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Imaging technologies working at very low light levels acquire data by counting the number of photons impinging on
each pixel. Especially in cases with, on average, less than one photocount per pixel, the resulting images are heavily
corrupted by Poissonian noise. To tackle this problem, we use methods from Bayesian statistics to retrodict the spatial
intensity distribution responsible for the photocount measurements. Unlike the usual photon-limited image denoising
algorithms, we calculate the full probability distributions for the intensities at each pixel. The knowledge of these
probability distributions helps to assess the validity of results from image analysis using data corrupted by Poisson
noise with low photon-count numbers and dark counts. © 2015 Optical Society of America
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1. INTRODUCTION

Numerous existing and proposed imaging technologies work in
very low light intensities and gather data using arrays of photo-
detectors [1–4]. The resulting measurements are tables of natural
numbers where each entry is the number of photocounts on a
specific pixel, a single realization of a Poisson process whose mean
value is proportional to the time-integrated intensity of the light
field imaged by the respective pixel.

At very low photocount rates the resulting images suffer
heavily from quantum or Poisson noise. This noise is inherently
different from the independent and identically distributed
(Gaussian) noise tackled by most image optimization algorithms,
but the importance of imaging technologies based on photon
counts led to a range of image optimization algorithms specifically
dealing with Poisson noise.

The basic principle of image denoising is to replace the noisy
measured data with an assumed intensity distribution, and of
course there exist several publications on photon-limited image
denoising that show spectacular results [1,2,4–7]. In particular,
maximum likelihood denoising models search for the intensity
distribution that satisfies certain smoothness criteria or other
known features of “typical images” while maximizing the likeli-
hood of reproducing the measured data.

Once we consider measurements with on average less than one
count per pixel, however, noise tends to obscure many structures
in an image, or, worse, it might produce deceptive features. Even
elaborate denoising algorithms might then produce smoothed
versions of misleading images, and without the full probability
distribution, it is impossible to assess the validity of conclusions
based on analysis of such a denoised image. Only a probabilistic
treatment allows us to provide qualified statements about noisy

images, just as an error bar is necessary to interpret the quality
of a smooth fitting curve in noisy 1D data. Thus the present work
uses simple but accessible methods to calculate the (Bayesian)
probability that a certain intensity level λi was responsible for
a measurement mi at the ith pixel.

Our approach to this problem is inspired by quantum retro-
diction [8–10], in which a premeasurement state is assigned on
the basis of a later measurement and used to obtain statistical in-
formation on earlier events. In particular, the detection of a given
number of photocounts by a photon counter of known efficiency
leads directly to a premeasurement probability distribution for
the number of photons present [11].

This work is organized as follows. In Section 2 we introduce
the basic notation and discuss how the intensity of the light field
incident on a single pixel can be retrodicted from the measure-
ment value at this pixel. In Section 3 we refine this retrodiction
both by using measurements from neighboring pixels and with
methods inspired by averaging algorithms [12]. After assessing
the general validity of the retrodiction schemes in Section 4,
we go on in Section 5 to describe how to use the probabilities
obtained from various retrodiction models to test actual hypoth-
eses about an image.

The different retrodiction methods discussed in this work are
illustrated using a picture of a statue of Lord Kelvin [13] with
added artificial Poisson noise, as shown in Fig. 2. The image data
is gray-scale, but colors are used in Figs. 2, 3, 5, and 8 for better
visibility. For the computer-generated noisy image in Fig. 2(b),
we assume a very low detection efficiency η � 0.05, as experi-
enced in some quantum optics experiments [4]. In Figs. 3 and 5
we show the expectation values of the probability distributions
retrodicted from this noisy image, but we emphasize that these
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are not necessarily less noisy than the original. This work focuses
on the probabilities and not on typical image denoising.

The paper is intended to be self-contained, but some of the
more technical calculations and derivations were moved into
Supplement 1. There one can also find some of the results recal-
culated for the more general case in which measurements are dis-
torted by dark counts.

2. SINGLE-PIXEL RETRODICTION

First, let us attempt to understand the sequence of random proc-
esses that determine the number of photocounts for a single pixel.
If we have a detector with a finite detection efficiency η, then the
probability of getting m counts given that n photons were inci-
dent upon the detector is given by a binomial distribution [11,14]

p�mjn� �
�

n
m

�
ηm�1 − η�n−m: (1)

In this work we shall assume an attenuated single-mode light
source such that the number of photons coming from the illumi-
nated object during a certain time interval follows a Poisson dis-
tribution of mean λ, p�njλ� � Pois�n; λ�, with

Pois�n; λ�≔ e−λλn

n!
: (2)

This means, in turn, that the number of photocounts is also
given by a Poisson process of mean ηλ, i.e., p�mjλ� �P∞

n�m p�mjn�p�njλ� � Pois�m; ηλ�. The value λ hence deter-
mines the amount of light coming from the section of the object
imaged by our pixel. A larger value of λ results in, on average, a
higher number of photons traveling toward the pixel, n, and being
detected later, m.

