed discussion on gradient eval-237

uation techniques, justifying the choice of the adjoint state method. This238

Section concludes with a schematic summary of the overall framework.239

3.1. Parameterized Genetic Programming240

One of the main strengths of GP is the possibility of interpreting the solu-241

tions that it generates. Nevertheless, the search performed by a GP algorithm242

only relies on syntactic operations, such as crossover and mutation, to im-243

prove the quality of the individuals. In fact, standard GP does not adjust244

the (implicit) parameters of the given expression. To overcome this problem,245

different possibilities for integrating a LS algorithm in the GP routine have246

been proposed in recent years. In this work, the expressive capability of GP247

individuals is enhanced by adding learnable parameters on their operators,248

as proposed in [5]. The resulting GP individuals are interpretable as para-249

metric functions, which can be optimized. A canonical GP individual can be250

represented as a tree where all the edge connections between nodes take a251

constant value of 1. Yet, the possibility of modifying those values leads to a252

large spectrum of possible solutions. An example follows.253
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Figure 1: Depiction of the plain and parametrized GP tree.

Figure 1 shows, on the left, a canonical GP individual encoding the ex-254

pression in Equation 1:255

(x− 2) + (y + 3) (1)

On the right, the same GP individual is enriched with the addition of the256

parameters γi over all the edge connections and encodes the expression in257

Equation 2:258

γ1 · (γ3 · x− γ4 · 2) + γ2 · (γ5 · y + γ6 · 3) (2)

Equation 2 would correspond to Equation 1 if all the weights γi were set to259

1.260

The Operators Gradient Descent (OPGD) [5] is used, which assigns a261

different set of weights to each instance of the GP operators, leading to262

a total number of parameters equal to the number of nodes in the tree.263

Moreover, to fully exploit the LS potential, a gradient-based optimization264

of the parameters is performed both during and after the evolutionary pro-265

cess. When the optimizer is used after each generation, it is applied to266

the whole population of individuals. On the other hand, when applied at267

the end of the evolutionary process, it is used solely on the best individ-268

ual of the population obtained. This optimization can be performed using269

different optimization algorithms, both local and global. The algorithms270

employed in this work are Adam [38] ( during the evolutionary process) and271

the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [39] at the end of272

it. Adam was chosen to achieve faster optimizations during the evolutionary273

process, while BFGS is preferred at the end of the evolution to better improve274

the partial results obtained during the evolution. The overall evolutionary275

process enhanced with the OPGD approach is summarized in Algorithm 1.276

In the original OPGD approach, Adam was used in combination with the277

backpropagation technique to evaluate the gradient, and this resulted in a278

9
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1: Initialize population
2: Store best individual
3: for i = 1 → Ngenerations do
4: for j = 1 → Nindividuals do
5: Insert learnable parameters in j-th individual
6: Perform optimization of j-th individual, using Adam with a learn-

ing rate α for nopt steps.
7: Assign the highest fitness found at the previous step to the j-th

individual
8: Remove learnable parameters from j-th individual
9: end for

10: Perform crossover and mutation to generate offspring
11: Evaluate fitness of offspring repeating lines 4 to 9.
12: Apply selection to generate new population
13: Update best individual
14: end for
15: Insert learnable parameters in the best individual from all generations
16: Optimize the best individual with BFGS

fast optimization process. Nonetheless, as explained in Section 3.3, a more279

suitable approach to evaluate the gradient can be used when dealing with280

control problems.281

3.2. Inclusive Genetic Programming282

OPGD can be applied to any GP formulation. In this work, it is ap-283

plied to the Inclusive Genetic Programming (IGP) introduced in [27]. The284

resulting method is referred to as OPGD-IGP. IGP was chosen because it285

was developed specifically for control applications and showed superior per-286

formance than standard GP thanks to its ability to promote and maintain287

the genotypic population’s diversity.288

Greater genotypic diversity means that bigger individuals are not dis-289

carded by the bloat control operators but considered during the crossover and290

mutation operations, and only the selection is performed to favor smaller in-291

dividuals. The genotypic material of these bigger individuals may capture the292

nonlinearities of the studied dynamical system better than smaller individu-293

als, and it is thus an essential piece of information. IGP applies a modified294

10
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in Algorithm 2. The core operations are the niches’ creation mechanism, the296

Inclusive Crossover and Mutation, and the Inclusive Tournament. A detailed297

description of each of these operations is given in [27]. Briefly, a newly created298

population is subdivided into niches, which act as containers for individuals299

with a determined size. The maximum and minimum size that a niche can300

contain is defined by linearly dividing the interval between the maximum and301

minimum size of the individuals in the population by n + 1, where n is the302

number of niches. The Inclusive Crossover and Mutation consist of applying303

crossover and mutation by selecting individuals from different niches, and the304

Inclusive Tournament is a Double Tournament sequentially applied to each305

niche. Using these operations, a wider distribution of individuals’ lengths306

is considered, and genotypic information is not lost during the evolutionary307

process due to bloat control operators.308

Algorithm 2 Pseudocode of Inclusive µ + λ evolutionary strategy

1: Perform population initialization
2: Best individual all-time ← Best individual initial population
3: for i = 1 → Ngenerations do
4: Generate n niches from the current population
5: Perform Inclusive Crossover and Inclusive Mutation to generate λ

offspring from µ parents
6: Apply Inclusive Tournament to select µ individuals from a starting

population of µ parents + λ offspring
7: if Fitness of Best individual in populationi > Fitness of Best individ-

ual all-time then
8: Best individual all-time ← Best individual populationi

9: end if
10: end for

3.3. Gradient Evaluation Techniques309

Gradient-based search algorithms perform the gradient evaluation dur-310

ing the optimization process. The gradient can be evaluated with different311

approaches, the most common of which is the finite differences approach,312

which gives a numerical approximation of the gradient at a computational313

cost proportional to the problem’s dimensionality (i.e., the number of opti-314

mization variables). For limiting the computational cost, other approaches315

11
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timize a NN’s parameters. Backpropagation efficiently computes chain of317

partial derivatives of the entire NN model [41], leading to a straightforward318

evaluation of the gradient. However, as explained in the following, backprop-319

agation becomes impractical in control problems. The adjoint state method320

[14] is chosen as an alternative to evaluate the gradient in the OPGD algo-321

rithm applied to a control problem. An additional benefit of this technique is322

that it can scale efficiently to problems with a high number of optimization323

variables.324

The rest of this Subsection contains a brief demonstration of why the325

backpropagation approach is impractical in control problems and a descrip-326

tion of the adjoint state method.327

3.3.1. Backpropagation328

The backpropagation algorithm is an efficient approach to evaluating329

derivatives by leveraging the chain rule. In classical regression problems,330

it is possible to build the entire chain of derivatives to express the gradient331

of an objective function J with respect to the optimization variables γ. As332

an example, a regression problem is considered, and GP is used to create a333

regression model. The considered GP individual is a function of the selected334

features and a set of parameters γ, as described in Subsection 3.1. The goal335

is to find the optimal set of parameters γ such that an objective function J is336

minimized. J can be evaluated as the Mean Square Error (MSE) between the337

output of the GP model ẑ and the desired output z, as J = 1
n

∑n
i=1(zi− ẑi)

2,338

where n is the number of samples in the dataset. Using the chain rule, the339

gradient of J w.r.t. γ can be computed as shown in Equation 3.340

∂J

∂γ
=

∂J

∂ẑ

∂ẑ

∂γ
(3)

Since ẑ (produced by the GP algorithm) is expressed in symbolic form, the341

partial derivatives in Equation 3 can be evaluated analytically. Nonetheless,342

when considering a control problem, i.e. a dynamical system, an implicit343

dependency between the state variables and the control variables appears. As344

an example, a control problem is considered where u is the vector of control345

variables and y is the vector of state variables. The dynamical system is346

defined by Equation 4, where GP is used to design the control law.347

˙̂y = f(ŷ(t),u(t)) = f(ŷ(t),uGP (ŷ(t),γ)) (4)

12
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γ. The goal is to track a desired trajectory y by finding the optimal set of349

parameters γ that minimizes the error between the obtained trajectory ŷ and350

the desired trajectory y. By using the chain rule, Equation 5 is obtained.351

∂J

∂γ
=

∂J

∂ŷ

∂ŷ

∂γ
=

∂J

∂ŷ

∂ŷ

∂u

∂u

∂γ
(5)

