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Abstract: Railway embankment slopes are exposed to natural hazards such as excess rainfall, floods,
earthquakes, and lake water/groundwater level variations. These are generally considered during the
design, construction, and maintenance periods of the embankment. In this study, combined laboratory
test methods and a computational approach were applied to assess the effect of groundwater level
changes on the railway embankment. The Plackett–Burman (PBD), Box–Behnken design response
surface methodology (BBD-RSM), and an artificial neural network (ANN) were used to predict
the behavior of the embankment soil hydromechanical properties to determine the integrity of the
embankment as water level fluctuates under varied seasonal conditions. The results show that the
seepage line is concave during the rising water level (RWL) period, and the railway slope’s static
stability factor surges and then stabilizes. Further analysis found that the slope’s stability is largely
affected by some of the hydromechanical properties of the soil embankment material, such as the
internal friction angle (ϕ), soil density (ρs), and cohesion (c). The second-order interaction factors c x s,
x s, and s2 also affect the stability factor. It was observed that the four most sensitive parameters under
both falling water level (FWL) and RWL conditions are ϕ, ρs, c, and rate of fall/rise in water level (H).
The statistical evaluation of the RSM model produced R2 values of 0.99(99) and 0.99, with MREs of 0.01
and 0.24 under both RWL and FWL conditions, respectively, while for ANN, they produced R2 values
of 0.99(99) and 0.99(98), with MRE values of 0.02 and 0.21, respectively. This study demonstrates that
RSM and ANN performed well under these conditions and enhanced accuracy, efficiency, iterations,
trial times, and cost-effectiveness compared to full laboratory experimental procedures.

Keywords: coupled seepage-stress; static railway slope stability; prediction; perturbation analysis;
artificial neural network; response surface methodology

1. Introduction

The exposure of embankment infrastructure to natural hazards is unavoidable [1].
This results in the instability of embankment slopes, which has increased in recent times
due to human activities [2] and climate variability [3]. On a global scale, this problem
poses a serious threat to the management and development of railway infrastructure and
similar transportation networks [4]. Recently, the long-term performance of embankment
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slopes has become a focus of scrutiny [5,6]. The consequences of climate change have made
rail infrastructure more vulnerable to water-related risks, such as floods [7], ponding, and
fluctuations in water levels [8].

China has one of the most diversified hydrological systems in the world [9], with a
complex network of rivers, such as the Yellow and Yangtze Rivers, as well as enormous
lakes, such as Qinghai Lake and Dongting Lake. The area surrounding Dongting Lake
(the study area), near the Nanhu railway embankment between Beijing and Guangzhou
provinces, has been affected by the lake’s fluctuations (and resulting groundwater changes),
resulting in multiple failures and constant repair. As a result, these situations not only
accelerate embankment deterioration but also drive up rehabilitation and maintenance
costs [10]. To address these challenges, several solutions have been used, including the
placement of soil reinforcement techniques ranging from fibers and rock mixtures [11] to
steel piling [12]. However, the control of traffic loads and the consequences of climate
change have made these efforts persistently difficult [13]. Ensuring the long-term stability of
embankment slopes under water level fluctuation requires advanced engineering solutions
that could capture seasonal and long-term fluctuations while allowing for increased traffic
demands at the same time [14,15]. An attempt to address these difficulties is crucial
to ensuring the reliability and resilience of critical transportation systems [16]. Recent
studies have stressed the relevance of incorporating soil hydromechanical parameters for
evaluating the performance of embankment slope constructions under different geohazard
conditions [17–20]. Using the bibliometric tool VOSviewer 1.6.19 to analyze previous
studies from the Scopus database revealed a noticeable trend in slope stability analysis
under changing water levels and limited work on sensitivity and optimization of slope
stability factors (see Figure 1).
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In addition to external influences, the physical properties of the material structure are
internal elements that play an important role in slope stability, as the changes in saturation
states of the soil due to seepage fields impact both local and overall slope stability [17,21].
Additionally, groundwater table variations could have considerable impact on the slope
stability due to its time domain [22,23]. Another way to improve the performance of rail-
way embankment slopes is to examine the quantitative relationships between parameters
regulating safety coefficients [24]. Technically, this requires examining the effect of changes
in each hydromechanical parameter on the safety factor and knowledge about their domi-
nating roles in stability analysis [25]. This is critical for developing appropriate mitigation
strategies and control guidelines to minimize instability [26]. Unfortunately, water level
changes in railway slope stability is a subject that has received little attention [27]. Some
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studies advise that for long-term performance and a robust railway system, sensitivity
assessments for each parameter of the railway slope under bidirectional water levels are
critical [28]. Zhou [17] investigated the sensitivity of variables such as unit weight, internal
friction angle, water level, and cohesiveness on the slope stability factor of safety. Using
the tree-augmented naive Bayes (TANB) approach, Ahmad [29] studied the impacts of
parameters such as pore–pressure ratio, internal friction angle, cohesion, slope angle, and
unit weight on the stability coefficient. Using an artificial neural network, Abdalla [30]
investigated the effects of variables such as internal friction angle, cohesiveness, slope
height, and unit weight on the stability factor. Tao [31] used a support vector machine
(SVM) [32] to evaluate slope parameters. Hu [33] assessed the sensitivity of unit weight,
cohesiveness, and internal friction angle to the slope stability factor of safety using partial
Spearman rank (PSS) correlation coefficients.

