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A B S T R A C T

The increasing pressure of offshore wind developments is leading to projects being located in areas with more
difficult access and greater weather barriers. As these constraints increase, O&M costs also grow in importance.
Therefore, the current scenario requires a careful planning to avoid unnecessary costly maintenance decisions
or unexpected failures. To overcome the problem of increasing O&M costs and difficult access, this manuscript
presents an autonomous decision-making Reinforcement Learning (RL) agent to improve O&M planning for the
Leading Edge Erosion (LEE) problem. The method developed in this work makes use of a linear degradation
model to account for the damage progression dynamics and site-specific weather models. The RL-based agent
proposed in this manuscript is able to reduce expected O&M costs in the range of 12%–21% when compared
with condition-based policies.
1. Introduction

The rise of renewable energies and the challenging carbon-emission
reduction goals set for the upcoming years have driven the exploration
of offshore energy opportunities. In this context, offshore wind turbines
(OWTs) are one of the most promising offshore energy sources. With
the knowledge and expertise gained from the bottom-fixed sites, the
development of floating wind technologies unlocked a large range
of potential sites. Despite the knowledge of OWTs being much more
premature than that of onshore ones (64.3 GW vs 841.9 GW capacity in-
stalled worldwide) the potential benefits of its large-scale deployment,
such as the potential to install larger turbines or the reduction of the
environmental impact of wind farms are propelling its growth. Accord-
ing to the Global Wind Energy Report 2023 produced by the Global
Wind Energy Council (GWEC), the wind energy market is expected to
grow by 15% on average per year and the compound annual growth
rate of offshore wind reach 32% in the next five years.

Despite the promising outlook for the offshore wind industry, sev-
eral issues still need to be addressed to make this technology as
competitive as its onshore counterpart. The O&M costs of OWTs are
estimated to account for 25%–30% of the total lifecycle costs [1].
Offshore maintenance activities are estimated to be five to ten times
more expensive than those performed onshore [2,3]. When combined
with the required weather windows for maintenance activities, this can
result in O&M costs that are double those of onshore turbines [4]. The
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combination of accessibility challenges and the lower reliability of large
rotor turbines offshore turbines [5] creates a challenging scenario lead-
ing the operators to use preventive or reactive maintenance resulting
in unnecessary O&M costs [6].

Given the challenges of maintenance planning, the use of deci-
sion support tools is vital for offshore wind farm operators. Many
efforts have recently been made to develop different tools to opti-
mise one or many of the different existing maintenance methods:
routine inspections, corrective maintenance, preventive maintenance,
condition-based maintenance, predictive maintenance or opportunistic
maintenance. Several different approaches have been used. These in-
clude methods such as Mixed Integer Programming (MIP), Non-linear
Programming (NLP), stochastic models, Markov models, Petri Nets
(PN) models, analytical models, fuzzy models, intelligent algorithmic
models, and multi-objective models, to name a few. Regardless of the
method used, scholars have targeted different levels for optimisation,
ranging from individual components such as the tower, foundation,
or drivetrain, to the entire turbine or wind farm. The objectives for
optimisation include O&M costs, logistics costs, availability, reliability,
and environmental impact. Some of the most recent publications are
summarised here. Saleh et al. [7] proposed a PN model combined
with RL for the O&M of wind turbines. Elusakin et al. [8] developed
a stochastic PN model for O&M planning of floating offshore wind
turbines. Yan and Dunnet [9] studied the maintenance of OWTs under
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Nomenclature

𝛼 Parameter controlling sampling probability
𝛽 Parameter for the calculation of sampling weights
𝛾 Discount factor
𝜋 Policy
𝜋∗ Optimal policy
𝐴 Action
𝐶 Weight vector update frequency
𝐶1, 𝐶2 Coating behaviour parameters
𝐶𝑎𝑒𝑟𝑜 Aerodynamic losses
𝐶𝑑𝑡 Downtime costs
𝐶𝑜𝑚 Maintenance costs
𝑑 LEE damage
𝐷𝑖𝑛𝑠 Estimated damage obtained through inspection
𝐷𝑚𝑎𝑥 Estimated maximum LEE damage
𝐸 Energy produced
𝐺 Return
𝐻 Accumulated rain impingement to erosion failure
ℎ𝑠 Significant wave height
𝐼 Rain intensity
𝑀 Experience replay buffer
𝑚𝑎 Maintenance access cost
𝑚𝑏 Maintenance booking cost
𝑚𝑒 Maintenance execution cost
𝑁 Experience replay buffer’s size
𝑃 (𝑢, 𝑑) Turbine power
𝑝 Sampling probability
𝑃1, 𝑃2, 𝑃3 Maintenance success probabilities
𝑞∗(𝑠, 𝑎) Optimal value function
𝑞𝜋 (𝑠, 𝑎) Action-value function
𝑅 Reward
𝑆 State
𝑡𝑡𝑑 Time to decommissioning
𝑡𝑡𝑚 Time from last maintenance
𝑢 Wind speed
𝑣 Local rotor speed
𝑤 Set of weights of the behaviour network
𝑤− Set of weights of the target network
𝑤𝑠 Sampling weights

List of Abbreviations

ANN Artificial Neural Network
CFD Computational Fluid Dynamics
CfD Contracts for Difference
CTV Crew Transfer Vessel
DQN Deep Q Networks
HLV Heavy Lift Vessel
LEE Leading Edge Erosion
MIP Mixed Integer Programming
MDP Markov Decision Process
NLP Non-linear programming
OWTs Offshore Wind Turbines
O&M Operation and maintenance
PN Petri Nets
RL Reinforcement learning
WARER Whirling Arm Rain Erosion test Rig
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the PN paradigm and considering periodic maintenance, condition-
based maintenance and reactive maintenance policies. Ge et al. [10]
designed a maintenance planning optimisation algorithm based on
MIP to minimise power generation losses on maintenance activities.
Li et al. [11] proposed a multi-objective maintenance strategy opti-
misation framework at wind-farm level considering uncertainty in the
maintenance performance. In [12], Schouten et al. introduce a single-
component model for maintenance optimisation under time-varying
costs that is applicable to offshore wind turbine maintenance. Aafif
et al. [13] provides an optimal preventive maintenance strategy for
a wind turbine gearbox based on its temperature. In [14], Yong and
Qirong propose an optimisation maintenance scheme for the main-
tenance missions considering the time windows based on a hybrid
ant colony algorithm. In [15], Zou and Kolios propose a framework
to improve maintenance decision-making by quantifying the value of
information of condition monitoring.

The modelling of the O&M of OWTs at turbine level or wind farm
level requires a deep knowledge about the failure modes of the com-
ponents that carry the highest weights in the maintenance activities.
Damage is usually discretised in states and its progression represented
with a probabilistic description of the transition between them. The
calibration of these require the possession of considerable amounts of
failure and maintenance data of the same or similar equipment in sites
with similar weather conditions to provide good results. Alternatively,
the use of detailed models, can provide with a numerical testing en-
vironment to obtain synthetic data. Higher level models require more
computationally affordable damage descriptions that can mimic the
real behaviour of damage degradation. Being the rotor one of the most
critical components [16,17] and LEE one of the failure modes carrying
the higher criticality [17–20], its O&M planning requires a careful
analysis. The unattended evolution of LEE can have aerodynamic,
environmental and structural implications increasing in importance and
finally being able to produce the catastrophic failure of the blade.
Lifetime assessments of erosion protection systems can be found in
the literature, such as the works performed by Hasager et al. [21–23].
In [21], the lifetime assessment of leading edge protection systems of
Vestas V52 turbines for sites in the Danish Seas was performed, finding
expected lifetimes between 2 and 13 years. Also, in [22], for sites in the
North and Baltic Sea, the expected lifetime of coatings was in the range
of 1 to 25 years. There have been many efforts to estimate the life of
protective coatings but, to the best knowledge of the authors, there are
no studies focusing on the predictive maintenance of this failure mode.
Under this high uncertainty in coating lifetime and weather effects,
there is a need for a decision support tool to improve the decision-
making capability of wind farm operators. The potential benefits of
its application increase with its application in harsher environment.
In this sense, the current study presents a novel autonomous decision-
making RL agent to optimise OWT LEE O&M costs. The uncertainties
in weather scenarios, maintenance performance and LEE protective
coating behaviour are considered in this paper. The proposed agent,
once trained, can provide an action suggestion at any stage of the
turbine service life. Also, the proposed agent can be retrained once real
operation data becomes available improving its accuracy an providing
further O&M cost reduction.