In Equation 5, the term ∂ŷ
∂u

represents an implicit dependency since the352

analytical expression of the states is not known. Derivatives of implicit func-353

tions can be computed with two techniques: the implicit function theorem, as354

detailed in the work of Bell et al. [42], or through numerical methods. Con-355

cerning the former approach, Margossian et al. [43] analyzed the application356

of both the implicit function theorem and the adjoint state method, used357

in this work, for computing derivatives of implicit functions. They demon-358

strated that while both methods are applicable to any implicit function, the359

adjoint method typically offers superior efficiency in implicit function differ-360

entiation. In particular, the implicit function theorem enables the calcula-361

tion of directional derivatives for implicit functions using Fréchet derivatives,362

whereas the adjoint method directly computes these derivatives without in-363

termediary steps, leveraging the inherent structure of the system. Please364

refer to [43] for the complete demonstration and discussion.365

Regarding the use of numerical methods, the straightforward approach366

would be to use the finite differences technique, which results in a high com-367

putational cost. In fact, if the dynamical system is composed of d differential368

equations and p optimizable parameters, the cost of applying the finite dif-369

ferences is O(d(p + 1)), i.e., p + 1 Ordinary Differential Equations (ODE)370

propagations at the cost of d differential equations. Another approach is the371

continuous local sensitivity analysis, which scales proportionally with the372

number of optimization parameters and leads to a cost of O(dp) [44]. A373

last alternative is the adjoint state method. This algorithm computes one374

forward pass of the ODE system composed of d differential equations and375

one backward pass of the adjoint dynamical system composed of p differen-376

tial equations, one for each optimization variable, leading to a computational377

cost of O(d + p). Moreover, the derivatives involved in the adjoint method378

can be computed symbolically, leading to lower computational errors than379

other numerical methods [45].380
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The adjoint state method has its roots in optimal control theory. It382

allows the evaluation of the gradient by defining the Lagrangian of the cost383

functional and the related adjoint variable. The steps to perform the gradient384

evaluation with the adjoint state method are described in the following. The385

derivation of the adjoint state method equations presented in the remaining386

part of this section is taken from [46] and adapted for the proposed work.387

Consider the dynamical system in the form of Equation 6, where y are the388

state variables, u the control variables, γ the optimization variables, and f is389

a nonlinear mapping describing the initial value problem with y(t = 0) = y0390

as initial conditions.391

ẏ = f(y(t),u(y(t),γ)) (6)

The goal of the optimization process is to minimize a functional in the392

form of Equation 7. To do so, the gradient of J with respect to γ is sought,393

as illustrated in Equation 8394

J(y,γ) =

∫ T

0

gdt + h(T ) (7)

dJ

dγ
=

∫ T

0

dg

dγ
dt +

dh

dγ
(T ) =

∫ T

0

( ∂g

∂γ
+

∂g

∂y

∂y

∂γ

)
dt +

dh

dγ
(T ) (8)

The term ∂y
∂γ

in Equation 8 cannot be computed analytically due to the395

implicit relation between y and γ. To overcome this issue, the optimization396

can be framed as an equality-constrained minimization problem by intro-397

ducing the Lagrangian of the function, as in Equation 9, with the associate398

adjoint variable ν.399

L(y,γ,ν) = J(y,γ) +

∫ T

0

ν(t)T
(
f− dy

dt

)
dt (9)

The gradient of the Lagrangian is then computed as in Equation 10. The400

last term in the integral in Equation 10 can be integrated by part resulting401

in Equation 11402

dL
dγ

=

∫ T

0

( ∂g

∂γ
+ ν(t)T

∂f

∂γ
+
(∂g
∂y

+ ν(t)T
∂f

∂y

)dy
dγ
− ν(t)T

d

dt

dy

dγ

)
dt+

dh

dγ
(T )

(10)
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dγ
=

∫ T

0

( ∂g

∂γ
+ ν(t)T

∂f

∂γ
+
(∂g
∂y

+ ν(t)T
∂f

∂y
+
(dν
dt

)T)dy
dγ

)
dt+

+ ν(0)T
dy

dγ
(0)− ν(T )T

dy

dγ
(T ) +

dh

dγ
(T )

(11)

Since the optimization problem was rewritten as an equality-constrained403

optimization, the goal is to set the second term in Equation 9 to zero, there-404

fore resulting in L(y,γ,ν) = J(y,γ). According to this, it can be stated that405

the gradient of the Lagrangian in Equation 11 corresponds to the gradient406

of the functional ∇Jγ.407

By setting some of the elements in Equation 11 to zero, it can be used408

to evaluate the gradient of the functional. The resulting set of equations is409

summarized in Equation 12.410

dJ

dγ
=

∫ T

0

( ∂g

∂γ
+ ν(t)T

∂f

∂γ

)
dt (12a)

dν

dt
= −

( ∂f

∂y

)T

ν(t)−
(∂g
∂y

)T

(12b)

ν(t = T ) =
dh

dy
(T ) (12c)

Employing the notation introduced in [46], and summarized in Equation411

13, Equation 12 can be simplified as Equation 14412

A =
∂f

∂y
,B =

∂f

∂γ
,η =

∂h

∂y
,ϕ =

∂g

∂y
,ψ =

∂g

∂γ
(13)

dJ

dγ
=

∫ T

0

(
ψ + ν(t)TB

)
dt (14a)

dν

dt
= −ATν(t)− ϕT (14b)

ν(t = T ) = η(T ) (14c)

The overall process of evaluating the gradient using the adjoint state413

method can be summarized in three steps:414
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2. Backward propagation of the adjoint system in Equation 14b evaluating416

the initial conditions with Equation 14c. This propagation is performed417

from t = T to t = 0.418

3. Evaluate the gradient with Equation 14a and the objective function419

with Equation 7420

The adjoint state method can be applied effortlessly to optimize a GP421

control law. The parametrized GP laws enter the dynamical system as in422

Equation 4, where γ are the parameters to be optimized or the optimization423

variables in the optimization problem. The GP law uGP can be built using424

only differentiable functions, resulting in a differentiable equation that can425

be inserted explicitly in the equation of motion. Subsequently, the partial426

derivatives in Equation 13 can be evaluated symbolically.427

From this point onward, the acronym OPGD will be used to refer to428

the OPGD with the gradient evaluation performed using the adjoint state429

method.430

3.4. OPGD-IGP Framework Summary431

Figure 2 presents the frameworks of plain OPGD and OPGD-IGP. The432

latter represents the novel approach introduced in this work. The novelties433

introduced in this work are highlighted in Figure 2 by the colored boxes and434

are the following: 1) the GP algorithm to which OPGD is applied; 2) the435

target application or data source; 3) the approach used to evaluate the gra-436

dient; 4) the optimizer used to optimize the best individual found during the437

evolutionary process. The original OPGD was used to enhance a standard438

GP algorithm, while in this work, it was applied to IGP as highlighted by the439

GP algorithm box. The second difference lies in the data passed to OPGD.440

In OPGD-IGP, the data originated through the interaction with a dynamical441

system, while in the original OGPD, a static dataset was used (Data source442

box). Because of this different data source, a different approach to evaluate443

the gradient is employed (Gradient evaluation approach box), as explained in444

the previous subsections. Lastly, to optimize the best individual found during445

the evolutionary process, OPGD-IGP relies on the BFGS optimization algo-446

rithm, while in the standard OPGD, Adam was employed (Optimizer box).447

In comparison to the broader academic literature, the OPGD-IGP represents448

a novel approach to control law generation. Traditional methods of deriving449
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timal controller in terms of both its structure and parameters. Conversely,451

the LS integrated within the OPGD-IGP facilitates the achievement of such452

optimality. Additionally, in conventional gradient-based LS methodologies,453

gradient computation often relies on finite differences or backpropagation.454

The incorporation of the adjoint state method within this framework rep-455

resents an innovative step forward from these conventional approaches, ex-456

hibiting superior suitability for control applications, as demonstrated in this457

study.458
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Adam Optimizer Adjoint Method

Dynamical
System

Best Individual
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Fitness Function
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System
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Backpropagation Adam Optimizer

Best Solution

Fitness Function
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Evolutionary Process + LS

1. GP algorithm

2. Data Source

3. Gradient evaluation approach

2. Data Source

4. Optimizer

3. Gradient evaluation approach

OPGD-IGP OPGD

Figure 2: Diagrams of the OPGD-IGP (left) and OPGD (right) workflows.
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Two control problems are chosen to test the ability of the OPGD-IGP to460

design a control law automatically, both in terms of shape and parameters:461

a harmonic oscillator controlled by a PD control scheme and an inverted462

pendulum controlled by an LQR control scheme.463

4.1. Harmonic Oscillator464

The formulation of the harmonic oscillator is the one defined in [46] and465

described by the nonlinear ODE system in Equation 15. The state variables466

are the position x and the speed v. Thus, y = [x, v]. u is the control variable.467