Zhou et al. [17] used reliability coefficients with cohesion and internal friction angle as
components, following other studies of sensitivity analysis for embankment slope parame-
ters [34–37]. However, fluctuating water levels coupled with the static train loads found
a sensitivity analysis of railway embankment slopes complicated. To understand their
interactions and the influence of input factors on the response variable, it is critical to build
a trustworthy and obvious relationship between output and input variables [38]. Existing
studies have concentrated on individual hydromechanical parameters of the soil or external
factors (rainfall, water level fluctuation, etc.), with little focus on interactions and sensitivity
to railway embankment slopes. Ignoring factor interactions may not accurately depict the
nonlinear relationships between components and the slope’s response factor, which is a key
drawback in past research. Hence, this study aimed to evaluate the connection between
external and internal factors and their impact on the stability of the railway embankments
while considering the coupled impacts of the static load stress under fluctuating water
levels. To integrate this concept, a method for performing thorough and reliable coupled
static stress and seepage sensitivity analyses on railway slopes was developed. Emerging
artificial intelligence approaches, such as fuzzy logic (FL), ANN [39,40] and gene expres-
sion programming (GENXPRO) are regarded as robust and reliable for developing slope
stability models, even without prior knowledge of the seepage and stress fields within the
railway embankment slope environment. Several strategies for improving the accuracy of
ANN model predictions have been proposed [29], with the back-propagation algorithm
(BP) standing out as particularly effective [41]. To achieve these objectives and establish
the integration of both internal and external embankment stability controlling factors, both
artificial neural network (ANN) and Box–Behnken design (BBD-RSM) models were selected
due to their good precision in the field of civil engineering [41,42].

2. Materials and Methods
2.1. The Plackett–Burman and BBD-RSM Experiment Design

The Plackett–Burman design (PBD) is a powerful tool for analyzing variables and
identifying critical factors [43]. It achieves this by examining a large number of variables
within a small number of experiments. The BBD-RSM embedded in the Design-Expert
13.0.0 program [44] was used to simulate and assess the interactions of the contributing
variables selected by PBD during stability coefficient determination [44]. Hence, the BBD
for three independent parameters (cohesion (c), elastic modulus (E), water level rate of
change (v), internal friction angle (ϕ), train static load (L), infiltration coefficient (ks), soil unit
weight (ρs), elevation of fluctuating water level (H), Poisson’s ratio (v), residual moisture
content (θr), and van Genuchten fitting parameters (n, m, and α)) were used to determine
the effect on earth material embankment stability. The following equation is the baseline
mathematical relationship used by BBD [45]:

Y = β0 + ∑k
i=1 β0 Xi + ∑k

i=1 βii Xii
2 + ∑k

i=1 βij XiXj (1)
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where Y is the predicted response; β0 is constant; and βi, βii, and βij are the linear, quadratic,
and interaction coefficients. Finally, Xi and Xj are the coded values of independent
parameters.

2.2. The Artificial Neural Network (ANN) Model and Its Importance

Buscema [46] says it is important to give a clear definition of the interlayer as the point
where two successive layers meet, where the connection weights spin across the neurons of
the leading layer. The MLP network under analysis contains X interlayers.