A. Intensity Retrodiction

We use the term intensity retrodiction to describe the process of
finding the probability distribution for λ given m photocounts.
Using Bayes’ theorem, we have

p�λjm� � p�mjλ�p�λ�
p�m� : (3)

While p�mjλ� � Pois�m; ηλ� has been calculated above and
p�m� � R∞

0 p�mjλ�p�λ�dλ, we lack an expression for the prior
probability p�λ�.

A common approach for choosing a prior in Bayesian statistics
would be that p�λ� is constant (up to some arbitrarily large value).
(That is, we set p�λ� � 1∕λmax for λ ∈ �0; λmax� and p�λ� � 0
otherwise. The term 1∕λmax thus cancels from Eq. (3), and taking
the limit λmax → ∞ then gives a gamma distribution.) This gives a
gamma distribution for λ as p�λjm� � Gam�λ;m� 1; η−1�, with

Gam�x; α; β�≔ xα−1

βα
e−x∕β

Γ�α� ; (4)

and a mean value E�λjm� � �m� 1�∕η.
Such a flat prior suggests that we assume that the brightness λ

could reach any absurdly high value. In reality, however, we can
check the data from allN pixels to get an average detected photon
number m̄ � PN

i�1 mi∕N , where mi denotes the measurement in
the ith out of N pixels. Given only this information, it is more
reasonable to search for a prior p�λjm̄� that ensures that p�mjm̄�
has an expectation value E�mjm̄� � m̄. The least biased—i.e.,
entropy maximizing—discrete distribution with a given mean
value m̄ is a geometric distribution [15]

p�mjm̄� � m̄m

�m̄� 1�m�1 : (5)

Considering that p�mjm̄� � R
∞
0 p�mjλ�p�λjm̄�dλ, this requires an

exponential prior distribution for the brightness

p�λjm̄� � η

m̄
e−ηλ∕m̄: (6)

Using this prior in Eq. (3) results again in a gamma distribution

p�λjm; m̄� � Gam�λ;m� 1; �η�1� 1∕m̄��−1�; (7)

with an expectation value

E�λjm; m̄� � m� 1

η�1� 1∕m̄� : (8)

If we set η̄≔ η�1� 1∕m̄�, we see that the distribution obtained
from the flat prior in Eq. (4) is recovered for m̄ → ∞. The effect
of this more informed prior can be seen in Fig. 1, where p�λjm� is
compared against p�λjm; m̄�.

In Section 4 we shall show that the retrodiction gives the best
results if m̄∕η is close to the true intensity value at the respective
pixel. As we calculate only one m̄ for the whole image, however,
this will usually not be the case for all pixels. It is therefore useful
to compute locally expected mean values m̄i for the ith pixel, for
instance, using successful denoising algorithms from the literature
[1,2]. The retrodicted distributions for the intensity then still
follow gamma distributions, but with different mean values.
To simplify the discussion here, we will continue to use only
the global average m̄ in this work.

Based on the measurements mi shown in Fig. 2(b), the mean
retrodicted intensities E�λjmi; m̄� from Eq. (8) are shown in
Fig. 3(a). This replacement corresponds to a linear shift in each
pixel value, so there is no enhancement regarding the perceived
image quality. It gives, however, a better estimate of the actual
amount of light that was sent from the object.

B. Transmission Retrodiction

In some applications one not only has information about the
number of detected photons, but one also knows the amount
of light used to illuminate the object. Let us assume the number
of photons emitted from the source toward the detector within
a certain time follows a Poisson distribution of mean value ν,

Fig. 1. Comparison of the probabilities for the intensity retrodictions
with and without prior information on the expected mean photocount
number m̄. Broken lines show p�λjm; m̄� for m̄ � 0.9 (dashed–dotted)
and m̄ � 5 (dashed). The solid line shows p�λjm� using the flat prior
p�λ�, which is equivalent to m̄ → ∞. The red lines are for measurement
m � 0, and green for m � 2; the respective expectation values are indi-
cated by the short vertical lines in the respective style; η � 0.2. We see
how information about m̄ shifts the retrodictive distributions of λ to
lower values.
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i.e., p�nincjν� � Pois�ninc; ν�. In a simplified model we assume
that the number of photons passing through the object, n, is de-
termined by the transmission rate τ ∈ �0; 1� such that

p�njτ; ν� �
X∞
ninc�n

�
ninc
n

�
τn�1 − τ�ninc−np�nincjν� � Pois�n; τν�:

(9)

Including the single photon detection efficiency η, we find
p�mjτ; ν� � Pois�m; ητν�. Using Bayes’ theorem and a uniform
prior p�τ� � 1 for τ ∈ �0; 1�, we find that the transmission rate
τ follows a distribution similar to a gamma distribution, but with
an incomplete gamma function, i.e., p�τjm;ν��Gami�τ;m�1;
1∕�ην��, with

Gami�x; α; β�≔ xα−1

βα
e−x∕β

Γ�α; 1∕β� ; (10)

where Γ�n; x� denotes the incomplete gamma function

Γ�n; x�≔
Z

x

0

e−t tn−1dt: (11)

The corresponding expectation value is

E�τjm; ν� � 1

ην

Γ�m� 2; ην�
Γ�m� 1; ην� : (12)

(Using this method to retrodict the intensities gives p�λjm; ν� �
Gam�λ;m� 1; 1∕η�m!∕Γ�m� 1; ην� and E�λjm;ν��Γ�m�2;
ην�∕�ηΓ�m�1;ην��. Note that in this case 0 ≤ λ ≤ ν.)

From a basic physical point of view, it is equivalent to retrodict
the apparent brightness λ or the transmission rate τ. From a log-
ical perspective, however, adding the knowledge about the initial
illumination level ν makes quite a difference: an outlying mea-
surement m can easily result in a mean retrodicted intensity larger
than the actual source, E�λjm� > ν. This cannot happen with the
equivalent value from transmission retrodiction, νE�τjm; ν�.

This is visible in Fig. 3(b), where we show the expected inten-
sity using transmission retrodiction, νiE�τjmi; νi�, given the
measurements from Fig. 2(b). There [and in further examples
in Figs. 7(b) and 8(b)] we see that the flat prior used here tends
to bias the retrodicted probabilities toward values where τ ∼ 1∕2
or λ � ν∕2. Obviously this is least suitable for images where we
have uniform illumination, such as is assumed for the example

depicted in Fig. (2). Transmission retrodiction as discussed here
is therefore only useful in connection with a known, inhomo-
geneous illumination pattern.

Note also that the assumption 0 ≤ τ ≤ 1 leads to errors if light
traveling through the object shows (positive) interference effects
or is cross scattered such that some pixels actually see more light
than without the object.

To simplify the remaining discussion, we will use the termi-
nology of intensity retrodiction and sometimes give equivalent
results for transmission retrodiction in brief remarks.

Let us briefly note that this transmission retrodiction model
can be adapted for images using light reflected off an object,
though there one often has to deal with (unknown) background
illumination as well [3,7,16].

3. MIXED RETRODICTION

The methods discussed in Section 2 attempt to retrodict the light
intensity incident on a single pixel using only data from this
one pixel (and the average measurement for all pixels, m̄).
These methods thus attempt to find a probability distribution
using only a single measurement value.

But from experience we know that typical images have regions
of constant brightness such that we might assume that measure-
ments m and m 0 at two neighboring pixels are the results of
Poisson processes with the same mean, λ � λ 0. In this case a
Bayesian update of the probability distribution for λ using the
second data point m 0 is possible, i.e., p�λjm;m 0; m̄� � p�m 0jλ�
p�λjm; m̄�∕p�m 0jm; m̄�:
p�λjm;m 0; m̄� � Gam�λ;m� m 0 � 1; �η�2� 1∕m̄��−1�: (13)

Figure 4 illustrates the line of thought from single-pixel retrodic-
tion to mixed retrodiction as outlined below. In Section 2 we used
individual measurements m and m 0 to retrodict their respective λ,
λ 0. Assuming λ � λ 0 allows us to calculate an updated distribution
using both m and m 0 in Eq. (13). After an intermediate step in
Section 3.A, we will discuss in Section 3.B how the strong claim
λ � λ 0 can be toned down by introducing a weightW 0 represent-
ing an ad hoc estimate that there is a chance W 0 for λ � λ 0 and

(a) (b)

Fig. 2. (a) Original image [13] and (b) image distorted by artificial
Poisson noise serving as the measured image for the upcoming examples.
The colors indicate (a) the true intensity values λi and (b) the measure-
ment values mi , i � 1;…; N . Detection efficiency η � 0.05; average
number of photocounts m̄ ≈ 0.4; no. of pixels N � 120 × 180.