The remainder of this paper is structured as follows: Section 2
presents the methodology used for the optimisation of the O&M plan-
ning. Section 3 provides the assumptions and considerations of the
O&M model used in this study. Section 4 presents two case studies
to evaluate the performance of the proposed decision-support agent.
Section 5 offers a discussion about the benefits and limitations of the
framework presented as well as some follow-up opportunities. Finally,
Section 6 summarises the conclusions of the application of the proposed

methodology.
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Fig. 1. Relations between parameters.
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2. Methodology

This section delineates the methodology employed in this study,
which is divided into two subsections. The first subsection elucidates
the computational framework for LEE degradation and turbine opera-
tion simulation, while the second one delves into the decision-making
framework for the optimisation of O&M costs.

2.1. Computational framework

This subsection provides a description of the environment and the
computational framework that defines the dynamics of the degradation
of the system.

LEE is a degradation phenomenon that affects wind turbine blades
in several aspects (acoustic, aerodynamic and structural). The relations
between the parameters affecting this problem is shown in Fig. 1.
This phenomenon is caused by fatigue degradation through a repeated
number of impacts of airborne particles (rain, insects and other air-
borne particles) onto the outermost layers of the blade. The dynamics
of this process are affected by a number of parameters such as the
impact energy, coating material parameters and weather conditions.
The present computational framework provides a method to consider
uncertainty in the abovementioned parameters. This computational
framework is presented in [24] and depicted in Fig. 2. To account for
the uncertainty in climatic, material and aerodynamic parameters, the
techniques described below can be used.

First, synthetic weather data needs to be generated for the location
of the turbine. Rain intensity, wind speed and significant wave height
time series should be generated in order to compute damage degrada-
tion and maintenance success rates. Depending on the availability of
data for the project’s location, various approaches can be considered.
If a considerable amount of observations is not available, data can
then be obtained from the ERA5 reanalysis data [25]. A Markov chains
model [26] can then be used to generate synthetic wind series as shown
in [24]. Significant wave height is an important parameter to account
for the limitations in the logistics for offshore wind turbine mainte-
nance activities. The generation of significant wave height series should
be dependent on wind speed. Different approaches can be used to
achieve this conditioned on data availability. In this case, an Artificial
Neural Network (ANN) was used to mimic the significant wave height,
ℎ𝑠, patterns registered by the FINO1 platform. The parameters of the
neural network used are the significant wave height of the two previous
time steps, the wind speed of the current and two previous time steps
and the calendar month (to account for seasonality). The proposed ANN
3

o

is composed of a hidden layer of 4 neurons using the sigmoid activation
function and an output layer with the significant wave height value.

LEE is known to cause effects on the aerodynamic performance of
wind turbine blades [18,27–29], resulting in reduced lift and increased
drag forces. These effects lead to a decrease in the power generated
by the turbine. The estimated annual energy production losses can
range from 1.5% to 10%, depending on the turbine’s characteristics
and site-specific climatic conditions [27,30–33]. Estimating changes in
aerodynamic performance is a non-trivial task, often requiring the ap-
plication of 2D and 3D Computational Fluid Dynamics (CFD) numerical
models due to the limited availability of observational data [29,34–36].
Once the blade’s performance at various levels of LEE degradation is de-
termined, the degraded power curves of the turbine can be constructed.
These curves are used to assess the energy losses of the turbine. The
energy produced at each time step, 𝛥𝐸𝑖, is calculated using Eq. (1),
where 𝑃 (𝑢, 𝑑) represents the power obtained from the degraded power
urves, and 𝛥𝑡 is the computational time step. Energy losses due to LEE
egradation are then estimated as the difference between the pristine
nd degraded power curves.

𝐸𝑖 = 𝑃 (𝑢, 𝑑) ⋅ 𝛥𝑡 (1)

Considering the high uncertainty in the behaviour of various coating
aterials is essential because the agent needs to account for uncertain
egradation dynamics. To address this, the proposed method leverages
he inherent uncertainty found in the Whirling Arm Rain Erosion
est Rig (WARER) results, as shown in Fig. 3. In these tests, leading
dge protection coatings are subjected to water droplet impacts until
hey reach their final degradation. By analysing the evolution of the
oating’s degradation, the accumulated volume of water impacting the
lade, and the velocity of the section being tested, curves showing the
oating’s failure can be obtained, as illustrated in Fig. 3. The curve
itting used in this case follows Eq. (2).

= 𝐶1 ⋅ 𝑣(𝑟)−𝐶2 (2)

eing 𝐻 , the accumulated rain impingement to erosion failure and 𝐶1,
2 material parameters calibrated using experimental WARER test data

or a specific protection system and 𝑣(𝑟) the local rotor speed. For this
tudy, damage evolution is assumed to be linear, as assumed in other
elevant works related to LEE in the literature [20] and following the
xperimental behaviour reported by [37], and damage accumulation
alculated using the Palmgren-Miner rule, Eq. (3). In this work, damage
as been accumulated using average 10-min wind speed and rain data.
he study of the influence of more granular data has not been part

f this study, but the authors believe that the granularity used in this
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Fig. 2. LEE calculation framework.
Source: [24]
Fig. 3. Accumulated impingement at failure for the GAG20 coating.
t

study can be considered representative for the lifetime analysis of the
turbines.

𝛥𝑑 =
ℎ𝑖

𝐶1 ⋅ 𝑣(𝑟)−𝐶2
(3)
4

with ℎ𝑖 being the accumulated rain impingement during time-step 𝑖. i
In the literature, the evolution of LEE damage is typically described
using a five-stage framework, which is described in Table 1. In this
study, a continuous damage parameter, denoted as 𝑑, is defined within
he interval [0,1], allowing for the representation of the damage sever-

ty across these stages. Fig. 4 illustrates the mapping of these stages to
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Table 1
LEE stages.

Stage Description

0 Incubation stage
1 Formation of minor pits
2 Growth of pits
3 Partial removal of topcoat
4 Total removal of topcoat and initiation of delaminations

Table 2
RL Agent state parameters.

Parameter Description Range

Time from last maintenance,
𝑡𝑙𝑚

Represents the last time a successful
maintenance was performed

≥ 0

Time until decommissioning,
𝑡𝑡𝑑

Remaining time of the life of the
turbine

[0, 300]

Estimated maximum damage,
𝐷𝑚𝑎𝑥

Maximum level of damage of the
turbine as estimated through the
model and updated through
inspection data when available

[0, 1]

Current calendar month Calendar month [1, 12]
Average annual erosion rate,
𝑎𝑑

Prognostic feature for the agent
representing the average annual
erosion rate expected the turbine
given the information available

≥ 0

Fig. 4. Damage, 𝑑, assigned to different damage severity categories.

the damage levels within the [0,1] range, providing a clear visualisation
of how different damage severity levels are associated with the stages
of LEE damage evolution.