For interlayer x ∈ {1, 2, 3, 4, . . . . . . X}, there are Jx of nodes and Jx × Jx−1 connection
links with weights W ∈ RJx×Jx−1 , where Jx and Jx−1 are the numbers of nodes (including
thresholds) in interlayers x and x − 1, respectively. A connection weight is defined as Wk,i

x

if it resides in interlayer x and connects node k of interlayer x with i of lower (preceding)
internode layer x − 1 (node i is the source node, and node k is the destination node). In any
interlayer x, a typical neuron k integrates the signals, yk, imposing onto it and result to a
net effect, ϵk, giving to linear neuron dynamics given as follows:

ϵk
x = ∑Xl−1

i=1 wk,i
xxi

x−1 (2)

The corresponding activation, yk
x, of the neuron is determined using a transfer func-

tion, σ, that converts the total signal into a real number from a bounded interval, as follows:

yk
x = σϵk

x = σ ∑Xl−1
i=1 wk,i

xxi
x−1 (3)

One general function used in BP is the basic continuous sigmoid, as follows:

σ(ϵ) =
1

1 + e−ϵ
(4)

where ∞ > ϵ > −∞ and 1.0 ≥ σ ≥ 0.0 are used for all nodes to compute the activation. For
the input nodes, the activation is purely the raw input.

Iteration was used to construct network outcomes (predicted values) that closely
matched the actual values by modifying input weights, layer weights, and biases. The
datasets were separated into training, testing, and cross-validation sets to avoid over-
parameterization and over-training [47]. The data from 17 experimental runs were ran-
domly divided into three sets in the SRFI model for training (50%), testing (25%), and
validation (25%). Similarly, the SRF2 model data from 30 experimental runs was divided
into training (70%), testing (15%), and validation (15%). The research evaluated different
ANN model topologies from 3 to 10 neurons to see which produced the highest correlation
of coefficients (R2) and the lowest mean-square error (MSE) and root mean-square error
(RMSE) for the training, test, and validation datasets.

2.3. Models and Evaluation Criteria for ANN and BBD-RSM

The significance and performance of the ANN and BBD-RSM models were assessed
using the following statistical performance indices: coefficient of determination (R2), mean
relative error (MRE), and roots mean-square error (RMSE), as follows:

R2 = 1 −
(

∑n
i=1(Si − Fi)

2

∑n
i=1(Fi)

2

)
(5)

RMSE =

√
1
n

n

∑
i=1

(Si − Fi)
2 (6)

MRE(%) =
1
n

n

∑
i=1

∣∣∣∣100
Si − Fi

Si

∣∣∣∣ (7)
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where, Si and Fi represent the actual parameter and predicted parameter values, respec-
tively, as determined by the ANN and BBD-RSM models, and n denotes the total sample
size or number of parameters.

2.4. Study Area Overview

The railway embankment examined in this study is the K1430 + 110 of the Beijing-
Guangzhou Railway in Yueyang City, Hunan province; 113◦05′00.46′′ E, 29◦20′48.66′′ N.
This area has complex geological and hydrological conditions. Hydrologically, the area has a
humid subtropical climate with variable rainfall and high humidity. The region experiences
monsoon rains, which can cause flash floods and landslides [48]. The K1430 + 110 stretch
of the Beijing-Guangzhou Railway embankment in Figure 2 is near Dongting Lake, one of
China’s largest freshwater lakes and a vital hydropower and irrigation resource. Flooding is
common due to its low-lying topography and proximity to Dongting Lake and the Yangtze
River (Figure 2).
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This research compared BBD-RSM and ANN methods and proposed a related seepage-
stress field-based sensitivity analysis strategy. The objective was to evaluate how various
elements and their interactions affect railway embankment slope stability under chang-
ing lake water (and subsequent seepage groundwater) levels. A section of the Beijing-
Guangzhou railway embankment slope at Nanhu, Hunan Province, China, was used to
demonstrate the methodology. The main objective was to evaluate the sensitivity of each
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significant element and their interaction terms for the railway embankment slope stability
coefficient of safety.

2.5. Modeling Approach

Physical parameters of the railway embankment slope were obtained using laboratory
testing. A cross-section of the railway embankment slope (Figure 2c) [48] and lake water
level measurements were collated.

A 2D finite element model of the railway embankment slope was produced using
the soil material parameters from experimental data using GeoStudio 2012 software [49].
Currently, there is no information on groundwater/surface water interaction or lag times for
the study area. Therefore, an instantaneous change in pore water pressure with variations
in lake levels was employed to establish the model boundary conditions for both rising
(0.1 m/day) and falling (0.2 m/day) scenarios. Scenarios 1 and 2 are as follows: increasing
water (53.5 m to 71.2 m and 53.5 m to 58 m) used historical field data of the lake water
levels. These were observed to be critical within 20 days in the summer and autumn, and
hence, seepage analysis was conducted for 20 days under various drawdown scenarios.
Previous research shows that water level and antecedent precipitation changes most affect
slope stability after 5 days [50–52].

