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ABSTRACT
A simple phenomenological thermodynamic model is developed to describe the chemical bonding and unbonding in homonuclear diatomic
systems. This model describes the entire phase diagram of dimer-forming systems and shows a transition from monomers to dimers, with
monomers favored at both very low and very high pressures, as well as at high temperatures. In the context of hydrogen, the former region
corresponds to hydrogen present in most interstellar gas clouds, while the latter is associated with the long sought-after fluid metallic phase.
The model predicts a molecular to atomic fluid transition in dense deuterium, which is in agreement with recently reported experimental
measurements.
© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0203884

I. INTRODUCTION

The study of diatomic molecules has a long history, dating
back to the foundation of modern chemistry. Molecules comprising
only two atoms of the same kind (homonuclear) are in some sense
the first step from physics into chemistry, having covalent bonds
between the atoms and one more constraint than monoatomic
species (the bond length). Interest in them dates back to Avogadro,
who first proposed their existence as a means to reconcile measure-
ments of the volumes of hydrogen and oxygen needed to form water
with atomic theory.1 The central question addressed here is “under
what conditions do molecules break into their constituent atoms?”
In general, this is a competition between the entropy of the atomic
state and the energy of the molecular state, with the density also
playing a role at high pressures.

Diatomic molecules have a core position in the fields of
high pressure physics and chemistry for numerous reasons,
ranging from the expected pressure-induced molecular-to-atomic

transition in hydrogen being hailed as the “holy grail” of high pres-
sure physics,2–14 superhydrides being one of the most intensely
researched candidates for room temperature superconductivity,15–23

to the extraordinary complexity of diatomic crystalline arrange-
ments under pressure.24–34

For the specific case of hydrogen, where the debate around
high pressure atomization is most heated, there have been proposals
of superconducting and superfluid quantum liquids.35–37 In recent
years, there has been a shift in the way we regard the formation of
high pressure hydrogen, with density functional theory suggesting
that the favored mechanism for metallization comes via molecular
metals and an open crystal structure rather than full ionization, as
traditionally expected. This significantly reduces the temperatures
needed to dissociate and hence metallize fluid hydrogen. The most
widely used tool for the theoretical investigation of high pressure
behavior is first-principles calculations so that the vast majority of
studies to date have employed density functional theory (DFT) or
quantum Monte Carlo methods. Such calculations indicate that the
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molecular to atomic fluid transition at high pressures should be first-
order and terminate at a critical point.38–40 A detailed study along the
same lines by Geng et al.41 reinforced the idea of a critical point but
also highlighted the strong dependencies of the predictions on the
exchange–correlation functional used,42 finite-size effects, as well as
the miscibility of the atomic and molecular fluids.

These studies base the claim of an atomic–molecular phase
boundary on numerical indications of a discontinuity in density of
pressurization. Contrariwise, a recent study using machine-learned
potentials and thermodynamics43 claimed that the transition is
continuous, with no critical point.

Fried and co-workers develop a thermodynamic model to
describe the transition.44 This approach uses a convex free energy
function for non-ideal mixing to obtain a phase separation in a way
similar to the Bragg–Williams model45 in alloys. They incorporate
a six-parameter reaction energy expanded to second order in pres-
sure and temperature and a pressure- and temperature-dependent
mixing enthalpy. The parameters are fitted to the experimental met-
allization curve and to DFT calculations for hydrogen, obtaining a
model that exhibits a fluid–fluid critical point associated with the
atomic to molecular transition.

In this article, we take an alternate, more phenomenological
approach to give insights into the high pressure behavior of systems
that form diatomic molecules, using a simple microscopic picture of
the underlying microscopic processes to develop a thermodynamic
model to describe the chemical bonding and repulsive interactions
between atoms in dimer-forming species. Our aim is to map out the
possible conditions for the atomic–molecular transition, building a
general model that can be parameterized for particular materials.
Such a model will enable us to not only study the dense phases, but
also link continuously to extreme low density, such as the interstellar
medium,46 which would be completely intractable to DFT.

The key physical mechanisms in these systems that we want to
qualitatively capture are the tendency of pairs of atoms to reversibly
form (and break) chemical bonds, the repulsive interactions between
atoms that tend to keep them from overlapping, and the difference
of these repulsive interactions for atoms that are bonded or not
bonded.

In the absence of non-bonded interactions between atoms,
increasing temperature will tend to decrease the number of diatomic
molecules, with the system favoring the increase in entropy due to
the increase in mobility of unbonded atoms over bonded atoms over
the lower energy of the bonded molecules. Applying pressure to the
system will tend to promote bond formation, as well as increase the
system density, as the balance shifts toward the bond energy rather
than entropy.

Adding repulsive interactions between atoms will tend to
enhance the effect of pressure, although the results will be qual-
itatively similar to that in the absence of interactions. However,
if the effective volume occupied by bonded atoms is larger than
that occupied by non-bonded atoms (i.e., the repulsion between
bonded atoms is greater than that between non-bonded atoms), then
increasing pressure will tend to favor the breaking of bonds.

Using different “sizes” for bonded and non-bonded atoms can
lead to a qualitative change in the effect of pressure on diatomic
molecule formation. The frequency at which bonds are broken or
formed with changing pressure can be adjusted by making the

repulsive interactions non-additive. The addition of positive non-
additivity, where the repulsion between dislike species is greater
than that between like species, leads to a tendency for the two
species to demix. Interestingly, non-additive hard mixtures have
been shown47–49 to exhibit a fluid–fluid phase separation. The larger
the non-additivity, the greater the propensity for the two species to
demix. Non-additive repulsive interactions can also arise from dif-
ferences in the electrostatic screening behavior of various species
in mixtures,50,51 which is thought to lead to phase separation in
mixtures of hydrogen and helium.

In this work, we develop a simple, microscopically motivated
thermodynamic model to describe the high-pressure behavior of
dimer-forming species, using a mean-field approach to account
for the non-additive repulsion interactions between atoms. This
approach leads to a theory that resembles the two-state model
approach.52,53 The interplay between these elements provides a the-
ory that captures the main features of the behavior experimentally
observed through indirect measurements and predicted by density
functional calculations for hydrogen at high pressures. We note in
passing that the incorporation of chemical reactions with free energy
models is not new and, in fact, is fundamental in the thermodynamic
analysis of chemical reaction equilibria. This is typically done using
an assumption of ideality (e.g., ideal gas or ideal solution) in thermo-
dynamics; however, there is much of work where chemical reactions
have been analyzed in combination with non-ideal free energy mod-
els.54 These are important for reactions under extreme conditions,
such as at high temperatures and/or pressures, and processes where
the non-ideality of the system plays a significant role, such as reactive
distillation.55,56 This approach has also been used to construct mod-
els to account for systems where the molecules can strongly associate
with one another, such as through hydrogen bonds, and include sta-
tistical association fluid theory (commonly referred to as SAFT)57–61

and cubic plus association models.62

We want the theory to capture the very low pressure gas region,
which is primarily diatomic at low temperatures and becomes
increasingly monoatomic with increasing temperature. More impor-
tantly, however, we want to describe the relatively sharp transition of
the system from consisting primarily of diatomic molecules to pri-
marily unbonded atoms at high pressures and relatively moderate
temperatures.