(a) (b)

Fig. 3. Mean values of single-pixel retrodictions of the data from
Fig. 2(b). (a) Mean value for intensity retrodiction E�λijmi; m̄� as given
in Eq. (8); (b) corresponding image νiE�τjmi; νi� from transmission ret-
rodiction, cf. Eq. (12). The illumination is assumed to be constant with
νi � 40 ∀ i � 1;…; N . Note that these images are generated using
only values from the individual pixels and hence cannot be less noisy
than the raw data.
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1 −W 0 for λ ≠ λ 0. Sections 3.C and 3.D will give two examples
for possible definitions of these weights.

A. Retrodiction from a Mixed Source

Let us assume a situation where each photon hitting a certain pixel
has a chance W of coming from a source with intensity λ and a
chance 1 −W of coming from some other source with λ 0, i.e.,

p�mjλ; λ 0; W � � Pois�m; ηW λ� η�1 −W �λ 0�: (14)

Such a situation might occur for an image that is known to have
simple bright and dark sectors.

If we lack further knowledge about λ 0, we marginalize using
p�λ 0jm̄� ∼ exp�ηλ∕m̄�,

p�mjλ;W ;m̄��
Z

∞

0

dλ 0p�mjλ;λ 0;W �p�λ 0jm̄�

�
Xm
k�0

Geom�m−k;�1−W �m̄�Pois�k;ηW λ�; (15)

where we set Geom�n; x�≔ xn∕�x � 1�n�1 as the geometric dis-
tribution of mean value x as used in Eq. (5).

To retrodict λ from this measurement of m with the assumed
weight W , we use p�λjm;W ; m̄� ∼ p�mjλ; W ; m̄�p�λjm̄�,

p�λjm;W ; m̄� ∼
Xm
k�0

Gam�λ; k � 1; �η�W � 1∕m̄��−1�

×Geom�m − k; �1 −W �m̄�Geom�k;W m̄�: (16)

The symbol ∼ indicates that we dropped the normalization
factor p�mjW ; m̄� � R∞

0 dλp�mjλ; W ; m̄�p�λjm̄�. But calculating
p�mjW ; m̄�, expectation values E�λjm;W ; m̄� or higher moments
is a simple task, as it only requires integration over the gamma
distribution. [To recover the result from Eq. (7), we set W � 1

and use limx→0Geom�n; x� �
�
1 for n � 0;
0 for n > 0: .]

B. Retrodiction Updates Assuming Mixed Sources

Equation (13) gave the Bayesian update for the case where it is
known that both measurement values, m and m 0, come from the
same source of value λ. In line with the results given above, we go
on with the updated retrodiction for the case in which we assume
some weightsW andW 0 for the case where m, m 0 come from the
same λ. Using Eqs. (15) and (16) gives

p�λjm;m 0; W ;W 0; m̄� ∼ p�m 0jλ;W 0; m̄�p�λjm;W ; m̄�

�
Xm
k�0

Xm 0

k 0�0

Gam�λ; k � k 0 � 1; �η�W �W 0 � 1∕m̄��−1�

×
�
k � k 0

k

� �m̄W �k�m̄W 0�k 0

�m̄�W �W 0� � 1�k�k 0�1

× Geom�m − k; �1 −W �m̄�Geom�m 0 − k 0; �1 −W 0�m̄�: (17)

Again, calculation of the normalization and the mean value are
easy, as λ appears only in the gamma distribution terms. Aside
from a normalization factor, the mean value has the form

E�λjm;m 0;W ;W 0; m̄� ∼
Xm
k�0

Xm 0

k 0�0

k � k 0 � 1

η�W �W 0 � 1∕m̄�

×
�
k � k 0

k

� �m̄W �k�m̄W 0�k 0

�m̄�W �W 0� � 1�k�k 0�1

× Geom�m − k; �1 −W �m̄�Geom�m 0 − k 0; �1 −W 0�m̄�: (18)

Although these expressions look complicated, they follow a
simple pattern that is best explained by discussing what happens
after a further update using a measurement m 0 0 and a weightW 0 0.
First, this gives another sum

Pm 0 0
k 0 0�0 and a geometric distribution

Geom�m 0 0 − k 0 0; �1 −W 0 0�m̄�. The gamma distribution in
Eq. (17) or its mean value in Eq. (18) changes as k � k 0 � 1 →
k � k 0 � k 0 0 � 1 and �W �W 0 �1∕m̄�→ �W �W 0 �W 0 0�
1∕m̄�. The binomial is replaced by a multinomial coefficient

