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ABSTRACT
Typhoid fever remains a major public health concern, affecting over nine million individuals globally each year. Mathematical modeling
approaches can provide valuable insights into typhoid transmission dynamics and inform preventive strategies. In this study, we developed
a compartmental model incorporating key features of typhoid epidemiology and two crucial interventions: vaccination and sanitation prac-
tices. The model stratifies the population into susceptible, vaccinated, exposed, asymptomatic infected, symptomatic infected, and recovered
compartments and tracks the bacterial load in the environment. We established a disease-free equilibrium and basic reproduction num-
ber R0. We also identified the endemic equilibrium and analyzed its existence. Numerical simulations demonstrated the critical impact of
enhanced sanitation and vaccination in curtailing infections. Our model underscores the need for multifaceted control measures that encom-
pass vaccine coverage, sanitation enforcement, and healthcare capacity building to mitigate typhoid in high-risk regions. This study provides
a comprehensive framework to model the intricate transmission dynamics of typhoid fever, supporting informed public health policies and
decision-making.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0201916

I. INTRODUCTION
Typhoid fever, an infectious bacterial disease, is primarily

caused by Salmonella typhi.1 This disease, commonly referred to
as typhoid, poses a significant threat to public health globally. In
2019, it afflicted over 9 × 106 individuals and tragically claimed
the lives of over 110 000 people.2 This disease remains highly
contagious, contributing to its persistent prevalence in various
regions of the world. Notably, typhoid has established an endemic
presence in many parts of the world, particularly in sub-Saharan
Africa and Southeast Asia.3,4

The clinical manifestation of typhoid fever unfolds gradually;
typically, manifestation of symptoms takes 1–3 weeks post-infection
with Salmonella typhi bacteria.5 These dangerous symptoms of
typhoid are marked by a distressing onset, such as headaches, cough,

and abdominal pain, creating a significant burden on the infected
individual.6 Concurrently, disturbances in the digestive system,
including constipation and diarrhea, further worsen the overall
condition.6 Swift initiation of treatment, primarily through the
administration of antibiotics, such as ampicillin, chloramphenicol,
trimethoprim–sulfamethoxazole, and amoxicillin, facilitates rapid
improvement in symptoms within 3–5 days.7 However, the conse-
quences of untreated typhoid are dire, leading to disease progression
and severe outcomes, including potential fatality. Without timely
intervention, typhoid can evolve into a life-threatening condition,
underscoring the importance of early diagnosis and effective medical
intervention. It is noteworthy that the most vulnerable demographic,
with the highest reported case fatality rates, comprises children
under the age of 4.2
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Salmonella typhi propagates through the fecal–oral route,
disseminating from infected individuals, whether symptomatic or
asymptomatic. The primary mode of transmission involves contact
with contaminated food and water sources, highlighting the critical
role of environmental factors in the spread of pathogens. Notably,
individuals harboring active typhoid infections, even those who
display no apparent symptoms (asymptomatic), can excrete the
bacteria in their feces, further perpetuating contamination of the
surroundings.

The effective prevention of typhoid fever depends on a
multifaceted approach that connects sanitation, hygiene practices,
and vaccination strategies. Although maintaining robust sanita-
tion and hygiene standards plays a pivotal role in minimizing the
transmission of Salmonella typhi, vaccination has emerged as
the most significant and direct preventive measure. Notably, two
widely utilized vaccines have demonstrated efficacy in preventing
typhoid outbreaks: the oral Vivotif, produced by Crucell, and the
injectable Typhim Vi and Typherix, manufactured by Sanofi Pasteur
and GlaxoSmithKline, respectively. These vaccines serve as crucial
components of public health initiatives aimed at curtailing the
incidence of typhoid fever, particularly in regions with height-
ened susceptibility. To ensure sustained immunity, recommended
booster doses are integral, with oral vaccination schedules advising
boosts every five years and injectable counterparts advocating for
revaccination every two years.8

Numerous mathematical modeling studies have been
conducted to demonstrate the complicated transmission dynamics
of typhoid fever, reflecting a collective effort to enhance our
understanding of this infectious disease.9–12 Peter et al.12 devised
a comprehensive model encompassing the direct and indirect
transmission dynamics of typhoid fever. Their study incorporated
three key control interventions: educational campaigns, sanitation
practices, and screening, along with early treatment. However, a
notable limitation of their model was the omission of vaccination,
a key preventive measure against typhoid, which raised concerns
about the completeness of the proposed interventions.

In a parallel manner, Abboubakar and Racke in Ref. 9 devel-
oped a mathematical model that considered the transmission
dynamics of typhoid fever within human populations. Their model
included the following factors: the incubation period, utilization of
imperfect vaccines, and influence of protective measures, such as
environmental sanitation and treatment. In contrast to the work
of Peter et al., Abboubakar and Racke did not include the rare
occurrence of person-to-person transmission, which acknowledges
the multifaceted nature of typhoid transmission, paving the way for
a more holistic assessment of control strategies.

Furthermore, Acosta-Alonzo et al.10 explored the vaccination
landscape against typhoid fever in rural areas of Ghana and
investigated whether low vaccination coverage could be attributed
to rational behavior among individuals. Adapting a model
from Mushayabasa,13 they considered chronic lifelong carriers,
short-cycle transmissions in the immediate environment, and
long-cycle transmissions via water supply contamination. However,
a limitation was identified in the Mushayabasa model, which failed
to incorporate an exposed compartment crucial for understand-
ing typhoid transmission dynamics due to the incubation period
of the disease. Addressing this gap is essential for refining models
that demonstrate the complexity of typhoid spread. These studies

collectively provide valuable insights into the evolving landscape of
mathematical epidemiology, emphasizing the need for an inclusive
approach to effectively model and combat typhoid fever. In
this study, we address a critical gap in the existing research
by developing a comprehensive model that incorporates crucial
factors and captures the essential features of typhoid transmission
dynamics.