In addition, this transition has an associated critical point,
where below the critical temperature, the transition is first order
and discontinuous, and above the critical temperature, it is grad-
ual. We explore the general topologies of phase diagrams the model
produces and highlight key qualitative and quantitative changes aris-
ing from changes in a small number of parameters that have a
major impact on the general aspect of a phase diagram. We show
that by making recourse to existing well-measured data for H2 at
ambient pressure, we are able to qualitatively reproduce the high-
pressure molecular-to-atomic transition in hydrogen including its
critical point. By a modest amount of fine-tuning, our model also
becomes able to quantitatively reproduce the most recent experi-
mental measurements of this behavior for deuterium in the region
of ∼1000 K by Knudson et al. using the Z-machine63 and Celliers
et al. at the National Ignition Facility.64 Due to its simplicity, our
model can easily be transferred to other chemical species by fit-
ting to their known parameters, as well as extended to quantitatively
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determine parameters of interest, such as density jumps, the bulk
modulus, and the isothermal heat capacity. In future, more sophisti-
cated approximations can be used to better relate the parameters of
the thermodynamic model to an underlying molecular interaction
model.

The remainder of this article is structured as follows. We first
present the basic mean field model in Sec. II. This model is then
formulated in terms of the Gibbs free energy in Sec. III. In Sec. IV,
the qualitative behavior of the model is analyzed and compared to
experimental systems. Finally, the main findings of this work are
summarized in Sec. V.

II. FORMULATION IN TERMS OF THE HELMHOLTZ
FREE ENERGY

We consider a system of atoms that can exist either as
unbonded monomers (labeled as a) or bonded together in pairs as
dimeric molecules (labeled as m). This system of atoms can be con-
sidered to be a binary mixture of monomers and dimers. A fraction
x of the atoms are bonded to another atom (i.e., within a molecule),
while the remaining fraction 1 − x of these atoms are unbonded
(i.e., remain in monomeric form). Consequently, for a system of
N atoms, the number of molecules is Nm/2 = Nx/2, and the num-
ber of monomers is Na = N(1 − x). It follows that N = Na +Nm is
independent of x.

The Helmholtz free energy atom F of the system is a function of
the absolute temperature T, the volume per atom v, and the amount
of each species. It can be divided into an ideal gas contribution Fig

and a residual contribution Fres as follows:

F(T, Na, Nm, v) = Fig
(T, Na, Nm, v) + Fres

(T, Na, Nm, v), (1)

where T is the absolute temperature.
The ideal gas contribution is given by the following standard

expression:

Fig
(T, Na, Nm, v) = N(1 − x)[μ○,ig

a (T, p0) + kBT(ln
1 − x
βp0v

− 1)]

+
Nx
2
[μ○,ig

m (T, p0) + kBT(ln
x

2βp0v
− 1)], (2)

where p0 = 1 bar is the reference pressure, β = (kBT)−1, kB is the
Boltzmann constant, μ○,ig

a (T, p0) is the formation free energy of the
unbonded atomic species, μ○,ig

m (T, p0) is the formation free energy
of the diatomic molecular species, and ρ = N/V is the total num-
ber density of atoms (either bonded or unbonded) in the system.
The terms μ○,ig

a (T, p0) and μ○,ig
m (T, p0) account for the contribution

of the internal degrees of freedom (e.g., rotation, vibration, or elec-
tronic energy states) of the atoms and molecules, respectively, to the
free energy.

The residual free energy [Eq. (5)] accounts for interactions
between atoms that are not directly related to chemical bonding.
To obtain an approximate expression for this term, we propose a
simplified picture for the system of atoms, which consists of a mix-
ture of positively charged nuclei and negatively charged electrons.
Taking a coarse-grained perspective, this can be viewed more sim-
plistically as a collection of particles, composed of a nucleus and

partially bound electron(s), that have an effective charge. The elec-
trons can be considered to be either “bound” to a specific nucleus
(making its effective charge significantly lower than that of the bare
nucleus), participating in chemically bonding two nuclei together
(forming a diatomic molecule) or as “free” particles that screen the
electrostatic potential in the system. The “free” electrons are treated
as a neutralizing continuum background through which the particles
interact.

There are two types of particles in our model: atoms that are
monomeric, which are denoted by the subscript a, and atoms that
are part of a diatomic molecule, which are denoted by the subscript
m. Note that each of these types of particles can, in principle, have
a distinct effective charge. The interaction energy uαα′(r) between
these effective particles can be taken to be of the Yukawa form as
follows:

uαα′(r) =
Z2e2

0

4πε0
Mαα′

e−κr

r
, (3)

where r is the distance between particles, e0 is the fundamental unit
of charge, ε0 is the permittivity of free space, κ−1 is a screening
length, Z is a nominal effective charge of an atom, and Mαα takes
into account any differences in the effective charge due to the state
of the atom (e.g., unbound or chemically bonded).

The parameters Maa and Mmm characterize the relative mag-
nitudes of the effective charges of the atoms. The quantity
Maa characterizes the size of unbonded atoms. In the present work,
this is taken as a reference and Maa = 1, so an unbonded atom
has an effective charge of Z. The effective charge of an atom in a
diatomic molecule is Z

√
Mmm. This may be expected to differ from

that of a monomeric atom, as the electrons that are shared between
nuclei in a diatomic molecule may screen their charge in a different
manner.

The quantity Mam characterizes the interaction between a non-
bonded atom and an atom within a molecule. Typically, one would
expect that this would be equal to the geometric mean of Maa and
Mmm. However, there may be deviations from an expected behavior,
as the electrons within molecules may be correlated in a different
manner than those in monomeric atoms. Consequently, we write

Mam = (MaaMmm)
1/2
(1 + δ),

where δ is a parameter that characterizes the deviation from the
expected mixing rule.51 For δ < 0, two similar atoms will be repelled
from each other more than they will be repelled by a different
type of atom. This will tend to cause unbonded atoms to mix with
molecules. For δ > 0, two similar atoms will repel each other more
that they will repel a different atom. This will tend to cause different
types of atoms to de-mix (i.e., unbonded atoms will tend to separate
from molecules).