�
k � k 0 � k 0 0

k; k 0; k 0 0

�
≔
�k � k 0 � k 0 0�!

k!k 0!k 0 0!
; (19)

and the fraction in the third line is changed by an additional
term �m̄W 0 0�k 0 0

in the numerator, while the denominator changes
to �m̄�W �W 0 �W 0� � 1�k�k 0�k 0 0�1. This pattern is kept
for all further updates m 0 0 0;… with corresponding weights
W 0 0 0;… ∈ �0; 1�. The result from Eq. (13) is recovered from
Eq. (17) by setting W � W 0 � 1.

In summary, this framework allows us to update the probabil-
ity distribution for the intensity at the ith pixel using mi and all
other mj, j ≠ i, provided we have a model for the weights W ij
describing the assumed probability for λi � λj. By extending
the first line of Eq. (17) to more than two pixels, we find

p�λjfmj;W ijgj�1;…;N ; m̄� ∼
Y
j≠i

p�mjjλ; W ij; m̄�p�λjmi;W ii; m̄�:

(20)

There is, of course, a multitude of options that can be used to
define such weights. The following sections will present two very
basic examples inspired by common averaging techniques.

(a)

(b)

(c)

Fig. 4. Illustration of the mixed retrodiction model. (a) In single-pixel
intensity retrodiction, described in Section 2, the number of photocounts
at each pixel is used to calculate a probability distribution for λ at this
pixel; (b) the probability distribution obtained after assuming that mea-
surements at two different pixels, m and m 0, came from the same inten-
sities, cf. Eq. (13); (c) mixed retrodiction as outlined in Section 3.B then
uses predefined weightsW 0;W 0 0;… reflecting the assumed probabilities
for the cases λ 0 � λ; λ 0 0 � λ;…. Hence, assumed correlations between
the neighboring pixels are used to update the probability distribution
p�λj…�.
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C. Local Averaging Using Mixed Retrodiction

As defined above, the weights W ij represent our ad hoc ansatz on
the probability that the true intensities at the ith and jth pixels are
equal. Without further information about the imaged object, one
has to use general experience such as the assumption that typical
images have smooth regions. In this case it is reasonable to assume
that pixels in the same neighborhood share similar values.

Defining d ij as the Euclidean distance between the ith and the
jth pixel, we thus assume weights W ij � Dσ�i; j�,

Dσ�i; j� �
�
1 − �d ij∕σ�2 for d ij ≤ σ
0 else

; (21)

with some width σ > 0 to update the retrodiction for the ith
pixel (W ii � 1). This means that the measurements mj of the
pixels surrounding the ith pixel are combined with weights
W ij such that the probability for λi follows a distribution
p�λjfmj;W ijgj�1;…;N ; m̄� as outlined in Eq. (20).

The weightsW ij � 1 − �d ij∕σ�2 can be seen as an approxima-
tion to a Gaussian, but with a well-defined boundary so as to
reduce computational cost. Note that these weights are not nor-
malized, as they do not describe the usual averaging procedures,
but represent our assumption of the probability that the jth pixel
has the same intensity value as the ith, i.e., that the measurement
mj is a suitable choice to update the probability for λi.

D. Nonlocal Averaging

Basic local averaging methods are easy to implement and optimal
for smooth images, but they fail at the edges. This is why we
present an adaptation of the nonlocal means algorithm to add
to the mixed retrodiction scheme introduced above.

The nonlocal means denoising algorithm was introduced
by Buades et al. in 2005 [12]. In this algorithm each measured
pixel value is replaced by a weighted average of all other pixels in
the image. Contrary to the local average mentioned above, how-
ever, the weights do not depend on the distance between the pix-
els, but rather on the average similarity between the local
neighborhoods of the respective pixels. If, for instance, pixel i
and its surrounding pixels are similar to pixel j and its surrounding
pixels, then the jth pixel is weighted higher when retrodicting the
ith pixel, and vice versa. For Gaussian noise, it has been shown
that this approach reliably reduces noise while preserving struc-
tures as well [12,17].

In the original work [12], the similarity between two pixels is
evaluated using the difference between the measured pixel values,
but different measures targeted at Poisson noise have been pro-
posed [18]. We use a more Bayesian approach by expressing the
(dis-)similarity between two pixels with measurement values ml
and mk using the single-pixel retrodicted intensity difference
Δl k ≔ λl − λk. In Supplement 1 we derive the probability distri-
bution for Δlk using intensity retrodiction from Eq. (7) and the
corresponding mean value

E�Δjml ; mk; m̄� �
Xmk

n�0

�
ml � mk − n

ml

�
n� 1

2ml�mk−n�1η̄

−
Xml

n�0

�
ml � mk − n

mk

�
ml − n� 1

2ml�mk−n�1η̄
; (22)

where we again use η̄ � η�1� 1∕m̄�.