The Plackett–Burman experimental design is used to screen nine parameters affecting
railway embankment slope stability; the most critical parameters were chosen, and minor
factors were excluded. The BBD-RSM test design evaluated the main and interaction
effects of selected significant factors from the Plackett–Burman test. Components with
considerable sensitivity to the railway slope stability coefficient were identified. The BBD-
RSM dataset was used to build an ANN model using JMP Pro 15.0 software [48]. Finally,
BBD-RSM and ANN findings were compared to assess their stability factor sensitivity
analysis performance.

In this study, nine external and internal elements affecting railway embankment
stability were screened. Two unique levels were selected by the One Factor at a Time
process for each factor. Table 1 show the factors analyzed and their greater (+) and lower (−)
values. A full matrix of a normal 12-run PBD (Table 2) was constructed using Minitab
19.0 [17].

Table 1. Experimental levels for nine parameters using Plackett–Burman and BBD-RSM.

Factor Level v (m/s) ρs (kg/m3) c (Kpa) φ (◦) L (KN) κs (m/s) µ E (Mpa) H (m)

+ 0.22 2090 15.4 37.4 143 5.83 × 10−6 0.33 25.85 18.7

0 0.2 1900 14 34 130 5.30 × 10−6 0.3 23.5 17.0
- 0.18 1710 12.6 30.6 117 4.77 × 10−6 0.27 21.15 15.3

Table 2. Results and scenarios of Plackett–Burman analysis of nine criteria for rising and falling
water level.

Iterations Plackett–Burman Analysis of Nine Criteria for Rising Water Level Plackett–Burman Analysis of Nine Criteria for Falling Water Level

H v k c ϕ µ E ρs L
SRF

Rising H v k c ϕ µ E ρs L
SRF

FallingID

SR 1 + − − − + + + − + 2.155 + + − + + − + − − 1.986
SR 2 + + − + − − − + + 2.066 + + − + − − − + + 1.782
SR 3 + − + − − − + + + 1.827 − − − − − − − − − 1.78
SR 4 − − − − − − − − − 1.825 + − − − + + + − + 1.931
SR 5 − + − − − + + + − 1.891 + + + − + + − + − 1.852
SR 6 − + + − + − − − + 2.031 − + − − − + + + − 1.703
SR 7 − − + + + − + + − 2.28 − + + − + − − − + 1.916
SR 8 + − − − + + + − + 2.131 + − + + − + − − − 1.846
SR 9 + − + + − + − − − 2.07 − − − + + + − + + 2.011
SR 10 − + + + − + + − + 1.947 + − + − − − + + + 1.681
SR 11 + + − + + − + − − 2.156 − + + + − + + − + 1.826
SR 12 + + + − + + − + − 2.13 − − + + + − + + − 2.009
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3. Results and Discussion
3.1. Parameter Screening with Plackett–Burman (PBD) and RSM Modeling

The global perturbation analysis method examined parameter influences from external
and internal sources. Therefore, a screening strategy was used to choose the most sensitive
embankment stability coefficient values, followed by an assessment of their total sensitivity.
The initial screening of the 14 factors affecting railway embankment stability used PBD
by Minitab 19.0 [17]. These factors include cohesion (c), elastic modulus (E), water level
rate of change (v), internal friction angle (ϕ), train static load (L), infiltration coefficient (ks),
soil unit weight (ρs), elevation of fluctuating water level (H), Poisson’s ratio (v), residual
moisture content (θr), and van Genuchten fitting parameters (n, m, and α). Zhang [17]
found that θs, n, m, α, and θr have little effect on earth material embankment stability and
were assumed to be negligible.

This study only examined L, v, ρs, c, ks, ϕ, E, H, and ν. Each variable was tested at
two independent levels, with the lower level (−1) set to drop by 10% from the baseline
basic working norm and the higher level (+1) set to grow by 10% [17]. Table 1 shows a
20% difference between the higher and lower levels. A probability value (p-value) below
0.05 in the statistical analysis showed a significant influence on the railway embankment
stability factor, guiding the PBD test factor selection, as shown in Table 2. These parameters’
primary effects were assessed using PBD and were further evaluated for main effects using
BBD-RSM.