The screening length κ−1 provides a length scale for the the-
ory, and the combination ε = Z2e2

0κ
4πε0

provides an energy scale. Given
values for these parameters, the nominal effective charge Z can be
determined as Z =

√
4πε0εκ−1

/e0. The interaction potential is more
conveniently written as

uαα′(r) =Mαα′ε
e−κr

κr
. (4)
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Within the mean field approximation, the average interac-
tion energy between a particle of type α and particles of type
α′ surrounding it is

∫ dr
Nα′

Nv
uαα′(r) = 4πεκ−3Mαα′

Nα′

Nv
,

where v is the specific volume.
Summing over the combinations of α and α′ gives the

expression for the extensive residual Helmholtz free energy,

Fres
(T, N, v, x) =

Na
v

, (5)

where the parameter a is defined as

a =
2πε
κ3 [(1 − x)2Maa + 2x(1 − x)Mam + x2Mmm]. (6)

Note that a is an intensive variable that only depends on the fraction
x of atoms that are within molecules. It has no explicit dependence
on the temperature or volume of the system.

The final expression for the Helmholtz free energy is

F(T, N, v, x) = N(1 − x)[μ○,ig
a (T, p0) + kBT(ln

(1 − x)
βp0v

− 1)]

+
Nx
2
[μ○,ig

m (T, p0) + kBT(ln
x

2βp0v
− 1)]

+
Na
v

. (7)

This is the free energy of an ideal gas of atoms, an ideal gas
of molecules plus the rotational/vibrational energy of the molecules
[contained within μ○,ig

m (T, p0)], an entropy of mixing, and a van
der Waals-like interaction term. The molecules and atoms are
implicitly treated as distinguishable. Later, we will include chemical
bonding.

A. Thermodynamic properties
All thermodynamic properties of the system can be determined

from the free energy. The pressure of the system can be determined
from the equilibrium free energy as

p = −
1
N
[
∂F(T, N, x, v)

∂v
]

T,N,x

=
kBT

v
(1 −

x
2
) +

a
v2 . (8)

The first term is simply the ideal gas pressure for Na +Nm objects.
The second term has the same form as the interactions in the van der
Waals equation. Thus, with fixed x, the model reduces to the van der
Waals equation with no excluded volume correction. In the Yukawa
picture, the parameter a describes the magnitude of the repulsive
interaction.

The chemical potential of monomeric atoms in the system is
given by

μa(T, x, v) = [
∂F(T, Na, Nm, v)

∂Na
]

T,Nm ,v

= μ○,ig
a (T, p0) + kBT ln

(1 − x)kBT
p0v

+
4πε
κ3 [(1 − x)Maa + xMam]v−1. (9)

The chemical potential of atoms within a molecule is given by

μm(T, x, v) = [
∂F(T, Na, Nm, v)

∂Nm
]

T,Na ,v

=
1
2

μ○,ig
m (T, p0) + kBT ln

xkBT
2p0v

+ 2
4πε
κ3 [(1 − x)Mma + xMmm]v−1. (10)

B. Other thermodynamic parameters in relation
to the Helmholtz free energy

The entropy of the system is

S(T, N, v, x) = N(1 − x)[S○,ig
a (T, p0) + kB ln

(1 − x)kBT
p0v

]

+
Nx
2
[S○,ig

m (T, p0) + kB ln
xkBT
2p0v

], (11)

where S○,ig
a (T, p0) and S○,ig

m (T, p0) are the entropies of isolated indi-
vidual atoms and molecules, respectively, due to their internal
degrees of freedom (e.g., those associated with different electronic
states, rotations, and vibrations)

The isochoric heat capacity is

CV(T, N, v, x) = N(1 − x)C○,ig
V ,a(T, p0)

+
Nx
2

C○,ig
V ,m(T, p0) +NkB(1 −

x
2
). (12)

The bulk modulus is

v
∂p
∂v
= ρkBT(1 −

x
2
) +

2a
v2 . (13)

C. Chemical bonding
Previously, we developed an approximate free energy for a mix-

ture of atomic and molecular particles, based on a simple mean field
interaction model. A key parameter in the theory is the free energy
of bond formation ΔGbond(T), which is given by the difference in
the formation Gibbs free energies of a dimer/molecular species and
two individual atoms,

ΔGbond(T) = μ○,ig
m (T, p0) − 2μ○,ig

a (T, p0), (14)
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FIG. 1. Free energy of bond formation for hydrogen (black solid line), deuterium
(black dashed line), and oxygen (red solid line). The intercept shows the strength
of the chemical bond, and the slope is the entropy. The inset shows the enthalpy
of bond formation ΔHbond. Data are from Ref. 65.

where the subscripts “m” and “a” refer to the molecular and
atomic species, respectively. This contains the free energy of the
covalent bonding, oscillation and rotations of the molecule, and
also the difference in ideal gas free energy from halving the number
of particles. (Following convention, ΔG is an intensive quantity,
defined per molecule not per atom.)

In terms of the bonding free energy, the Helmholtz free energy
can be simplified as

F(T, N, v, x) = Nμ○,ig
a (T, p0) +

Nx
2

ΔGbond(T, p0)

+N(1 −
x
2
)kBT(ln

kBT
p0v
− 1)

+N(1 − x)kBT ln (1 − x) +
Nx
2

kBT ln
x
2

+
Na
v

. (15)

To get a feel for the order of magnitudes to expect for the
bond formation term, this quantity is shown in Fig. 1 for hydrogen,
deuterium, and oxygen. The slope of the line is the bond entropy
ΔSbond(T), while the curvature of the line is related to the bond
heat capacity ΔCp,bond(T). The bond enthalpies for hydrogen, deu-
terium, and oxygen are shown in the inset of Fig. 1. They slightly
decrease as the temperature increases. Note that the slopes of these
curves are the “bond heat capacities,” which include a contribution
from reduced translational kinetic energy of one molecule vs two
atoms. For hydrogen at 25 ○C, the bond enthalpy is ∼436 kJ mol−1

(4.52 eV), for deuterium, it is 443 kJ mol−1
(4.60 eV), while for

oxygen, it is about 498 kJ mol−1
(5.16 eV).