The average similarity between a neighborhood of width σ
around the ith pixel and the respective region around the jth pixel
is then defined as

Δ̂i;j ≔
1PN

k 0�1 Dσ�i; k 0�
XN−i

k�1−i

E�Δjmi�k; mj�k; m̄�Dσ�i; i � k�;

(23)
with a local averaging factor Dσ�i; i � k� that is proportional to
the Euclidean distance from the central pixel i as used in Eq. (21).
The weight factor W ij is then defined by the average similarity
and a tolerance parameter t:

W ij � exp�−Δ̂2
i;j∕�2 t2��: (24)

The weight W ij is thus proportional to the average similarity of
the respective neighborhoods at a distance σ from i and j as well as
a tolerance t . As E�Δjmi; mi; m̄� � 0 it is ensured that W i;i � 1.

Figure 5(b) shows the expectation values of a retrodiction us-
ing data from Fig. 2 and this approach inspired by the nonlocal
means algorithm. For this example we chose parameters σ � 2.5
and t � 0.5. For computational reasons we restricted the search
for similar neighborhoods to a 5 pixel × 5 pixel window centered
at the ith pixel (W ij � 0 for j outside this window). The same
parameters are also used in Figs. 6–8.

The measure of similarity here is based on the distance, given in
Eq. (22), which is calculated using a single-pixel retrodiction
scheme. Additionally, one could consider an iterative scheme where
the probabilities retrodicted using the weights from Eq. (24) are
used to compute an updated expectation value for Δ. A different
iterative Bayesian scheme for the nonlocal means algorithm has
been shown to be successful for Gaussian noise [17].

4. COMPARING DIFFERENT RETRODICTION
MODELS

To assess the quality of different retrodiction methods, we assume
that we know the true intensity for a pixel λt and calculate the
expected error for our retrodiction scheme, i.e.,

E err�λt ; m̄�≔ E�E�λjm; m̄� − λt jλt�

�
X∞
m�0

�
m� 1

η̄
− λt

�
Pois�m; ηλt� �

1

η�1� 1∕m̄�

�
1 −

ηλt
m̄

�
:

(25)

(a) (b)

Fig. 5. Expectation values from mixed retrodiction
E�λjfmj;W ijgj�1;…;N ; m̄� using the data from Fig. 2(b) and weights

from (a) local averaging [cf. Eq. (21)] and (b) nonlocal averaging
[Eq. (24)]. The chosen width σ � 2.5 in both cases, and tolerance
t � 0.5 for the nonlocal-means-inspired retrodiction.
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Thus, as we would hope, if our guess for m̄ is correct and m̄ ≈ ηλt ,
we can expect that the replacement m → E�λjm; m̄� gives the true
intensity λt. The variance for the retrodiction error is

V err�λt ; m̄�≔ E��E�λjm; m̄� − λt�2jλt� − E2
err�λt ; m̄�

� λt
η�1� 1∕m̄�2 : (26)

When we replace the measurements mi by a single value to
obtain a single example for the retrodiction, we could also use
the maximum likelihood instead of the expectation value. The
gamma distributions for intensity retrodiction have their maxi-
mum at L�λjm; m̄� � m∕η̄ such that the expected error for the
replacement m → L�λjm; m̄� is
EL
err�λt ; m̄�≔ E�L�λjm; m̄� − λt jλt�

�
X∞
m�0

�
m
η̄
− λt

�
Pois�m; ηλt� � λt�1 − η∕η̄�: (27)

Therefore, if we use the most uninformed flat prior where η � η̄
(i.e., m̄ → ∞), we can expect that a retrodiction using maximum
likelihood is, on average, correct. This is a surprising result that
would suggest that all efforts to refine our prior were in vain.
However, once we calculate the corresponding variance, we find
that V L

err�λt ; m̄� � V err�λt ; m̄�, which grows ∼λt∕η for the flat
prior η � η̄.

We thus conclude that if we have a reasonably good prior for
intensity retrodiction, where m̄ ≈ ηλt , then an image where m →
E�λjm; m̄� can be expected to be correct, especially for a small m̄.
Using the maximum likelihood and an uninformed prior will be
correct on average, yet terribly wrong most of the time.