The subsequent sections of this paper are as follows: in Sec. II,
we formulate the model and introduce the essential definitions for
our investigation. In Sec. III, we investigate the model analysis
covering the disease-free equilibrium point, basic reproduction
number, and endemic equilibrium point. In Sec. IV, we demonstrate
the fundamental definitions and concepts of fractional calculus and
transform the model to a system of Caputo-fractional derivative.
Section V presents numerical simulations, followed by a detailed
discussion of our findings and conclusion in Sec. VI.

II. DESCRIPTION AND FORMULATION OF THE MODEL
It is assumed that everyone in the population has an equal

probability of acquiring the infection and that the population is
homogeneously mixed. We take into account both the transmission
from person to person and the transmission through the envi-
ronment as a result of contact with Salmonella typhi bacteria in
food and water. At time t, the model divides the entire human
population [N(t)] into six (6) different compartments that do
not overlap, including susceptible individuals [S(t)], vaccinated
individuals [V(t)], exposed individuals [E(t)], asymptomatic
infected individuals [Ia(t)], symptomatic infected individuals
[Iv(t)], and individuals who have recovered and developed immu-
nity from the infection [R(t)], so that

N(t) = S(t) + V(t) + E(t) + Ia(t) + Is(t) + R(t). (1)

The equations describing the typhoid fever transmission with q ∈
(0, 1) are

dS
dt
= Λ + ωV − (λ + ϵ + μ)S, (2)

dV
dt
= ϵS − ((1 − ϕ)λ + ω + μ)V , (3)

dE
dt
= λS + (1 − ϕ)λV + ρλR − (σ + μ)E, (4)

dIa

dt
= (1 − τ)σE − (ϖ + α + μ)Ia, (5)

dIs

dt
= τσE + ϖIa − (α(1 − θη) + δ1 + μ)Is, (6)

dR
dt
= αIa + α(1 − θη)Is − (ρλ + μ)R, (7)

dC
dt
= γ1Ia + γ2Is − δ2C, (8)
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where

λ = (1 − κ)β[Ia + ν1Is + ν2C]
N

, (9)

with the following non-negative initial conditions:

S(0) ≥ 0, V(0) ≥ 0, E(0) ≥ 0, Ia(0) ≥ 0,
Is(0) ≥ 0, R(0) ≥ 0, C(0) ≥ 0.

Equation (2) represents the susceptible population, where indi-
viduals enter at a fixed rate Λ. This can occur either through birth or
immigration or when a vaccinated individual loses immunity14 and
needs to be revaccinated. Individuals in this group are susceptible
to infection upon contact with asymptomatic infected individuals
(Ia), symptomatic infected individuals (Is), or contaminated food
or water (C).

Equation (3) characterizes the vaccination compartment. The
first term signifies individuals transitioning from a susceptible pool
after vaccination. Despite vaccination, breakthrough infections may
occur because of the imperfect nature of the vaccine.9 However,
the transmission rate of these breakthrough infections is reduced by
(1 − ϕ), where ϕ denotes the vaccine efficacy.

Equation (4) represents the exposed compartment. In our sce-
nario, individuals in this group were assumed to be non-infectious
during the range from 9.7 to 21.2 days of typhoid fever incubation
period.15 A fraction of this population progresses to symptomatic
infection at rate τσ, whereas others become asymptomatic at rate
(1 − τ)σ.

Equations (5) and (6) correspond to two infected classes:
asymptomatic and symptomatic infections, respectively. Asymp-
tomatic individuals recover at rate α1, whereas symptomatic infected
individuals face mortality at rate δ1. Symptomatic individuals can
recover from the disease at rate α(1 − θη), where θ represents
the rate of antibiotic resistance and η signifies accessibility to the
healthcare system (NB. 0 < θη < 1).

Equation (7) monitors the recovered individuals constitut-
ing the immune/partially immune individuals. The first two terms
indicate individuals recovering from the disease who may develop
immunity or remain partially immune. This group is also susceptible
to reinfection at the rate of ρ(0 ≤ ρ < 1 ).

In Eqs. (2) and (7), individuals experience natural death at a
rate of μ.

Equation (8) represents the contaminated environment
influenced by the shedding of bacteria from either asymptomatic
or symptomatic infected compartments. Proper sanitation practices

TABLE I. Meaning of variables.

Variable Meaning

S Susceptible individuals
V Vaccinated individuals
E Exposed individuals
Ia Asymptomatic infected individuals
Is Symptomatic infected individuals
R Recovered individuals
C Salmonella typhi bacteria in the environment

TABLE II. Parameters and their meaning.

Parameter Meaning and units

Λ Rate at which new members enter the susceptible
group

ω Rate of individuals transitioning from V to S
ϵ Rate of vaccination of susceptible individuals
μ Natural death rate
ϕ Reduction in transmission due to vaccine efficacy
ρ Reinfection rate for recovered individuals
σ Rate of progression from exposed to infected
τ Fraction progressing to Ia from exposed
β Effective contact rate
κ Rate of reduction in infectiveness (by practicing

safe sanitation)
ν1 Rate of infectiousness of Is
ν2 Rate of infectiousness of C
α Recovery rate of infected individuals
δ1 Mortality rate of symptomatic infected individuals
δ2 Reduction rate of bacteria in contaminated envi-

ronment
ϖ Progression rate from Ia to Is
γ1 Shedding rate of bacteria by Ia
γ2 Shedding rate of bacteria by Is
θ Rate of antibiotic resistance
η Accessibility to healthcare system

are also considered to affect the reduction rate of Salmonella typhi
bacteria in this environment.