III. FORMULATION IN TERMS OF THE GIBBS
FREE ENERGY

Here, we relate the Helmholtz free energy model developed in
Sec. II to a two-state model.52 In this approach, the problem formu-
lated within the Gibbs ensemble, where the independent variables
of the system are temperature, pressure, and the total number of
atoms in the system. The corresponding free energy, in this case,
is the Gibbs free energy, which can be determined from the usual
Legendre transformation of the Helmholtz free energy,

G(T, p, x, N) = F(T, N, x, v) + pvN. (16)

Equation (8) is a quadratic in 1/v, which can be solved to give
an expression for the volume v in terms of pressure,

v =
kBT
2p

⎡
⎢
⎢
⎢
⎢
⎣

1 −
x
2
+

√

(1 −
x
2
)

2
+ 4β2pa

⎤
⎥
⎥
⎥
⎥
⎦

. (17)

Note that this reduces to the ideal gas law in the limit a→ 0.
The specific Gibbs free energy is given by

G(T, p, x, N)
N

= μ○,ig
a (T, p0) +

x
2

ΔGbond(T)

+ kBT[(1 − x) ln (1 − x) +
x
2

ln
x
2
]

+ kBT(1 −
x
2
) ln

kBT
p0v
+

2a
v

. (18)

This is the key result in this paper, which we will later use to analyze
the behavior of dimerizing systems. The right side contains five con-
tributions to the free energy. The first term is the free energy of an
ideal gas of monomeric atoms at fixed pressure p0 and absolute tem-
perature T. The second term is the free energy of forming a diatomic
molecule, which incorporates covalent bond formation, molecular
vibrations and rotations, and the change in free energy from con-
verting x/2 atoms to molecules. The third term accounts for the
ideal entropy of mixing. The fourth term represents the confinement
entropy (arising from volume/pressure changes) of the ideal gas. The
final term arises from the non-bonding intermolecular interactions
[see Eq. (5)].

A. Thermodynamic properties
Knowledge of the Gibbs free energy allows for the calculation

of all the thermodynamic properties of the system. For example, the
volume v per atom in the system is given by

v =
∂

∂p
G
N

,

which leads to the expression given in Eq. (17).
The specific enthalpy per atom in the system H can be

determined from the Gibbs–Helmholtz relation,

H(T, p, x) =
∂

∂β
βG
N

= H○,ig
a (T) +

x
2

ΔHbond(T) − 2kBT(1 −
x
2
) + 2pv,
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where H○,ig
a (T) = ∂(βμ○,ig

a (T, p0))/∂β is the enthalpy of atom in the
ideal gas state and ΔHbond(T) = ∂(βΔGbond(T))/∂β is the bond
enthalpy. The first two terms represent the enthalpy associated
with the internal degrees of freedom of the atoms and molecules
in the system. The third term is the per-atom specific ideal gas
enthalpy of (1 − x/2)N particles from N atoms. The final term is the
contribution of non-bonded interactions between atoms [Eq. (5)].

The chemical potential of unbonded atoms is

μa = [
∂G(T, p, Na, Nm)

∂Na
]

T,p,Nm

=
G
N
− x

∂

∂x
G
N

= μ○,ig
a (T, p0) + kBT ln

(1 − x)kBT
p0v

+
4πε
κ3v
((1 − x)Maa + xMam),

and the chemical potential of molecules (which is twice the chemical
potential of an atom in a molecule) is

μm = [
∂G(T, p, Na, Nm)

∂Nm
]

T,p,Na

= 2
G
N
+ 2(1 − x)

∂

∂x
G
N

=
1
2

μ○,ig
m (T, p0) + kBT ln

xkBT
2p0v

+ 2
4πε
κ3 ((1 − x)Mma + xMmm)v−1.

B. Reaction equilibrium
In Sec. III A, we inherently assumed that the monomer and

dimer forms of the atoms did not interconvert; however, we can eas-
ily relax this assumption. At equilibrium, the Gibbs free energy of
a closed system held at constant temperature and pressure is mini-
mized with respect to any internal degrees of freedom, which in this
case is the fraction x of atoms that are within molecules. In other
words, the equilibrium Gibbs free energy is

Geq
(T, p, N) = min

x
G(T, p, x, N) = G(T, p, x∗, N),

where x∗ is the value of x that minimizes the Gibbs free energy at
fixed T, p, and N. Note that it is the equilibrium fraction of atoms
that are within molecules.

If the Gibbs free energy is convex in the variable x, then there is
a unique minimum in the NPT ensemble corresponding to

∂

∂x
G(T, p, x∗, N) = 0. (19)

This equation can be used to solve for x∗. Note that for our
approximate Gibbs free energy, given in Eq. (18), we find

∂

∂x
G
N
=

1
2

ΔGbond(T) +
kBT

2
ln

x/2
(1 − x)2

−
kBT

2
ln

kBT
p0v
+

1
v
∂a
∂x

, (20)

where

∂a
∂x
=

4πε
κ3 [(1 − x)(Mam −Maa) − x(Mam −Mmm)]. (21)

If we note that the number of monomeric atoms is
Na = (1 − x)N and the number of molecules is Nm = Nx/2, then

∂

∂x
G(T, p, Na, Nm) =

∂Na

∂x
[

∂

∂Na
G(T, p, Na, Nm)]

T,p,Nm

+
∂Nm

∂x
[

∂

∂Nm
G(T, p, Na, Nm)]

T,p,Na

= −μa(T, p, x) +
1
2

μm(T, p, x).

So, we see that the condition for equilibrium is given by

μm(T, p, x∗) = 2μa(T, p, x∗),

which is the standard condition for chemical reaction equilibrium.
This is equivalent to the condition that the chemical potential of
unbonded atoms is the same as that for atoms within molecules.

C. Equilibrium properties
The equilibrium Gibbs free energy is simply equal to the Gibbs

free energy evaluated at x∗. As for systems with “fixed” composition,
properties that are related to the first derivatives of the Gibbs free
energy, such as the volume, enthalpy, or species chemical potentials,
are simply these properties evaluated at x∗,

veq
(T, p) = v(T, p, x∗),

Heq
(T, p) = H(T, p, x∗),

μeq
m (T, p) = 2μeq

a (T, p) = μm(T, p, x∗).

IV. RESULTS AND DISCUSSIONS
Here, we examine the types of qualitative thermodynamic

behavior that can be exhibited by the model described above. The
key physical parameters of the model relate to the repulsive inter-
actions between the atoms in the system and the strength of the
chemical bond. The parameter ε sets the unit of energy, and κ−1 sets
the unit of length. As mentioned previously, we set Maa = 1.

To simplify calculations, we assume that the free energy of
bonding ΔGbond(T) is linear in temperature,

ΔGbond(T) = AkBT + B, (22)

where the parameter A is related to the bond entropy (i.e., ΔSbond/kB
= A and the parameter B is related to the bond enthalpy. The results
of fitting Eq. (22) to the data in Fig. 1 for different temperature
ranges are given in Table I.