The normalized effects show that when rising lake water levels impact the railway
slope, the impact of each influencing parameter is ranked in ascending order: µ < E < v <
Ks < H < L < c< ρs< ϕ. Interestingly, c, ρs, and ϕ greatly impact the global static stability and
safety factor of the railway embankment slope. E, v, Ks, H, and L are less important. PBD
results show that when water levels drop, the sensitivity of each parameter is classified
as follows: E < µ < v < Ks < L < ρs < H < c < ϕ. This indicates that ϕ, c, H, and ρs greatly
affect the railway slope’s global static stability and safety factor. The parameters E, v, Ks, L,
and µ have minimal impact on the global static stability of the railway slope and its factor
of safety. A preliminary analysis shows that the mechanical properties (ϕ, c, and ρs) of
the railway slope are affected through its global stability and safety factor during varying
water levels. Train static loading does not affect the global static slope factor of safety, but it
is stronger when water levels rise than decline. The soil coefficient of permeability, Ks, is
less sensitive to the railway slope’s global static stability safety coefficient, possibly due to
embankment compaction rates [17].

In addition, the seepage flux (Ks, H, and v) sensitiveness on the railway slope’s static
stability coefficient is greater with falling water levels than with rising levels. The lake’s
fast water level variations may explain this (assuming instantaneous pore water pressure
response). Thus, the railway embankment slope seepage field characteristics (Ks, H, and v)
will need to be monitored for long-term sensitivity. Based on the standardized effects chart,
three of the most influential components for the increasing water level scenario and four
for the dropping water level scenario were selected for BBD-RSM analysis.

The variables H, ρs, c, and ϕ were found to be critical through a Plackett–Burman
design test. We examined stability factors by analyzing response variables for rising (ρs, c,
and ϕ) and dropping (ρs, c, H, and ϕ) water levels. Two stages were used for the BBD-RSM
tests. Lower levels (-) were 10% lower than the benchmark, whereas high levels (+) were
10% higher. Each variable was evaluated under these conditions. The BBD-RSM produced
17 experimental design runs for rising water levels and 30 for dropping water levels. By
contrast, a linear model equation best described the response variables under dropping
water levels. A, B, C, and D represent the resulting values of ρs, c, H, and ϕ.

3.1.1. Water Level Stability Factor Responses

A higher stability factor means that the railway slope will perform better. The signifi-
cance of the hydromechanical properties was evaluated for their principal effects on the
overall static stability of the railway embankment slope during both rising and decreasing
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water phases. The BBD-RSM analysis verified the Plackett–Burman sensitivity analysis
results and ordered the primary effects of the parameters as follows: for dropping water
levels, ϕ > c > H > ρs, and for rising water levels, ϕ > ρs > c.

In this study, the models were chosen based on the highest-order polynomial, in
which extra terms are significant and are not aliased. For this investigation, the dropping
water level was studied using the same procedure (assuming an instantaneous pore water
pressure change). High R-squared values, approaching unity, indicate that the quadratic
and two-factor interaction (2FI) equations for rising and falling water level models, respec-
tively, have been appropriately calibrated to the actual data. The rising water level stability
factor response demonstrated a significantly high F-value of 6173.65 and a p-value < 0.0001.
The model’s p-value was <0.05, indicating that an F-value of this magnitude has a 0.01%
probability of occurring owing to noise.

The results show that the model is competent for exploring the experimental space to
determine the ideal conditions for railway slope design for rising water levels. The study
shows that the SFRES was influenced in the following ascending order: internal friction
angle (B) with an F-value of 3.52 × 105, unit weight (C) with a 1.46 × 105 F-value, cohesion
(A) with a 9.6 × 103 F-value, AC with an 84 × 102 F-value, C2 with a 5.1 × 102 F-value, and
BC with an 8.1 × 101 F-value, while AB, A2, and B2 are not significant to the stability factor
of the railway embankment slope (Equation (8)).

SRF1 = 2.141+ 0.0549A + 0.1049B − 0.0675C
−0.0073AC − 0.00225BC
+0.0002A2 + 0.0003B2

+0.0055C

(8)

The LF p-value was zero, indicating that the model LF is not significant, and the
difference between the adjusted and predicted coefficient of determination (R2) < 0.2
indicate reasonable agreement. This implies that the model is suitable for exploring the
experimental parameters to find the best conditions for designing the railway slope for a
falling water level. It is evident that the stability factor of the railway embankment slope
was influenced in the following ascending order: internal friction angle (C) with an F-value
of 2.1 × 104, cohesion (B) with a 1.1 × 103 F-value, water level (A) with a 4.3 × 102 F-value,
unit weight (D) with a 2.0 × 102 F-value, BD with a 4.3 F-value, AB with a 3.5 F-value,
and BC with 1.7 F-value, while AC, BC, AD, and CD are not significant to the stability
factor of the railway embankment slope. The Equation (9) represents the regression model
developed to predict the stability factor of the railway embankment slope during falling
water levels.