The description of the variables and parameters is tabulated in
Tables I and II, respectively.

III. MODEL ANALYSIS
This model analysis assumed that individuals who have recov-

ered but later lose immunity can play a role in the occurrence and
transmission of typhoid fever. Following this, we established the
fundamental properties of model equations (2)–(8).

A. Invariant region
The positivity of the model equations (2)–(8) is crucial, as it

reflects the biological context of population densities, wherein the
lowest possible value is zero. This is paramount for establishing an
upper bound for the model.

Consider

X = {(S, V , E, Ia, Is, R) ∈ R6
+ : N(t) ≤ Λ

μ
, C(t) ∈ R+ : C(t)

≤ (γ1 + γ2)Λ
μδ2

}. (10)

We establish that the closed set X is the feasible region for model
equations (2)–(8).
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Lemma 1. For the typhoid fever model defined by model
equations (2)–(8), with initial condition s(0) > 0, V(0) > 0, E(0)
≥ 0, Ia(0) ≥ 0, Is(0) ≥ 0, R(0) ≥ 0, and C(0) ≥ 0, the closed set X is
positively invariant and biologically meaning ful for all t ≥ 0.

Proof. We begin by adding the entire human population as
follows:

dN
dt
= Λ − μN(t) − δ1Is(t) ≤ Λ − μN(t),

dN
dt
+ μN ≤ Λ,

N(t) ≤ N(0)e−ut + Λ
μ
(1 − e−ut), (11)

where N(0) is the initial condition. As t → 0 in (11), N(t)→ Λ
μ .

Thus, every solution to Eqs. (2)–(8) is applicable to the human
population remaining within the defined region continuously.

To ensure the positivity of the state variables, we present and
establish the following lemma. ◻

Lemma 2. Consider the model given by Eqs. (2)–(8) under
the following initial conditions: S(0) > 0, V(0) ≥ 0, E(0) ≥ 0,
Ia(0) ≥ 0, Is(0) ≥ 0, R(0) ≥ 0, and C(0) ≥ 0. Then, the solutions
{S, V , E, Ia, Is, R, C} are positive in R7

+.

Proof. Utilizing an approach similar to that in Ref. 16, we
initially focus on Eq. (2), given by

dS
dt
= Λ + ωV − (λ + ϵ + μ)S, (12)

where t1 = sup{t > 0 : S > 0, V > 0, E > 0, Ia > 0, Is > 0, R > 0,
C > 0,} ∈ [0, t]. Since t1 > 0, Eq. (12) implies that

dS
dt
≥ Λ − (λ + ϵ + μ)S. (13)

Equation (13) can be reformulated as

dS
dt
+ (λ + ϵ + μ)S ≥ Λ, (14)

resulting in

d
dt
[S(t) exp{(ϵ + μ)t + ∫

t

0
λ(u)du}]

≥ Λ exp{(ϵ + μ)t + ∫
t

0
λ(u)du}. (15)

Consequently,

S(t1) exp{(ϵ + μ)t1 + ∫
t1

0
λ(u)du} − S(0)

≥ ∫
t1

0
Λ exp{(ϵ + μ)x + ∫

x

0
λ(v)dv}dx,

(16)

leading to

S(t1) = S(0) exp{−(ϵ + μ)t1 − ∫
t1

0
λ(u)du}

+ exp{−(ϵ + μ)t1 − ∫
t1

0
λ(u)du}

×[∫
t1

0
Λ exp{(ϵ + μ)x + ∫

x

0
λ(v)dv}dx] > 0.

(17)

By employing a similar approach, it can be demonstrated that
V(t), E(t), Ia(t), Is(t), R(t), and C(t) are always positive for t > 0.
This implies that all solutions of Eqs. (2)–(8) remain positive under
all non-negative initial conditions, as anticipated. ◻

As a result, we can affirm that within domain X, the pro-
posed model is well posed and holds significance from both
epidemiological and mathematical perspectives.

B. Disease-free equilibrium
The equilibrium state without the presence of the disease,

referred to as disease-free equilibrium (DFE), in model equa-
tions (2)–(8) is expressed as

DFE = {S∗, V∗, E∗, I∗a , I∗s , R∗, C∗}

= { (μ + ω)Λ
μ(ϵ + μ + ω) ,

ϵΛ
μ(ϵ + μ + ω) , 0, 0, 0, 0, 0}.

1. Basic reproduction number
In this case, we calculated the basic reproduction number

(R0) for the typhoid fever model equations (2)–(8) using the
next-generation matrix (NGM) technique, as illustrated in Ref. 17.
R0 signifies the number of secondary cases that a typical primary case
would generate throughout the infectious period in an entirely sus-
ceptible population.18–20 Matrices F , representing the new infection
terms, and V, denoting the other transfer terms, are as follows:

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λS + c2λV + ρλR
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

n1E
−c3σE + n2Ia

−τσE − ϖIa + n3Is

−γ1Ia − γ2Is + δ2C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (18)

where

c1 = 1 − κ, c2 = 1 − ϕ, c3 = 1 − τ, c4 = 1 − θη,
n1 = σ + μ, n2 = ϖ + α + μ,

n3 = αc4 + δ1 + μ, n4 = ϵ + μ + ω, and n5 = c1(c2ϵ + μ + ω).