In the analysis that follows, we assume that A and B are known
parameters (fixed from experiment) and treat the remaining para-
meters of the model as fitting parameters with which we can explore
possible phase diagrams. Those free parameters are Mmm the relative
repulsion of an atom in a molecule in comparison with an unbonded
atom, δ the non-additive mixing parameter between monomers and
dimers, A, and B.
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TABLE I. Parameters for the linear fit to βΔGbond [see Eq. (22)] for H2 and D2 over
different temperature ranges.

Temperature range (K)

Hydrogen Deuterium

A B (eV) A B (eV)

1000–2000 14.1 −4.65 14.3 −4.71
2000–3000 14.6 −4.73 14.7 −4.78
3000–4000 14.8 −4.78 14.9 −4.82
4000–5000 14.9 −4.81 14.9 −4.84

The first step in evaluating the performance of our model is to
investigate the default behavior, in the absence of tight fits to ther-
modynamic data available for real chemical systems, inclusion of
known physical changes at the atomic level when molecule forma-
tion occurs or potential immiscibility. In practical terms, keeping
our focus on hydrogen for which we have empirical data on the
free energy of bond formation (βΔGbond), this means our choices
for model parameters are: Maa = 1.0 =Mmm, δ = 0, ε = 3.627 eV,
κ−1
= 2 Å, A = 14.1, and B = −4.65 eV (for βΔGbond). Note that for

these parameter values, Z = 0.710, and the effective charge of both
unbonded and bonded atoms is 0.710e0.

The phase diagram produced by this choice of parameters is
depicted in Fig. 2 for temperatures ranging from 0 to 30 000 K and
pressures ranging from ambient to 1.7 TPa (17 Mbar). The model
does not display any distinct pressure-induced molecular-to-atomic
transition. The main feature is the entropy-driven breaking of
molecule at increased temperature. There is also a weak preference
for molecules at pressure.

In the following, we examine the influence of each of the para-
meters in turn. First, we explore the influence of the temperature
dependence of the bond free energy. Then, we examine the influ-
ence Mmm, which characterizes the relative repulsion between two
unbonded atoms and two bonded atoms in different molecules.

FIG. 2. Behavior of the “default” model, including bonding (i.e., Maa = Mmm = Mma

= 1).

Next, we study the influence of the parameter δ. Finally, we relate
the model to hydrogen.

A. Limits: Non-interacting atoms, high pressure,
and zero temperature

Before engaging in any exploration of our model, it is worth
checking the behavior of certain limiting scenarios. The most rel-
evant ones are the non-interacting limit, which essentially should
recover an ideal gas; the high pressure limit, to ensure a phys-
ically reasonable T(P) curve without divergences; and the zero
temperature limit.

Let us now examine the first of these cases. In the limit that
a→ 0 [Eq. (6)], the system reduces to an ideal gas with N(1 − x/2)
particles. In this situation, the condition for equilibrium given by
Eq. (19) simplifies, and we recover the standard law of mass action
for ideal gases,

(x/2)(1 − x/2)
(1 − x)2 =

p
p0

e−βΔGbond(T),

where (x/2)/(1 − x/2) is the fraction of dimers and (1 − x)
/(1 − x/2) is the fraction of dissociated atoms. This can be rear-
ranged, which yields the following expression for the temperature:

βΔGbond(T) = ln
p
p0
− ln
(x/2)(1 − x/2)
(1 − x)2 . (23)

We now turn our attention to the limit of extremely high pres-
sures. In this situation, where p→∞, from Eq. (17), we find that the
specific volume varies as

v ≈ (
p
a
)
−1/2
+ ⋅ ⋅ ⋅ .

The specific volume is dominated by the interatomic repulsion in
this regime. This relation allows us to simplify the derivative of the
Gibbs free energy [see Eq. (20)] to

∂

∂x
βG
N
≈

1
2

βΔGbond(T) +
1
2

ln
x/2
(1 − x)2 −

1
2

ln
(p/a)1/2

βp0

+ (
p
a
)

1/2
β
∂a
∂x
+ ⋅ ⋅ ⋅ .

In addition, if we take again βΔGbond(T) = A + Bβ as the
functional from for Eq. (14) and let x = 1/2, we obtain

[
B
ε
+ (

4p
κ3ε

ε
κ3a
)

1/2 κ3

ε
∂a
∂x
]βε + ln βε ≈

1
2

ln
p
p0

κ3ε
p0

ε
κ3a
− A + ⋅ ⋅ ⋅ .

According to our definitions, we have

κ3a
ε
∣

x=1/2
= 2π[

1
4

Maa +
1
2

Mam +
1
4

Mmm]

κ3

ε
∂a
∂x
∣

x=1/2
= 2π(−Maa +Mmm).
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FIG. 3. Locus of points where half the atoms are in molecules (i.e., x = 1/2)
according to the low pressure and high pressure limits for parameters Maa = 1.0,
Mmm = 1.2, ε = 3.627 eV, and κ−1

= 2 Å.

In the final equation for βε obtained above, let us denote the
square bracket by χ and the right-hand side of the equation by Q.
The equation can then be rewritten as

χβεeχβε
= χeQ

from which trivially

β =
1
χε

Wk(χeQ
) =

1
kBT

, (24)

where Wk is the Lambert W function. For χ < 0, the solution is given
by W−1, while for χ > 0, the solution is W0. A graphical depiction of
these behaviors (ideal gas and high pressure limits) and the effect of
various approximations on them is presented in Fig. 3.

Finally, to ensure the physicality of our model, we consider the
zero temperature limit, where the Gibbs free energy becomes the
enthalpy,

H(T = 0, p, x)
N

= μ○,ig
a (T, p0) +

xm

2
ΔGbond(T = 0) + a/v + pv. (25)

The first term is independent of x, so we have a competition between
molecular bonding, interparticle interactions, and pv. Typically,
ΔGbond(0) will favor molecules. The interparticle term becomes
more important with pressure and will favor whichever species is
favored by a (i.e., the smaller of Maa vs Mmm). For δ = 0, Maa =Mmm,
the parameter a becomes independent of x, and this term has no
effect.

Finally, the explicit pv term favors whichever is smaller out of
two atoms or one molecule. Typically, we can only expect a zero-T
transformation if the atomic form is denser than the molecular one,
which here means Maa <Mmm.

FIG. 5. Fraction of atoms in molecules as a function of pressure along the isotherm
T = 30 000 K for δ = 0.0 and various values of Mmm.