ẋ = v

v̇ = − k

m
x− c

m
(ax2 + b)v +

u

m

(15)

The constant parameters used in Equation 15 are reported in Table 1.468

The initial conditions were set as x0 = 4 m, v0 = 0 m/s, t0 = 0s, while the469

desired final conditions are xf = 0 m, vf = 0 m/s, uf = 0 N , tf = 10s.470

Parameter Value Description
m 1 kg Mass
k 2 kg/s2 Spring stiffness
a 1 m−2 First damper coefficient
b -1 Second damper coefficient
c 0.3 kg/s Third damper coefficient

Table 1: Harmonic oscillator parameters

The control scheme designed for this test case is a PD control scheme471

that receives as input the tracking errors on the position ex and speed ev.472

The methodology used to obtain the proportional and derivative gains is473

described in [46]. Equation 16 illustrates the final control law used as a474

reference.475

u = −1.753ex − 3.010ev (16)
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The formulation of the inverted pendulum was taken from Brunton and477

Kutz [47] and described by the nonlinear ODE system in Equation 17. The478

states variables are the position x, speed v, angular position θ and angular479

speed ω, therefore y = [x, v, θ, ω]. u is the control variable.480

ẋ = v

v̇ =
−m2L2g cos(θ) sin(θ) + mL2(mLω2 sin(θ)) + mLu2

mL2(M + m(1− cos(θ)2))

θ̇ = ω

ω̇ =
(m + M)mgL sin(θ)−mL cos(θ)(mLω2 sin(θ))−mL cos(θ)u

mL2(M + m(1− cos(θ)2))

(17)

The constant parameters used in Equation 17 are described in Table 2.481

The initial conditions were set as x0 = −1 m, v0 = 0 m/s, θ0 = π + 0.1 rad482

ω0 = 0 rad/s, t0 = 0s, and the desired final conditions are xf = 1 m,483

vf = 0 m/s, θf = π rad, ωf = 0 rad/s, uf = 0 N , tf = 10s.484

Parameter Value Description
M 0.1 kg Cart mass
m 0.02 kg Pendulum mass
L 0.1 m Pendulum length
g -9.8 m/s−2 Gravitational acceleration

Table 2: Inverted pendulum parameters

The same LQR design process described in [47] was used, with Q set as485

a 4× 4 identity matrix and R = 1.486

The reference control law for the LQR scheme is displayed in Equation487

18, where the input variables are the errors on the states.488

u = −Ke = 1ex + 1.419ev − 8.131eθ − 1.223eω (18)

The parameters used to design the LQR controller were chosen to have489

the LQR gains close to 1. This is necessary to have a good outcome from the490

optimization process: because a local optimization scheme was employed,491

the choice of the initial condition influences the optimization process. Since492
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these were initialized as 1. Therefore, the optimization process converges if494

the desired value is close to 1 as well. Different optimization approaches can495

be used to deal also with larger gain values. Nonetheless, it is not the aim of496

this work to explore different optimization algorithms.497

5. Experimental Results498

To test the proposed methodology, Standard Genetic Programming (SGP),499

IGP, OPGD-IGP, and a feedforward NN were compared. The computational500

costs associated with these algorithms are summarized in Table 3. Referring501

to the terminology employed in Section 3.3.1, d is the number of differential502

equations in the considered dynamical system, while p is the number of op-503

timization variables that correspond to the number of differential equations504

of the adjoint system. ng is the number of generations, ni the number of505

individuals, nopt the number of intra-evolution optimization steps and nBFGS506

the number of extra-evolution optimization steps, which correspond to the507

training epochs for the NN trained in the loop.508

Algorithm Computational
Cost

SGP O(ngnid)
IGP O(ngnid)

OPGD-IGP O((ngninopt + nBFGS)(d + p))
NN Loop O(nBFGS(d + p))

Table 3: Computational costs associated with the analyzed algorithms and test cases.

The computational cost represents the theoretical cost associated with the509

complete execution of the algorithm. For the SGP and IGP, this cost is in the510

order of O(ngnid), meaning that one trajectory propagation for a dynamical511

system comprising d differential equations is performed for each individual at512

each generation. Conversely, for the OPGD-IGP, the computational cost is in513

the order of O((ngninopt+nBFGS)(d+p)), Here, nopt executions of the adjoint514

state method, involving one forward propagation of d differential equations515

and one backward propagation of p differential equations, are performed for516

each individual at each generation. Then, nBFGS optimization steps are517

performed at the end of the evolutionary process on the best-performing518
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is applied at each training epoch, resulting in a computational cost in the520

order of O(nBFGS(d + p)).521

The control laws’ parameters for the two reference control schemes were522

obtained through an optimization process. Therefore, the goal of the ex-523

perimental campaign is to use the aforementioned algorithms to design a524

well-performing control law by solving the same optimization problem as525

those considered in the references. The similarity between the obtained con-526

trol laws and the reference ones, both in terms of shape and parameters, is527

considered to assess the success of the experiments.528

On the other hand, the NN does not produce interpretable models and529

is only used as a reference to understand how OPGD-IGP compares against530

a different and more established approach. The NN is trained in two ways:531

1) with a dataset produced using the optimal control laws of reference -532

this experiment is meant to discover the smallest configuration necessary to533

learn the desired model; 2) training the NN in-the-loop as done with the534

OPGD-IGP. This last training method is summarized in Algorithm 3535

Algorithm 3 Pseudocode of the training process with NN in-the-loop

1: Create NN model
2: Extract the NN weights and store them in the vector of optimization

variables p
3: Start optimization process
4: while Termination criteria is not met do
5: Insert the updated weights from p into the NN
6: Propagate the ODE system using the NN as controller
7: Evaluate the objective function according to the obtained trajectory
8: Evaluate the gradient with the adjoint state method
9: Update the p vector with the optimizer routine

10: end while

A discussion of the outcome of each training method is provided at the536

end of Subsections 5.3 and 5.4 for the oscillator and pendulum test cases537

respectively. A description of the dataset and training results of the former538

approach is provided in Appendix A. For the SGP, IGP and OPGD-IGP539

algorithms, 30 independent runs were performed to obtain a statistical sam-540

ple. The Adam optimizer in OPGD-IGP considered a learning rate of 0.01541

and 5 optimization steps, respectively α and nopt in Algorithm 1, during the542
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vidual is optimized using the BFGS algorithm implemented in the Python544

library Scipy [48]. An objective function precision threshold of 10−6 was used545

as termination criterion for the BFGS algorithm. BFGS with these settings546

was used to train the NN in-the-loop as well. The developed code will be547

available at https://github.com/strath-ace/smart-ml.548

5.1. GP settings549

The common settings of OPGD-IGP, IGP, and SGP for the two test550

cases are listed in Table 4. IGP and SGP use two ephemeral constants, while551

OPGD-IGP does not consider ephemeral constants. This choice is motivated552

by the fact that OPGD-IGP should be able to find the correct parameters au-553

tonomously. On the other hand, ephemeral constants are necessary to allow554

IGP and SGP to evolve parametric control laws. Differently from IGP, SGP555

uses the the standard µ + λ evolutionary strategy and the Double Tourna-556

ment selection process. Finally, the SGP crossover and mutation probability557

are fixed respectively to 0.8 and 0.2. All GP algorithms receive as input the558

tracking errors on the states and output the control force u.559

5.2. Fitness Function560

For the two test cases, the fitness function was computed as F = −J ,561

where J is detailed in Equation 7. This adjustment is made to ensure consis-562

tency in terminology, given that fitness is a metric intended for maximization.563

Conversely, the selected objective function J is designed for a minimization564

problem, and the comparison with the reference control schemes is based565

on the objective function value. Therefore, the discussion presented in the566

following will refer to the objective function rather than the fitness. The567

functions g and h in Equation 7 are set as quadratic functions, as described568

in Equations 19 and 20,569

g =
1

2
(eTyQgey + eTuQueu) (19)

h =
1

2
eTyQhey (20)

where ey is the vector of the tracking errors on the state variables, and eu570

is the vector of the tracking errors on the control variables. Qg,Qu,Qh are571

diagonal matrices used to weight the different contributions to the objective572
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Population Size 300 individuals
Maximum Generations 300

Stopping criteria Reaching maximum number of generations
Crossover probability 0.2 → 0.65
Mutation probability 0.7 → 0.25
Evolutionary strategy Inclusive µ + λ

µ Population size
λ Population Size × 1.2

Limit Height 10
Limit Size 15 30

Selection Mechanism Inclusive Tournament
Double Tournament fitness size 2

Double Tournament parsimony size 1.2
Tree creation mechanism Ramped half and half

