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Abstract—Global connectivity requires reliable and affordable
access to the internet for digital inclusiveness. Shared spectrum
technologies are one of many technologies that can help pro-
vide affordable connectivity. They require available spectrum
(channels) from Primary Users (PUs) and share these among
future dynamic heterogeneous secondary user (SU) networks.
Coordination of these transient available resources is exacerbated
by dynamic SU network scenarios, thus raising the risk of
poor SU experience and inefficient spectrum and power usage.
Therefore, adopting reinforcement learning (RL), terrain-based
propagation models, and IEEE 802.19 coexistence principles,
a central intelligent real-time shared spectrum coordination
algorithm is proposed to coordinate resource allocation among
dynamic SUs operating at low bands. The proposed two-stage
algorithm was compared to existing shared spectrum allocation
techniques deployed in dynamic spectrum access (DSA) networks
to quantify RL’s impact on low-band wireless networks. 66% to
100% of SU nodes/access points (APs) that used the proposed
algorithm experienced good quality of service (QoS) in most
scenarios examined. A good QoS meant that 75% of APs receivers
experienced signal-to-noise plus interference ratio (SINR) greater
than 5. This was achieved using minimal AP transmission power.

Index Terms—shared spectrum, interference, coexistence, q-
learning, reinforcement learning, dynamic spectrum access,
TVWS, CBRS.

I. INTRODUCTION

According to the United Nations (UN), over one-third of
the world’s population are not connected to the internet [1].
The huge benefits of internet access have driven the need
for global wireless connectivity. Smart connections of devices
and the Internet of Things (IoT) need affordable connections
for global connectivity. One means of providing affordable
connectivity to these varied networks is the use of shared spec-
trum technologies [2]. These are technologies that facilitate the
shared use of spectral resources. Affordable connectivity can
be facilitated by the shared use of unused incumbent/Primary
users’ (PUs) spectrum by Secondary users (SUs), as this
allows for reduced licensing, capital, and operating costs in the
communication system [2]. Television White Space (TVWS)
and Citizens Broadband Radio Service (CBRS) in the United
States share resources with incumbent/PU TV broadcasters
and Fixed Satellite Service providers respectively. These Dy-
namic Spectrum Access (DSA) networks are examples of
shared spectrum networks that make use of a central pool of
PU/incumbent information in coordinating PU-SU coexistence
and decentralized coordination of SUs-SUs coexistence.

DSA network consists of a central spectrum management
system (database) that use the pool of PU information and
SU’s parameters in estimating available spectral resource for
SUs. The central spectrum access system/DB, assures PUs

of exclusive protection, while SUs decentralized mechanisms
provide for flexible and instantaneous access to unused spec-
trum [3]. To introduce a level of spectral assurance to SUs a
tiered system was adopted in CBRS architecture [4]. SUs are
categorized into priority access licensees (PALs) and general
authorized access (GAAs) licensees, and its Spectrum Access
System (SAS) coordinates the exclusive protection of PAL
users from interfering GAAs. Thus, GAAs with equal priority
(horizontal spectrum access) do not have the same level of
exclusive access to spectrum as PUs and PAL users.

SUs, guided by their Media Access Control (MAC) Proto-
cols, use distributed or decentralized techniques in randomly
selecting available channels for safe coexistence. These inter-
nal coordination schemes are spectrally flexible and device
dependent. However, Heterogeneous networks and devices,
with varied network architecture and Media Access Control
(MAC) Protocols lack a unified or standard communication
mechanism reducing the effectiveness of the proposed intelli-
gent decentralized or distributed resource management coordi-
nating system [5], [6]. Relying on the existing communication
structure in DSA networks, and the pool of information in their
spectrum management systems, we propose an implementable
central intelligent spectrum and power resource matching
scheme for improved SU-to-SU coexistence. The proposed
algorithm provides exclusive resource allocation to GAAs
and SUs with horizontal spectrum access and reduces the
degree of resource contention managed by MAC or distributed
coordination.