FIG. 4. Allowing distinct atom–atom to molecule–molecule interactions introduces a pressure-induced molecular-to-atomic transition: (left) Mmm = 1.2 and (right) Mmm = 1.4.
All other parameters have the same values from the “default” case.
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B. Influence of distinct atom–atom vs
molecule–molecule interactions/different “effective”
sizes for atoms and dimers

We now examine the effect of allowing molecule–molecule
interactions to be different from atom–atom interactions, as com-
mon chemical intuition would instruct. We retain the value of all
the other parameters (Maa, δ, ε, κ−1, A, and B for βΔGbond) from our

FIG. 6. Fraction of atoms in molecules as a function of temperature along the
pressure isobar P = 5 GPa for δ = 0.0 and various values of Mmm.

“default” case with the exception of Mmm, which will now be greater
than Maa. Mma is linked to Mmm via δ, so also increases.

The fraction of atoms in molecular form in the system at
different temperatures and pressures is presented in Fig. 4 for
Mmm = 1.2 (where the effective charge of a bonded atom is 0.778e0)
in the left panel and for Mmm = 1.4 (where the effective charge of
a bonded atom is 0.840e0) in the right panel. When Mmm >Maa,
there is a gradual transition from molecules back to atoms at high
enough pressures, and the pressure at which the system trans-
forms from consisting mainly of dimers to mainly of monomers
decreases with increasing Mmm. In addition, there is a large region
where monoatomic and molecular species are mixed. As tempera-
ture increases, the fraction of atoms in atomic form also increases,
similar to the “default” case.

In Fig. 5, we show the variation of the fraction atoms x in
molecules with pressure at a temperature of 30 000 K. Increasing
Mmm from 1 to 2 (where the effective charge of bonded atoms is
1.00e0) causes the molecules to turn back into atoms at higher pres-
sures. The exact atomic phase fraction of the system at any higher
pressure is proportional to the value of Mmm.

In Fig. 6, we show the variation of the fraction of atoms
in molecules with temperature at a constant pressure 5 GPa for
different values of Mmm. A progressive lowering of the required tem-
peratures for atomization is readily visible for smaller values of Mmm,
which switches to an increase in the temperature needed for molec-
ular formation when the atomic phase is stable at low temperatures,
for higher values of Mmm.

The influence of Mmm on the Gibbs free energy of the system is
shown in Fig. 7. As Mmm increases, the interaction between atoms

FIG. 7. Gibbs free energy for a system with Maa = 1 and P = 100 GPa, considering different values of Mmm at temperature (top) T = 3000 K and (bottom) T = 4 K. The
tendency for increasing values of Mmm to stabilize the atomic phase over the molecular one is readily visible under both conditions.
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that are with molecules become more repulsive, and, as a conse-
quence, we see that the Gibbs free energy of the system increases
when there are more molecules in the system. In all cases, the Gibbs
free energy is convex, and the filled circles denote the minima of free
energy. We see that the value of x at the minimum decreases as Mmm
increases; physically, this means that there are fewer molecules in the
system as the atoms within molecules become more repulsive. The
transition from molecules to monomers with Mmm becomes sharper
as the temperature decreases.

In Fig. 8, we examine the influence of Mmm on the variation
of x and density with pressure. The left plots are for a tempera-
ture of 6000 K, and the right plots are for a temperature of 1000 K.
At the higher temperature, the fraction of atoms within molecules
increases monotonically with pressure for values of Mmm near 1.
For larger values of Mmm, there is a pressure at which x reaches
a maximum, and at higher pressures, x continuously decreases. As
expected, increasing the repulsion between molecules decreases the
density of the system.

At the lower temperature of 1000 K, we see a similar behavior
of the variation of x with pressure as at 6000 K, although in this case,
the decrease in the fraction of molecules with increasing pressure
is much sharper. In addition, the pressure at which this transition
occurs decreases as Mmm increases.

C. Influence of non-additivity/partial miscibility
We now introduce the final element of realistic physics into

our model, turning on the non-additivity of the interactions
(i.e., δ ≠ 0). This parameter influences the degree of mixing between
the monomer atomic species and dimer molecular species. For

a positive non-additivity, the individual species prefer to interact
with themselves, rather than with each other. This will produce a
tendency for unlike species to demix; when this effect becomes suf-
ficiently large, it can lead to phase separation between the atoms
and molecules. Below, we examine the influence of δ > 0 on. For the
following analysis, we fix A = 14.1 and B = −4.65 eV.

In Fig. 9(a), we show the variation of the Gibbs free energy
with the fraction x of bonded atoms for increasing values of the
non-additivity δ, from δ = 0 (purple) to δ = 0.1 (red), for a system
with Mmm = 1.2 at T = 3000 K and P = 100 GPa. The filled circles
locate the minimum of the Gibbs free energy for each curve. At
δ = 0, the Gibbs free energy is convex for all values of x. In fact,
for δ ≤ 0, the Gibbs free energy will remain convex, and there will
be no demixing. As the value of δ increases, the curvature of the
Gibbs free energy gradually decreases until eventually there are
regions where the free energy is concave. In this situation, there can
be multiple local minimum in the free energy, which implies that
the system can possess multiple equilibrium fractions of molecules,
which may possibly be metastable. This leads to the potential for
the demixing of the monomers and the molecules into two different
phases.

In the bottom of Fig. 9, we plot the variation of the Gibbs
free energy with x along different isobars for systems with δ = 0.05.
At low pressures, the Gibbs free energy is everywhere convex, and
there is only a single minimum, which is located near x ≈ 1. Increas-
ing the pressure, the Gibbs free energy develops a concave region
for intermediate values of x, and there are two minima: one is sta-
ble, near x ≈ 1, and the other is metastable, near x ≈ 0, and a local
minimum. At higher pressures, the Gibbs free energy of the mini-
mum near x ≈ 0 decreases until it becomes equal to that near x ≈ 1.

FIG. 8. (left) Effect of Mmm on the formation of molecules and the system density with increasing pressure in the range 0–1 GPa at T = 6000 K. The changes at both low
and high pressures are smooth and continuous and do not involve any discontinuous jumps in density. (right) Effect of Mmm on the breaking of molecules into atoms and the
density with increasing pressure at T = 1000 K.

J. Chem. Phys. 160, 194502 (2024); doi: 10.1063/5.0203884 160, 194502-10

© Author(s) 2024

 15 M
ay 2024 11:02:52

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 9. Gibbs free energies for systems with Mmm = 1.2, T = 3000 K, and (a) P = 100 GPa for 0 ≤ δ ≤ 0.1 and (b) 10 ≤ P ≤ 200 GPa for δ = 0.05.

At this point, the system splits into two phases, with one rich in
monomers and the other rich in dimers. Increasing the pressure
further, the Gibbs free energy of the minimum near x ≈ 0 becomes
lower than near x ≈ 1, and, so, the system transitions to a single
phase predominantly composed of monomers.