Mutation mechanisms
Uniform (50%), Shrink (5%),

Insertion (25%), Mutate Ephemeral (20%)
Crossover mechanism One point crossover

Primitives Set +,−,×

Table 4: SGP, IGP and OPGD-IGP settings for both test cases.

function. These functions are used to minimize the tracking errors on the573

states and control variables. Using Equation 7, the integral of g is evaluated,574

leading to the minimization of both the states and controls tracking errors575

on the whole trajectory. h is used to evaluate the tracking error on the576

final position. In this work, also the tracking for the complete trajectory577

is performed against the desired final conditions. Therefore, each reference578

trajectory can be imagined as a constant line at the desired value of the579

considered state or control variable.580

5.3. Harmonic Oscillator581

For this test case, the objective function’s parameters were set as follows:582

ey = [ex, ev], eu = eu, Qg = diag([5, 5]),Qu = 1,Qh = diag([1, 1]). The583

tracking errors are evaluated as the difference between the current state and584

control variables and the desired final values listed in Subsection 4.1. Using585

the reference control law, a reference objective function equal to J = 56.152586

was obtained by applying Equation 7. The objective function was evaluated587
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an integration step of 0.05 seconds.589

The obtained results are presented from Figure 3 to Figure 7 and in590

Appendix B. In the following Figures, NN Data refers to the NN trained on591

the dataset, while NN Loop refers to the NN optimized in the control loop.592

The smallest NN architecture capable of capturing the optimal control law593

behaviour is composed of one hidden layer with one neuron. More details594

are given in Appendix A. The same configuration is trained in-the-loop to595

compare the effect of a different training approach.596
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Figure 3: Harmonic oscillator’s position x trajectories obtained using SGP, IGP,
OPGD-IGP, and the NN models.

Figures 3 and 4 depict the state trajectories, while Figure 5 shows the597

control force trajectories. In these plots, the reference trajectory, obtained598

via the reference control law, is depicted as a dashed black line. The pink599

lines represent the trajectories obtained with SGP, the blue lines represent600

those obtained with IGP, the orange lines represent those obtained with601

OPGD-IGP, while the brown and olive lines the trajectories obtained with602

the NNs trained on the dataset and in-the-loop, respectively. For SGP, IGP,603

and OPGD-IGP, the continuous lines show the best of the 30 runs performed604

while the dashed lines represent trajectories from all the other runs. The inset605

in each plot highlights the distribution of the obtained trajectories. As can606

be seen in Figures 3, 4 and 5, all the tested algorithms evolve well-performing607

control laws, capable of generating a behaviour close to the reference one.608
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Figure 4: Harmonic oscillator’s speed v trajectories obtained using SGP, IGP, OPGD-IGP,
and the NN models.
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Figure 5: Harmonic oscillator’s control action u trajectories obtained using SGP, IGP,
OPGD-IGP, and the NN models.

Among the GP algorithms, it can be seen how SGP is the least consistent,609

with many of the produced trajectories straying from the reference. When610

considering IGP and OPGD-IGP, the magnified sections show that IGP pro-611
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jectories produced with OPGD-IGP are all overlapped, meaning that they613

always converge to the same mathematical model. Regarding the NN models,614

the NN Data trajectory is not clearly visible since it perfectly overlaps with615

the reference one, whereas the NN Loop trajectory is close to the reference616

with a behaviour similar to the best of the OPGD-IGP trajectories.617

Figures 6 and 7 depict statistical analyses of the obtained objective func-618

tion values. Specifically, Figure 6 shows the best individual’s objective func-619

tion evolution. It is possible to observe that OPGD-IGP can reach the final620

solution in fewer generations (∼ 65 generations) with respect to IGP (>621

100 generations), while SGP results are worse than the other two GP-based622

algorithms.623
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Figure 6: Objective function evolution of the SGP, IGP, and OPGD-IGP algorithms for
the harmonic oscillator case. The solid lines represent the mean, while the shaded areas
depict the error bands, i.e. standard deviations, for both algorithms.

Figure 7 displays the objective function values obtained in the simulations624

performed with the GP algorithms and both NN’s training approaches. The625

objective function of the NN trained in-the-loop comes naturally from the626

optimization process, while the objective function of the NN trained on the627

data is obtained by propagating a trajectory with the trained model and628

evaluating the objective function as described in Subsection 5.2.629

Looking at Figure 7, it can be seen how OPGD-IGP always converges630

to the same individual, while IGP tends to produce different control laws631
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is the least consistent performer among the GP algorithms. Moreover, these633

boxplots show that IGP can achieve a lower objective value than OPGD-IGP.634

This is likely due to the random mutation applied to the ephemeral constants.635

This mechanism, absent in OPGD-IGP, allows for a greater exploration of636

the search space in contrast to the exploitation fostered by the use of LS.637

Regarding the NNs, it can be seen how the two training approaches lead to638

slightly different results. In fact, the objective function obtained with the NN639

trained on the data matches almost exactly the reference objective function,640

while the one trained in-the-loop shows an objective function worse than641

IGP and OPGD-IGP. This suggests that a network with more parameters is642

required to improve the results with the train in-the-loop approach.643
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Figure 7: Objective function of the best-performing individual for the SGP, IGP,
OPGD-IGP, and NN models for the harmonic oscillator case. For the GP-based algo-
rithms, 30 simulations were considered.

The complete list of models produced by the GP algorithms can be found644

in Appendix B. As one can observe, IGP and SGP produce a variety of mod-645

els, while OPGD-IGP always converges to the same combination of control646

law shape and parameters, thus confirming the ability of OPGD-IGP to au-647

tonomously produce the desired control law for a dynamical system in terms648

of shape and parameters. Table 5 lists the reference control law and the649

most frequent OPGD-IGP control law. The difference between the reference650

and the obtained optimal parameters is caused by the different optimization651

algorithms used in this work and in [46].652
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Reference −1.753ex − 3.010ev
OPGD-IGP −1.854ex − 3.158ev

Table 5: Reference control law and most frequent model output by the OPGD-IGP for
the harmonic oscillator test case.

5.4. Inverted Pendulum on a Cart653

For this test case, the objective function’s parameters were set as fol-654

lows: ey = [ex, ev, eθ, eω], eu = eu, Qg = diag([5, 5, 5, 5]),Qu = 1,Qh =655

diag([1, 1, 1, 1]). The tracking errors are evaluated between the current and656

the desired final values reported in Subsection 4.2. The optimization prob-657

lem is structured in a slightly different way than the reference. The same658

objective function is used, but different plant models are employed. In par-659

ticular, the reference control law was evaluated using the linearized models660

necessary to perform the LQR design while SGP, IGP,OPGD-IGP ,and NNs661

were tested using the complete nonlinear model in Equation 17. This proce-662

dure allows for assessing the ability of the tested algorithms to produce the663

desired control law when considering a nonlinear model.664

As for the previous test case, in Figures 8 to 14 NN Data refers to the665

NN trained on the dataset, while NN Loop refers to the NN optimized in the666

control loop. Again, the smallest NN architecture capable of capturing the667

optimal control law behaviour consists of one hidden layer with one neuron.668

More details are given in Appendix A. As for the oscillator case, the same669

configuration is trained in-the-loop to assess the effect of a different training670

approach.671

Using the reference control law, an objective function value J = 16.264 is672

obtained. The objective function is evaluated by applying Equation 7 after673

propagating the dynamical system using the Runge-Kutta 4 scheme with an674

integration step of 0.01 seconds. The integration step was reduced to 0.005675

seconds to perform the training of the NN in-the-loop (more details at the676

end of this subsection.)677

Figures 8 to 12 depict the trajectories obtained by propagating the dy-678

namical system using the control laws evolved by the SGP, IGP, and OPGD-IGP679

algorithms on the 30 simulations performed and by the best-performing NN680

architectures (obtained using both training approaches). As for the previ-681

ous test case, the continuous lines represent the best solution, while the dim682
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Figure 8: Trajectories of the pendulum’s position x obtained using SGP, IGP, OPGD-IGP
and the NN models.