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
βn5

n4

ν1βn5

n4

ν2βn5

n4
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

n1 0 0 0
−c3σ n2 0 0
−τσ −ϖ n3 0

0 −γ1 −γ2 δ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(19)
Therefore,
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R0 =
σβ[c3n3δ2 + (τδ2n2 + ϖc3δ2)ν1 + (τγ2n2 + ϖc3γ2 + c3γ1n3)ν2]n5

n1n2n3n4δ2
. (20)

Hence, we have the following lemma.

Lemma 3. The DFE of Eqs. (2)–(8) is locally asymptotically sta-
ble (LAS) if and only if the value of R0 < 1. Conversely, if R0 > 1, then
the DFE is unstable.

C. Global stability of the disease-free equilibrium
(DFE)

We investigated the global stability of the disease-free equi-
librium (DFE) utilizing the method by Castillo-Chavez et al.21

Consider the following equations:

dX
dt
= F(X, Y),

dY
dt
= G(X, Y), with G(X, 0) = 0.

(21)

X ∈ Rm denotes non-infected compartments, Y ∈ Rn denotes
infected compartments, and DFE represents the disease-free equilib-
rium of the system. Castillo-Chavez et al. established that the global
asymptotic stability of the DFE is achieved when the following two
specified conditions are met:

(B1) dX
dt = F(X, 0) , and X∗ is globally asymptotically stable.

(B2) G(X, Y) = BY − Ĝ(X, Y), where Ĝ(X, Y) ≥ 0 for all
(X, Y) in the biologically meaningful domain X and B
= DY G(X∗, 0) is an M-matrix.

Therefore, the following theorem is proposed.

Theorem 4 (Castillo-Chavez et al.21). If R0 < 1 (LAS), and
assumptions (B1) and (B2) hold, then DFE is globally asymptotically
stable for the system.

This result can be applied to our model equations (2)–(8) to
conclude the following.

Theorem 5. The DFE of model equation (8) is globally asymp-
totically stable if R0 < 1.

Proof. We start by decomposing Eqs. (2)–(8) into subsystems
of susceptible humans, vaccinated humans, and recovered humans,
denoted by

X = (S, V , R), (22)

and exposed humans, infected humans, and the concentration
of Salmonella typhi in the salmonella-contaminated environment,
denoted by

Y = (E, Ia, Is, C). (23)

To ensure global stability, we rewrite the model equa-
tions (2)–(8) as shown in Eq. (21), where X ∈ R3 and Y ∈ R3. With
this new formulation, the DFE is now denoted as DFE = (X0, 0),

where X0 = ( (μ+ω)Λ
μn4

, ϵΛ
μn4

, 0) is an equilibrium point of the reduced
system,

dX
dt
= F(X, 0). (24)

To attain the global stability of the disease-free equilibrium, it
is imperative to fulfill the following specified conditions, referred to
as (B1) and (B2):

(B1) X0 is a globally asymptotically stable equilibrium for dX
dt

= F(X0, 0).
(B2) G(X, Y) = BY − Ĝ(X, Y), where Ĝ(X, Y) ≥ 0 for all

(X, Y) ∈ X.

The matrices B and Ĝ(X, Y) are defined as follows:

B = DY G(X∗, 0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−n1
βn5

n4

ν1βn5

n4

ν2βn5

n4
c3σ −n2 0 0
τσ ϖ −n3 0
0 γ1 γ2 −δ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

and

Ĝ(X, Y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Ia + ν1Is + ν2C) [1 − c1[S + c2V + ρR]
N

⋅ n4

n5
]

0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

Since n4 < n5, Ĝ(X, Y) ≥ 0. Hence, (B2) is satisfied and the DFE is
globally asymptotically stable. ◻

D. Existence of endemic equilibrium point (EE)
The equilibrium states (denoted as EE) of the model

[Eqs. (2)–(8)] represent the endemic equilibrium where the disease
has the potential to persist within the population. These equilibria
occur when at least one of the infected classes is nonempty, indicat-
ing the presence of sustained infection dynamics. This insight is cru-
cial for understanding the long-term behavior of the mathematical
epidemiological model.
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Let EE = (S∗∗, V∗∗, E∗∗, I∗∗a , I∗∗s , R∗∗, C∗∗) be the EE for the
model [Eqs. (2)–(8)], which in terms of the force of infection λ∗∗
is given by

S∗∗ = Λ(n7 + c2λ∗∗)
c2λ∗∗

2
+ (n7 + c2n6)λ∗∗ + μ2 + (ϵ + ω)μ

,

V∗∗ = Λϵ
c2λ∗∗

2
+ (n7 + c2n6)λ∗∗ + μ2 + (ϵ + ω)μ

,

I∗∗a =
c3σE∗∗

n2
,

I∗∗s =
σ(τn2 + c3ϖ)E∗

n2n3
,

R∗∗ = σα(c3n3 + c4(τn2 + c3ϖ))E∗∗
(λ∗∗ρ + μ)n2n3

,

C∗∗ = σ(τγ2n2 + c3ϖγ2 + c3γ1n3)E∗∗
n2n3δ2

,

(27)

where n6 = ϵ + μ, n7 = ω + μ,

λ =
c1β[I∗∗a + ν1I∗∗s + ν2C∗∗]

N∗∗
, (28)

and

N∗∗ = S∗∗ + V∗∗ + E∗∗ + I∗∗a + I∗∗s + R∗∗. (29)

Equation (31) can now be written as

S∗∗ + V∗∗ + E∗∗ + (1 − c1β
λ∗∗
)I∗∗a

+ (1 − c1βν1

λ∗∗
)I∗∗s −

c1βν2

λ∗∗
C + R = 0, (30)

so the nonzero (endemic) equilibria of model equations (2)–(8)
satisfy the following criteria:

a1(λ∗∗)3 + a2(λ∗∗)2 + a3λ∗∗ + a4 = 0, (31)

where

a1 = δ2ρc2(((n3 + ϖ)c3 + n2τ)σ + n2n3),
a2 = −βρστc1c2δ2n2ν1 − βρστc1c2γ2n2ν2 − βρσϖc1c2c3δ2ν1 − βρσϖc1c2c3γ2ν2