II. LITERATURE REVIEW

There is a myriad of research work on resource alloca-
tion techniques that have used mathematical, game theory,
heuristic, and reinforcement learning methods [7]. Reinforce-
ment Learning (RL) gives dynamic solutions to non-convex
wireless communication resource allocation problems [8]. RL
approaches to wireless networks have been categorized into
centralized and decentralized (distributed) algorithms based on
the network architectures in [9] to address several network
challenges.

Distributed RL resource management algorithms were de-
signed to assist user equipment (UE) in effectively maximizing
subchannels in DSA networks [10], to select spectrum (chan-
nels/subchannels) that enable it to coexist with SUs and PUs
in DSA networks (vertical spectrum access) [11], to optimize
power used by SUs [12] and jointly optimize power and
spectrum [13] usage in different networks. These distributed
spectrum management algorithms, have SUs (nodes or UEs)
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as decision-makers informed by limited/local information from
neighbouring SUs. Thus nodes need a communication mech-
anism necessitating a similar MAC/PHY layer or standards.
This was evidenced in the practical implementation of these
approaches in [14], [15] where network nodes’ MAC/PHY
layers had to be re-configured to communicate using wireless
or wired communication links in CBRS networks. This may
not be possible in certain network scenarios.

A unified central and distributed approach to coexistence
management was proposed in the 802.19 standard for re-
source management in heterogeneous DSA networks [16].
They however do not provide a specific implementation. Simi-
larly, resource management suggested in WInnforum standard
for CBRS proposed a recursive reuse of spectrum among
nodes with future releases to focus on power and intelligent
resource management [17], [18]. A heuristic implemented
WInnforum’s recursive spectrum allocation in central joint
resource allocation of a CBRS network was explored in [19].
These approaches were prescriptive, void of the predictive and
adaptive benefits of RL methods.

A central and distributed RL resource management among
the same priority nodes was suggested in [20], SUs’ agents
took decisions that were centrally rewarded based on in-
terference prevention. Their robust RL algorithm for large
network sizes focused on optimizing power and assumed an
efficient channel allocation. A central coordinating RL algo-
rithm achieved optimal resource allocation through an event-
triggering training of their offline policy in a dense WLAN was
proposed in [21]. Similarly, in [22] a Graphical Convolution
Network (GCN) with RL centrally matched multiple APs
to the same spectrum in a densely populated WLAN . The
network structure (homogeneous networks) and resource man-
agement objective (maximizing throughput) differed from our
proposed algorithm as some parameters were not applicable
in DSA network.

Closely related work used recursive neural networks and
Boltzmann optimization equation in resource allocation for
coexistence management among SUs in a DSA network [23].
Also, a Q-learning algorithm was developed in [24] to enable
the shared use of spectrum between PUs and SUs (underlay
coexistence) at optimal data rates. Centralized approaches have
been prescriptive, used different learning algorithms for either
spectrum or power resource sharing, and focused on vertical
spectrum access. Our centralized intelligent resource manage-
ment algorithm addresses DSA’s unique joint resource sharing
challenges among horizontal access heterogeneous networks
to promote resource reuse and reduce SUs’ contention.

III. METHODOLOGY

A. Network Architecture
PUs are assumed to be protected adequately by our pre-

viously designed database in [25]. SUs frequently commu-
nicate their device location and transmission parameters to
SAS/database, based on local shared spectrum regulation [16].
The heterogeneous network simulated consists of IEEE 802.11
Television Very High Throughput (TVHT) wireless local area
network (WLAN) and IEEE 802.22 wireless regional area
network (WRAN) access points (AP) described in Figure 1.
In the Figure, the colored APs and channels reflect APs with
different MAC protocols and available channels.