dashed lines depict the other ones. The black dashed line represents the683

reference trajectory. These results prove the capability of IGP, OPGD-IGP,684

and the NN trained on data to produce well-performing control laws, while685

SGP and NN trained in-the-loop show poorer performance. Once again,686

OPGD-IGP performs more consistently than IGP, producing a set of over-687

lapping trajectories. On the other hand, IGP and SGP produce a broad range688

of models, some of which do not exhibit good performance in terms of tra-689

jectory. Regarding the NN results, the training performed on the data led to690

a perfect overlap with the reference trajectory, while the training in-the-loop691

failed to find a well-behaving model.692

Figures 13 and 14 show the statistical analysis of the objective function693

values. As for the oscillator test case, Figure 13 highlights the faster conver-694

gence of OPGD-IGP compared to IGP. OPGD-IGP can reach the minimum695

objective function in ∼ 40 generations while IGP requires more than 100696

generations. As for the previous test case, SGP performs worse than the697

other two GP algorithms.698

Figure 14 displays the statistical distribution of the objective function699

values obtained with the tested algorithms. The boxplots for the GP algo-700

rithms are created considering the best objective function value achieved in701

each of the 30 simulations. OPGD-IGP converges to similar individuals and702

also reaches a lower objective function compared to the IGP algorithm, while703

the SGP produced individuals with worse performance than the other GP704
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Figure 9: Trajectories of the pendulum’s speed v obtained using using SGP, IGP,
OPGD-IGP and the NN models.
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Figure 10: Trajectories of the pendulum’s angular position θ obtained using using SGP,
IGP, OPGD-IGP and the NN models

algorithms. Regarding the NN results, the training from data led to an al-705

most perfect match with the optimal solution, while the training in-the-loop706

led to poor results. These results are discussed in Subsection 5.5.707

The complete list of the models produced by the GP algorithms is listed708

in Appendix B. These results show that OPGD-IGP can often (21/30 simu-709

lations) converge to individuals with the same shape and similar parameters710
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Figure 11: Trajectories of the pendulum’s angular speed ω obtained using using SGP,
IGP, OPGD-IGP and the NN models

0 2 4 6 8 10
Time [s]

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Co
nt

ro
l F

or
ce

 [N
]

Reference
NN Data
NN Loop
Best SGP
Best IGP
Best OPGD-IGP

0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

Figure 12: Trajectories of the pendulum’s control force u obtained using using SGP, IGP,
OPGD-IGP and the NN models

to the reference one. On the other hand, IGP produces only one model711

(simulation 5) with the same shape and similar parameters as the reference.712

SGP is capable of finding more models with the appropriate shape than IGP.713

However, the parameters are far from their optimal values (e.g., simulations714

7, 10, 11, 24, 27), and the overall result is a set of models that perform worse715

than those found by IGP.716
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the pendulum case. The solid lines represent the mean, while the shaded areas show the
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IGP and NN models for the pendulum case. For the GP algorithms, 30 simulations were
considered.

Table 6 lists the reference control law and the most frequent model ob-717

tained by the OPGD-IGP method.718

The difference in the parameters’ values is caused by the difference in the719

plant’s models used to obtain them and the employed optimization schemes.720

The LQR gains are evaluated by solving the continuous-time algebraic Ric-721
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Reference 1ex + 1.419ev − 8.131eθ − 1.223eω
OPGD-IGP 0.781ex + 1.161ev − 5.842eθ − 0.952eω

Table 6: Reference control law and most frequent model output by OPGD-IGP for the
inverted pendulum test case.

cati equation using the linearized plant models. On the other hand, in722

OPGD-IGP, the parameters are optimized with a numerical scheme, and723

the complete nonlinear models are considered. This result is particularly724

interesting since it showcases how OPGD-IGP can be applied to a fully non-725

linear model and still produces a control law close to the optimal one. This726

approach would allow designing an optimal control law even for complex727

systems that cannot be linearized or without resorting to linearization tech-728

niques that can cause a loss of information.729

5.5. Summary of Findings730

The conducted experiments yielded several observations. Firstly, IGP731

consistently outperforms SGP, providing further evidence of its suitability732

for the task of designing control schemes. In turn, IGP is outperformed by733

OPGD-IGP, which incorporates the LS strategy. The latter shows superior734

performance and statistical consistency compared to the original IGP, consis-735

tently producing control laws that closely match the reference ones in terms of736

shape, albeit with minor differences in terms of parameters. These differences737

are due to the different optimization algorithms employed (Fletcher-Reeves738

vs. Adam and BFGS), as observed in the oscillator case, and differences in739

the employed plant models (linear vs. nonlinear), as seen in the pendulum740

case.741

The ability to generate optimal control laws is only partially observed in742

the other two GP algorithms. Regarding the oscillator case, they can produce743

models with similar shapes but with randomly assigned parameters, resem-744

bling the reference model but lacking consistency across multiple runs. In745

the pendulum case, they fail to achieve the desired shape since the problem’s746

increased complexity forces the GP algorithms to generate more complex747

models to compensate for suboptimal parameters. Furthermore, the conver-748

gence speed benefits from the embedded LS strategy, enabling OPGD-IGP749

to converge in approximately half the number of generations required by IGP750

alone.751
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laws in terms of both shape and parameters. Furthermore, it illustrates how753

LS can enhance the convergence properties of GP algorithms.754

Regarding the NN models, two different training methodologies were755

tested for the NN: 1) training with a dataset generated from the reference756

optimal control law and 2) training within the control loop. The first ap-757

proach primarily serves to determine the minimal configuration capable of758

learning the reference optimal control law. In fact, this approach cannot be759

directly compared with the OPGD-IGP since the latter learns how to control760

a system by interacting with it, while the NN trained on pre-existing data761

lacks knowledge of the system to be controlled. Furthermore, if the control762

law is available and used to produce the dataset, creating a regression model763

on those data becomes superfluous.764

The objective of OPGD-IGP is to generate an interpretable control law,765

similar to the optimal one both in shapes and parameters, by solving the same766

optimization problem used to find the reference control law. Consequently,767

this study aims to demonstrate that the OPGD-IGP can autonomously find768

an interpretable and optimal control law solely by interacting with the con-769

trolled system knowing only the high-level goal, i.e., the objective function770

of the optimization problem, and with no prior knowledge of the reference771

control law itself. That is why the NN is also trained in-the-loop, i.e., in772

the same training setting used by OPGD-IGP. The smallest configuration773

found after training on the data is considered since it proves that the NN774

has enough parameters to learn the desired control law. Thus, it should also775

be able to do it when trained in-the-loop. While this is true in the oscillator776

case, where the two training approaches lead to similar results, it is not true777

in the pendulum case. This discrepancy can be traced back to the greater778

nonlinearity of the pendulum’s ODE system compared to the oscillator one.779

This translates into a greater sensitivity to the control input and makes the780

training in-the-loop a complex local optimization problem. It was observed781

that the NN’s weight initialization plays a crucial role in this. In fact, by782

varying the initialization, the results vary significantly. Few initialization783

approaches were tested, but none led to satisfactory results.784

The training in-the-loop required lowering the integration step from 0.01785

to 0.005 to stabilize the ODE propagation, which is another proof of the786

greater instability of the pendulum’s ODE system and its sensitivity to the787

control input. On the other hand, OPGD-IGP can successfully find a good788

model because, during the evolutionary process, it learns to discard those789
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of the NN trained in-the-loop could improve by increasing its complexity and791

performing a thorough study of several initialization techniques. However,792

this would result in a non-interpretable model straying from the scope of this793

work.794

6. Conclusions795

This work applies OPGD-IGP, an IGP algorithm enhanced with a gradient-796

based LS strategy proposed by some of the authors in a previous work, for797

automatically designing a control law for a desired plant.798

OPGD was designed for dealing with regression problems and leverages799

the backpropagation technique to evaluate the gradient of of the objective800

function w.r.t the GP parameters. The backpropagation is impractical to use801

in control problems due to the implicit dependency of the state variables on802

the control variables. To overcome this issue, this study used the adjoint state803

method. The adjoint state method is a powerful mathematical approach that804

allows the evaluation of the gradient of an optimization problem involving805

a dynamical system with minimal computational effort and numerical errors806

compared to other techniques.807

The proposed method was tested on two test cases: a harmonic oscillator808

controlled by a PD control law and an inverted pendulum on a cart controlled809

by a LQR control law. The objective of the experiments was to test the810

OPGD-IGP’s capability to automatically design a control law similar, in811

terms of parameters and shape, to the reference one by leveraging the intra-812

evolution LS optimization. To understand the importance of the LS applied813

to GP, the performances achieved by OPGD-IGP have been compared with814

the ones achieved by IGP (a GP variant that does not involve any LS step),815

a Standard GP (SGP) without any LS step, and a feedforward NN. The NN816

was trained with two different approaches. First, it was trained on the data817

produced using the reference control laws. This training was performed to818

find the minimal NN topology necessary to capture the optimal control law819

behaviour. Secondly, the NN with the minimal topology was trained in-the-820

loop, i.e., by interacting with the dynamical system as done by OPGD-IGP.821

The NN trained with this last approach is the one to consider when comparing822

NN with OPGD-IGP.823

IGP and OPGD-IGP proved capable of performing the desired task, being824

able to produce a well-behaving control law for all the performed simulations825
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trol law. In particular, in the oscillator problem, IGP evolved 20/30 control827