SRFf all = 1.9605 −0.0368A + 0.0608B
+0.0804C − 0.0241D
−0.0058AB + 0.0011AC
+0.0031AD + 0.0036BC
−0.0057BD + 0.0033CD

(9)

3.1.2. Validation and Selection of BBD-RSM Model

Table 3 shows the Box–Behnken design response surface methodology (BBD-RSM)
ANOVA results at a 95% confidence interval. The adjusted R2 values for rising water level
(RWL) and falling water level (FWL) responses are 0.99(99) and 0.99(25). The predicted R2

values are 0.99(98) and 0.97(80), respectively. This analysis indicates that the two values
closely agreed, suggesting the model’s validity. The small difference between the adjusted
and predicted values, both <0.2, confirms the model’s excellent predictability.
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Table 3. Statistical analysis details for the responses.

Output SD PRESS R2 Adj.R2 Pred.R2 Adq.P p-Value COV Remarks

RWL 0.00(05) 0.00(00) 0.99(99) 0.99(99) 0.99(98) 898.00 <0.0001 0.02(33) significant
FWL 0.00(61) 0.00(32) 0.99(51) 0.99(25) 0.97(80) 76.62 <0.0001 0.31(13) significant

SD: standard deviation, COV: coefficient of variance, R2: correlation coefficient, Adj.R2: adjusted correlation
coefficient, Pred.R2: predicted correlation coefficient, Adq.P: adequate precision.

3.1.3. Actual vs. Predicted Investigative Plots for the Responses

The model plots the FWL safety coefficient’s observed vs. expected responses in
Figure 3c. The graphic shows the accurate prediction and use of the FWL safety coefficient
in the railway embankment slope response model. The datapoints align well with the line of
best fit, indicating good agreement between actual and predicted outcomes [41]. Figure 3d
depicts a randomly and sparsely scattered residual plot for the FWL safety coefficient
response model, showing that errors are not correlated and have equal discrepancies. The
normal residual plot is appropriate because most responses cluster around the line of fit,
validating the accuracy and reliability of the generated model (Figure 3). Strength lines
represent lines of best fit, while blue, green, and red dots denote the level of agreement of
predicted values corresponding to low, medium, and high values of the factor of safety,
respectively.
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3.1.4. FWL and RWL Stability Factor Response

Three-dimensional and perturbation response graphs from the BBD-RSM show how
input parameters affect output responses. The charts show how input factors affect output.
Each model shows input parameters on the Y and X axes and the output (safety factor)
on the Z. Figure 4 shows the interactions among FWL parameters, (a) c vs. H, (b) ϕ vs. H,
(c) ρs vs. H, (d) ϕ vs. c, (e) ρs vs. c, and (f) ρs vs. ϕ. The a–f signified how the combined
variables influenced the factor of safety. It can be seen from the plots that factor of safety
(FS) increases with increase in ϕ and c, and decreases with increase in ρs and H. The model’s
3D contours for AC, BC, AD, and CD are relatively flat, suggesting little interaction between
these factors. This shows that these two elements’ magnitudes affect the response behavior
less. The vivid blue area of the plot denotes a region with minimal influence on the factor
of safety, while the reddish-orange area indicates a region of optimal influence. Also the
contour plots show response values in blue, green, and red classes. The colors indicate low,
moderate, and very ideal interaction [41].
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Figure 5 depicts the interactions among RWL parameters in 3D for (a) ϕ vs. c, (b) ρs
vs. c, and (c) ρs vs. ϕ, while (d) ϕ vs. c, (e) ρs vs. c, and (f) ρs vs. ϕ represents the 2D. The
a–f signified how the combined variables influenced the factor of safety for both 3D and
2D surfaces. From the 2D plots, it is shown that the FS is maximized when ϕ = 37.4 ◦C,
c = 15.4 Kpa, and ρs = 1710 kg/m3. Both 2D and 3D response surface diagnostic plots show
sloping flat and color margin contour profiles, indicating a strong joint interaction between
independent variables [53]. The charts show that each of these factors significantly affects
safety. The safety factor increases as unit weight decreases by 10–20%. An increase in
the input variables cohesion and internal friction angle, is positively correlated with the
stability factor. The BBD-RSM perturbation analysis shows an inverse relationship between
unit weight and the two remaining input variables (cohesion and internal friction angle).
The flatness of the 3D surface suggests that changes in one parameter and its effects on the
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factor of safety are relatively constant across the range of values of the second parameter,
and vice versa, while the overall effects of these parameters are significant.
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3.2. The Modeling and Optimization of Artificial Neural Networks