The proposed framework operates on two different timescales: one
for computational modelling (computational time step) and another for
decision-making (decision time step). In this study, the computational
time step is set to 10 min, while the decision time-step is 1 calendar
month. To mimic real-world conditions, the agent operates without
prior knowledge of the model but relies on observations. The agent’s
state representation at each time step includes the parameters presented
in Table 2.

At each decision step, the RL agent is presented with three possible
actions: continue operating normally with no maintenance activities,
attempt inspection, and attempt repair. The variable 𝐷𝑚𝑎𝑥 is updated
at each decision time step using the average annual erosion rate, unless
new maintenance information is acquired. When new maintenance
data, denoted as 𝐷𝑖𝑛𝑠, becomes available, 𝐷𝑚𝑎𝑥 is updated using the
equation below:

𝐷𝑚𝑎𝑥 →
𝐷𝑚𝑎𝑥 +𝐷𝑖𝑛𝑠

2
(4)

The average annual erosion rate is initially set at 0.3, representing
the average rate for the coating and the specific study site. Whenever
new inspection data becomes available, 𝑎𝑑 is updated using a weighted
average, where the weights are proportional to the time between
inspections. Greater weight is assigned to inspection data collected over
longer intervals.

2.2. Decision-making framework

The decision-making process is executed by an agent trained us-
5

ing Reinforcement Learning. In this context, the agent is trained by
interacting with the environment, receiving rewards and penalties to
maximise a reward signal 𝑅. The problem is framed as a Markov
Decision Process (MDP). Using this formalism, at each time step 𝑡, the
agent receives some representation of the environment’s state, 𝑆𝑡 ∈ ,
nd selects an action, 𝐴𝑡 ∈ (𝑠). In the subsequent time step, the
gent receives a numerical reward, 𝑅𝑡+1 ∈  ⊂ R and receives the
epresentation of the new state of the environment, 𝑆𝑡+1. In an MDP,
he dynamics of the environment (𝑆𝑡, 𝑅𝑡) are entirely characterised by
he dynamics function 𝑝(𝑆,𝐴) that depends only on the immediately
receding state and action (𝑆𝑡−1, 𝐴𝑡−1).

(𝑠′, 𝑟 ∣ 𝑠, 𝑎) ≐ Pr{𝑆𝑡 = 𝑠′, 𝑅𝑡 = 𝑟 ∣ 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎} (5)

Therefore, the interaction between agent and environment in a
inite MDP gives rise to a trajectory {𝑆0, 𝐴0}, {𝑅1, 𝑆1, 𝐴1},… , {𝑅𝑇 , 𝑆𝑇 ,
𝑇 } being 𝑇 the termination state. The flexibility of the MDP frame-
ork makes it ideal for modelling O&M tasks, including the one ad-
ressed in this work. The final goal of the agent in RL is the max-
misation of the cumulative sum of rewards, referred to as return 𝐺𝑡,

following an action:

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +⋯ =
𝑇
∑

𝑘=𝑡+1
𝛾𝑘−𝑡−1𝑅𝑘 (6)

being 𝛾 ∈ [0, 1] the discount factor used in continuous task prob-
lems, where 𝑇 = ∞, to avoid the potential issue of 𝐺𝑡 approaching
infinity. For finite episodic tasks, 𝛾 shall be taken as 1 to avoid sub-
optimal solutions in the optimisation of 𝐺. However, reducing 𝛾 can
aid in stabilising the training process and encourage riskier decision-
making [38]. By doing this, the agent increases the importance of the
rewards and shorter time horizons and can have a target with a lower
variance. This can be of great importance in high uncertainty scenarios
such as the problem analysed in this work. To assess the preference
for different actions in a given state, the agent utilises value functions
or action-value functions. The action-value function of a state 𝑠 under a
policy 𝜋, denoted 𝑞𝜋 (𝑠, 𝑎), is defined as follows:

𝑞𝜋 (𝑠, 𝑎) ≐ E𝜋 [𝐺𝑡 ∣ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (7)

The optimal value function 𝑞∗(𝑠, 𝑎) provides the maximum values in
all states and can be determined by solving the Bellman equation:

𝑞∗(𝑠, 𝑎) = E[𝑅(𝑠, 𝑎) + 𝛾
∑

𝑠′
𝑃 (𝑠′ ∣ 𝑠, 𝑎) max

𝑎′
𝑞∗(𝑠′, 𝑎′)] (8)

the optimal policy 𝜋∗ is then constructed by following:

𝜋∗(𝑠) = arg max
𝑎

𝑞∗(𝑠, 𝑎) (9)

To achieve the optimal policy, one of the strategies is to make use
of the 𝜀-greedy policy, which can be expressed as follows:

𝐴𝑡 =

{

arg max𝑎 𝑞∗(𝑠, 𝑎) with probability 1 − 𝜀
𝐴 ∈ (𝑆𝑡) with probability 𝜀

(10)

where the agent balances the exploration, arg max𝑎 𝑞∗(𝑠, 𝑎) with the
exploration, random action, by utilising the exploration rate, 𝜀 ∈ [0, 1].

ypical approaches consider a decaying exploration rate over time to
xplore more intensively the state space frequented by the best-known
olicy to the agent. In this case, the update rule for the exploration is
s follows:

𝑖 = 𝜀0 + (𝜀𝑓 − 𝜀0) ⋅
min(𝑖, 𝑓 )

𝑓
(11)

where 𝑖 is the step, 𝜀0 the initial learning rate, and 𝜀𝑓 the final
learning rate. The values used were 0.6, 0.03 and 105 for 𝜀0, 𝜀𝑓 and
𝑓 , respectively.

Given the nature of the problem at hand, Temporal Difference (TD)
learning methods, in which the values are updated online based on
the difference of temporally successive estimates, can be beneficial. In
this case, the method chosen to solve the problem is Q-learning [39].
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Q-learning is an off-policy TD method used to find the action-value
function of the states to find the optimal or nearly optimal policy. To
address this problem, Deep Q Networks (DQN) are used for function
approximation. The value 𝑞(𝑠, 𝑎) is approximated as 𝑞𝜋 (𝑠, 𝑎,𝑤) ≈ 𝑞𝜋 (𝑠, 𝑎),

here 𝑤 represents the set of weights for the DQN. This approach was
hosen to improve the generalisation of the agent and better approach
ifferent regions of the state space given the continuous value of the
amage state and the large state–action space of the problem. To use
his method, two separate networks need to be kept, one called the
nline or behaviour network with weights 𝑤, which is the one being
pdated every step, and the target network, which shares architecture
ith the first but has a different weight vector 𝑤− that is updated less

requently. In the agent’s design, the weight vector update frequency 𝐶
s set to 104 steps (months). The adoption of this approach, along with
he use of the experience replay buffer 𝑀 , help break the correlation
f the sequence and stabilise the training of the agent. Throughout
he learning process, Q-learning updates are applied to minibatches
xtracted from the experience replay, following the equation below:

𝑡+1 ← 𝑤𝑡+𝛼
1
𝑁

𝑁
∑

𝑖=1
[𝑅𝑖 + 𝛾 arg max

𝑎𝑖
𝑞(𝑠′𝑖 , 𝑎

′
𝑖 ;𝑤

−
𝑡 ) − 𝑞(𝑠𝑖, 𝑎𝑖;𝑤𝑡)]⋅∇𝑤⋅𝑞(𝑠𝑖, 𝑎𝑖;𝑤𝑡) (12)

where the subindex 𝑖 is used to denote the sample in the batch, 𝑡 is the
time index at which the weights are updated and ∇𝑤 the gradient of the
weights. Here, 𝛼 represents the learning rate, and 𝑁 is the number of
samples in the minibatch. The chosen size of the minibatch for the RL
agent solving the LEE degradation O&M optimisation problem is 128.
The weights learnt by the agent approximate the optimal state–action
function 𝑞∗(𝑠, 𝑎) regardless of the followed policy. Then, the agent can
approximate the optimal policy 𝜋∗ by choosing the action with the
greatest state–action value:

𝜋∗ = arg max
𝑎

𝑞∗(𝑠, 𝑎;𝑤) ≈ 𝜋∗ (13)

The experiences from the replay buffer are not sampled uniformly
but by a priority, 𝑃 , assigned on its importance, using what is termed
as prioritised replay buffer [40]. When stored in the replay buffer, each
experience is assigned a priority based on its TD-error, creating what is
termed a prioritised replay buffer [40]. These priorities are then used
to calculate a probability distribution for sampling, which has been
calculated as:

𝑝𝑘 =
𝑃 (𝑘)𝛼

∑𝑁
𝑗=1 𝑃 (𝑗)𝛼

(14)

With 𝛼 as a parameter emphasising higher probabilities, 𝑝𝑘 as the sam-
pling probability of experience 𝑘, and 𝑁 as the size of the experience
replay buffer, sampling weights, denoted as 𝑤𝑠, are used to compensate
for the bias introduced by the sampling probability distribution. These
weights are calculated using the following expression:

𝑤𝑠𝑘 =
(

1
𝑁

⋅
1

𝑃 (𝑘)

)𝛽
(15)

During the training of the agent, the loss calculated for each experi-
nce is weighted by 𝑤𝑠 to increase the importance of experiences with
igher priorities. In this case, values of 0.6 and 0.4 were used for the
arameters 𝛼 and 𝛽, respectively.

The Deep Neural Network used is a fully connected network com-
osed of three hidden layers with 300, 600, and 150 units, respectively,
nd it employs the ReLU activation function. The output layer provides
he state–action value, 𝑞(𝑠, 𝑎;𝑤), for each of the actions available for the
gent. The activation function for the output layer is linear, allowing
he network to provide negative q-values, as expected for the rewards
f the environment. The optimisation algorithm chosen for training
he network is ADAM [41], using a fixed learning rate, 𝛼, of 0.0001.

The reward function defined for this problem is shown in Eq. (16).
The reward is composed of 3 terms, the aerodynamic losses, 𝐶𝑎𝑒𝑟𝑜, the
maintenance costs, 𝐶𝑜𝑚, and the downtime costs, 𝐶𝑑𝑡. 𝐶𝑎𝑒𝑟𝑜 is computed
as the difference in production between the original and the eroded
6

Table 3
Repair costs per damage severity - 3 blades. Data obtained from [42] and [43]. 𝑚𝑏, 𝑚𝑎
nd 𝑚𝑒 are the booking, access and execution costs, respectively.
Damage severity 𝑚𝑏(£) 𝑚𝑎(£) 𝑚𝑒(£)

0 (Inspection) 1,600 1,000 3,200
1 2,000 1,000 4,000
2 2,000 1,000 4,000
3 3,000 1,000 6,000
4 5,000 1,000 36,000
5 0 250,000 3,500,000
6 0 250,000 5,000,000

power curves of the turbine, 𝐶𝑜𝑚 using the costs provided in Table 3 and
𝐶𝑑𝑡 as energy lost during downtime. Maintenance costs are obtained
following the procedure depicted in Fig. 5. This function is defined to
produce rewards ≤ 0 for which a zero initialisation of Q-values will
ncourage exploration. The algorithm outlining the training of the RL
gent is depicted in Fig. 6 and outlined in Algorithm 1.

𝑖 = 𝐶𝑎𝑒𝑟𝑜 − 𝐶𝑜𝑚 − 𝐶𝑑𝑡 (16)

Algorithm 1 Deep Q-learning for wind turbine blade LEE O&M
optimisation with experience replay buffer
1: Initialise priority replay buffer 𝑀 to capacity 𝑁
2: Initialise action-value function 𝑞 with random weights 𝑤
3: Initialise action-value function 𝑞 for target network with weights

𝑤− = 𝑤
4: Environment initialisation ⊳

Wind turbine definition, Blade degradation power curves, weather
data, maintenance success probabilities

5: Generate 𝑘 transitions to pre-fill 𝑀 using a random policy
6: for episode = 1, 𝑚 do
7: Reset environment, 𝑠 = 𝑠0
8: Generate random material coating parameters 𝐶1, 𝐶2 and

weather scenarios 𝐼(𝑡), 𝑢(𝑡).
9: for decision step 𝑡𝑑 = 1 ,T do

10: With probability 𝜀 select a random action 𝑎𝑡
11: otherwise select 𝑎𝑡𝑑 = argmax𝑎 𝑞∗(𝑠, 𝑎;𝑤)
12: execute action 𝑎𝑡𝑑
13: while computation time 𝑡𝑐 ≤ 𝑡𝑑 do
14: Accumulate impacted rain.
15: Calculate real erosion degradation accrued, 𝛥𝑑.
16: if 𝛥𝑑 ≥ 𝑡𝑜𝑙 then
17: Update turbine power curve due to erosion degrada-

tion.
18: Accumulate energy production, 𝛥𝐸.
19: Calculate downtime and maintenance costs 𝐶𝑑𝑡 and 𝐶𝑜𝑚.
20: Calculate erosion energy losses.
21: Estimate blade damage state, 𝐷𝑚𝑎𝑥
22: Generate reward 𝑟𝑡𝑑+1 and next state 𝑠𝑡𝑑+1
23: Observe 𝑟𝑡𝑑+1 and 𝑠𝑡𝑑+1
24: Store transition (𝑠𝑡𝑑 , 𝑎𝑡𝑑 , 𝑟𝑡𝑑+1, 𝑠𝑡𝑑+1) in 𝑀
25: Sample minibatch of transitions (𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗+1, 𝑠𝑗+1) from 𝑀
26: Calculate average loss of transitions
27: Perform training step with respect to network parameters 𝑤
28: Every 𝐶 steps reset 𝑤− = 𝑤

3. O&M considerations

For the O&M simulations, the following assumptions were consid-
ered:

• Only the O&M costs related to blade damage due to LEE are
considered in this study; no other failure modes are taken into
account.
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Table 4
Weather repair constraints.
Damage category Logistic requirements Duration (h) Max. significant

wave height (m)
Max 10-min avg.
wind speed (m/s)

1: LE discolouration, paint or
bugs

CTV, rope access 6 1.5 11

2: Coat/paint damage, surface:
Missing less than 10 cm2

CTV, rope access 15 1.5 11

3: Coat/paint damage, surface:
Missing more than 10 cm2

Damaged leading edge protection
Damaged leading edge tape
LE erosion, down to laminate

CTV, rope access 18 1.5 11

4: LE erosion, down to laminate
and first layer laminate

CTV, crawler platform 40 1.5 12

5: LE erosion, through
laminate/Open LE

HLV, blade disassembly 72 1.8 10

6: LE erosion, blade failure HLV, blade disassembly 72 1.8 10
Fig. 5. Repair modelling.
• Turbine operation is assumed to commence at the beginning of
January.