Fig. 1. Intelligent Coordination of Heterogeneous Access Points

B. Intelligent Coexistence Manager

The objective of SAS, within which the intelligent co-
existence manager lies, is to allocate resources such that
resources are utilized maximally while SU-to-SU interfer-
ence is minimized. Future shared spectrum networks may be
characterized by dynamic spectra bands and heterogeneous
access points that seek to share resources [6]. Identifying the
maximum number of APs that can share resources can be
challenging when the minimum interference level for SU-to-
SU coexistence is not clearly defined. To address this we adopt
the 802.19 definition of interference level discovery as the 90th
percentile experienced by receivers of an AP from another
interfering AP. Similarly, finding the balance between reducing
the allocated power of an AP to prevent it from interfering with
another AP, while maintaining its user equipment’s (UEs) QoS,
remains a challenge in dynamic and instantaneous networks.
We explore Q-learning reinforcement algorithm in solving
these optimization problems.

C. Mathematical Formulation

The objective of the intelligent coexistence manager was
split into two: spectrum allocation and power allocation stages.

1) Spectrum Allocation Phase: The overall objective of this
phase was to allocate spectrum and minimize the interference
between APs transmitting at maximum power. Using the
idea of graph theory, we attempt to minimize interference in
equation (1) by reducing the number of pairwise interference
Iki,j between access points (i and j) in order to optimize spec-
tral reuse and reduce interference simultaneously. A pairwise
interference existed when the interference level experienced
by m (an ith AP’s receiver) from a jth AP, exceeded the
sensitivity of m [16]. The interference level threshold Ileveli←j

in equation (1) and (2) was the 90th percentile of received
signals strength (RSSi←j) at 100 APi receivers as a result
of APj transmitting at the same k channel as APi. At any
instance (t), the maximum number of channels assigned to
an ith node/AP (kimax

) is one, however, this channel can be
shared by multiple (Mk) nodes defined by (βk

i (t) in equation
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(1)). Also, there were more node/APs (N) than available
spectrum (K), reflecting spectral contention.

min
N∑
j=1

N∑
i=1

Iki,j k = 1, . . .K; i ̸= j (1)

subject to:

kimax
=

K∑
k=1

βk
i (t) = 0 or 1; i = 1, . . . N ;

Mk =
N∑
i=1

βk
i (t) ≥ 0; k = 1, . . .K;

K < N

βk
i (t) =

{
1, if ith node is allocated kth channel.
0, otherwise.

Iki,j =

{
1, if Ileveli←j

≥ sensitivityirx .

0, otherwise.

where

Ileveli←j
= RSS90% = maxRSS

subject to

P [RSSi←j < RSS] ≤ 90% (2)

2) Power Allocation Phase: The optimal channel allocation
from the previous phase was the input to this phase, aimed at
minimizing APs transmitting power while maintaining good
QoS for their receivers. Good quality of service was achieved
in equation (3) by minimizing the difference between signal-
to-noise ratio (SNR) experienced by UEs when an AP was
the sole occupier of a channel and its Signal to Interference
plus Noise Ratio (SINR) when it shared its resource with other
APs.

min(SNRi − SINRi) (3)

subject to

Pmin < Pi < min(Pmax, Pdb)

Where Pi is a set of AP ′is transmitter power bounded between
minimum power (Pmin) and maximum power ((Pmax) of the
AP or the SAS assigned power limit (Pdb).

SNRi =
PiHi,m

σ2
i = 1, . . . N,m = 1, . . .M (4)

SINRi =
PiHi,m

σ2 +
∑N

j=1 PjHj,m

i, j = 1, . . . N ; i ̸= j; (5)

SNR and SINR in equations (4) and (5) have Hi,m as the
channel characteristics defined as path-loss between an ith AP
and its mth receiver. The noise power at m is represented as
the power of AWGN (σ2). Pj is the Power transmitted by any
other jth AP sharing an ith AP’s channel and Hj,m is channel
characteristics between j and m nodes.