As noted at the end of Section 2.A, one can use (Poisson)
image denoising algorithms to calculate an optimal local prior
m̄i at each pixel. This will obviously enhance the reliability of
the retrodiction, as ηλt;i ≈ m̄i will be true for a larger set of pixels,
i � 1;…; N .

The situation is similar if we use transmission retrodiction, as
introduced in Section 2.B. There we used a flat prior for the trans-
mission τ, and the expected error for retrodiction using the mean
value became zero at τ ∼ 1∕2 regardless of other choices.

Figure 6 shows the distribution of error if the expectation val-
ues from retrodictions as given in Figs. 3 and 5 are subtracted
from the original given in Fig. 2(a).

To quantify the difference between the retrodicted mean value
for various retrodiction methods and the true value λt , we use the
peak signal-to-noise ratio (PSNR) [7],

PSNR�λt ; x� � 10 log10

�
maxi�λt;i�2PN

i�1 �λt;i − xi�2∕N

�
; (28)

(a)

(b)

Fig. 6. (a) Expected error for intensity retrodiction using the mean
value E err�λt ; m̄� [cf. Eq. (25)] (red solid line) or the maximum likelihood
EL
err�λt ; m̄� given in Eq. (27) (magenta solid). The dashed lines give the

expected margin of error �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V err�λt ; m̄�

p
for both cases. Note that for

m̄ � ηλt the expected error E err crosses zero, though the variance keeps
growing ∼λt . (b) Average experimental error obtained by comparing ret-
rodicted images with the original from Fig. 2(a). Error from intensity
retrodiction (red circles) behaves as expected; error from transmission
retrodiction (green diamonds) shows that this method is optimal only
for τ ∼ 1∕2, i.e., λt ∼ ν∕2 (see Fig. 3). The mixed retrodictions described
in Section 3 (blue triangles, local weights; upside-down cyan triangles,
nonlocal weights) give better average results; see also Fig. 5 and Table 1.

Fig. 7. Retrodicted probability p�λj…� for a specific pixel from
Fig. 2(b) with m � 0, m̄ ≈ 0.4, η � 0.05, for different retrodiction
models: single-pixel intensity retrodiction (red, expectation value
E ≈ 5.9), single-pixel transmission retrodiction (green, E ≈ 13.7,
ν� 40), and the multipixel method as given in Section 3 with local aver-
aging (blue dashed, E ≈ 3.4) and nonlocal means (cyan dashed,
E ≈ 2.7). The true value λt ≈ 2.4 is indicated by the black dashed line.

(a) (b) (c) (d)

Fig. 8. Given the measurement values from Fig. 2, one can expect that the local intensities are larger than the values for (a) single-pixel intensity
retrodiction, (b) transmission retrodiction, and mixed retrodiction inspired by (c) local or (d) nonlocal averaging. The chosen evidence level is ev�λi ≥
ξ� � 20 [cf. Eq. (30)]; other parameters are as in Figs. 3 and 5.
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where x has to be replaced by the respective mean value, e.g.,
xi � E�λjmi; m̄�, for single-pixel intensity retrodiction. The re-
sults for the examples illustrated in Figs. 3 and 5 are given in
Table 1, where we see that the local averaging model as described
in Section 3.C performs best. This would also be expected from
Fig. 7(b).

An example of the retrodicted probabilities for a pixel from
the example in Fig. 2 is shown in Fig. 7. There we see clearly
how the mixed retrodiction models produce narrower probability
distributions. This is due to the Bayesian updates using neighbor-
ing pixels, as outlined in Eq. (20). Keep in mind that this
individual example represents only a single pixel; the average per-
formance is shown in Fig. 6.

5. HYPOTHESIS TESTING

Simply replacing measured photocounts with the expectation val-
ues of some retrodicted probabilities, as we did in Figs. 3 and 5,
does not take advantage of the full potential of retrodiction. If we
condense the probabilistic information we have about the inten-
sities to a single (possibly denoised) image, then we conceal the
uncertainty behind that image.

Consider a measurement showing a small bright spot. In order
to determine whether this bright spot shows the location of, say, a
fluorescent molecule or is simply noise, we need to ask questions
such as how likely it is that the intensity in this region is larger
than a certain value. More importantly, we can easily infer the
reliability of a statement by means of Bayesian hypothesis testing.

