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 A decision-support framework for LEE maintenance is presented. 

 Weather, material and repair success uncertainties are considered in the framework. 

 An autonomous RL-based agent is trained considering site-specific conditions. 

 The agent improves expected O&M costs against condition-based baseline policies. 
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An autonomous decision-making agent for offshore wind turbine blades
under leading edge erosion

Javier Contrerasa,∗, Athanasios Koliosb

aNaval Architecture, Ocean and Marine Engineering, University of Strathclyde, 16 Richmond St, Glasgow – G1 1XQ,
Scotland, UK

bDepartment of Wind and Energy Systems Structural Integrity and Loads Assesment, Technical University of Denmark, Risø
Campus Frederiksborgvej 399, Roskilde 4000, Denmark

Abstract

The increasing pressure of offshore wind developments is leading to projects being located in areas with

more difficult access and greater weather barriers. As these constraints increase, O&M costs also grow

in importance. Therefore, the current scenario requires a careful planning to avoid unnecessary costly

maintenance decisions or unexpected failures. To overcome the problem of increasing O&M costs and

difficult access, this manuscript presents an autonomous decision-making Reinforcement Learning (RL)

agent to improve O&M planning for the Leading Edge Erosion (LEE) problem. The method developed in

this work makes use of a linear degradation model to account for the damage progression dynamics and

site-specific weather models. The RL-based agent proposed in this manuscript is able to reduce expected

O&M costs in the range of 12-21% when compared with condition-based policies.

List of Abbreviations

ANN Artificial Neural Network

CFD Computational Fluid Dynamics

CfD Contracts for Difference

CTV Crew Transfer Vessel

DQN Deep Q Networks

HLV Heavy Lift Vessel

LEE Leading Edge Erosion

MIP Mixed Integer Programming

MDP Markov Decision Process

NLP Non-linear programming
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OWTs Offshore Wind Turbines

O&M Operation and maintenance

PN Petri Nets

RL Reinforcement learning

WARER Whirling Arm Rain Erosion test Rig

Keywords

Leading edge erosion; Wind turbine blade O&M; Blade erosion degradation; Wind turbine O&M optimisation.

Highlights

• A decision-support framework for LEE maintenance is presented.

• Weather, material and repair success uncertainties are considered in the framework.

• An autonomous RL-based agent is trained considering site-specific conditions.

• The agent improves expected O&M costs against condition-based baseline policies.

1. Introduction

The rise of renewable energies and the challenging carbon-emission reduction goals set for the upcoming

years have driven the exploration of offshore energy opportunities. In this context, offshore wind turbines

(OWTs) are one of the most promising offshore energy sources. With the knowledge and expertise gained

from the bottom-fixed sites, the development of floating wind technologies unlocked a large range of potential

sites. Despite the knowledge of OWTs being much more premature than that of onshore ones (64.3 GW

vs 841.9 GW capacity installed worldwide) the potential benefits of its large-scale deployment, such as the

potential to install larger turbines or the reduction of the environmental impact of wind farms are propelling

its growth. According to the Global Wind Energy Report 2023 produced by the Global Wind Energy Council

(GWEC), the wind energy market is expected to grow by 15% on average per year and the compound annual

growth rate of offshore wind reach 32% in the next five years.

Despite the promising outlook for the offshore wind industry, several issues still need to be addressed to

make this technology as competitive as its onshore counterpart. The O&M costs of OWTs are estimated to

account for 25-30% of the total lifecycle costs [1]. Offshore maintenance activities are estimated to be five to

ten times more expensive than those performed onshore [2, 3]. When combined with the required weather

∗Corresponding author
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windows for maintenance activities, this can result in O&M costs that are double those of onshore turbines

[4]. The combination of accessibility challenges and the lower reliability of large rotor turbines offshore

turbines [5] creates a challenging scenario leading the operators to use preventive or reactive maintenance

resulting in unnecessary O&M costs [6].

Given the challenges of maintenance planning, the use of decision support tools is vital for offshore wind

farm operators. Many efforts have recently been made to develop different tools to optimise one or many of

the different existing maintenance methods: routine inspections, corrective maintenance, preventive mainte-

nance, condition-based maintenance, predictive maintenance or opportunistic maintenance. Several different

approaches have been used. These include methods such as Mixed Integer Programming (MIP), Non-linear

Programming (NLP), stochastic models, Markov models, Petri Nets (PN) models, analytical models, fuzzy

models, intelligent algorithmic models, and multi-objective models, to name a few. Regardless of the method

used, scholars have targeted different levels for optimisation, ranging from individual components such as

the tower, foundation, or drivetrain, to the entire turbine or wind farm. The objectives for optimisation

include O&M costs, logistics costs, availability, reliability, and environmental impact. Some of the most

recent publications are summarised here. Saleh et al. [7] proposed a PN model combined with RL for the

O&M of wind turbines. Elusakin et al. [8] developed a stochastic PN model for O&M planning of floating

offshore wind turbines. Yan and Dunnet [9] studied the maintenance of OWTs under the PN paradigm and

considering periodic maintenance, condition-based maintenance and reactive maintenance policies. Ge et al.

[10] designed a maintenance planning optimisation algorithm based on MIP to minimise power generation

losses on maintenance activities. Li et al. [11] proposed a multi-objective maintenance strategy optimisation

framework at wind-farm level considering uncertainty in the maintenance performance. In [12], Schouten et

al. introduce a single-component model for maintenance optimisation under time-varying costs that is ap-

plicable to offshore wind turbine maintenance. Aafif et al. [13] provides an optimal preventive maintenance

strategy for a wind turbine gearbox based on its temperature. In [14], Yong and Qirong propose an optimi-

sation maintenance scheme for the maintenance missions considering the time windows based on a hybrid

ant colony algorithm. In [15], Zou and Kolios propose a framework to improve maintenance decision-making

by quantifying the value of information of condition monitoring.

The modelling of the O&M of OWTs at turbine level or wind farm level requires a deep knowledge

about the failure modes of the components that carry the highest weights in the maintenance activities.

Damage is usually discretised in states and its progression represented with a probabilistic description of the

transition between them. The calibration of these require the possession of considerable amounts of failure

and maintenance data of the same or similar equipment in sites with similar weather conditions to provide

good results. Alternatively, the use of detailed models, can provide with a numerical testing environment to

obtain synthetic data. Higher level models require more computationally affordable damage descriptions that

can mimic the real behaviour of damage degradation. Being the rotor one of the most critical components

3
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[16, 17] and LEE one of the failure modes carrying the higher criticality [17–20], its O&M planning requires

a careful analysis. The unattended evolution of LEE can have aerodynamic, environmental and structural

implications increasing in importance and finally being able to produce the catastrophic failure of the blade.