In Fig. 11, we examine the influence of the parameter δ on
the pressure dependence of the fraction of atoms within molecules
and of the density. In these calculations, the temperature of the sys-
tem is 6000 K, Mmm = 1.12 (where the effective charge of bonded
atoms is 0.751e0), and the parameter δ is varied from 0.0 to 0.05.

FIG. 10. Behavior of a system with Mmm = 1.12 and δ = 0.01 around the critical point. (a) Variation of the fraction of atoms within molecules with pressure, (b) discontinuity
in x with temperature along the coexistence line, and (c) discontinuity in x with pressure along the coexistence line.
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At extremely low pressures, the atoms prefer to be in the form of
monomers; as the pressure increases, the atoms increasingly form
dimeric molecules. The density continuously increases with increas-
ing pressure, suggesting that no phase transition occurs. In the low
pressure region, the non-additivity parameter has little effect on the
properties of the system, as the non-bonded atoms do not interact
significantly with each other. At higher pressures, the fraction of
atoms within molecules increases with pressure, eventually reach-
ing a maximum, and then decreasing afterward. Non-additivity has
a relatively significant effect at these higher pressures; the larger the
value of δ, the greater the tendency for the atoms to form diatomic
molecules. For small values of δ, the decrease in x with increas-
ing pressure is gradual and continuous; however, for larger values,
there is a discontinuous drop in x with pressure, which becomes
wider as δ increases. This discontinuity reflects the formation of
two coexisting phases: one rich in monomers and the other rich in
dimers.

In Fig. 10(a), we plot the fraction of atoms within a molecule
as a function of pressure, along several isotherms. At high tem-
peratures, these curves are continuous, with the atoms existing
mainly as molecules at low pressures and gradually transitioning to

predominantly monomers at high pressures, due mainly to the
atoms in the molecules being more repulsive (i.e., Mmm >Maa). At
low temperatures, we see the same general trend with pressure, but
now there is a discontinuous drop of in x. At this discontinuity,
there is a coexistence between two phases: one rich in monomers and
the other rich in diatomic molecules. The black dashed line denotes
the boundaries of these discontinuities with pressure, and the gray
shaded region represents the state points in which the system will
separate into these two coexisting phases. The variation magnitude
of the composition difference between the phases with temperature
and pressure is shown in Figs. 10(b) and 10(c), respectively.

The density of the system increases monotonically with pres-
sure, as shown in the bottom plot of Fig. 11. The non-additivity
parameter also has a greater influence on the density of the system at
high pressures. Interestingly, at lower pressures, increasing the value
of δ will decrease the density of the system, while at higher pressures,
increasing δ will increase the density (see the inset in the bottom
of Fig. 11). The discontinuity in x with pressure at sufficiently large
values of δ is associated with a discontinuity in the system density.

In the case of a discontinuous molecular-to-atomic phase tran-
sition, from 100% atoms bound in molecules to 100% free atoms, the

FIG. 11. Influence of the non-additive mixing parameter δ at 6000 K: (top) fraction of atoms in molecular form and (bottom) density. The parameters Mmm = 1.12, A = 14.1,
and B = −4.65 eV.
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density difference between the two phases at the same temperature
is given by

Δρ =
ρx=0

ρx=1

=
Mmm

Maa

√

1 + 4β2p f Maa − 1
√

1/4 + 4β2p f Mmm − 1/2
,

where f = 2πε/κ3 and p is the pressure of the transition at the given
temperature. We can see from here that the density jump arising
from a discontinuous molecular to atomic transition is proportional
to the value of Mmm.

It is readily visible that non-additivity introduced a critical
point in the system, between a discontinuous molecular–atomic
transition and a continuous one. The former is evidenced by an asso-
ciated discontinuity in the fraction of dimers, which is also mirrored
in the density of the system either side of the transition.

The critical point, which is characterized by the critical temper-
ature Tc, pressure pc, and composition xc, is given by the solution of
the following equation:

(
∂G
∂x
)

T,P,N
= (

∂2G
∂x2 )

T,P,N
= (

∂3G
∂x3 )

T,P,N
= 0. (26)

With the chosen model parameters Mmm = 1.12 and δ = 0.01, we
find that the critical point is located at T ≈ 2655 K, P ≈ 235 GPa, and
xc ≈ 0.3944.

The Gibbs free energy of the system at a temperature below
(T = 1000 K) and above (T = 4000 K) the critical temperature for

FIG. 13. Influence of the non-additivity parameter δ on the discontinuous transi-
tion between molecular-rich and monomer-rich phases. The solid lines denote the
coexistence curve for hydrogen (A = 14.1 and B = −4.65 eV), and the filled cir-
cles mark the critical point. The dashed lines denote the coexistence curve for
deuterium (A = 14.3 and B = −4.71 eV), and the crosses mark the critical points.

a selection of pressures is presented in Fig. 12. For T < Tc, the Gibbs
free energy has a convex region, and each curve has two local min-
ima: one near x = 0 and the other near x − 1, while a single minimum
that moves with increasing pressure is visible for T > Tc.

In Fig. 13, we examine the influence of the non-additivity para-
meter δ on the discontinuous transition between the molecular and
monomer phases. The solid lines denote the coexistence curve for

FIG. 12. Gibbs free energy of a system with Maa = 1.0, Mmm = 1.12, and δ = 0.01 at temperatures below (T = 1000 K, upper panel) and above (T = 4000 K, lower panel)
the critical point. The filled circles denote the minimum of the Gibbs free energy.
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hydrogen, while the filled circles locate the critical point of the tran-
sition. At lower pressures, the system consists mainly of diatomic
molecules, while at higher pressures, it consists mainly of unbonded,
monomeric atoms. Upon crossing the coexistence curve, there is a
discontinuous transition between these two phases. As the value of
δ increases, the critical point moves to higher temperatures and
lower pressures.

To examine the isotope effect, we also plot the coexistence
curve and critical point of deuterium as the dashed lines and crosses,
respectively, in Fig. 13. The ε and κ parameters for deuterium are the
same as for hydrogen, but the bond free energy differs (A = 14.3 and
B = −4.71 eV).

The critical temperatures of both species are similar. At lower
temperatures, the monomer to molecular transition for deuterium
is shifted to higher pressures, as compared to hydrogen; however,
the coexistence curves approach each other at higher temperatures.
Interestingly, for higher values of the non-additivity parameter δ,
the coexistence curves cross, and the critical pressure of deuterium
becomes lower than that of hydrogen.