D. Reinforcement Learning Algorithm Design
We proposed the inclusion of an intelligent coexistence

manager (an RL algorithm or agent) in the database/SAS
such that it uses the APs’s ID, location, sensitivity, and
antenna height, together with PU’s available channels and their
permitted power limits to create an RL environment. The RL
agent/algorithm is split into two stages:

1) Spectrum Allocation: In algorithm 1, the RL environ-
ment provides a starting AP’s index (i) defined in equation
(6) as (s(t)), on which an action (equation (7)) of allocating
(a(t) = k) or not allocating (a(t) = 0) a channel to the AP
was taken. The reward function in equation (8), captures the
total number of APs (Mk) sharing a channel k, (Mk ⊆ S),
and all interfering pair edges (when Ikij(t) or Ikji(t) = 1).

s(t) = i ∈ S; S = {1, ...N}; and N = n{S} (6)

a(t) = ai ∈ {A}; A = {0, k, ...,K}; K channels (7)

ri(t+ 1) = (2 + e−n(Mk))

Mk∑
j=1

Mk∑
i=1

Iki,j k = 1, . . .K; i ̸= j;

(8)

Algorithm 1: Spectrum Allocation
Input: Initialize Q(s, a) values, learning rate (α),

discount factor (γ) and ϵ-greedy. Initialize RL
environment initial state (s(t)) from equation 6

Output: π∗(s, a) = Q∗(s, a)
for epi = 1 to #episodes do

for t = 1 to #steps do
from the current state s(t);
An ϵ-greedy rule:;
if a random number > ϵ-greedy then

an action (a(t))= argmaxA(Q(s, a)) from
algorithm’s Q-Table is taken

end
else

A random action (a(t)) from equation 7
end
Obtain a reward ri(t+ 1) equation 8 and a
random next state (s(t+ 1)) equation 6 from
RL environment;

To minimize number of edges in equation (1)
r(t+ 1) = −ri(t+ 1);

From Q-table, obtain all possible next state
actions’ value (Q(s′, a′);

Update the Q-table using equation (12)
end

end

2) Power Allocation: The agent in algorithm 2 minimized
the objective function in equation (3) by observing as its state,
an AP’s id and its previous transmission power, (equation (9)),
and taking an action (equation (10)) of a single-digit increase
(2), decreased (1) or no action (0), on the observed power.
Controlled by the reward function in equation (11).
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s(t) = {i, Pi(t− 1)} Pi(t− 1) ∈ Pi, in equation (3) (9)

a(t) = {0, 1, 2} (10)

rp(t+ 1) = ∥SNR(t)–SINR(t)∥ (11)

Algorithm 2: Power Allocation Q-Learning
Input: Initialize Q(s, a) values, learning rate (α),

discount factor (γ),ϵ-greedy, and RL
environment initial state (s(t)) from equation 9

Output: π∗(s, a) = Q∗(s, a)
for epi = 1 to #episodes do

for t = 1 to #steps do
from the current state s(t);
Follow an ϵ-greedy rule to generate an action:
(a(t)) same as algorithm 1;

Obtain a reward rp(t+ 1) from equation 11
and a random next state (s(t+ 1)) equation 9
from RL environment;

Minimize change in SINR in equation (3)
r(t+ 1) = −rp(t+ 1);

Obtain all possible next state Q values from
Q-Table (Q(s′, a′);

Update the Q-table using equation (12)
end

end

3) Policy search: The algorithms search through 2a(t)

policies while taking actions from different starting states,
to determine the sequence of actions that assures it of the
best reward [26]. The algorithms greedily searched through
these options in each iteration and updated a current q-
table’s Q(s, a) values with Q′(s, a) using the equation (12).
A shuffle between a selection of best policy (exploitation) and
a thorough search (exploration) was done in each iteration to
prevent the algorithms from being stuck at local minimum.

Q′(s, a)← Q(s, a)+α[R(s, a)+γ argmaxAQ(s′, a′)−Q(s, a)]
(12)

where s = s(t), a = a(t) and Q(s′, a′) = are Q-values from
all possible action at the next state s(t + 1). R(s, a) is the
reward for being in state s(t) and taking action a(t). Learning
rate α and discount factor γ are training hyperparameters.