Lifetime assessments of erosion protection systems can be found in the literature, such as the works performed

by Hasager et al. [21, 22] and [23]. In [21], the lifetime assessment of leading edge protection systems of

Vestas V52 turbines for sites in the Danish Seas was performed, finding expected lifetimes between 2 and

13 years. Also, in [22], for sites in the North and Baltic Sea, the expected lifetime of coatings was in the

range of 1 to 25 years.There have been many efforts to estimate the life of protective coatings but, to the

best knowledge of the authors, there are no studies focusing on the predictive maintenance of this failure

mode. Under this high uncertainty in coating lifetime and weather effects, there is a need for a decision

support tool to improve the decision-making capability of wind farm operators. The potential benefits of its

application increase with its application in harsher environment. In this sense, the current study presents

a novel autonomous decision-making RL agent to optimise OWT LEE O&M costs. The uncertainties in

weather scenarios, maintenance performance and LEE protective coating behaviour are considered in this

paper. The proposed agent, once trained, can provide an action suggestion at any stage of the turbine

service life. Also, the proposed agent can be retrained once real operation data becomes available improving

its accuracy an providing further O&M cost reduction.

The remainder of this paper is structured as follows: Section 2 presents the methodology used for the

optimisation of the O&M planning. Section 3 provides the assumptions and considerations of the O&M

model used in this study. Section 4 presents two case studies to evaluate the performance of the proposed

decision-support agent. Section 5 offers a discussion about the benefits and limitations of the framework

presented as well as some follow-up opportunities. Finally, Section 6 summarises the conclusions of the

application of the proposed methodology.

2. Methodology

This section delineates the methodology employed in this study, which is divided into two subsections.

The first subsection elucidates the computational framework for LEE degradation and turbine operation

simulation, while the second one delves into the decision-making framework for the optimisation of O&M

costs.

2.1. Computational framework

This subsection provides a description of the environment and the computational framework that defines

the dynamics of the degradation of the system.

LEE is a degradation phenomenon that affects wind turbine blades in several aspects (acoustic, aerody-

namic and structural). The relations between the parameters affecting this problem is shown in Figure 1.

4
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This phenomenon is caused by fatigue degradation through a repeated number of impacts of airborne parti-

cles (rain, insects and other airborne particles) onto the outermost layers of the blade. The dynamics of this

process are affected by a number of parameters such as the impact energy, coating material parameters and

weather conditions. The present computational framework provides a method to consider uncertainty in the

abovementioned parameters. This computational framework is presented in [24] and depicted in Figure 2.

To account for the uncertainty in climatic, material and aerodynamic parameters, the techniques described

below can be used.

Rain intensity, I

Wind speed, u

Significant wave
height, hs

Coating material
parameters, C1 and

C2

Aerodynamic
performance

Energy productionMaintenance success
probability

LEE degradation

Affects

Affects Affects

Affects

Af
fe

ct
s

Affects

Affects

Figure 1: Relations between parameters
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Existing wind
observation data

Existing rain
observation data

Airfoil Polars

Generate degraded
airoil polars

Generate degraded
turbine power curves

Generate monthly
Markov Chains

model 

Generate N
timeseries samples

Generate monthly
Markov Chains

model 

Generate N
timeseries samples

For each timeseries
sample

For each timestep of the timeseries

Calculate erosion degradation for each section

If erosion difference > tolerance  then update
turbine power curve

Calculate energy produced

CFD or wind
tunnel test

BEM

Figure 2: LEE calculation framework. Source: [24]

First, synthetic weather data needs to be generated for the location of the turbine. Rain intensity, wind

speed and significant wave height time series should be generated in order to compute damage degradation

and maintenance success rates. Depending on the availability of data for the project’s location, various

approaches can be considered. If a considerable amount of observations is not available, data can then be

obtained from the ERA5 reanalysis data [25]. A Markov chains model [26] can then be used to generate

synthetic wind series as shown in [24]. Significant wave height is an important parameter to account for the

limitations in the logistics for offshore wind turbine maintenance activities. The generation of significant

wave height series should be dependent on wind speed. Different approaches can be used to achieve this

conditioned on data availability. In this case, an Artificial Neural Network (ANN) was used to mimic

the significant wave height, hs, patterns registered by the FINO1 platform. The parameters of the neural

network used are the significant wave height of the two previous time steps, the wind speed of the current

and two previous time steps and the calendar month (to account for seasonality). The proposed ANN is

composed of a hidden layer of 4 neurons using the sigmoid activation function and an output layer with the

significant wave height value.
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LEE is known to cause effects on the aerodynamic performance of wind turbine blades [18, 27–29],

resulting in reduced lift and increased drag forces. These effects lead to a decrease in the power generated

by the turbine. The estimated annual energy production losses can range from 1.5% to 10%, depending

on the turbine’s characteristics and site-specific climatic conditions [27, 30–33]. Estimating changes in

aerodynamic performance is a non-trivial task, often requiring the application of 2D and 3D Computational

Fluid Dynamics (CFD) numerical models due to the limited availability of observational data [29, 34–36].

Once the blade’s performance at various levels of LEE degradation is determined, the degraded power curves

of the turbine can be constructed. These curves are used to assess the energy losses of the turbine. The

energy produced at each time step, ∆Ei, is calculated using Equation 1, where P (u, d) represents the power

obtained from the degraded power curves, and ∆t is the computational time step. Energy losses due to LEE

degradation are then estimated as the difference between the pristine and degraded power curves.

∆Ei = P (u, d) ·∆t (1)

Considering the high uncertainty in the behaviour of various coating materials is essential because the

agent needs to account for uncertain degradation dynamics. To address this, the proposed method leverages

the inherent uncertainty found in the Whirling Arm Rain Erosion test Rig (WARER) results, as shown in

Figure 3. In these tests, leading edge protection coatings are subjected to water droplet impacts until they

reach their final degradation. By analysing the evolution of the coating’s degradation, the accumulated

volume of water impacting the blade, and the velocity of the section being tested, curves showing the

coating’s failure can be obtained, as illustrated in Figure 3. The curve fitting used in this case follows

Equation 2.

H = C1 · v(r)−C2 (2)

being H, the accumulated rain impingement to erosion failure and C1, C2 material parameters calibrated

using experimental WARER test data for a specific protection system and v(r) the local rotor speed. For

this study, damage evolution is assumed to be linear, as assumed in other relevant works related to LEE

in the literature [20] and following the experimental behaviour reported by [37], and damage accumulation

calculated using the Palmgren-Miner rule, Equation 3. In this work, damage has been accumulated using

average 10-min wind speed and rain data. The study of the influence of more granular data has not been part

of this study, but the authors believe that the granularity used in this study can be considered representative

for the lifetime analysis of the turbines.

∆d =
hi

C1 · v(r)−C2
(3)

with hi being the accumulated rain impingement during time-step i.

7
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Figure 3: Accumulated impingement at failure for the GAG20 coating

In the literature, the evolution of LEE damage is typically described using a five-stage framework, which

is described in Table 1. In this study, a continuous damage parameter, denoted as d, is defined within the

interval [0,1], allowing for the representation of the damage severity across these stages. Figure 4 illustrates

the mapping of these stages to the damage levels within the [0,1] range, providing a clear visualisation of

how different damage severity levels are associated with the stages of LEE damage evolution.