laws with the same shape as the reference and similar parameters. On the828

other hand, OPGD-IGP achieved the desired shape and parameters in 30/30829

simulations. Regarding the pendulum, IGP produced the desired shape and830

parameters only in 1/30 simulation while OPGD-IGP did it in 21/30 simu-831

lations.832

Different performances were observed for SGP and the NN trained in-833

the-loop. Both performed well when applied to the oscillator test case. SGP834

produced a control law with the desired shape on 28/30 simulations. How-835

ever, despite obtaining more models than IGP with the same shape as the836

reference, the resulting behaviors were more varied and less consistent than837

those produced by IGP. The NN trained in-the-loop was capable of control-838

ling the system successfully, resulting in an objective function comparable839

to the one achieved by the GP-based algorithms. On the other hand, both840

SGP and NN trained in-the-loop showed poor performance when applied to841

the pendulum test case. This can be explained by the greater nonlinearity842

of the considered system, resulting in a more complex optimization problem843

that appeared extremely sensitive to the provided initial conditions.844

These results confirm that GP is a valid alternative to classical approaches845

for automatically designing a control law. In particular, the use of LS com-846

bined with the GP evolutionary process led to inferring the optimal shape847

and parameters of the desired control law, in contrast with a GP approach848

not enhanced with an LS, where the control laws are different from each other849

and also different from the ground-truth. Moreover, comparing OPGD-IGP850

and SGP results on the oscillator case, it can be seen how the SGP can851

achieve the desired shape almost as often as the OGPD-IGP, although the852

parameters’ values are randomly assigned. On the other hand, using an LS853

within the evolutionary process allows GP to find both the optimal shape and854

parameters. Finally, OPGD-IGP showed better performance than a feedfor-855

ward NN. This result can be explained by the ability of GP to evolve models856

with different genotypes but with a phenotype close to the reference control857

law. Thus, GP can compensate for the sensitivity to the initial conditions in858

the pendulum test case by discarding those models that lead to a failure of859

the dynamical system propagation.860

The obtained results have important implications, such as allowing con-861

trol practitioners to automate the control law design process and explore new862

control law formulations when dealing with complex nonlinear problems. In863
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ically also by considering the full nonlinear system.865

Future research will focus on four directions. First, it would be interest-866

ing to apply OPGD-IGP online to create an Intelligent Control (IC) system.867

This would fully exploit the LS phase to adapt to unforeseen disturbances.868

Second, OPGD-IGP could be applied to systems with greater nonlinearities869

to automatically develop control schemes that otherwise would require an870

extensive design effort from the engineers. Third, the comparison between871

IGP and OPGD-IGP on the oscillator case shed light on the benefits of872

promoting exploration during the evolutionary process. It would be inter-873

esting to analyze the effects of a randomized initialization of the learnable874

parameters during the evolutionary process. This approach could lead to the875

exploitation of different local minima through the LS and allow the discovery876

of novel and better-performing control schemes. Lastly, a comparison with877

other AI-based approaches to generate interpretable control models should878

be performed. Control policies generated by GP in an RL framework have879

exhibited promising performance in similar tasks. A comparison with this880

approach could shed light on the advantages and limitations of the two learn-881

ing methods. Such a comparison may also provide deeper insight into the882

poor performance of the NN trained in the loop, as discussed in this work.883

This observed behaviour contrasts with other works in existing literature,884

where NNs trained in an RL framework show good performance across di-885

verse domains.886

Acknowledgments887

This work was supported by national funds through the FCT (Fundação888

para a Ciência e a Tecnologia) by the project UIDB/04152/2020-Centro de889

Investigação em Gestão de Informação – MagIC/NOVA IMS; and by the890

SPECIES Society through the SPECIES Scholarship 2022.891

Appendix A. Neural Networks Training from Data: Settings and892

Results893

This appendix contains the settings used to train the NNs from the data894

and a summary of the training outcome.895
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10000 samples were generated using a Latin Hypercube Sampling be-897

tween [-2,2] for all the input features. These were then passed to Equations898

16 and 18 to generate the corresponding output data for the oscillator and899

pendulum test cases. This way, one dataset for the oscillator case and one900

dataset for the pendulum case were created. The datasets were then split901

into train+validation (80%) and test datasets (20%). The train+validation902

dataset was further split into train (80%) and validation (20%) datasets.903

Appendix A.2. Architecture and Settings904

For both test cases, a minimal architecture consisting of one hidden layer905

with one neuron was used. This architecture proved sufficient to learn the906

optimal control laws from the data, as reported in Subsection Appendix907

A.3. Linear activation functions were used for each layer since the target908

model was a linear one. The weights were initialized with the Glorot uniform909

initialization, and the biases were initialized as zero. Considering all this, the910

NN model for the oscillator test case contains five tunable parameters, while911

the one used in the pendulum case contains seven parameters. The difference912

lies in the different number of inputs.913

Appendix A.3. Training914

The training was performed with the Adam optimizer with a learning915

rate of 0.001 for 100 epochs. The MSE was used as a loss function. The916

plots of the training and validation losses are depicted in Figure A.15, while917

the prediction performances on the test data are depicted in Figure A.16.918

The models obtained are listed below and can be compared with Equa-919

tions 16 and 17.920

uNN,Dataoscillator = −1.966(0.891ex + 1.530ev + 0.297) + 0.585 =

= −1.752ex − 3.009ev + 0.000262

uNN,Datapendulum
=− 3.133(−0.319ex − 0.452ev + 2.594eθ + 0.390eω+

+ 0.201) + 0.631 =

=− 1.000ex + 1.418ev − 8.131eθ − 1.222eω − 0.000419
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Figure A.15: Train and validation losses for the oscillator and pendulum test cases
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Figure A.16: Comparison of true and predicted output using the test dataset.

Appendix B. Produced Control Laws921

This appendix contains the models produced in all the simulations per-922

formed with SGP, IGP, and OPGD-IGP. The reported models are obtained923

by algebraically simplifying the models produced by the GP algorithms.924
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Appendix B.1.1. SGP926

uSGP1 = −1.437ex − 2.874ev uSGP2 = −1.418ex − 2.836ev
uSGP3 = −1.456ex − 2.912ev uSGP4 = −1.421ex − 2.842ev − 0.011
uSGP5 = −2.118ex − 3.566ev uSGP6 = −1.421ex − 2.842ev
uSGP7 = −1.413ex − 2.826ev uSGP8 = −1.43ex − 2.86ev
uSGP9 = −1.424ex − 2.848ev uSGP10 = −1.963ex − 3.309ev
uSGP11 = −1.407ex − 2.814ev uSGP12 = −1.406ex − 2.751ev
uSGP13 = −1.421ex − 2.694ev uSGP14 = −1.674ex − 2.824ev
uSGP15 = −2ex − 3.42ev uSGP16 = −1.418ex − 2.836ev
uSGP17 = −1.422ex − 2.844ev uSGP18 = −1.464ex − 2.928ev
uSGP19 = −1.506ex − 2.819ev uSGP20 = −1.429ex − 2.858ev
uSGP21 = −1.835ex − 3.115ev uSGP22 = −1.806ex − 2.806ev
uSGP23 = −1.67ex − 3.082ev uSGP24 = −1.743ex − 2.743ev
uSGP25 = −1.421ex − 2.711ev uSGP26 = −1.481ex − 2.718ev
uSGP27 = −1.426ex − 2.852ev uSGP28 = −2.097ex − 3.368ev
uSGP29 = −1.457ex − 2.914ev − 0.0393 uSGP30 = −1.419ex − 2.838ev