In Fig. 14, we show the fraction of atoms bound in diatomic
molecules for systems with different values of δ. At low tempera-
tures and low pressures, the system tends to prefer molecules. As
temperature increases, the system favors monomers, which have a
higher entropy. At high pressures, monomers are again favored, as
they have less repulsive interactions, due to the fact that we have

Mmm >Maa. For the case δ = 0, the transition from mainly
monomers to mainly molecules is continuous.

D. Application to hydrogen and deuterium
Since the stable phase is determined by minimizing the Gibbs

free energy, all phase diagrams are based on the competition between
internal energy U, entropy S, and density 1/v. Here, we consider the
competition between molecules and atoms. At zero temperature, we
need only consider the enthalpy. In the present case, the atomic form
always has a higher entropy simply because of having more particles.
Therefore, the atomic phase is always stable at high T.

An important mention is warranted at this point: the
density jump in our model when crossing the discontinuous
molecular–atomic transition at 1000 K is 4.92%, comparable to
the one noted by Geng et al.41 from a full quantum mechanical
treatment of the system.

Hydrogen is also famous for displaying very strong isotopic
effects, with the phase diagram of high pressure deuterium being
noticeably skewed in comparison with H2. Keeping all the same
interaction and additivity parameters for both species but allow-
ing different empirical A and B parameters for ΔGbond, we obtain
a curve for deuterium that mirrors that of hydrogen but has phase
changes shifted to higher pressures at any given temperature. This
situation reproduces the situation expected based on experimental

FIG. 14. Effect of non-additive interactions on the phase diagram of the model. Color scheme denoting the fraction of atoms forming dimers is the same as before: full
molecules (yellow), full atoms (purple), and mixtures (gradient between yellow and purple). The fixed parameters are: Maa = 1.0, Mmm = 1.12, ε = 3.627 eV, κ−1

= 2 Å,
A = 14.1, and B = −4.65 eV. Clockwise, starting upper left: δ = 0.0, 0.01, 0.1, and 1.0.
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FIG. 15. Phase diagram of our model for Maa = 1.0, Mmm = 1.12, δ = 0.01, A
= 14.3, and B = −4.71 eV (latter two from fit to D2 data in the 1000–2000 K
range). The red solid line denotes the discontinuous phase transition as previously
defined, ending at the critical point. The smaller orange, green, and blue stars
denote the experimentally reported molecular to atomic fluid transition in dense D2
by Knudson et al.,63 Celliers et al.,64 and Celliers’ revised temperatures for the
measurements of Knudson et al., respectively.

investigations of solid phases, showing that close to ambient temper-
ature the pressures necessary for the atomization of D2 are higher
than for H2. For example, at 1000 K, there is a 6 GPa difference
in the pressure where the molecular-to-atomic transition occurs, at
290 GPa in H2 and at 296 GPa in D2. This number is of course a likely
underestimate of the pressure difference between H2 and D2 disso-
ciation as the parameters ε, κ−1, and most importantly Mmm should
be different for the different isotopes.

In Fig. 15, the quantitative agreement between our model
(having the previously stated choice of parameters) and the most
recent experimental data from shock compression of D2 by Knudson
et al.63 and Celliers et al.64 is readily visible. It is of course possi-
ble, by tuning the parameters detailed in the previous paragraph, to
obtain quantitative agreement for H2 as well, maintaining the same
qualitative picture of the full phase diagram. However, given the
main intention of the current work is to obtain a qualitatively accu-
rate and order-of-magnitude only estimate of the phase behavior of
diatomic systems, such fine-tuning was not attempted. Moreover,
while experimental data for deuterium are very recent and shows
good agreement between two distinct research groups and exper-
imental machinery (Sandia Z-machine for Knudson and National
Ignition Facility for Celliers, respectively), the reported data for H2
are significantly more varied in the reported pressure and temper-
ature conditions, and there is considerable discussion about the
criteria employed for identifying the atomic phase, as discussed in
detail in Norman and Saitov.66

V. CONCLUSIONS
To summarize, we have built a thermodynamic model for a

dimerizing fluid inspired by the behavior of hydrogen. The dimer-
ization leads to dimers being favored at low temperatures thanks to

their finite binding energy, while the atoms are preferred at high
T due to their higher entropy. In the absence of intermolecular
attraction, no condensed phase can form at zero pressure, so the
atomic region extends to low temperature at extremely low densi-
ties. The primacy of the entropy can be easily understood since the
entropy increases with ln V , while the dimer bonding is independent
of V .

We then consider repulsive interactions between all objects,
giving a density-dependent contribution to the free energy: this
is based on a Yukawa model with scaling factors for atom–atom,
atom–molecule, and molecule–molecule interactions. These scaling
factors make the interaction both stronger and longer ranged. If the
atom–atom repulsion is shorter ranged than the molecule–molecule,
then the atomic phase is denser and favored at high pressures. This
creates a situation where we have a dome of stability of molecules,
stabilized by low energy from the bonds. The atomic phase is still
stabilized at low densities by entropy and now also at high densities
by the PV term. This creates a dome of stability for the molecular
liquid.

In order to obtain a first-order atomic–molecular transition, it
is necessary to have concavity in G as a function of x. Within our
model, the non-additivity parameter δ > 0 can provide this, by mak-
ing atom–molecular interactions relatively unfavorable. The first
order transition ends at a critical point. δ appears in the interaction
term a/v, so has most effect at high densities, and as we increase δ,
we see that the critical point moves up the dome between molecular
and atomic fluids. This produces a negative-sloped Clapeyron curve
at high pressures. Surprisingly, as δ is further increased, the critical
point moves to ever lower density and eventually crosses the top of
the dome, beyond which the critical temperature drops. This leads
to a positive slope in the Clapeyron curve.

With respect to hydrogen, the model implies that the high pres-
sure metallic fluid and the low density interstellar medium are one
and the same phase. One might expect a Mott transition when elec-
trons become localized on the atoms; however, this is outside the
scope of our model, which ignores the electrons—it also falls out
with Kohn–Sham DFT, which always treats electrons as delocalized
Bloch states.

The liquid–gas line within the molecular region is also missing
in our model. It can easily be reproduced by using a van der Waals
gas in place of the ideal gas. However, the van der Waals equation
becomes incompressible at high densities, and if one fits the para-
meters to the hydrogen critical point, this unattainable density falls
well below the metallization line. This transformation is far from the
atomic–molecular dome, so our conclusions are unaffected by this
failing.

Finally, there is a difference in ΔGbond between deuterium and
hydrogen due to the zero point energy. This is easily incorpo-
rated into the model to show a pronounced isotope effect on the
atomic–molecular transition, in accordance with experiment and
path integral molecular dynamics calculations.7,8
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