Table 1: LEE stages

Stage Description

0 Incubation stage

1 Formation of minor pits

2 Growth of pits

3 Partial removal of topcoat

4 Total removal of topcoat and initiation of delaminations

8
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The proposed framework operates on two different timescales: one for computational modelling (compu-

tational time step) and another for decision-making (decision time step). In this study, the computational

time step is set to 10 minutes, while the decision time-step is 1 calendar month. To mimic real-world condi-

tions, the agent operates without prior knowledge of the model but relies on observations. The agent’s state

representation at each time step includes the parameters presented in Table 2.

Table 2: RL Agent state parameters

Parameter Description Range

Time from last mainte-

nance, tlm

Represents the last time a successful maintenance was per-

formed

≥ 0

Time until decommission-

ing, ttd

Remaining time of the life of the turbine [0, 300]

Estimated maximum

damage, Dmax

Maximum level of damage of the turbine as estimated

through the model and updated through inspection data

when available

[0, 1]

Current calendar month Calendar month [1, 12]

Average annual erosion

rate, ad

Prognostic feature for the agent representing the average

annual erosion rate expected the turbine given the infor-

mation available

≥ 0

At each decision step, the RL agent is presented with three possible actions: continue operating normally

with no maintenance activities, attempt inspection, and attempt repair. The variable Dmax is updated

at each decision time step using the average annual erosion rate, unless new maintenance information is

acquired. When new maintenance data, denoted as Dins, becomes available, Dmax is updated using the

equation below:

Dmax →
Dmax + Dins

2
(4)

The average annual erosion rate is initially set at 0.3, representing the average rate for the coating and

the specific study site. Whenever new inspection data becomes available, ad is updated using a weighted

9
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average, where the weights are proportional to the time between inspections. Greater weight is assigned to

inspection data collected over longer intervals.

2.2. Decision-making framework

The decision-making process is executed by an agent trained using Reinforcement Learning. In this con-

text, the agent is trained by interacting with the environment, receiving rewards and penalties to maximise

a reward signal R. The problem is framed as a Markov Decision Process (MDP). Using this formalism, at

each time step t, the agent receives some representation of the environment’s state, St ∈ S, and selects an

action, At ∈ A(s). In the subsequent time step, the agent receives a numerical reward, Rt+1 ∈ R ⊂ R and

receives the representation of the new state of the environment, St+1. In an MDP, the dynamics of the

environment (St, Rt) are entirely characterised by the dynamics function p(S,A) that depends only on the

immediately preceding state and action (St−1, At−1).

p(s′, r | s, a)
.
= Pr{St = s′, Rt = r | St−1 = s,At−1 = a} (5)

Therefore, the interaction between agent and environment in a finite MDP gives rise to a trajectory

{S0, A0}, {R1, S1, A1}, . . . , {RT , ST , AT } being T the termination state. The flexibility of the MDP frame-

work makes it ideal for modelling O&M tasks, including the one addressed in this work. The final goal of

the agent in RL is the maximisation of the cumulative sum of rewards, referred to as return Gt, following

an action:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
T∑

k=t+1

γk−t−1Rk (6)

being γ ∈ [0, 1] the discount factor used in continuous task problems, where T =∞, to avoid the potential

issue of Gt approaching infinity. For finite episodic tasks, γ shall be taken as 1 to avoid suboptimal solutions

in the optimisation of G. However, reducing γ can aid in stabilising the training process and encourage riskier

decision-making [38]. By doing this, the agent increases the importance of the rewards and shorter time

horizons and can have a target with a lower variance. This can be of great importance in high uncertainty

scenarios such as the problem analysed in this work. To assess the preference for different actions in a given

state, the agent utilises value functions or action-value functions. The action-value function of a state s

under a policy π, denoted qπ(s, a), is defined as follows:

qπ(s, a)
.
= Eπ[Gt | St = s,At = a] (7)

The optimal value function q∗(s, a) provides the maximum values in all states and can be determined by

solving the Bellman equation:

q∗(s, a) = E[R(s, a) + γ
∑

s′

P (s′ | s, a) max
a′

q∗(s′, a′)] (8)

10
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the optimal policy π∗ is then constructed by following:

π∗(s) = arg max
a

q∗(s, a) (9)

To achieve the optimal policy, one of the strategies is to make use of the ε-greedy policy, which can be

expressed as follows:

At =





arg maxa q
∗(s, a) with probability 1− ε

A ∈ A(St) with probability ε

(10)

where the agent balances the exploration, arg maxa q
∗(s, a) with the exploration, random action, by utilising

the exploration rate, ε ∈ [0, 1]. Typical approaches consider a decaying exploration rate over time to explore

more intensively the state space frequented by the best-known policy to the agent. In this case, the update

rule for the exploration is as follows:

εi = ε0 + (εf − ε0) · min(i, f)

f
(11)

where i is the step, ε0 the initial learning rate, and εf the final learning rate. The values used were 0.6, 0.03

and 105 for ε0 , εf and f , respectively.

Given the nature of the problem at hand, Temporal Difference (TD) learning methods, in which the

values are updated online based on the difference of temporally successive estimates, can be beneficial.

In this case, the method chosen to solve the problem is Q-learning [39]. Q-learning is an off-policy TD

method used to find the action-value function of the states to find the optimal or nearly optimal policy. To

address this problem, Deep Q Networks (DQN) are used for function approximation. The value q(s, a) is

approximated as q̂π(s, a, w) ≈ qπ(s, a), where w represents the set of weights for the DQN. This approach

was chosen to improve the generalisation of the agent and better approach different regions of the state space

given the continuous value of the damage state and the large state-action space of the problem. To use this

method, two separate networks need to be kept, one called the online or behaviour network with weights

w, which is the one being updated every step, and the target network, which shares architecture with the

first but has a different weight vector w− that is updated less frequently. In the agent’s design, the weight

vector update frequency C is set to 104 steps (months). The adoption of this approach, along with the use

of the experience replay buffer M , help break the correlation of the sequence and stabilise the training of

the agent. Throughout the learning process, Q-learning updates are applied to minibatches extracted from

the experience replay, following the equation below:

wt+1 ← wt + α
1

N

N∑

i=1

[Ri + γ arg max
ai

q̂(s′i, a
′
i;w

−
t )− q̂(si, ai;wt)] · ∇w · q̂(si, ai;wt) (12)

where the subindex i is used to denote the sample in the batch, t is the time index at which the weights are

updated and ∇w the gradient of the weights. Here, α represents the learning rate, and N is the number of

11
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samples in the minibatch. The chosen size of the minibatch for the RL agent solving the LEE degradation

O&M optimisation problem is 128. The weights learnt by the agent approximate the optimal state-action

function q∗(s, a) regardless of the followed policy. Then, the agent can approximate the optimal policy π∗

by choosing the action with the greatest state-action value:

π̂∗ = arg max
a

q̂∗(s, a;w) ≈ π∗ (13)

The experiences from the replay buffer are not sampled uniformly but by a priority, P , assigned on its

importance, using what is termed as prioritised replay buffer [40]. When stored in the replay buffer, each

experience is assigned a priority based on its TD-error, creating what is termed a prioritised replay buffer

[40]. These priorities are then used to calculate a probability distribution for sampling, which has been

calculated as:

pk =
P (k)α

∑N
j=1 P (j)α

(14)

With α as a parameter emphasising higher probabilities, pk as the sampling probability of experience k,

and N as the size of the experience replay buffer, sampling weights, denoted as ws, are used to compensate

for the bias introduced by the sampling probability distribution. These weights are calculated using the

following expression:

wsk =

(
1

N
· 1

P (k)

)β

(15)

During the training of the agent, the loss calculated for each experience is weighted by ws to increase

the importance of experiences with higher priorities. In this case, values of 0.6 and 0.4 were used for the

parameters α and β, respectively.

The Deep Neural Network used is a fully connected network composed of three hidden layers with 300,

600, and 150 units, respectively, and it employs the ReLU activation function. The output layer provides

the state-action value, q̂(s, a;w), for each of the actions available for the agent. The activation function for

the output layer is linear, allowing the network to provide negative q-values, as expected for the rewards

of the environment. The optimisation algorithm chosen for training the network is ADAM [41], using a

fixed learning rate, α, of 0.0001. The reward function defined for this problem is shown in Equation 16.

The reward is composed of 3 terms, the aerodynamic losses, Caero, the maintenance costs, Com, and the

downtime costs, Cdt. Caero is computed as the difference in production between the original and the eroded

power curves of the turbine, Com using the costs provided in Table 3 and Cdt as energy lost during downtime.

Maintenance costs are obtained following the procedure depicted in Figure 5. This function is defined to

produce rewards ≤ 0 for which a zero initialisation of Q-values will encourage exploration. The algorithm

outlining the training of the RL agent is depicted in Figure 6 and outlined in Algorithm 1.

Ri = Caero − Com − Cdt (16)
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Table 3: Repair costs per damage severity - 3 blades. Data obtained from [42] and [43]. mb, ma and me are the booking,

access and execution costs, respectively.

Damage severity mb(£) ma(£) me(£)

0 (Inspection) 1,600 1,000 3,200

1 2,000 1,000 4,000

2 2,000 1,000 4,000

3 3,000 1,000 6,000

4 5,000 1,000 36,000

5 0 250,000 3,500,000

6 0 250,000 5,000,000

Table 4: Weather repair constraints.

Damage category Logistic requirements Duration (h)
Max. significant

wave height (m)

Max 10-min avg.

wind speed (m/s)

1: LE discoloration, paint or bugs CTV, rope access 6 1.5 11

2: Coat/paint damage, surface:

Missing less than 10 cm2
CTV, rope access 15 1.5 11

3: Coat/paint damage, surface:

Missing more than 10 cm2

Damaged leading edge protection

Damaged leading edge tape

LE erosion, down to laminate

CTV, rope access 18 1.5 11

4: LE erosion, down to laminate

and first layer laminate
CTV, crawler platform 40 1.5 12

5: LE erosion, through

laminate / Open LE
HLV, blade dissassembly 72 1.8 10

6: LE erosion, blade failure HLV, blade disassembly 72 1.8 10
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Figure 5: Repair modelling.
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Figure 6: Leading edge erosion RL algorithm flowchart
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Algorithm 1 Deep Q-learning for wind turbine blade LEE O&M optimisation with experience replay buffer

1: Initialise priority replay buffer M to capacity N

2: Initialise action-value function q̂ with random weights w

3: Initialise action-value function q̂ for target network with weights w− = w

4: Environment initialisation ▷ Wind turbine definition, Blade degradation power curves, weather data,

maintenance success probabilities

5: Generate k transitions to pre-fill M using a random policy

6: for episode = 1, m do

7: Reset environment, s = s0

8: Generate random material coating parameters C1, C2 and weather scenarios I(t), u(t).

9: for decision step td = 1 ,T do

10: With probability ε select a random action at

11: otherwise select atd = arg maxa q̂
∗(s, a;w)

12: execute action atd

13: while computation time tc ≤ td do

14: Accumulate impacted rain.

15: Calculate real erosion degradation accrued, ∆d.

16: if ∆d ≥ tol then

17: Update turbine power curve due to erosion degradation.

18: Accumulate energy production, ∆E.

19: Calculate downtime and maintenance costs Cdt and Com.

20: Calculate erosion energy losses.

21: Estimate blade damage state, Dmax

22: Generate reward rtd+1 and next state std+1

23: Observe rtd+1 and std+1

24: Store transition (std , atd , rtd+1, std+1) in M

25: Sample minibatch of transitions (sj , aj , rj+1, sj+1) from M

26: Calculate average loss of transitions

27: Perform training step with respect to network parameters w

28: Every C steps reset w− = w

3. O&M considerations

For the O&M simulations, the following assumptions were considered:
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• Only the O&M costs related to blade damage due to LEE are considered in this study; no other failure

modes are taken into account.

• Turbine operation is assumed to commence at the beginning of January.

• Imperfect repairs are considered, where the true damage state of each calculation point, denoted as d,

is set to a value drawn from a Gaussian distribution with d ∼ N (µ, σ2), where µ = 0.05 and σ = 0.001,

and truncated at the interval [0, 1].

• Imperfect inspections are also considered, with inspected damage denoted as Dins. Inspected damage

follows a Gaussian distribution with parameters µ = d and σ = 0.1, truncated within the interval

[0, 1].

• If any real damage calculation point on the blade reaches d = 1, the turbine will be preventively

stopped until it undergoes repair or replacement. This study assumes that when the blade reaches this

degradation level, alarms from other systems such as SCADA will trigger the preventive shutdown.

• An energy cost of 50 GBP/MWh is considered, in line with the Contracts for Difference (CfD) strike

price signed for CfD4 in the UK in 2022.

• Probabilistic definitions of repair success are discredited by month to mimic real O&M scheduling. The

associated cost of a repair is a function of the damage and the month when the repair is attempted.

• For condition-based maintenance strategies, referred to as AC, repairs are attempted upon reaching

an estimated damage, D, above a specified damage threshold.

• Energy production losses resulting from reduced aerodynamic performance of the blade due to erosion

are considered, following the calculation framework outlined in [24] and summarised in this study.

• Energy production losses stemming from downtime and preventive stops are also taken into account.

• Maintenance costs are as specified in Table 3.

• Inspections are mandated for all maintenance strategies during the early operation phase of the turbine,

specifically during months 3 to 6, to ensure more stable results that closely resemble real-life operations.

• For this study, inspection costs used were assumed as a deterministic values. Notwithstanding, the

proposed framework can accommodate a probabilistic description of inspection costs for different

damage levels or inspection techniques.