− βρσc1c2c3γ1n3ν2 − αρστc2c4δ2n2 − αρσϖc2c3c4δ2 − βρσc1c2c3δ2n3 − αρσc2c3δ2n3

+ αστc2c4δ2n2 + ασϖc2c3c4δ2 + ϵρστc2δ2n2 + ϵρσϖc2c3δ2 + ϵρσc2c3δ2n3 + ασc2c3δ2n3

+ ϵρc2δ2n2n3 + μστc2δ2n2 + μσϖc2c3δ2 + μσc2c3δ2n3 + ρστδ2n2n7 + ρσϖc3δ2n7 + ρσc3δ2n3n7

+ ρc2δ2n1n2n3 + μc2δ2n2n3 + ρδ2n2n3n7,
a3 = −βϵρστc1c2δ2n2ν1 − βϵρστc1c2γ2n2ν2 − βϵρσϖc1c2c3δ2ν1 − βϵρσϖc1c2c3γ2ν2

− βϵρσc1c2c3γ1n3ν2 − βϵρσc1c2c3δ2n3 − βμστc1c2δ2n2ν1 − βμστc1c2γ2n2ν2 − βμσϖc1c2c3δ2ν1

− βμσϖc1c2c3γ2ν2 − βμσc1c2c3γ1n3ν2 − βρστc1δ2n2n7ν1 − βρστc1γ2n2n7ν2 − βρσϖc1c3δ2n7ν1

− βρσϖc1c3γ2n7ν2 − βρσc1c3γ1n3n7ν2 − αϵρστc4δ2n2 − αϵρσϖc3c4δ2 + αϵστc2c4δ2n2

+ αϵσϖc2c3c4δ2 − αρστc4δ2n2n7 − αρσϖc3c4δ2n7 − βμσc1c2c3δ2n3 − βρσc1c3δ2n3n7

− αϵρσc3δ2n3 + αϵσc2c3δ2n3 − αρσc3δ2n3n7 + αστc4δ2n2n7 + ασϖc3c4δ2n7 + ϵμστc2δ2n2

+ ϵμσϖc2c3δ2 + ϵμσc2c3δ2n3 + ασc3δ2n3n7 + ϵμc2δ2n2n3 + ϵρδ2n1n2n3 + μστδ2n2n7

+ μσϖc3δ2n7 + μσc3δ2n3n7 + μc2δ2n1n2n3 + ρδ2n1n2n3n7 + μδ2n2n3n7,
a4 = μn3n2n4n1δ2(1 − R0). (32)

From Eq. (35), it is evident that a1 is positive because of the
non-negativity of all model parameters. In addition, for R0 < 1, a4 is
positive, whereas for R0 > 1, it is negative. Consequently, the poten-
tial real roots of polynomial (34) are influenced by the signs of a2, a3,
and a4. Descartes’ rule of signs can be utilized to analyze this cubic
function, leading to the following conclusions. Table III summarizes
the various scenarios for the roots of Eq. (34).22,23

IV. THE TYPHOID FEVER FRACTIONAL MODEL

Models based on fractional-order calculus are highly effec-
tive for simulating disease transmission dynamics. These models
capture disease spread more thoroughly and accurately than tra-
ditional integer-order models. By integrating fractional order into
the modeling of typhoid epidemics, we gained a deeper and more
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TABLE III. Number of possible positive real roots of (34).

Case a1 a2 a3 a4 R0

No. of sign
changes

No. of +ve
real roots

i + + + + R0 < 1 0 0
ii + + + − R0 > 1 1 1
iii + + − + R0 < 1 2 0, 2
iv + + − − R0 > 1 1 1
v + − + + R0 < 1 2 0, 2
vi + − + − R0 > 1 3 1, 3
vii + − − + R0 < 1 2 0, 2
viii + − − − R0 > 1 1 1

precise understanding of how the disease spreads. This enhanced
understanding is crucial for making well-informed decisions and
effectively reducing the impact of an endemic. In our study, we
opted for the Caputo fractional operator because of its compatibility
with the initial and boundary conditions, along with its consistent
behavior with constants, aligning with the principles of classical
calculus.

A. Preliminary definitions and model formulation
We begin with the following definitions.

Definition 6. Let g(t) be an integrable function, and the
Caputo derivative of fractional order q ∈ (0, 1) is given by

CDq
t g(t) = 1

Γ(m − q)∫
t

0

g(m)(φ)
(t − φ)q−m+1 dφ, (33)

where

m ∈ N and m ∈ (m − 1, m),

and

CDq
t g(t) = 1

Γ(1 − q)∫
t

0
(t − φ)−qg′(φ)dφ, (34)

for m = 1 and q ∈ (0, 1]. In addition, the corresponding fractional
integral of order q > 0 is defined as

CIq
t g(t) = 1

Γ(q)∫
t

0
(t − φ)q−1g(φ)dφ. (35)

See Refs. 24 and 25.