Building an artificial neural network required identifying model ambiguity and choos-
ing a network design to reduce input integration mistakes and improve efficiency [53]. A
neural network (ANN) was used to assess hydromechanical parameter efficacy [54,55].
The RWL stability coefficient input parameters are cohesion, internal friction angle, and
unit weight (Table 4). The FWL stability coefficient input factors are cohesion, internal
friction angle, water level, and unit weight. Due to differential initial conditions, the output
factors, RWL stability coefficient, and FWL stability coefficient were examined separately.
A “feed-forward back-propagation” network design was used to handle the modeling
system’s complexity and parameter selection [56]. The FWL network had a 4-8-1-layer
pattern with eight hidden layer neurons to connect the input and output layers. Table 4
shows the statistical model values used for all neuron architectural standards (Figure 6).

Table 4. ANN model optimization standards.

Parameters/Responses Lowest and Highest
Limits Goal Weight Importance

Friction angle 30.6–37.4 In range 1 3
Cohesion 12.6–15.4 In range 1 3

Unit weight 1710–2090 In range 1 3
Water level 15.3–18.7 In range 1 3
SRF rising –2.3(2) Maximize 1 3
SRF falling –2.1 Maximize 1 3
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The statistical analysis showed a strong positive correlation between the actual and pre-
dicted responses of the artificial neural network (ANN) model at a 95% confidence interval,
indicating high agreement. The RWL had R2 values of 0.99(99), 0.97(70), and 0.99(91), and
FWL had R2 values of 0.99(97), 0.97(71), and 0.99(56) as training, testing, validation, respec-
tively (Table 5). The output of each hidden layer neuron was used to determine the optimal
artificial neural network (ANN) model’s predicted results. In Equations (10) and (11), the
optimized ANN-based model-predicted responses were determined with the use of output
from individual neuron in the hidden layer, by adding the individual neuron and its weight.

Hi = tanh

(
0.5

(
Ni

∑
m=1

(Wi,mXm) + bi

))
(10)

YANN =
Nh

∑
i=1

(W2,i Hi) + bh (11)

where, Hi represents the hidden layer output, Xm represents the corresponding input
variable value, and bh and bi are the biases hidden layers and the input, respectively [57].
Sensitivity analysis was carried out based on the relative importance of individual operating
variable (input parameter) on the ANN model output (Y).

Table 5. ANN optimized design for the prediction of stability coefficient.

S/N Designs RWL FWL
R2 RMSE MAD R2 RMSE MAD

1 (3) 0.98(30) 0.00(75) 0.00(62) 0.99(86) 0.00(28) 0.00(21)
2 (4) 0.99(88) 0.00(12) 0.00(18) 0.99(93) 0.00(20) 0.00(16)
3 (5) 0.99(91) 0.00(18) 0.00(14) 0.99(05) 0.00(72) 0.00(56)
4 (6) 0.99(99) 1.17 × 10−15 8.88 × 10−16 0.99(96) 0.00(14) 0.00(11)
5 (7) 0.99(91) 0.00(17) 0.00(14) 0.99(67) 0.00(43) 0.00(34)
6 (8) 0.99(91) 0.00(17) 0.00(13) 0.99(97) 0.00(14) 0.00(11)
7 (9) 0.99(91) 0.00(17) 0.00(13) 0.99(99) 0.00(14) 0.00(11)
8 (10) 0.99(91) 0.00(17) 0.00(13) 0.99(69) 0.00(41) 0.00(34)
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Sensitivity was evaluated on the proposed approach [44], Equation (12), which uses the
neural network weight indices (i.e., layer and input weights). The fundamental principle
is based on the use of the connection weights predicted by the model and then computed
using Equation (12) as follows:

Ij =

∑m=Nh
m=i

{(
⌈ W jh

jm⌉

∑
Ni
k=1 ⌈ W jh

jm⌉

)
×
∣∣∣Who

mn

∣∣∣}

∑k=Ni
k=1

{
∑m=Nh

m=1

(
⌈ W jh

km⌉

∑
Ni
k=1 ⌈ W jh

km⌉

)
× ⌈ Who

mn⌉
} × 100% (12)

where Ij denotes the jth variable relative importance (%) on the ANN-based model output,
Ni, Nh are the input layer and hidden neurons, respectively, and W represents the ANN
model connection weight. The matrices o, i, and h stand for the output, input, and hidden
layers, respectively, while n, k, and m, are the neuron numbers at the output, input, and
hidden layers, respectively (Figures 7 and 8).