This study models the maintenance success rate for a maintenance mission in three sequential steps as

shown in Figure 5. First, it considers the probability of a given month to have wind and significant wave
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height values below the threshold, denoted as P1. Second, it evaluates the probability of the forecasted

weather complying with a required weather window, known as P2. Finally, it assesses the probability of

the actual weather matching the weather predictions, labelled as P3. The weather constraints for different

maintenance methods and the required weather windows are provided in Tables 4 and 3. Synthetic weather

data generation techniques, as described earlier, are used to obtain values for P1 and P2. In the absence of

data, real weather is assumed to deviate from the forecast with increasing uncertainty. For the calculation

of P3 values, a Gaussian distribution is employed, centred on the forecast value, with a standard deviation

increasing by 4% daily.

4. Case studies

To assess the effectiveness of the proposed framework, two case studies were conducted. Both cases share

the same location and turbine model but differ in terms of maintenance success probabilities. In Case 2,

there is a lower maintenance success rate and a more pronounced seasonal influence, resulting in a higher

difference between the success rates during spring-summer and autumn-winter months. These probabilities

are presented in Appendix A.

For these cases, the O&M costs related to leading-edge erosion were analysed under condition-based

maintenance policies, AC, and the policies generated by the RL agents. Two AC policies were selected as

baselines for comparison with the performance of RL agents: AC 0.4 and AC 0.3. These AC policies initiate

maintenance when the blade reaches 0.4 and 0.3 Dmax, respectively. The results are analysed and compared

in terms of several aspects, including the average estimated damage throughout the turbine’s lifetime, the

estimated damage when maintenance is attempted, the evolution of the frequency of maintenance activities

over time, the average time between maintenance actions in relation to the estimated annual damage rate,

repair frequency per calendar month and the percentage of O&M actions taken. Finally, a thorough cost

analysis based on a number of cost metrics is shown to compare the analysed policies.

Both case studies are situated at the FINO1 platform, located 45 km off the coast of Germany. The

5MW NREL offshore wind turbine serves as the model for simulating these scenarios, with its characteristics

detailed in Table 5.
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Table 5: 5 MW NREL Turbine data. Data extracted from [44]

Property Value

Rated power 5 MW

Control Variable speed, collective pitch

Drivetrain High speed, multiple-stage gearbox

Rotor diameter 126 m

Hub height 90 m

Cut-In / Rated / Cut-out wind speed 3 m/s / 11.4 m/s / 25 m/s

Cut-in / Rated rotor speed 6.9 rpm, 12.1 rpm

Rated tip speed 80 m/s

For these case studies, a training period of 106 months was employed for training the RL agents. Simu-

lations were conducted using γ values ranging from 0.95 to 1 at intervals of 0.01. The two best-performing

agents are compared with condition-based maintenance strategies featuring damage repair thresholds of 0.3

and 0.4.

Both condition-based and RL maintenance strategies utilised updates in the estimated maximum damage,

Dmax, and the average annual erosion rate, ad, to estimate the blade’s condition. To evaluate the results of

the various O&M strategies, 5,000 simulations spanning 25 years each were performed.

When assessing risk, the expected O&M cost value must be supplemented with additional metrics. There-

fore, the policies will be compared based on the following metrics: Conditional Value at Risk (CV aR0.95),

which represents the average of values above the 95th percentile; the median; the expected cost (mean); and

Value at Risk (V aR0.95).

4.1. Case study 1

In this case, the maintenance success probabilities shown in were derived from direct simulation con-

sidering the weather repair constraints shown in Tables A.1 to A.3 and the synthetic weather generation

explained under section 2.1.

In this subsection, we present and analyse the results of Case Study 1. Figure 7 provides a summary of the

most relevant aspects of the different policies. Figure 7a illustrates the evolution of the average maximum

blade LEE damage over time. At the start of the operation, the 90th percentile damage approaches the

damage threshold of AC strategies. The periodic waviness in the data series is attributed to the seasonality

of maintenance success probability, with a period of 12 months, and the distinct strategies employed for

maintenance scheduling. AC strategies exhibit a more regular damage pattern compared to RL strategies.
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It’s worth noting that RL strategies tend to utilise most of the LEE’s lifespan before decommissioning. This

tendency is more pronounced in the case of the RL CS1 γ = 0.98 RL agent.

Figure 7b displays the distribution of Dmax for the maintenance attempts of the different strategies. AC

strategies follow an exponential-like distribution with peaks at their respective damage thresholds (0.3 and

0.4), which decrease with the success of maintenance activities. Conversely, the RL agents employ different

strategies. RL CS1 γ = 1 demonstrates a Gaussian distribution with a mean of 0.3, while RL CS1 γ = 0.98

shows a wider Gaussian-like distribution with a mean around 0.35.

The frequency of attempted repair activities over the turbine’s service life is presented in Figure 7c.

AC strategies maintain a constant maintenance rate throughout the turbine’s life, whereas RL strategies

tend to accumulate more maintenance activities at the beginning of their service life and reduce them as

decommissioning approaches. This trend is more pronounced in the RL CS1 γ = 0.98 policy but is also

evident in the RL CS1 γ = 1 policy.

Figure 7d illustrates the average time between maintenance actions for the different policies analysed.

AC 0.4 shows the longest time between maintenance actions for all values of ad. As expected, the time

between maintenance actions for this policy is greater than AC 0.3. RL agents adopt different approaches,

with RL CS1 γ = 0.98 being closer to AC 0.3, while RL CS1 γ = 1 follows a safer strategy for ad ≤ 0.4.

Figure 7e provides insights into the planning of maintenance activities by calendar month. It’s important

to note that this graph displays all maintenance attempts, not just the successful ones. AC policies show a

curve with lower values in the months of April to October, with similar shapes and values. This is because

maintenance success probabilities are higher during those months, reducing the need for maintenance actions

in the coming months. In contrast, RL policies exhibit a different behavior, with a significant increase in

maintenance planning intentions for the period from October to February. RL agents have learned the

benefit of anticipating maintenance, as failure to do so would lead to an increase in the blade’s damage state

and higher maintenance costs. RL policies adopt a more conservative approach in this regard compared to

AC policies.

Finally, Figure 7f presents the percentage of different actions taken. Given that AC 0.4 has a higher

damage repair threshold, it’s expected that the ’operate’ action is more frequent (85.29% of months) com-

pared to AC 0.3 (82.77%). The fixed inspections scheduled for all policies remain at 1.34%, with RL agents

showing a marginal increase in the use of inspections (2.00% and 2.22% for RL CS1 γ = 1 and RL CS1

γ = 0.98, respectively). RL CS1 γ = 1 employs the highest maintenance intention rate (16.98%), while RL

CS1 γ = 0.98 adopts a rate of 14.98%, falling between AC 0.3 and AC 0.4.
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Figure 7: Case study 1 O&M policy analysis

Figures 8 and 9 display the distribution of the O&M cost for the evaluated O&M maintenance policies,

while Table 6 presents various cost metrics compared to the baseline policy AC 0.3. Concerning cost

distribution, AC 0.4 exhibits a higher number of values at the lower end of the cost spectrum. This can be
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attributed to the fixed policy of AC 0.4, which entails some risk to the blade’s condition but proves effective

for scenarios involving slow damage growth.