The equations describing the fractional-order typhoid fever
transmission model with q ∈ (0, 1) are formulated as follows:

χq−1 CDq
t [S(t)] = Λ + ωV − (λ + ϵ + μ)S,

χq−1 CDq
t [V(t)] = ϵS − ((1 − ϕ)λ + ω + μ)V ,

χq−1 CDq
t [E(t)] = λS + (1 − ϕ)λV + ρλR − (σ + μ)E,

χq−1 CDq
t [Ia(t)] = (1 − τ)σE − (ϖ + α + μ)Ia,

χq−1 CDq
t [Is(t)] = τσE + ϖIa − (α(1 − θη) + δ1 + μ)Is,

χq−1 CDq
t [R(t)] = αIa + α(1 − θη)Is − (ρλ + μ)R,

χq−1 CDq
t [C(t)] = γ1Ia + γ2Is − δ2C,

(36)

with the following initial conditions:

S(0) = S0, V(0) = V0, E(0) = E0, Ia(0) = Ia0 ,
Is(0) = Is0 , R(0) = R0, C(0) = C0,

where

λ = (1 − κ)β[Ia + ν1Is + ν2C]
N

, (37)

CDq
t (⋅) represents the Caputo-fractional operator, and χ is the aux-

iliary parameter (see Refs. 24 and 26) that resolves the dimension
issue.

B. Existence and uniqueness of solutions of (36)
This subsection demonstrates the existence of a unique solu-

tion to the fractional model, which is given by Eq. (36). Taking
the Caputo fractional-integral on both sides of (36), we have the
following:

S(t) − S(0) = CIq
t {Λ + ωV − (λ + ϵ + μ)S},

V(t) − V(0) = CIq
t {ϵS − ((1 − ϕ)λ + ω + μ)V},

E(t) − E(0) = CIq
t {λS + (1 − ϕ)λV + ρλR − (σ + μ)E},

Ia(t) − Ia(0) = CIq
t {(1 − τ)σE − (ϖ + α + μ)Ia},

Is(t) − Is(0) = CIq
t {τσE + ϖIa − (α(1 − θη) + δ1 + μ)Is},

R(t) − R(0) = CIq
t {αIa + α(1 − θη)Is − (ρλ + μ)R},

C(t) − C(0) = CIq
t {γ1Ia + γ2Is − δ2C}.

(38)

Applying the integral, (35) and (38) can now become

S(t) = S(0) + χ1−q

Γ(q)∫
t

0
G1(φ, S)(t − φ)q−1dφ,

V(t) = V(0) + χ1−q

Γ(q)∫
t

0
G2(φ, V)(t − φ)q−1dφ,

E(t) = E(0) + χ1−q

Γ(q)∫
t

0
G3(φ, E)(t − φ)q−1dφ,

Ia(t) = Ia(0) +
χ1−q

Γ(q)∫
t

0
G4(φ, Ia)(t − φ)q−1dφ,

Is(t) = Is(0) +
χ1−q

Γ(q)∫
t

0
G5(φ, Is)(t − φ)q−1dφ,

R(t) = R(0) + χ1−q

Γ(q)∫
t

0
G6(φ, R)(t − φ)q−1dφ,

C(t) = C(0) + χ1−q

Γ(q)∫
t

0
G7(φ, C)(t − φ)q−1dφ.

(39)

The nonlinear functions on the right-hand side of Eq. (36) are
defined as Gi, where i ranges from 1 to 7. We demonstrate that these
functions satisfy both the Lipschitz condition and contraction.
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Theorem 7. The kernels G1 satisfy the Lipschitz condition and
contraction if

0 ≤ (n6 + l) < 1. (40)

Proof. For S and S1, we have the following:

∥G1(t, S) −G1(t, S1)∥ = ∥ − (n6 + λ)S(t) + (n6 + λ)S1(t)∥
≤ ∥(n6) + λ∥∥S(t) − S1(t)∥
≤ (n6 + ∥λ∥)∥S(t) − S1(t)∥.

If we let k1 = (n6 + l), where ∥λ∥ ≤ l is a bounded function,

∥G1(t, S) −G1(t, S1)∥ ≤ k1∥S(t) − S1(t)∥. (41)

Therefore, in the case of G1, the Lipschitz condition is fulfilled, and
it becomes a contraction if 0 ≤ (n6 + l) < 1. ◻

Similarly, the Lipschitz condition for G′i s : i = 2, 3, 4, 5, 6, and 7
is as follows:

∥G2(t, V(t)) −G2(t, V1(t))∥ ≤ k2∥V(t) − V1(t)∥,
∥G3(t, E(t)) −G3(t, E1(t))∥ ≤ k3∥E(t) − E1(t)∥,
∥G4(t, Ia(t)) −G4(t, Ia1(t))∥ ≤ k4∥Ia(t) − Ia1(t)∥,
∥G5(t, Is(t)) −G5(t, Is1(t))∥ ≤ k5∥Is(t) − Is1(t)∥,
∥G6(t, R(t)) −G6(t, R1(t))∥ ≤ k6∥R(t) − R1(t)∥,
∥G7(t, C(t)) −G7(t, C1(t))∥ ≤ k7∥C(t) − C1(t)∥.

(42)

In cases where k2 = (n7 + c2l), k3 = n1, k4 = n2, k5 = n3,
k6 = (μ + ρl), and k7 = δ2 are bounded functions, with 0 ≤ ki < 1
for i = 2, 3, 4, 5, 6, 7, it follows that Gi for i = 2, 3, 4, 5, 6, 7 are
contraction.