Appendix B.1.2. IGP927
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ofuIGP1 = −1.775ex − 3.059ev uIGP2 = −1.868ex − 3.181ev

uIGP3 = −1.831ex − 3.123ev uIGP4 = −2ex − 3.324ev
uIGP5 = ex(0.378ev − 1.307)− 3.324ev uIGP6 = −1.853ex − 3.157ev
uIGP7 = −1.823ex − 3.142ev uIGP8 = −1.771ex − 3.108ev
uIGP9 = −1.875ex − 3.178ev uIGP10 = −1.912ex − 3.234ev
uIGP11 = −2ex + 0.115(−ev − 0.208)ev − 3.517ev
uIGP12 = −1.614ex + 1.614(0.086ev − 0.0265)ex − 3.228ev
uIGP13 = −1.841ex − 3.138ev uIGP14 = −1.848ex − 3.094ev
uIGP15 = −1.871ex − 3.159ev uIGP16 = −2ex − 3.68ev − 0.139e2v
uIGP17 = −1.805ex − (0.788ev + 2.840)ev − 1.805ev
uIGP18 = −1.936ex − 3.281ev uIGP19 = (ev − 0.34(ev + ex)2)(ex − 3.205)
uIGP20 = −1.986ex − 3.301ev
uIGP21 = −ex − 2ev + 0.655(ev + ex)(ex − 4.639)
uIGP22 = −1.965ex − 3.335ev
uIGP23 = −2.384ex − 3.462ev − 2.384ex(−0.093ev − 0.304)
uIGP24 = −1.881ex − 3.183ev uIGP25 = −1.841ex − 3.198ev
uIGP26 = −1.829ex − 3.134ev
uIGP27 = 1.749ev(0.00499e2x − 1.749)− 1.749ex
uIGP28 = −1.859ex − 3.187ev uIGP29 = −1.892ex − 3.191ev
uIGP30 = −1.448ex − 4.804ev + 0.465ev(ex + 2.493)

Appendix B.1.3. OPGD-IGP928

uOPGD−IGP1 = −1.854ex − 3.158ev uOPGD−IGP2 = −1.854ex − 3.158ev
uOPGD−IGP3 = −1.854ex − 3.158ev uOPGD−IGP4 = −1.854ex − 3.158ev
uOPGD−IGP5 = −1.854ex − 3.158ev uOPGD−IGP6 = −1.854ex − 3.158ev
uOPGD−IGP7 = −1.854ex − 3.158ev uOPGD−IGP8 = −1.854ex − 3.158ev
uOPGD−IGP9 = −1.854ex − 3.158ev uOPGD−IGP10 = −1.854ex − 3.158ev
uOPGD−IGP11 = −1.854ex − 3.158ev uOPGD−IGP12 = −1.854ex − 3.158ev
uOPGD−IGP13 = −1.854ex − 3.158ev uOPGD−IGP14 = −1.854ex − 3.158ev
uOPGD−IGP15 = −1.854ex − 3.158ev uOPGD−IGP16 = −1.854ex − 3.158ev
uOPGD−IGP17 = −1.854ex − 3.158ev uOPGD−IGP18 = −1.854ex − 3.158ev
uOPGD−IGP19 = −1.854ex − 3.158ev uOPGD−IGP20 = −1.854ex − 3.158ev
uOPGD−IGP21 = −1.854ex − 3.158ev uOPGD−IGP22 = −1.854ex − 3.158ev
uOPGD−IGP23 = −1.854ex − 3.158ev uOPGD−IGP24 = −1.854ex − 3.158ev
uOPGD−IGP25 = −1.854ex − 3.158ev uOPGD−IGP26 = −1.854ex − 3.158ev
uOPGD−IGP27 = −1.854ex − 3.158ev uOPGD−IGP28 = −1.854ex − 3.158ev
uOPGD−IGP29 = −1.854ex − 3.158ev uOPGD−IGP30 = −1.854ex − 3.158ev
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ofAppendix B.2. Pendulum929

Appendix B.2.1. SGP930

uSGP1 = eω + eθex(6.557− eω) + ex(eωev + eω − ev)

uSGP2 = −e2ω − eω − 2eθ + ev

uSGP3 = −eω − 3.317eθ(eω + evex + 2.495) + ev + 0.546ex

uSGP4 = −e2ω − eω − 2eθ + ev

uSGP5 = eθ(−0.48eωeθ(2.085eω − ev + 7.325)− 0.56eθ + 2ev − 2.527)

uSGP6 = −e2ω + ev + (eω + 2eθ)(eθ + ex)

uSGP7 = −eω − 4.05eθ + 2.05ev + ex

uSGP8 = eθ(eω − 4.203)(ev + 5.389)− ev

uSGP9 = eθ(eω + ev + ex − 13.233)− ev

uSGP10 = −eω − 7.035eθ + 2ev + ex

uSGP11 = −eω − 3eθ + ev − 0.386

uSGP12 = −1.022eω − eθ + ev − 0.204

uSGP13 = −eω − eθ(8.154− eω) + e2v + ev + ex

uSGP14 = −0.919eω + 0.919eθ(eω − 6.911) + 1.838ev + 0.919ex

uSGP15 = −eω − 3eθ + 3ev

uSGP16 = −eωe2v − eω − 7.264eθ + ev(ev − 0.066) + ev + ex

uSGP17 = −eω − 2eθ + ev − 0.046ex − 0.428

uSGP18 = −eω − 17.61eθ + e2v + ex

uSGP19 = eωev(0.687eθex − 0.687ev + 0.687ex + 1.025)− 3.209eθ

uSGP20 = −eω + eθ(eω − 5.807) + 2ev + ex

uSGP21 = −eθ − (−eω + 2ev)(eθ + ex) + (−5.723eθ + ev)(ev − ex)

uSGP22 = −0.089eω − 5.937eθ − e2x + 3.986

uSGP23 = −2.803eω + eθ − 1.803ev + (−eθ + ev)(−8.89ev − 8.89ex)− 1.015

uSGP24 = −eω − 7.453eθ + 2ev + ex

uSGP25 = −eω − 5.501e2θ + eθ(eω + ex) + 2.935ev

uSGP26 = (0.023eω + eθ)(4.033eω − 2eθ − ev + ex + 0.259)

uSGP27 = −eω − 5eθ + 2ev + ex

uSGP28 = −eω + 51.050eθ(1.045ev − 1.254)
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ofuSGP29 = −2eωev − eω − 2eθ − e2v + ev

uSGP30 = −eω − 2.926eθ(−7.445eωeθex − eθex + 2.791) + 2ev + ex

Appendix B.2.2. IGP931

uIGP1 =− 1.280eω − 8.095eθ + 1.560ev + ex + eθ(eω + eθ − ev − ex)

uIGP2 =− eω − eθ(−9.963eωeθ(eω − ev(eθ + 1.5)) + 6.686)− eθ + ev(eθ + 1.5) + ex

uIGP3 =9.268eωe
2
θ − eω − 9.555eθ + e2v − ev(−ex − 1.686) + ex

uIGP4 =− eω + ev + (−6.765eθ + ex)(eθ + 0.829)(e2θ(eω − 7.736)(eω + ev) + 0.829)

uIGP5 =− 1.155eω − 6.993eθ + 1.47ev + ex

uIGP6 =− eω − eθ(8.693eωeθ(−eω + ev)− 2.428eθ + 6.667) + 1.428ev + ex

uIGP7 =− eω + eθ(evex + ex − 6.787) + ev(ev + ex + 0.664) + ev + ex

uIGP8 =− 1.16eω + eθ(−1.677eωev + 5.488eθ − 6.197) + 1.345ev + ex

uIGP9 =− eω − eθ(9.96eωeθ − 2eθ + ev − ex + 4.5) + 1.388ev + ex

uIGP10 =− eω − 7.709eθ + ev + ex + (ex + 2.071)(eθ(eθ − 6.909) + ev)(−eθ + ex + 2.07

uIGP11 =− eω − eθ(eω + 9.063) + ev(−eθ + ev + ex) + 1.715716ev + ex

uIGP12 =− eω − eθ(−eω − 7.203eθ + ev + ex + 8.802) + eθ + ev(eθ + 0.444) + ev + ex

uIGP13 =(eθ + 0.031ev((eω − 2eθ)(ev + 1.835)− 1.159))(eθex − 1.835eθ − 2.755)

uIGP14 =− eω + eθ(0.439eω + 3eθ − 5.753)− eθ + 1.418ev + ex

uIGP15 =− eω + eθ(eω + evex − 6.116)− eθ + ev + ex − (eω − 1.57ev)(eθ + 0.254)

uIGP16 =− eω − 8.478eθ + ev(−2eθ + ex) + ev(ev − 0.419) + 2ev + ex

uIGP17 =− eω − eθ + 2ev + ex + (0.411− eθ)(−0.34eω − 0.660eθ − ev + 6.702)− 2.78

uIGP18 =− eω + eθ(eω − eθ(−2e2ω − ex − 9.545)− 2eθ − 6.259) + 1.377ev + ex

uIGP19 =− 1.113eω − 7.299eθ − 0.113ev(−eω − eθ − ex + 3.652) + 2ev + ex

uIGP20 =− eω + 1.105e2θ − 0.187eθev − 5.726eθ + 1.187ev + 0.813ex

uIGP21 =− eω − 5.08eθ + ev − 0.09072ex(eω − eθ) + 0.676ex

uIGP22 =− eω − eθ(−3eθ − ev + 6.92)− ev(−0.295eω − 0.346) + ev + ex

uIGP23 =− 1.266eω + eθ(eω − eθ − ev − 6.694) + 1.532ev + ex

uIGP24 =− eω − 8.525eθ + ev(−eωev − 3eθ + e2v + ex) + 2ev + ex

uIGP25 =− eω + eθ(eωeθ(4.593eω − 6.515) + eθ − 6.515)− 0.452eθ + 1.452ev + ex

uIGP26 =− 0.0241eω(ev + ex)− 0.916eω − 5.507eθ + 1.083ev + 0.711ex
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ofuIGP27 =− eω − eθ(ev(−eθ(eθ + 4.417) + 0.742) + 8.424) + ev(−eθ + ev + ex + 0.674)+