• Imperfect repairs are considered, where the true damage state of
each calculation point, denoted as 𝑑, is set to a value drawn from
a Gaussian distribution with 𝑑 ∼  (𝜇, 𝜎2), where 𝜇 = 0.05 and
𝜎 = 0.001, and truncated at the interval [0, 1].

• Imperfect inspections are also considered, with inspected damage
denoted as 𝐷𝑖𝑛𝑠. Inspected damage follows a Gaussian distribution
with parameters 𝜇 = 𝑑 and 𝜎 = 0.1, truncated within the interval
[0, 1].

• If any real damage calculation point on the blade reaches 𝑑 = 1,
the turbine will be preventively stopped until it undergoes repair
or replacement. This study assumes that when the blade reaches
this degradation level, alarms from other systems such as SCADA
will trigger the preventive shutdown.

• An energy cost of 50 GBP/MWh is considered, in line with the
Contracts for Difference (CfD) strike price signed for CfD4 in the
UK in 2022.

• Probabilistic definitions of repair success are discredited by month
to mimic real O&M scheduling. The associated cost of a repair
is a function of the damage and the month when the repair is
attempted.

• For condition-based maintenance strategies, referred to as AC,
repairs are attempted upon reaching an estimated damage, 𝐷,
above a specified damage threshold.

• Energy production losses resulting from reduced aerodynamic
performance of the blade due to erosion are considered, following
the calculation framework outlined in [24] and summarised in
this study.

• Energy production losses stemming from downtime and preven-
tive stops are also taken into account.

• Maintenance costs are as specified in Table 3.
7

• Inspections are mandated for all maintenance strategies during
the early operation phase of the turbine, specifically during
months 3 to 6, to ensure more stable results that closely resemble
real-life operations.

• For this study, inspection costs used were assumed as a deter-
ministic values. Notwithstanding, the proposed framework can
accommodate a probabilistic description of inspection costs for
different damage levels or inspection techniques.

This study models the maintenance success rate for a maintenance
mission in three sequential steps as shown in Fig. 5. First, it considers
the probability of a given month to have wind and significant wave
height values below the threshold, denoted as 𝑃1. Second, it evaluates
the probability of the forecasted weather complying with a required
weather window, known as 𝑃2. Finally, it assesses the probability of
the actual weather matching the weather predictions, labelled as 𝑃3.
The weather constraints for different maintenance methods and the
required weather windows are provided in Tables 3 and 4. Synthetic
weather data generation techniques, as described earlier, are used to
obtain values for 𝑃1 and 𝑃2. In the absence of data, real weather is as-
sumed to deviate from the forecast with increasing uncertainty. For the
calculation of 𝑃3 values, a Gaussian distribution is employed, centred
on the forecast value, with a standard deviation increasing by 4% daily.

4. Case studies

To assess the effectiveness of the proposed framework, two case
studies were conducted. Both cases share the same location and turbine
model but differ in terms of maintenance success probabilities. In Case
2, there is a lower maintenance success rate and a more pronounced
seasonal influence, resulting in a higher difference between the suc-
cess rates during spring-summer and autumn-winter months. These

probabilities are presented in Appendix.
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Fig. 6. Leading edge erosion RL algorithm flowchart.
For these cases, the O&M costs related to leading-edge erosion
ere analysed under condition-based maintenance policies, AC, and the
olicies generated by the RL agents. Two AC policies were selected as
aselines for comparison with the performance of RL agents: AC 0.4 and
C 0.3. These AC policies initiate maintenance when the blade reaches
.4 and 0.3 𝐷𝑚𝑎𝑥, respectively. The results are analysed and compared
n terms of several aspects, including the average estimated damage
hroughout the turbine’s lifetime, the estimated damage when main-
enance is attempted, the evolution of the frequency of maintenance
ctivities over time, the average time between maintenance actions
n relation to the estimated annual damage rate, repair frequency per
alendar month and the percentage of O&M actions taken. Finally, a
horough cost analysis based on a number of cost metrics is shown to
ompare the analysed policies.

Both case studies are situated at the FINO1 platform, located 45 km
ff the coast of Germany. The 5MW NREL offshore wind turbine serves
s the model for simulating these scenarios, with its characteristics
etailed in Table 5.
8

Table 5
5 MW NREL Turbine data. Data extracted from [44].

Property Value

Rated power 5 MW
Control Variable speed, collective pitch
Drivetrain High speed, multiple-stage gearbox
Rotor diameter 126 m
Hub height 90 m
Cut-In/Rated/Cut-out wind speed 3 m/s/11.4 m/s/25 m/s
Cut-in/Rated rotor speed 6.9 rpm, 12.1 rpm
Rated tip speed 80 m/s

For these case studies, a training period of 106 months was em-
ployed for training the RL agents. Simulations were conducted using
𝛾 values ranging from 0.95 to 1 at intervals of 0.01. The two best-
performing agents are compared with condition-based maintenance
strategies featuring damage repair thresholds of 0.3 and 0.4.
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Both condition-based and RL maintenance strategies utilised up-
dates in the estimated maximum damage, 𝐷𝑚𝑎𝑥, and the average annual
erosion rate, 𝑎𝑑 , to estimate the blade’s condition. To evaluate the
results of the various O&M strategies, 5,000 simulations spanning
25 years each were performed.

When assessing risk, the expected O&M cost value must be sup-
plemented with additional metrics. Therefore, the policies will be
compared based on the following metrics: Conditional Value at Risk
(𝐶𝑉 𝑎𝑅0.95), which represents the average of values above the 95th
percentile; the median; the expected cost (mean); and Value at Risk
(𝑉 𝑎𝑅0.95).

4.1. Case study 1

In this case, the maintenance success probabilities shown in were
derived from direct simulation considering the weather repair con-
straints shown in Tables A.1 to A.3 and the synthetic weather gener-
ation explained under Section 2.1.

In this subsection, we present and analyse the results of Case Study
1. Fig. 7 provides a summary of the most relevant aspects of the differ-
ent policies. Fig. 7(a) illustrates the evolution of the average maximum
blade LEE damage over time. At the start of the operation, the 90th
percentile damage approaches the damage threshold of AC strategies.
The periodic waviness in the data series is attributed to the seasonality
of maintenance success probability, with a period of 12 months, and the
distinct strategies employed for maintenance scheduling. AC strategies
exhibit a more regular damage pattern compared to RL strategies. It is
worth noting that RL strategies tend to utilise most of the LEE’s lifespan
before decommissioning. This tendency is more pronounced in the case
of the RL CS1 𝛾 = 0.98 RL agent.

Fig. 7(b) displays the distribution of 𝐷𝑚𝑎𝑥 for the maintenance
attempts of the different strategies. AC strategies follow an exponential-
like distribution with peaks at their respective damage thresholds (0.3
and 0.4), which decrease with the success of maintenance activities.
Conversely, the RL agents employ different strategies. RL CS1 𝛾 = 1
demonstrates a Gaussian distribution with a mean of 0.3, while RL CS1
𝛾 = 0.98 shows a wider Gaussian-like distribution with a mean around
0.35.

The frequency of attempted repair activities over the turbine’s ser-
vice life is presented in Fig. 7(c). AC strategies maintain a constant
maintenance rate throughout the turbine’s life, whereas RL strategies
tend to accumulate more maintenance activities at the beginning of
their service life and reduce them as decommissioning approaches. This
trend is more pronounced in the RL CS1 𝛾 = 0.98 policy but is also
evident in the RL CS1 𝛾 = 1 policy.