In contrast, both AC 0.3 and RL CS1 γ = 0.98 show similar cost distributions, with a slight advantage

in median values observed for RL CS1 γ = 0.98. On the other hand, RL CS1 γ = 1 outperforms in terms of

the average, CV aR0.95, and V aR0.95 values. It presents reductions of 21.4%, 46.1%, and 8.7%, respectively,

when compared to the AC 0.3 policy, along with a marginal increase in the median value (8.5%).

RL CS1 γ = 0.98 closely resembles the behavior of AC 0.3 by achieving a 5% reduction in median cost,

with slight increases observed in the CV aR0.95 and V aR0.95 values. Conversely, AC 0.4 displays a 12.1%

reduction in the median value but experiences significant increases in the remaining metrics.

Table 6: Cost metrics for Case study 1

Label Median Average CV aR0.95 V aR0.95

RL CS1 γ = 0.98 95.0% 100.7% 102.4% 105.4%

RL CS1 γ = 1 108.5% 78.6% 53.9% 91.3%

AC 0.3 100.0% 100.0% 100.0% 100.0%

AC 0.4 87.9% 192.0% 273.2% 432.8%
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Figure 9: Cost distribution of CS1 O&M policies. The minimum and maximum values of the whiskers repesent P5 and P95,

respectively and the red marker the average cost. The right plot is a zoomed in version of the one on the left.

4.2. Case study 2

In this case, the same location, turbine and costs are assumed with the main difference being the

maintenance success probabilities which have been modified to show a greater seasonal influence and a lower

maintenance success rate to assess the robustness of the proposed agent under more difficult conditions.

The probabilities used are shown in Tables A.4 to A.6.

In this subsection, we present and analyse the results of case study 2. Figure 10 summarises the most

relevant aspects of the different policies. Figure 10a illustrates the evolution of the average maximum blade

LEE damage over the turbine’s operational period. During the turbine’s operation, the 90th percentile

damage increases above the thresholds of the AC strategies, reaching 0.47 for AC 0.4 and 0.39 for AC

0.3. The wavy pattern in the data series is attributed to the seasonality of maintenance success probability,

exhibiting a periodic behaviour with a 12-month cycle, and the distinct strategies in maintenance scheduling.

While AC strategies demonstrate a similar regularity in the damage pattern compared to RL strategies, the

last 50 months of operation show a noticeable difference. RL strategies tend to make more extensive use

of the blade’s leading-edge erosion resistance before decommissioning. This trend is managed differently by

RL CS2 γ = 0.98 and RL CS2 γ = 0.99, with the agent having γ = 0.98 progressively reducing the average

damage.
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Figure 10b presents the distribution of Dmax for the maintenance attempts of various strategies. AC

strategies exhibit an exponential-like distribution with peaks at their respective damage thresholds (0.3 and

0.4), which decrease with the success of maintenance activities. In contrast, the RL agents adopt different

strategies. RL CS2 γ = 0.99 showcases a Gaussian-shaped distribution with a mean around 0.3, while RL

CS2 γ = 0.98 displays a more skewed distribution, peaking around 0.4.

The frequency of attempted repair activities over the turbine’s service life is shown in Figure 10c. AC

strategies maintain a consistent maintenance rate throughout the turbine’s life, whereas RL strategies aim

to reduce repair activities as the turbine approaches the end of its operational life. Both RL strategies

exhibit a peak in maintenance activities during the final years, with year 23 for RL CS2 γ = 0.99 and years

20-21 for RL CS2 γ = 0.98.

Figure 10d displays the average time between maintenance actions for the different policies analysed.

AC 0.4 shows the longest intervals between maintenance actions for all ad. As expected, the time between

maintenance actions in this policy is greater than that of AC 0.3. RL agents follow distinct policies, with RL

CS2 γ = 0.98 resembling the approach of AC 0.3, while RL CS2 γ = 0.99 adopts a more cautious strategy

for ad ≤ 0.4. However, RL CS2 γ = 0.99 appears to face generalisation issues for 0.8 ≤ ad ≤ 1.0.

Figure 10e provides insight into maintenance planning by calendar month. Notably, this graph illustrates

all maintenance attempts, not just the successful ones. AC policies and RL CS2 γ = 0.99 exhibit a similar

curve with lower values during the months from April to October. This behaviour aligns with higher

maintenance success probabilities in those months, reducing the need for maintenance actions in the coming

months. In contrast, the RL CS2 γ = 0.98 policy deviates from this pattern, displaying a pronounced

increase in maintenance planning from October to December.

Lastly, Figure 10f presents the percentage of different actions taken. As AC 0.4 has a higher damage

repair threshold, it is unsurprising that the ”operate” action is more prevalent (77.37% of months) compared

to AC 0.3 (73.23%). Fixed inspections are scheduled for all policies at a rate of 1.34%, with RL agents

demonstrating an increase in inspection usage, particularly RL CS2 γ = 0.98 (13.3%) compared to RL CS2

γ = 0.99 (5.61%). Furthermore, RL CS2 γ = 0.99 exhibits a slightly higher repair intention rate than AC

0.3 (25.95% vs. 25.44%), and RL CS2 γ = 0.98 adopts a repair attempt rate of 23.12%, positioning it

between AC 0.3 and AC 0.4.
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Figure 10: Case study 2 O&M policy analysis

Figures 11 and 12 display the distribution of O&M costs for the evaluated O&M maintenance policies, and

Table 7 presents various cost metrics compared to the baseline policy, AC 0.3. Regarding cost distribution,

AC 0.4 has more values in the lower end, which can be attributed to the fixed policy of AC 0.4 taking
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risks with the blade’s condition and being successful for slowly growing damage cases. AC 0.3 reaches a

higher cumulative probability (0.91) at £1.5 million than AC 0.4 (0.88), while higher values are achieved

by RL policies, specifically RL CS2 γ = 0.98 (0.948) and γ = 0.99 (0.95). In terms of cost metrics, RL

CS2 γ = 0.98 and γ = 0.99 outperform AC 0.3, with reductions in the range of 12-13%, 16-19%, and

73-78% for Average, CV aR0.95, and V aR0.95, respectively. They also exhibit a slight increase in the median

value (11.5% and 6.2%, respectively). In contrast, AC 0.4 shows a 6.2% reduction in the median value but

experiences significant increases in the other metrics.