+ ev + ex

uIGP28 =− eω + eθ(−eθ(eωeθ + eω)(−eωex + eω − 6.744)− 5.207) + ev + 0.663ex

uIGP29 =− 1.169eω + e2θ − 6.976eθ + 1.413ev + ex + 0.0148

uIGP30 =− eω − eθ(−eω − 7.074eθ + 0.751ev + ex + 7.241) + 1.436ev + ex

Appendix B.2.3. OPGD-IGP932

uOPGD−IGP1 =− 0.951eω − 0.0274eθ(0.0815eωeθ + 0.121eθ)− 5.839eθ + 1.161ev + 0.7

uOPGD−IGP2 =− 0.951eω − 5.839eθ + 1.160ev + 0.780ex

uOPGD−IGP3 =− 0.953eω − 5.844eθ + 1.162ev + 0.781ex

uOPGD−IGP4 =− 0.952eω − 5.840eθ + 1.161ev + 0.780ex

uOPGD−IGP5 =− 0.0172eωex − 0.986eω − 5.847eθ + 1.162ev + 0.781ex

uOPGD−IGP6 =− 0.952eω − 5.841eθ + 1.161ev + 0.781ex

uOPGD−IGP7 =− 0.949eω − 5.903eθ + 1.174ev − 0.00900ex(2.347eθ − 1.269ev) + 0.780

uOPGD−IGP8 =− 0.952eω − 5.843eθ + 1.162ev + 0.781ex

uOPGD−IGP9 =− 0.952eω − 5.843eθ + 1.162ev + 0.781ex

uOPGD−IGP10 =− 0.952eω − 5.842eθ + 1.161ev + 0.781ex

uOPGD−IGP11 =− 0.952eω − 5.842eθ + 1.161ev + 0.781ex

uOPGD−IGP12 =− 0.952eω − 5.842eθ + 1.161ev + 0.781ex

uOPGD−IGP13 =− 0.954eω + 1.090eθev(−1.030eωeθ + 0.954eθ)+

− 5.806eθ + 1.158ev + 0.783ex

uOPGD−IGP14 =− 0.952eω − 5.843eθ + 1.162ev + 0.781ex

uOPGD−IGP15 =− 0.952eω − 5.839eθ + 1.161ev + 0.780ex

uOPGD−IGP16 =− 0.953eω − 0.010eθex(0.998eθ − 0.994ev)− 5.835eθ + 1.162ev + 0.782

uOPGD−IGP17 =− 0.952eω − 5.843eθ + 1.162ev + 0.781ex

uOPGD−IGP18 =− 0.952eω − 5.844eθ + 1.162ev + 0.781ex

uOPGD−IGP19 =− 0.953eω − 5.844eθ + 1.162ev + 0.781ex

uOPGD−IGP20 =− 0.952eω + 0.0854e2θ − 5.834eθ + 1.161ev + 0.781ex

uOPGD−IGP21 =− 0.952eω − 5.844eθ + 1.162ev + 0.781ex

uOPGD−IGP22 =− 0.951eω + 0.00449eθ(0.999eω − 1.999eθ − 0.999ev)+
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of− 5.835eθ + 1.160ev + 0.780ex

uOPGD−IGP23 =− 0.952eω − 5.843eθ + 1.161ev + 0.781ex

uOPGD−IGP24 =− 0.952eω − 5.842eθ + 1.161ev + 0.781ex

uOPGD−IGP25 =− 0.952eω − 5.842eθ + 1.161ev + 0.781ex

uOPGD−IGP26 =− 0.952eω − 5.843eθ + 1.162ev + 0.781ex

uOPGD−IGP27 =− 0.952eω − 5.842eθ + 1.161ev + 0.781ex

uOPGD−IGP28 =− 0.950eω − 5.862eθ + 1.153ev − 0.00907e2x + 0.7631ex

uOPGD−IGP29 =− 0.952eω − 5.840eθ + 1.161ev + 0.780ex

uOPGD−IGP30 =− 0.952eω + 0.0264eθ(0.999eθ − 0.999ev(1.000eω − 0.999ev))

− 5.852eθ + 1.162ev + 0.782ex
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[34] L. Böttcher, N. Antulov-Fantulin, T. Asikis, AI Pontryagin or how1057

artificial neural networks learn to control dynamical systems, Nature1058

Communications 13 (2022) 1–9. doi:10.1038/s41467-021-27590-0.1059

[35] D. Hein, S. Udluft, T. A. Runkler, Generating interpretable fuzzy1060

controllers using particle swarm optimization and genetic program-1061

ming, GECCO 2018 Companion - Proceedings of the 2018 Genetic and1062

Evolutionary Computation Conference Companion (2018) 1268–1275.1063

doi:10.1145/3205651.3208277. arXiv:1804.10960.1064

[36] D. Hein, S. Udluft, T. A. Runkler, Interpretable policies for reinforce-1065

ment learning by genetic programming, Engineering Applications of Ar-1066

tificial Intelligence 76 (2018) 158–169. URL: https://doi.org/10.1011067

6/j.engappai.2018.09.007. doi:10.1016/j.engappai.2018.09.007.1068

arXiv:1712.04170.1069

[37] D. Hein, S. Limmer, T. A. Runkler, Interpretable control by rein-1070

forcement learning, IFAC-PapersOnLine 53 (2020) 8082–8089. URL:1071

https://doi.org/10.1016/j.ifacol.2020.12.2277. doi:10.1016/j.1072

ifacol.2020.12.2277. arXiv:2007.09964.1073

[38] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization,1074

arXiv preprint arXiv:1412.6980 (2014).1075

[39] J. Nocedal, S. J. Wright, Numerical Optimization, second ed., Springer,1076

New York, NY, 2006.1077

[40] H. J. Kelley, Gradient theory of optimal flight paths, Ars Journal 301078

(1960) 947–954.1079

49



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of[41] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (2016).1080

[42] B. M. Bell, J. V. Burke, Algorithmic Differentiation of Implicit Func-1081

tions and Optimal Values, in: Lecture Notes in Computational Sci-1082

ence and Engineering, volume 64 LNCSE, 2008, pp. 67–77. URL:1083

http://link.springer.com/10.1007/978-3-540-68942-3{_}7.1084

doi:10.1007/978-3-540-68942-3_7.1085

[43] C. C. Margossian, M. Betancourt, Efficient Automatic Differentiation of1086

Implicit Functions (2021). URL: http://arxiv.org/abs/2112.14217.1087

arXiv:2112.14217.1088

[44] Y. Ma, V. Dixit, M. J. Innes, X. Guo, C. Rackauckas, A Compari-1089

son of Automatic Differentiation and Continuous Sensitivity Analysis1090

for Derivatives of Differential Equation Solutions, 2021 IEEE High1091

Performance Extreme Computing Conference, HPEC 2021 (2021) 1–9.1092

doi:10.1109/HPEC49654.2021.9622796. arXiv:1812.01892.1093

[45] A. Güne ,̧ G. Baydin, B. A. Pearlmutter, J. M. Siskind, Automatic1094

Differentiation in Machine Learning: a Survey, Journal of Machine1095

Learning Research 18 (2018) 1–43.1096

[46] C. M. Pappalardo, D. Guida, Use of the adjoint method for controlling1097

the mechanical vibrations of nonlinear systems, Machines 6 (2018).1098

doi:10.3390/machines6020019.1099

[47] S. L. Brunton, J. N. Kutz, Data-Drive Science and Engineering: Machine1100

Learning, Dynamical Systems and Control, volume 53, 2019.1101

[48] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,1102

D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J.1103

van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.1104

Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng,1105
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• Proposed a novel Genetic Programming (GP) algorithm, named OPGD-IGP,
capable of autonomously designing an optimal control law both in terms 
of shape and parameters. 

• The OPGD-IGP can be applied to linear and nonlinear systems.
• Proved the applicability of the adjoint state method to evaluate the 

gradient in a control setting.
• Proved the benefts of introducing a Local Search phase into the GP 

evolutionary process.
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