Fig. 7(d) illustrates the average time between maintenance actions
for the different policies analysed. AC 0.4 shows the longest time
etween maintenance actions for all values of 𝑎𝑑 . As expected, the time

between maintenance actions for this policy is greater than AC 0.3. RL
agents adopt different approaches, with RL CS1 𝛾 = 0.98 being closer
to AC 0.3, while RL CS1 𝛾 = 1 follows a safer strategy for 𝑎𝑑 ≤ 0.4.

Fig. 7(e) provides insights into the planning of maintenance activi-
ties by calendar month. It is important to note that this graph displays
all maintenance attempts, not just the successful ones. AC policies
show a curve with lower values in the months of April to October,
with similar shapes and values. This is because maintenance success
probabilities are higher during those months, reducing the need for
maintenance actions in the coming months. In contrast, RL policies
exhibit a different behaviour, with a significant increase in maintenance
planning intentions for the period from October to February. RL agents
have learned the benefit of anticipating maintenance, as failure to do
so would lead to an increase in the blade’s damage state and higher
maintenance costs. RL policies adopt a more conservative approach in
this regard compared to AC policies.

Finally, Fig. 7(f) presents the percentage of different actions taken.
9

Given that AC 0.4 has a higher damage repair threshold, it is expected s
Table 6
Cost metrics for Case study 1.

Label Median Average 𝐶𝑉 𝑎𝑅0.95 𝑉 𝑎𝑅0.95

RL CS1 𝛾 = 0.98 95.0% 100.7% 102.4% 105.4%
RL CS1 𝛾 = 1 108.5% 78.6% 53.9% 91.3%
AC 0.3 100.0% 100.0% 100.0% 100.0%
AC 0.4 87.9% 192.0% 273.2% 432.8%

that the ‘operate’ action is more frequent (85.29% of months) compared
to AC 0.3 (82.77%). The fixed inspections scheduled for all policies
emain at 1.34%, with RL agents showing a marginal increase in the
se of inspections (2.00% and 2.22% for RL CS1 𝛾 = 1 and RL CS1
= 0.98, respectively). RL CS1 𝛾 = 1 employs the highest maintenance

ntention rate (16.98%), while RL CS1 𝛾 = 0.98 adopts a rate of 14.98%,
alling between AC 0.3 and AC 0.4.

Figs. 8 and 9 display the distribution of the O&M cost for the
valuated O&M maintenance policies, while Table 6 presents various
ost metrics compared to the baseline policy AC 0.3. Concerning cost
istribution, AC 0.4 exhibits a higher number of values at the lower end
f the cost spectrum. This can be attributed to the fixed policy of AC
0.4, which entails some risk to the blade’s condition but proves effective
for scenarios involving slow damage growth.

In contrast, both AC 0.3 and RL CS1 𝛾 = 0.98 show similar cost
distributions, with a slight advantage in median values observed for RL
S1 𝛾 = 0.98. On the other hand, RL CS1 𝛾 = 1 outperforms in terms
f the average, 𝐶𝑉 𝑎𝑅0.95, and 𝑉 𝑎𝑅0.95 values. It presents reductions of
1.4%, 46.1%, and 8.7%, respectively, when compared to the AC 0.3
olicy, along with a marginal increase in the median value (8.5%).
RL CS1 𝛾 = 0.98 closely resembles the behaviour of AC 0.3 by

chieving a 5% reduction in median cost, with slight increases ob-
erved in the 𝐶𝑉 𝑎𝑅0.95 and 𝑉 𝑎𝑅0.95 values. Conversely, AC 0.4 displays

12.1% reduction in the median value but experiences significant
ncreases in the remaining metrics.

.2. Case study 2

In this case, the same location, turbine and costs are assumed with
he main difference being the maintenance success probabilities which
ave been modified to show a greater seasonal influence and a lower
aintenance success rate to assess the robustness of the proposed agent
nder more difficult conditions. The probabilities used are shown in
ables A.4 to A.6.

In this subsection, we present and analyse the results of case study
. Fig. 10 summarises the most relevant aspects of the different policies.
ig. 10(a) illustrates the evolution of the average maximum blade LEE
amage over the turbine’s operational period. During the turbine’s
peration, the 90th percentile damage increases above the thresholds
f the AC strategies, reaching 0.47 for AC 0.4 and 0.39 for AC 0.3.
he wavy pattern in the data series is attributed to the seasonality of
aintenance success probability, exhibiting a periodic behaviour with a
2-month cycle, and the distinct strategies in maintenance scheduling.
hile AC strategies demonstrate a similar regularity in the damage

attern compared to RL strategies, the last 50 months of operation show
noticeable difference. RL strategies tend to make more extensive use

f the blade’s leading-edge erosion resistance before decommissioning.
his trend is managed differently by RL CS2 𝛾 = 0.98 and RL CS2
= 0.99, with the agent having 𝛾 = 0.98 progressively reducing the

average damage.
Fig. 10(b) presents the distribution of 𝐷𝑚𝑎𝑥 for the maintenance

attempts of various strategies. AC strategies exhibit an exponential-
like distribution with peaks at their respective damage thresholds (0.3
and 0.4), which decrease with the success of maintenance activities.
In contrast, the RL agents adopt different strategies. RL CS2 𝛾 = 0.99

howcases a Gaussian-shaped distribution with a mean around 0.3,
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Fig. 7. Case study 1 O&M policy analysis .
while RL CS2 𝛾 = 0.98 displays a more skewed distribution, peaking
around 0.4.

The frequency of attempted repair activities over the turbine’s
service life is shown in Fig. 10(c). AC strategies maintain a consistent
maintenance rate throughout the turbine’s life, whereas RL strategies
aim to reduce repair activities as the turbine approaches the end of
its operational life. Both RL strategies exhibit a peak in maintenance
activities during the final years, with year 23 for RL CS2 𝛾 = 0.99 and
years 20–21 for RL CS2 𝛾 = 0.98.

Fig. 10(d) displays the average time between maintenance actions
for the different policies analysed. AC 0.4 shows the longest intervals
between maintenance actions for all 𝑎𝑑 . As expected, the time between
maintenance actions in this policy is greater than that of AC 0.3. RL
agents follow distinct policies, with RL CS2 𝛾 = 0.98 resembling the
approach of AC 0.3, while RL CS2 𝛾 = 0.99 adopts a more cautious
10
strategy for 𝑎𝑑 ≤ 0.4. However, RL CS2 𝛾 = 0.99 appears to face
generalisation issues for 0.8 ≤ 𝑎𝑑 ≤ 1.0.

Fig. 10(e) provides insight into maintenance planning by calendar
month. Notably, this graph illustrates all maintenance attempts, not just
the successful ones. AC policies and RL CS2 𝛾 = 0.99 exhibit a similar
curve with lower values during the months from April to October.
This behaviour aligns with higher maintenance success probabilities
in those months, reducing the need for maintenance actions in the
coming months. In contrast, the RL CS2 𝛾 = 0.98 policy deviates from
this pattern, displaying a pronounced increase in maintenance planning
from October to December.