IV. SIMULATION RESULTS

A. Simulation Environment
The dynamic heterogeneous network in Figure 1 was simu-

lated in Python, it consisted of WRAN (diamond) and WLAN
(circular) APs randomly located in a wide 10 km by 25 km
area, to capture low band’s wide coverage. The path loss was
estimated with the terrain-based Longley Rice propagation
model for distances greater than 1 km, as low-frequency bands
are susceptible to environmental constraints and with the free-
space model at below 1 km. SUs regularly updated their
status with the central database, providing real-time training

of the RL algorithm. In each iteration, of the algorithm in
all scenarios explored the algorithm converged at optimal
accumulated rewards as illustrated in Fig. 2.

B. Resource Allocation
Allocation techniques, random (rand), and recursive(recur)

were compared with the first stage of our algorithm (Qfirst),
and it behaved similar to other algorithms in the Figure 3
bar chart. The random APs locations made it difficult to
share resources maximally, it however did as well as other
techniques in terms of the quality of service shown in the
figure’s box plot. We define a good QoS experience as when
only the first quantile of an AP’s receivers suffer degradation,
by having SINR less than 5.

As the number of APs was increased in Figure 4, our
algorithm allocated the same number of channels to APs as
other methods in the bar chart. It, however, did better in QoS
as it all its APs, transmitting less power, achieved good QoS.
It therefore provides less contention among sharing SUs, when
compared to other methods.

Fig. 2. Convergence of channel and power allocation algorithm

C. Scalability
Further increase in the number of APs to 6, when only 2

channels were available in Figure 5 bar chart, showed only
4 APs were allocated. Our algorithm learned not to reuse
channels when it resulted in more APs having poor QoS. Thus
3 out of its 4 APs enjoyed good QoS in the figure’s box plot.
In these instances, other methods reallocated these channels
resulting poor QoS.

Similarly, when the number of channels were increased to
3 and APs were few (4), the algorithm learned to optimize
channels by reusing only two channels as shown in the
barchart of Figure 6 while ensuring good QoS of all or most
APs. This was repeated if Figure 7 where 4 out of 5 AP had
good QoS when it optimally matched 3 channels to 5 APs,
even when it had 4 available channels. It therefore chose reuse
of a channel based on permitted network interference and QoS
degradation. Its overall performance in this figure was similar
to random allocation’s performance and better than recursive
allocation.

D. QoS Evaluation
In the same vein our algorithm automatically matched 8

APs to 4 channels in Figure 8 and one out of the 8 APs
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experiencing poor QoS. On average the algorithm’s allocation
ensured that 66% to 100% of APs allocated enjoyed great
QoS in each network scenario investigated. This was slightly
better than the 50% to 100% performance of other prescriptive
allocation algorithm which could not adapt to varied QoS con-
ditions/scenarios. The algorithm slightly reduced contention
as compared to its counterparts, but its performance was
significantly affected when the number of APs and Channels
went beyond 8 and 4 respectively. This Q-learning algorithms
perform poorly in large state spaces, as its states were a
function of the number of APs.

Fig. 3. Comparing allocation techniques N = 3 and K = 2

Fig. 4. Comparing allocation techniques N = 4 and K = 2

V. CONCLUSION

Learned algorithms generate predictive re-
sponses/allocations to dynamic network demands, unlike
prescriptive algorithms, making them responsive to future
spontaneous shared spectrum networks. We proposed an

Fig. 5. Comparing allocation techniques N = 6 and K = 2

Fig. 6. Comparing allocation techniques N = 4 and K = 3

intelligent real-time central coordinating resource allocating
algorithm for a heterogeneous DSA network. In all scenarios
of channel to AP allocation examined, our algorithm ensured
that 66% to 100% APs matched with channels experienced
good QoS. It struggled to maintain this performance as the
size of network increased. Compared to other algorithms,
the learning algorithm slightly improved resource contention
among SUs as more of its SUs enjoyed good QoS prior
to any contention management measures. The algorithm’s
reuse of channels and reduced power consumption decreased
resource contention in small sized networks and can foster
affordable connectivity.
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Fig. 7. Comparing allocation techniques n = 5 and k = 4

Fig. 8. Comparing allocation techniques n = 8 and k = 4
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