Recursive formulations derived from Eq. (39), labeled Hin for
i = 1, 2, . . . , 7, are used in establishing the uniqueness of the problem.
These formulations yield the following set of equations:

H1n(t) = Sn(t) − Sn−1(t) =
χ1−q

Γ(q)∫
t

0
(G1(φ, Sn−1(φ)) −G1(φ, Sn−2(φ)))(t − φ)q−1dφ,

H2n(t) = Vn(t) − Vn−1(t) =
χ1−q

Γ(q)∫
t

0
(G2(φ, Vn−1(φ)) −G2(φ, Vn−2(φ)))(t − φ)q−1dφ,

H3n(t) = En(t) − En−1(t) =
χ1−q

Γ(q)∫
t

0
(G3(φ, En−1(φ)) −G3(φ, En−2(φ)))(t − φ)q−1dφ,

H4n(t) = Ian(t) − Ian−1(t) =
χ1−q

Γ(q)∫
t

0
(G4(φ, Ian−1(φ)) −G4(φ, Ian−2(φ)))(t − φ)q−1dφ,

H5n(t) = Isn(t) − Isn−1(t) =
χ1−q

Γ(q)∫
t

0
(G5(φ, Isn−1(φ)) −G5(φ, Isn−2(φ)))(t − φ)q−1dφ,

H6n(t) = Rn(t) − Rn−1(t) =
χ1−q

Γ(q)∫
t

0
(G6(φ, Rn−1(φ)) −G6(φ, Rn−2(φ)))(t − φ)q−1dφ,

H7n(t) = Cn(t) − Cn−1(t) =
χ1−q

Γ(q)∫
t

0
(G7(φ, Cn−1(φ)) −G7(φ, Cn−2(φ)))(t − φ)q−1dφ,

(43)

with initial conditions S0(t) = S(0), V0(t) = V(0), E0(t) = E(0), Ia0(t) = Ia(0) , Is0(t) = Is(0), R0(t) = R(0), and C0(t) = C(0).
Applying the norm to the first equation in Eq. (43), we have the following:

∥H1n(t)∥ = ∥Sn(t) − Sn−1(t)∥

= ∥ χ1−q

Γ(q)∫
t

0
(G1(φ, Sn−1(φ)) −G1(φ, Sn−2(φ)))(t − φ)q−1dφ∥

≤ χ1−q

Γ(q)∫
t

0
(t − φ)q−1∥(G1(φ, Sn−1(φ)) −G1(φ, Sn−2(φ)))∥dφ. (44)

With (41), the following holds:

∥H1n(t)∥ ≤
χ1−q

Γ(q)k1∫
t

0
(t − φ)q−1∥H1(n−1)(φ)∥dφ. (45)
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Similarly, we have

∥H2n(t)∥ ≤
χ1−q

Γ(q)k2∫
t

0
(t − φ)q−1∥H2(n−1)(φ)∥dφ,

∥H3n(t)∥ ≤
χ1−q

Γ(q)k3∫
t

0
(t − φ)q−1∥H3(n−1)(φ)∥dφ,

∥H4n(t)∥ ≤
χ1−q

Γ(q)k4∫
t

0
(t − φ)q−1∥H4(n−1)(φ)∥dφ,

∥H5n(t)∥ ≤
χ1−q

Γ(q)k5∫
t

0
(t − φ)q−1∥H5(n−1)(φ)∥dφ,

∥H6n(t)∥ ≤
χ1−q

Γ(q)k6∫
t

0
(t − φ)q−1∥H6(n−1)(φ)∥dφ,

∥H7n(t)∥ ≤
χ1−q

Γ(q)k7∫
t

0
(t − φ)q−1∥H7(n−1)(φ)∥dφ.

(46)

Thus, we can write that

Sn(t) =
n

∑
i=0

H1i(t), Vn(t) =
n

∑
i=0

H2i(t), En(t) =
n

∑
i=0

H3i(t),

Ian(t) =
n

∑
i=0

H4i(t),

Isn(t) =
n

∑
i=0

H5i(t), Rn(t) =
n

∑
i=0

H6i(t), Cn(t) =
n

∑
i=0

H7i(t).

Hence, we establish the existence of a solution.

Theorem 8. The fractional-order model given by Eq. (36)
exhibits a set of solutions, provided that there is a time point t1 such
that the inequality χ1−q

Γ(q)kit1 < 1, i = 1, 2, . . . , 7, holds.

Proof. By utilizing the recursive method described in Eqs. (45)
and (46), we obtain

∥H1n(t)∥ ≤ ∥Sn(0)∥[
χ1−q

Γ(q)k1t]
n

,

∥H2n(t)∥ ≤ ∥Vn(0)∥[
χ1−q

Γ(q)k2t]
n

,

∥H3n(t)∥ ≤ ∥En(0)∥[
χ1−q

Γ(q)k3t]
n

,

∥H4n(t)∥ ≤ ∥Ian(0)∥[
χ1−q

Γ(q)k4t]
n

,

∥H5n(t)∥ ≤ ∥Isn(0)∥[
χ1−q

Γ(q)k5t]
n

,

∥H6n(t)∥ ≤ ∥Rn(0)∥[
χ1−q

Γ(q)k6t]
n

,

∥H7n(t)∥ ≤ ∥Cn(0)∥[
χ1−q

Γ(q)k7t]
n

.

(47)

Therefore, there is a solution for the system that demonstrates conti-
nuity. By applying the subsequent assumption, we can demonstrate
that Eq. (48) serves as the solution to Eq. (36),

S(t) − S(0) = Sn(t) −D1n(t),
V(t) − V(0) = Vn(t) −D2n(t),
E(t) − E(0) = En(t) −D3n(t),
Ia(t) − Ia(0) = Ian(t) −D4n(t),
Is(t) − Is(0) = Isn(t) −D5n(t),
R(t) − R(0) = Rn(t) −D6n(t),
C(t) − C(0) = Cn(t) −D7n(t).