Lastly, Fig. 10(f) presents the percentage of different actions taken.
As AC 0.4 has a higher damage repair threshold, it is unsurprising that
the ‘‘operate’’ action is more prevalent (77.37% of months) compared
to AC 0.3 (73.23%). Fixed inspections are scheduled for all policies at a
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distribution.
Fig. 9. Cost distribution of CS1 O&M policies. The minimum and maximum values of the whiskers represent P5 and P95, respectively and the red marker the average cost. The
right plot is a zoomed in version of the one on the left.
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rate of 1.34%, with RL agents demonstrating an increase in inspection
usage, particularly RL CS2 𝛾 = 0.98 (13.3%) compared to RL CS2
𝛾 = 0.99 (5.61%). Furthermore, RL CS2 𝛾 = 0.99 exhibits a slightly
igher repair intention rate than AC 0.3 (25.95% vs. 25.44%), and RL
S2 𝛾 = 0.98 adopts a repair attempt rate of 23.12%, positioning it
etween AC 0.3 and AC 0.4.

Figs. 11 and 12 display the distribution of O&M costs for the
valuated O&M maintenance policies, and Table 7 presents various
ost metrics compared to the baseline policy, AC 0.3. Regarding cost
istribution, AC 0.4 has more values in the lower end, which can be
ttributed to the fixed policy of AC 0.4 taking risks with the blade’s
11
ondition and being successful for slowly growing damage cases. AC
0.3 reaches a higher cumulative probability (0.91) at £1.5 million
than AC 0.4 (0.88), while higher values are achieved by RL policies,
specifically RL CS2 𝛾 = 0.98 (0.948) and 𝛾 = 0.99 (0.95). In terms
of cost metrics, RL CS2 𝛾 = 0.98 and 𝛾 = 0.99 outperform AC 0.3,

ith reductions in the range of 12%–13%, 16%–19%, and 73%–78%
or Average, 𝐶𝑉 𝑎𝑅0.95, and 𝑉 𝑎𝑅0.95, respectively. They also exhibit a
light increase in the median value (11.5% and 6.2%, respectively).
n contrast, AC 0.4 shows a 6.2% reduction in the median value but
xperiences significant increases in the other metrics.
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Fig. 10. Case study 2 O&M policy analysis.
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Table 7
Cost metrics for Case study 2.

Label Median Average 𝐶𝑉 𝑎𝑅0.95 𝑉 𝑎𝑅0.95

RL CS2 𝛾 = 0.98 111.5% 86.8% 80.9% 26.9%
RL CS2 𝛾 = 0.99 106.2% 87.3% 84.0% 21.7%
AC 0.3 100.0% 100.0% 100.0% 100.0%
AC 0.4 93.8% 159.4% 154.4% 308.5%

5. Discussion

The analysis of both case studies has led us to the conclusion
that RL agents have been able to improve the target metric of the
optimisation, which is the expected value of the O&M cost, within
a certain range. In the case of CS1, with maintenance probabilities
12
based on site-specific weather constraints, the reduction in expected
(average) O&M costs was 21.4% when compared with the baseline AC
0.3 condition-based policy. Alongside the reduction in average costs,
there was also a decrease in several relevant cost metrics related to
risk-based decision-making, such as 𝐶𝑉 𝑎𝑅0.95 and 𝑉 𝑎𝑅0.95 with values
f 46.1% and 8.7%, respectively. The same trend was observed in CS2,
n environment that has a greater uncertainty in the repair success
erived from harsher climatic conditions, with reductions of 13.2%,
9.1% and 73.1% for the average, 𝐶𝑉 𝑎𝑅0.95 and 𝑉 𝑎𝑅0.95 O&M costs.

considerable 𝑉 𝑎𝑅0.95 reduction is provided by the RL agent for
S2, highlighting the importance of predictive maintenance in cases
f reduced maintenance accessibility of offshore assets. This expected
ost reduction comes with an increase in the median cost, making
he condition-based policies (AC) more cost-efficient in some cases.
dditionally, 𝛾 values between 0.98 and 1.0 have proven to be the
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Fig. 11. O&M cost distribution of the CS2 policies analysed. The dashed lines represent the median of the distribution. The right axis shows the cumulative probability of the
distribution.
Fig. 12. Cost distribution of CS2 O&M policies. The minimum and maximum values of the whiskers represent P5 and P95, respectively and the red marker the average cost. The
ight plot is a zoomed in version of the one on the left.
ost effective in achieving this reduction. Overall, RL agents have
uccessfully identified a cost advantage by reducing maintenance ac-
ivities towards the end of the turbines’ operational life. The use of
nspections by RL agents has increased as maintenance success rates
ecreased; the inspection intention rate grew from 2.0% in CS1 to
range of 5%–13% in CS2, explaining the importance of a reduced

ncertainty of the damage state for low accessibility sites. Regarding
aintenance planning by calendar month, RL agents did not provide
13
a clear indication of a single planning strategy, which would require
further investigation towards potential convergence issues.

The presented framework has proven to be effective in high-
uncertainty scenarios, with the material parameters 𝐶1 and 𝐶2 having
the greatest influence on the degradation dynamics. This information
is valuable for the initial planning of the O&M of the turbine. To
reduce the uncertainty in the degradation dynamics, the probabilistic
description of the abovementioned parameters can be modified once
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real operation data becomes available to improve the performance of
the agent. Unfortunately, the modification of the description of the
stochastic variables requires the retraining of the agent, which can be
time-consuming.

This framework can be used by operators at the early O&M design
stage at the wind farm level. By analysing the behaviour of the best
agents, important qualitative metrics can be extracted to define global
policies such as the damage threshold for optimal maintenance schedul-
ing for a particular failure mode if considered alone. If combined with
additional components and failure modes, this framework can provide
O&M policies at the wind turbine level. In this study, only the leading-
edge erosion failure mode of the blade was considered. Nevertheless, it
can be extended to accommodate different failure modes as long as a
degradation function can be defined. This would require the inclusion
of, at least, two parameters for the DQN per failure mode. One of the
parameters would be the estimation of the state of the component and
failure mode, and the other a prognostic parameter to improve the O&M
planning of the agent. The selection of the failure modes to consider
should be based on risk priority to provide efficiency to the framework.

In this study, material parameters 𝐶1 and 𝐶2 have been assumed
to remain constant throughout the life of the turbine. It is important
to note that there are many types of repair available (protection tapes,
protective coatings, and epoxy or polyurethane fillers) the durability of
which is not well known yet. An interesting opportunity to overcome
this issue would be the inclusion of SHM in the turbine to provide
timely inspection data. Moreover, this would reduce the cost of inspec-
tion data for low-accessibility sites, which has proven to be determinant
for O&M for cost reduction. Also, there is potential for improvement in
the quantification of uncertainty in the damage state and prognostic
features of the agent. In the proposed definition of the RL agent, there
is no quantification of the uncertainty about 𝐷max and 𝑎𝑑 made by the
agent, which can be bypassed by the usage of the parameters 𝑡tm and
td. Another interesting direction of providing additional functionality
o this framework would be the inclusion of opportunistic maintenance
s an action for the agent. It would be interesting to explore the damage
evel at which opportunistic maintenance becomes attractive, as this is
ometimes the case when unexpected failures of different components
f the turbines occur.

. Conclusion and further remarks

The proposed O&M blade LEE maintenance optimisation based on
L is able to produce an improvement in average costs in the range
2%–21%, a reduction in risk of failure of the blades and reductions
n 𝐶𝑉 𝑎𝑅0.95 and 𝑉 𝑎𝑅0.95 O&M costs under this failure mode against
ondition-based policies. In contrast, condition-based policies can show
ower median costs, and be more cost-effective in some low degradation
ases. The proposed agent has highlighted the importance of a reduced
ncertainty in the known condition of the blade when the opportunities
or repair are fewer, with a growth from 2.0% (CS1) to 13.0% (CS2) in
he scheduling of inspections. This framework has proven to be robust
s to produce consistent improvements in different settings. Besides, the
rovided framework has the option to be re-trained with real data of
ifferent turbines of a site during operation to reduce the uncertainty
n the material parameters and approximate better the degradation
ynamics of this failure mode.