Table 7: Cost metrics for Case study 2

Label Median Average CV aR0.95 V aR0.95

RL CS2 γ = 0.98 111.5% 86.8% 80.9% 26.9%

RL CS2 γ = 0.99 106.2% 87.3% 84.0% 21.7%

AC 0.3 100.0% 100.0% 100.0% 100.0%

AC 0.4 93.8% 159.4% 154.4% 308.5%
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Figure 11: O&M cost distribution of the CS2 policies analysed. The dashed lines represent the median of the distribution. The

right axis shows the cumulative probability of the distribution
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Figure 12: Cost distribution of CS2 O&M policies. The minimum and maximum values of the whiskers represent P5 and P95,

respectively and the red marker the average cost. The right plot is a zoomed in version of the one on the left.

5. Discussion

The analysis of both case studies has led us to the conclusion that RL agents have been able to improve

the target metric of the optimisation, which is the expected value of the O&M cost, within a certain range.

In the case of CS1, with maintenance probabilities based on site-specific weather constraints, the reduction in

expected (average) O&M costs was 21.4% when compared with the baseline AC 0.3 condition-based policy.

Alongside the reduction in average costs, there was also a decrease in several relevant cost metrics related to

risk-based decision-making, such as CV aR0.95 and V aR0.95 with values of 46.1% and 8.7%, respectively. The

same trend was observed in CS2, an environment that has a greater uncertainty in the repair success derived

from harsher climatic conditions, with reductions of 13.2%, 19.1% and 73.1% for the average, CV aR0.95 and

V aR0.95 O&M costs. A considerable V aR0.95 reduction is provided by the RL agent for CS2, highlighting

the importance of predictive maintenance in cases of reduced maintenance accessibility of offshore assets.

This expected cost reduction comes with an increase in the median cost, making the condition-based policies

(AC) more cost-efficient in some cases. Additionally, γ values between 0.98 and 1.0 have proven to be the

most effective in achieving this reduction. Overall, RL agents have successfully identified a cost advantage

by reducing maintenance activities towards the end of the turbines’ operational life. The use of inspections
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by RL agents has increased as maintenance success rates decreased; the inspection intention rate grew from

2.0% in CS1 to a range of 5-13% in CS2, explaining the importance of a reduced uncertainty of the damage

state for low accessibility sites. Regarding maintenance planning by calendar month, RL agents did not

provide a clear indication of a single planning strategy, which would require further investigation towards

potential convergence issues.

The presented framework has proven to be effective in high-uncertainty scenarios, with the material pa-

rameters C1 and C2 having the greatest influence on the degradation dynamics. This information is valuable

for the initial planning of the O&M of the turbine. To reduce the uncertainty in the degradation dynamics,

the probabilistic description of the abovementioned parameters can be modified once real operation data be-

comes available to improve the performance of the agent. Unfortunately, the modification of the description

of the stochastic variables requires the retraining of the agent, which can be time-consuming.

This framework can be used by operators at the early O&M design stage at the wind farm level. By

analysing the behaviour of the best agents, important qualitative metrics can be extracted to define global

policies such as the damage threshold for optimal maintenance scheduling for a particular failure mode if

considered alone. If combined with additional components and failure modes, this framework can provide

O&M policies at the wind turbine level. In this study, only the leading-edge erosion failure mode of the

blade was considered. Nevertheless, it can be extended to accommodate different failure modes as long as

a degradation function can be defined. This would require the inclusion of, at least, two parameters for the

DQN per failure mode. One of the parameters would be the estimation of the state of the component and

failure mode, and the other a prognostic parameter to improve the O&M planning of the agent. The selection

of the failure modes to consider should be based on risk priority to provide efficiency to the framework.

In this study, material parameters C1 and C2 have been assumed to remain constant throughout the life of

the turbine. It is important to note that there are many types of repair available (protection tapes, protective

coatings, and epoxy or polyurethane fillers) the durability of which is not well known yet. An interesting

opportunity to overcome this issue would be the inclusion of SHM in the turbine to provide timely inspection

data. Moreover, this would reduce the cost of inspection data for low-accessibility sites, which has proven to

be determinant for O&M for cost reduction. Also, there is potential for improvement in the quantification

of uncertainty in the damage state and prognostic features of the agent. In the proposed definition of the

RL agent, there is no quantification of the uncertainty about Dmax and ad made by the agent, which can be

bypassed by the usage of the parameters ttm and ttd. Another interesting direction of providing additional

functionality to this framework would be the inclusion of opportunistic maintenance as an action for the

agent. It would be interesting to explore the damage level at which opportunistic maintenance becomes

attractive, as this is sometimes the case when unexpected failures of different components of the turbines

occur.
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6. Conclusion and further remarks

The proposed O&M blade LEE maintenance optimisation based on RL is able to produce an improvement

in average costs in the range 12-21%, a reduction in risk of failure of the blades and reductions in CV aR0.95

and V aR0.95 O&M costs under this failure mode against condition-based policies. In contrast, condition-

based policies can show lower median costs, and be more cost-effective in some low degradation cases. The

proposed agent has highlighted the importance of a reduced uncertainty in the known condition of the blade

when the opportunities for repair are fewer, with a growth from 2.0% (CS1) to 13.0% (CS2) in the scheduling

of inspections. This framework has proven to be robust as to produce consistent improvements in different

settings. Besides, the provided framework has the option to be re-trained with real data of different turbines

of a site during operation to reduce the uncertainty in the material parameters and approximate better the

degradation dynamics of this failure mode.

Notwithstanding, the high uncertainty underlying this problem sets a difficult scenario for decision-

making in which the interpretability of the recommendations and the models used is key for practitioners

to modify their current way of operating. Also, the need to incorporate the risk-critical failure modes

to produce a common maintenance strategy calls for computationally efficient frameworks in which the

logistics of the whole wind farm is considered and the opportunities for maintenance actions when not

strictly required can be studied. In order to reduce the complexity of the models, a thorough understanding

of the problem at hand is required, and this is why frameworks such as the proposed are required. Once

there is a more profound knowledge about the dynamics of the failure mode and the relevance of different

parameters modifying them, computationally efficient reduced-order models can be built for strategic wind

farm decision-making. Techniques such as intelligent PN [7, 45] are promising for this last step in which the

maintenance optimisation of assets in similar conditions can be jointly considered.
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Appendix A. Repair success probabilities