(48)

D1n(t), D2n(t), . . . , D7n(t) represent the residual expressions of the
solution. Therefore,

∥D1n(t)∥ = ∥
χ1−q

Γ(q)∫
t

0
(G1(φ, S) −G1(φ, Sn−1))dφ∥

≤ χ1−q

Γ(q)∫
t

0
∥(G1(φ, S) −G1(φ, Sn−1))∥dφ

≤ χ1−q

Γ(q)k1∥S − Sn−1∥t. (49)

By repeating the method, we obtain

∥D1n(t)∥ ≤ [
χ1−q

Γ(q) t]
n+1

kn+1
1 h. (50)

TABLE IV. Summary of parameters with values, units, and references.

Parameter Value Unit References

Λ 467 Person ⋅ day−1 9 and 27
ω 9.041 × 10−4 day−1 9 and 13
ϵ 0.5000 − 9
μ 3.4562 × 10−4 day−1 Assumed
ϕ 0.4378 − Assumed
ρ 0.5095 − Assumed
σ 0.5000 day−1 Assumed
τ 0.0931 day−1 Assumed
β 0.8883 day−1 Assumed
κ 0.2000 − Assumed
ν1 0.0019 day−1 Assumed
ν2 0.0790 day−1 Assumed
α 0.8510 day−1 11
δ1 0.0022 day−1 11
δ2 0.0645 day−1 11 and 27
ϖ 0.0020 day−1 Assumed
γ1 1 − 10
γ2 1 − 9 and 27
θ 0.0070 − Assumed
η 0.0030 − Assumed
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FIG. 1. Numerical simulation of the fractional order model with different values of q = 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95. (a) Susceptible individuals, (b) vaccinated
individuals, (c) exposed individuals, (d) asymptomatic infected individuals, (e) symptomatic infected individuals, and (f) recovered individuals.
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At t1, we have

∥D1n(t)∥ ≤ [
χ1−q

Γ(q) t1]
n+1

kn+1
1 h. (51)

As n tends to infinity, ∥D1n(t)∥ in (51) converges to zero. Similarly,
by taking the limit of ∥Din(t)∥ as n approaches infinity, we find that
∥Din(t)∥→ 0, i = 2, 3, . . . , 7. ◻

Next, to establish the uniqueness of the solution, we consider an
alternative solution, denoted by S1, V1, E1, Ia1 , Is1 , R1, and C1. Hence,
we derive the following:

S(t) − S1(t) =
χ1−q

Γ(q)∫
t

0
(G1(φ, S) −G1(φ, S1))dφ. (52)

Taking norm of (52),

∥S(t) − S1(t)∥ =
χ1−q

Γ(q)∫
t

0
∥(G1(φ, S) −G1(φ, S1))∥dφ. (53)

From (41),

∥S(t) − S1(t)∥ ≤
χ1−q

Γ(q)k1∥S − Sn−1∥t. (54)

FIG. 2. Simulations describing variations in the number of exposed individuals (a), asymptomatic infected individuals (b), symptomatic infected individuals (c), and the bacterial
compartment (d) under different reductions in infectiveness, represented by κ = 0.2, 0.3, 0.4, 0.5.
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Thus,

∥S(t) − S1(t)∥(1 − χ1−q

Γ(q)k1t) ≤ 0. (55)

Theorem 9. The solution of the fractional order typhoid fever
model (36) is unique if

1 − χ1−q

Γ(q)k1t > 0. (56)

Proof. Suppose that (56) holds, and then,

∥S(t) − S1(t)∥(1 − χ1−q

Γ(q)k1t) ≤ 0.

Then, ∥S(t) − S1(t)∥ = 0. So, we obtain S(t) = S1(t). Likewise, we
can demonstrate equality for V , E, Ia, Is, R, and C. ◻

V. NUMERICAL ANALYSIS AND DISCUSSION
In this section, numerical simulations were conducted using

the Caputo operator q in accordance with the fractional model (36)

FIG. 3. Simulations describing variations in the number of exposed individuals (a), asymptomatic infected individuals (b), symptomatic infected individuals (c), and recovered
individuals (d) under different increments in the vaccination level, represented by ϵ = 0.5, 0.6, 0.7, 0.8.
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employing the biological parameter values specified in Table IV. The
simulation results showing the variation in the state variables over
time are shown in Fig. 1.

Next, we explored the impact of our model parameters, with a
focus on the crucial aspects of controlling and preventing typhoid
epidemics. Self-sanitation and vaccination interventions were
identified as key measures. Subsequently, we analyzed the influence
of these interventions on our model.

In Fig. 2, the impact of protective measures, such as practicing
safe sanitation, on the exposed, asymptomatic infected, symptomatic
infected, and bacterial compartments is shown. Increasing the num-
ber of these interventions effectively decreased these populations.
Similarly, Fig. 3 illustrates that enhancing vaccination rates reduces
the exposed, asymptomatic, and symptomatic infected populations,
ultimately leading to a decline in the recovered population. These
findings emphasize the critical role of public awareness, particularly
in communities susceptible to typhoid fever, as a vital component of
comprehensive disease control strategies.

VI. CONCLUSION
In this study, we initially developed a deterministic model for

typhoid fever and subsequently transformed it into a fractional-
order model using the Caputo derivative. The analysis of the initially
deterministic compartmental model presented in Eqs. (2)–(8) reveal
two equilibrium points: disease-free equilibrium (DFE) and endemic
equilibrium (EE). The global asymptotic stability of the DFE is estab-
lished when R0 < 1 within the region of attraction X. The fractional
model offers a refined perspective on the behavior of the disease,
capturing complexities that are not evident in traditional models.
Considering these results, our study recommends the implementa-
tion of targeted measures by authorities to mitigate the prevalence
of typhoid fever. These measures should encompass enforceable
vaccination initiatives and policies promoting self-sanitation, rep-
resenting crucial strategies to curtail the transmission and impact of
typhoid fever in the population.
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