For example, using single-pixel intensity retrodiction, as given
in Eq. (7), the probability that the intensity at the ith pixel is less
than a certain value ξ > 0 is

Pr�λi < ξjmi; m̄� �
Z

ξ

0

p�λjmi; m̄�dλ � Γ
�mi � 1; η̄ξ�
�m� 1�! . (29)

The probability of the opposite situation is Pr�λi ≥ ξjmi; m̄� �
1 − Pr�λi < ξjmi; m̄�. The evidence [19] for a statement “λi ≥ ξ”
reading

ev�λi ≥ ξjmi; m̄� � 10 log10
Pr�λi ≥ ξjmi; m̄�
Pr�λi < ξjmi; m̄�

(30)

is then a reliable measure of whether the brightness of a pixel ex-
ceeds a certain level ξ. Similarly, one may ask whether the bright-
ness lies within a certain interval, λi ∈ �ξ; ξ 0�, or test hypotheses
regarding correlations between different pixels. Of course, similar
expressions can also be derived for the transmission retrodiction
scheme described in Section 2.B or the retrodiction schemes from
Section 3.

The ability to ask and reliably test such questions shows the
benefit of full Bayesian image retrodiction in addition to more com-
mon image denoising. Advanced denoising algorithms certainly

give more pleasant images and help the observer to identify pre-
viously hidden features. But in the end only proper hypothesis
testing can provide the level of confidence needed for qualified
scientific statements.

Figure 8 shows a possible application of this hypothesis
testing. Here every measurement mi from the raw data given
in Fig. 3 is replaced with a value ξ>20, which is defined such that
ev�λi ≥ ξ>20jmi; m̄� � 20. This means that the probability that
λi < ξ>20 is 100 times smaller than the probability that λi ≥ ξ>20.
Similarly, we can define ξ<20 as the value for which we can be very
certain that λi ≤ ξ<20.

A comparison with the real image from Fig. 2(a) shows that the
claim “λi > ξ>20” is true 98.2% for single-pixel intensity retro-
diction, 96.7% for single-pixel transmission retrodiction, 98.4%
for multipixel retrodiction using local averaging, and 97.7% for
multipixel retrodiction using nonlocal means. Similar ratios hold
for the claim “λi < ξ<20” (99.6%, 99.99%, 98.9%, and 96.3%,
respectively). The poor performance of the local and, in particular,
the nonlocal algorithm is a result of the narrow probability dis-
tributions obtained after multiple updates, which give a false sense
of confidence. This can be tackled, for instance, by reducing the
value of the weights W ij.

Further information can be obtained if, for instance, questions
on the probability that the average of several neighboring pixels’
intensity values lies in a certain region are asked.

6. CONCLUSIONS

In this work we provided some basic ideas to calculate the
Bayesian probability distributions for the intensity at each pixel
of an image obtained using photodetector arrays. These images
are usually very distorted by Poisson noise, which is why we argue
that a full probabilistic treatment is an essential extension to the
host of algorithms focusing on image denoising.

The single-pixel intensity retrodiction scheme presented in
Section 2 can be easily applied to the usual measurement data.
In particular, the possibility of estimating local mean values m̄i
using other denoising techniques might significantly enhance
the quality of this method. The mixed retrodiction schemes from
Section 3 try to include the measurements of other pixels and
some ad hoc correlations across the image. As illustrated in
Section 4, all these retrodiction methods give slightly different
estimates, as one would expect for Bayesian inference using differ-
ent priors.

The difference between image denoising and image retrodic-
tion as described here can be illustrated by the following analogy:
image denoising algorithms search for the optimal compromise
between the noisy data and general considerations about the im-
age so they can be seen as a fit to two-dimensional experimental
data. As image retrodiction provides the full probability distribu-
tion for the intensity at each pixel, it plays a role analogous to
error bars. A fitting curve is certainly more pleasant and often
sufficient for high-quality data, yet every scientist is aware that
it is essential to provide information about the margin of error
as well, especially for noisy data.

We thus think that image retrodiction and hypothesis testing
can serve as an important supplement to image-analysis-based ex-
periments and technologies in physics, astronomy, bio-chemistry,
and medicine [1–4,20]. Especially fast processes that cannot be
easily reproduced are likely to be accompanied by severe noise.

Table 1. Peak Signal-to-Noise Ratio for Different
Retrodiction Models as Compared to the True Image
Given in Fig. 2(a)

Model PSNR�λt ;·� (dB)
Single-pixel inten. retrod., Fig. 3(a) 16.5
Single-pixel transm. retrod., Fig. 3(b) 11.7
Mixed retrod., local average, Fig. 5(a) 18.7
Mixed retrod., nonlocal average, Fig. 5(b) 17.5
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Conclusions drawn from image analysis using (denoised) data can
be quantified using the techniques provided in this work.
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