Notwithstanding, the high uncertainty underlying this problem sets
difficult scenario for decision-making in which the interpretability of

he recommendations and the models used is key for practitioners to
odify their current way of operating. Also, the need to incorporate the

isk-critical failure modes to produce a common maintenance strategy
alls for computationally efficient frameworks in which the logistics of
he whole wind farm is considered and the opportunities for mainte-
ance actions when not strictly required can be studied. In order to
educe the complexity of the models, a thorough understanding of the
14

roblem at hand is required, and this is why frameworks such as the
Table A.1
CS1 𝑃1 probabilities. The first row represents the damage severity.

0 (Inspection) 1 2 3 4 5 6

Jan 0.6614 0.6614 0.6614 0.6614 0.6614 0.3665 0.3665
Feb 0.7075 0.7075 0.7075 0.7075 0.7075 0.4052 0.4052
Mar 0.7194 0.7194 0.7194 0.7194 0.7194 0.4138 0.4138
Apr 0.8004 0.8004 0.8004 0.8004 0.8004 0.4807 0.4807
May 0.8138 0.8138 0.8138 0.8138 0.8138 0.4812 0.4812
Jun 0.8533 0.8533 0.8533 0.8533 0.8533 0.5326 0.5326
Jul 0.8663 0.8663 0.8663 0.8663 0.8663 0.5356 0.5356
Aug 0.8388 0.8388 0.8388 0.8388 0.8388 0.5083 0.5083
Sep 0.7908 0.7908 0.7908 0.7908 0.7908 0.4722 0.4722
Oct 0.7169 0.7169 0.7169 0.7169 0.7169 0.3162 0.3162
Nov 0.6880 0.6880 0.6880 0.6880 0.6880 0.3813 0.3813
Dec 0.6605 0.6605 0.6605 0.6605 0.6605 0.3841 0.3841

proposed are required. Once there is a more profound knowledge about
the dynamics of the failure mode and the relevance of different param-
eters modifying them, computationally efficient reduced-order models
can be built for strategic wind farm decision-making. Techniques such
as intelligent PN [7,45] are promising for this last step in which the
maintenance optimisation of assets in similar conditions can be jointly
considered.
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Table A.2
CS1 𝑃2 probabilities. The first row represents the damage severity.

0 (Inspection) 1 2 3 4 5 6

Jan 0.8444 0.7615 0.7243 0.6891 0.4624 0.1000 0.1000
Feb 0.8653 0.7925 0.7595 0.7281 0.5264 0.1000 0.1000
Mar 0.8832 0.8186 0.7892 0.7611 0.5715 0.1000 0.1000
Apr 0.9071 0.8544 0.8298 0.8062 0.6418 0.1000 0.1000
May 0.9070 0.8556 0.8317 0.8088 0.6483 0.1000 0.1000
Jun 0.9191 0.8728 0.8514 0.8307 0.6846 0.1000 0.1000
Jul 0.9221 0.8772 0.8514 0.8356 0.6921 0.1000 0.1000
Aug 0.8945 0.8369 0.8103 0.7849 0.6118 0.1000 0.1000
Sep 0.8912 0.8314 0.8037 0.7772 0.5964 0.1000 0.1000
Oct 0.8442 0.7597 0.7216 0.6856 0.4571 0.1000 0.1000
Nov 0.8303 0.7409 0.7006 0.6624 0.4264 0.1000 0.1000
Dec 0.8412 0.7576 0.7198 0.6840 0.4567 0.1000 0.1000

Table A.3
CS1 𝑃3 probabilities. The first row represents the damage severity.

0 (Inspection) 1 2 3 4 5 6

Jan 0.9614 0.9414 0.9309 0.9191 0.8066 0.1000 0.1000
Feb 0.9613 0.9409 0.9302 0.9196 0.8124 0.3930 0.3779
Mar 0.9680 0.9510 0.9417 0.9321 0.8387 0.1000 0.1000
Apr 0.9703 0.9538 0.9449 0.9352 0.8432 0.4560 0.4560
May 0.9708 0.9550 0.9463 0.9374 0.8502 0.4124 0.4124
Jun 0.9666 0.9481 0.9383 0.9281 0.8320 0.2432 0.2571
Jul 0.9751 0.9606 0.9383 0.9446 0.8645 0.3236 0.2991
Aug 0.9689 0.9521 0.9433 0.9342 0.8447 0.6747 0.6898
Sep 0.9703 0.9545 0.9459 0.9369 0.8510 0.2917 0.2917
Oct 0.9590 0.9353 0.9223 0.9095 0.7857 0.1000 0.1000
Nov 0.9630 0.9425 0.9316 0.9199 0.8057 0.1000 0.1000
Dec 0.9690 0.9534 0.9447 0.9359 0.8492 0.1000 0.1000

Table A.4
CS2 𝑃1 probabilities. The first row represents the damage severity.

0 (Inspection) 1 2 3 4 5 6

Jan 0.4374 0.4374 0.4374 0.4374 0.6614 0.3665 0.3665
Feb 0.5006 0.5006 0.5006 0.5006 0.7075 0.4052 0.4052
Mar 0.5175 0.5175 0.5175 0.5175 0.7194 0.4138 0.4138
Apr 0.6406 0.6406 0.6406 0.6406 0.8004 0.4807 0.4807
May 0.6622 0.6622 0.6622 0.6622 0.8138 0.4812 0.4812
Jun 0.7282 0.7282 0.7282 0.7282 0.8533 0.5326 0.5326
Jul 0.7504 0.7504 0.7504 0.7504 0.8663 0.5356 0.5356
Aug 0.7036 0.7036 0.7036 0.7036 0.8388 0.5083 0.5083
Sep 0.6253 0.6253 0.6253 0.6253 0.7908 0.4722 0.4722
Oct 0.5140 0.5140 0.5140 0.5140 0.7169 0.3162 0.3162
Nov 0.4733 0.4733 0.4733 0.4733 0.6880 0.3813 0.3813
Dec 0.4362 0.4362 0.4362 0.4362 0.6605 0.3841 0.3841

Table A.5
CS2 𝑃2 probabilities. The first row represents the damage severity.

0 (Inspection) 1 2 3 4 5 6

Jan 0.7130 0.5799 0.5246 0.4748 0.4624 0.1000 0.1000
Feb 0.7488 0.6280 0.5768 0.5302 0.5264 0.1000 0.1000
Mar 0.7800 0.6701 0.6228 0.5793 0.5715 0.1000 0.1000
Apr 0.8229 0.7300 0.6885 0.6500 0.6418 0.1000 0.1000
May 0.8226 0.7320 0.6917 0.6541 0.6483 0.1000 0.1000
Jun 0.8448 0.7618 0.7248 0.6900 0.6846 0.1000 0.1000
Jul 0.8502 0.7694 0.4790 0.6983 0.6921 0.1000 0.1000
Aug 0.8001 0.7004 0.6566 0.6160 0.6118 0.1000 0.1000
Sep 0.7943 0.6912 0.6459 0.6041 0.5964 0.1000 0.1000
Oct 0.7126 0.5771 0.5207 0.4700 0.4571 0.1000 0.1000
Nov 0.6894 0.5489 0.4908 0.4388 0.4264 0.1000 0.1000
Dec 0.7077 0.5740 0.5181 0.4678 0.4567 0.1000 0.1000
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