Table A.1: CS1 P1 probabilities. The first row represents the damage severity

0 (Inspection) 1 2 3 4 5 6

Jan 0.6614 0.6614 0.6614 0.6614 0.6614 0.3665 0.3665

Feb 0.7075 0.7075 0.7075 0.7075 0.7075 0.4052 0.4052

Mar 0.7194 0.7194 0.7194 0.7194 0.7194 0.4138 0.4138

Apr 0.8004 0.8004 0.8004 0.8004 0.8004 0.4807 0.4807

May 0.8138 0.8138 0.8138 0.8138 0.8138 0.4812 0.4812

Jun 0.8533 0.8533 0.8533 0.8533 0.8533 0.5326 0.5326

Jul 0.8663 0.8663 0.8663 0.8663 0.8663 0.5356 0.5356

Aug 0.8388 0.8388 0.8388 0.8388 0.8388 0.5083 0.5083

Sep 0.7908 0.7908 0.7908 0.7908 0.7908 0.4722 0.4722

Oct 0.7169 0.7169 0.7169 0.7169 0.7169 0.3162 0.3162

Nov 0.6880 0.6880 0.6880 0.6880 0.6880 0.3813 0.3813

Dec 0.6605 0.6605 0.6605 0.6605 0.6605 0.3841 0.3841

Table A.2: CS1 P2 probabilities. The first row represents the damage severity

0 (Inspection) 1 2 3 4 5 6

Jan 0.8444 0.7615 0.7243 0.6891 0.4624 0.1000 0.1000

Feb 0.8653 0.7925 0.7595 0.7281 0.5264 0.1000 0.1000

Mar 0.8832 0.8186 0.7892 0.7611 0.5715 0.1000 0.1000

Apr 0.9071 0.8544 0.8298 0.8062 0.6418 0.1000 0.1000

May 0.9070 0.8556 0.8317 0.8088 0.6483 0.1000 0.1000

Jun 0.9191 0.8728 0.8514 0.8307 0.6846 0.1000 0.1000

Jul 0.9221 0.8772 0.8514 0.8356 0.6921 0.1000 0.1000

Aug 0.8945 0.8369 0.8103 0.7849 0.6118 0.1000 0.1000

Sep 0.8912 0.8314 0.8037 0.7772 0.5964 0.1000 0.1000

Oct 0.8442 0.7597 0.7216 0.6856 0.4571 0.1000 0.1000

Nov 0.8303 0.7409 0.7006 0.6624 0.4264 0.1000 0.1000

Dec 0.8412 0.7576 0.7198 0.6840 0.4567 0.1000 0.1000
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Table A.3: CS1 P3 probabilities. The first row represents the damage severity

0 (Inspection) 1 2 3 4 5 6

Jan 0.9614 0.9414 0.9309 0.9191 0.8066 0.1000 0.1000

Feb 0.9613 0.9409 0.9302 0.9196 0.8124 0.3930 0.3779

Mar 0.9680 0.9510 0.9417 0.9321 0.8387 0.1000 0.1000

Apr 0.9703 0.9538 0.9449 0.9352 0.8432 0.4560 0.4560

May 0.9708 0.9550 0.9463 0.9374 0.8502 0.4124 0.4124

Jun 0.9666 0.9481 0.9383 0.9281 0.8320 0.2432 0.2571

Jul 0.9751 0.9606 0.9383 0.9446 0.8645 0.3236 0.2991

Aug 0.9689 0.9521 0.9433 0.9342 0.8447 0.6747 0.6898

Sep 0.9703 0.9545 0.9459 0.9369 0.8510 0.2917 0.2917

Oct 0.9590 0.9353 0.9223 0.9095 0.7857 0.1000 0.1000

Nov 0.9630 0.9425 0.9316 0.9199 0.8057 0.1000 0.1000

Dec 0.9690 0.9534 0.9447 0.9359 0.8492 0.1000 0.1000

Table A.4: CS2 P1 probabilities. The first row represents the damage severity

0 (Inspection) 1 2 3 4 5 6

Jan 0.4374 0.4374 0.4374 0.4374 0.6614 0.3665 0.3665

Feb 0.5006 0.5006 0.5006 0.5006 0.7075 0.4052 0.4052

Mar 0.5175 0.5175 0.5175 0.5175 0.7194 0.4138 0.4138

Apr 0.6406 0.6406 0.6406 0.6406 0.8004 0.4807 0.4807

May 0.6622 0.6622 0.6622 0.6622 0.8138 0.4812 0.4812

Jun 0.7282 0.7282 0.7282 0.7282 0.8533 0.5326 0.5326

Jul 0.7504 0.7504 0.7504 0.7504 0.8663 0.5356 0.5356

Aug 0.7036 0.7036 0.7036 0.7036 0.8388 0.5083 0.5083

Sep 0.6253 0.6253 0.6253 0.6253 0.7908 0.4722 0.4722

Oct 0.5140 0.5140 0.5140 0.5140 0.7169 0.3162 0.3162

Nov 0.4733 0.4733 0.4733 0.4733 0.6880 0.3813 0.3813

Dec 0.4362 0.4362 0.4362 0.4362 0.6605 0.3841 0.3841

34



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Table A.5: CS2 P2 probabilities. The first row represents the damage severity

0 (Inspection) 1 2 3 4 5 6

Jan 0.7130 0.5799 0.5246 0.4748 0.4624 0.1000 0.1000

Feb 0.7488 0.6280 0.5768 0.5302 0.5264 0.1000 0.1000

Mar 0.7800 0.6701 0.6228 0.5793 0.5715 0.1000 0.1000

Apr 0.8229 0.7300 0.6885 0.6500 0.6418 0.1000 0.1000

May 0.8226 0.7320 0.6917 0.6541 0.6483 0.1000 0.1000

Jun 0.8448 0.7618 0.7248 0.6900 0.6846 0.1000 0.1000

Jul 0.8502 0.7694 0.4790 0.6983 0.6921 0.1000 0.1000

Aug 0.8001 0.7004 0.6566 0.6160 0.6118 0.1000 0.1000

Sep 0.7943 0.6912 0.6459 0.6041 0.5964 0.1000 0.1000

Oct 0.7126 0.5771 0.5207 0.4700 0.4571 0.1000 0.1000

Nov 0.6894 0.5489 0.4908 0.4388 0.4264 0.1000 0.1000

Dec 0.7077 0.5740 0.5181 0.4678 0.4567 0.1000 0.1000

Table A.6: CS2 P3 probabilities. The first row represents the damage severity

0 (Inspection) 1 2 3 4 5 6

Jan 0.9243 0.8862 0.8666 0.8447 0.8066 0.1000 0.1000

Feb 0.9241 0.8853 0.8653 0.8457 0.8124 0.3930 0.3779

Mar 0.9370 0.9044 0.8868 0.8688 0.8387 0.0940 0.0880

Apr 0.9415 0.9097 0.8928 0.8746 0.8432 0.4560 0.4560

May 0.9425 0.9120 0.8955 0.8787 0.8502 0.4124 0.4124

Jun 0.9343 0.8989 0.8804 0.8614 0.8320 0.2432 0.2571

Jul 0.9508 0.9228 0.7474 0.8923 0.8645 0.3236 0.2991

Aug 0.9388 0.9065 0.8898 0.8727 0.8447 0.6747 0.6898

Sep 0.9415 0.9111 0.8947 0.8778 0.8510 0.2917 0.2917

Oct 0.9197 0.8748 0.8506 0.8272 0.7857 0.1000 0.1000

Nov 0.9274 0.8883 0.8679 0.8462 0.8057 0.1000 0.1000

Dec 0.9390 0.9090 0.8925 0.8759 0.8492 0.1000 0.1000
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