In the RWL scenario, cohesion, internal friction angle, and unit weight were identified
as significant factors in determining the stability factor. In the FWL scenario, cohesion,
internal friction angle, water level, and unit weight were key. Notably, the internal friction
angle had the most substantial impact, accounting for 62.8% for RWL and 53.1% for FWL.
Following this, unit weight contributed 22.4% for RWL and 5.2% for FWL, while cohesion
accounted for 17.8% for RWL and 32.6% for FWL and water level accounted for 10.1% for
FWL. This analysis underscores the crucial role of the internal friction angle in driving
stability factors.
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3.3. Performance Comparison between BBD-RSM and ANN Models

Numerous researchers have shown that design within response surface methodol-
ogy (BBD-RSM) and artificial neural network (ANN) modeling for sensitivity analysis
is effective [41,44,58]. This work shows forecast stability coefficients with varying water
levels using BBD-RSM and ANN. To assess their predictions’ accuracy, the study compared
predicted and actual data and calculated absolute relative error (ARE).

Figure 9 shows the comparison between the data from the ANN and BBD-RSM models
and the actual data to determine model accuracy. Scatter plots comparing each value to
the number of runs showed that model-predicted values matched actual values. This
comparison study found that the BBD-RSM model aligned data better than the ANN model.
Thus, the BBD-RSM model slightly outperformed the ANN model in data representation.
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The study also found that BBD-RSM models predicted responses marginally better.
However, both the BBD-RSM and ANN models accurately predicted numerical findings
and validated them across diverse data combinations utilized to investigate water level
changes, whether rising or falling. The appropriateness of the BBD-RSM and ANN-based
models was further examined using R2, MRE, and RMSE (Table 6). The significant relation-
ship between these indicators shows the models can imitate real-world outcomes. However,
the time lag between surface water and groundwater should be further investigated to
validate the results of this study.

Table 6. Statistical performance rating index.

Responses R2 MRE RMSE

RSM ANN RSM ANN RSM ANN

RWL 0.99(99) 0.99(99) 0.01(04) 0.17(84) 0.00(03) 0.00(84)
FWL 0.99(25) 0.99(97) 0.23(90) 0.21(15) 0.00(05) 0.00(54)

4. Conclusions

This study introduced a new global static sensitivity assessment and optimization
method. The Nanhu railway embankment in Hunan Province, China, was used to test this
method’s efficacy and accuracy. This study was validated using field data from the year
2020, specifically focusing on the failure that occurred in the section of the K1430 + 110
of the Beijing–Guangzhou railway embankment. However, the authors are currently
investigating the long-term coupled impacts of water level fluctuations and environmental
factors within the watershed. The results of this study’s findings on the hydromechanical
properties of the railway slope between two lakes and its process optimization possibilities
are as follows:

• The investigation showed a substantial link between the embankment slope seepage
line and lakes water level fluctuations. The Plackett–Burman design was used to
independently study the parameters that significantly affect the railway slope’s total
static stability factor under rising and falling water levels. Key parameters, such as
angle of internal friction (ϕ), soil density (ρs), and cohesion (c), significantly impact
the slope stability during a rise in water level. However, ks, H, u, v, and E were less
significant. During falling water levels, ϕ, c, H, and ρs were more important but in a
different sequence.

• The BBD-RSM and ANN studies used 3D surface and profiler diagrams to find factor–
response relationships. These diagrams accurately predicted the components needed
to fulfil goals. The predicted results were supported by ANOVA models. The study
found some notable second-order interactions. RWL interactions were c x ρs, ϕ x ρs,
and ρs

2, and the FWL interactions were H x c and c x ρs. We also found that RWL
was more consistent at higher unit weights and FWL was more stable at lower unit
weights. RWL’s finest factor combinations are (14.11, 37.4, and 1711.9), and FWL’s are
(14.175, 37.4, 15.529, and 1713.24)

• The research found that BBD-RSM and ANN were effective for evaluating RWL and
FWL stability coefficients. All input variables affected the coefficients, but angle of
internal friction had the greatest impact, followed by soil density and then cohesion for
the RWL. The angle of internal friction had the greatest impact on FWL, followed by
cohesion, water level, and soil density. Compared to ANN-based models, RSM-based
models performed slightly better during RWL, with comparable R2 values but fewer
prediction errors (RMSE and MRE). Compared to RSM-based models, the RSM model
produced R2 values of 0.99(99) and 0.99 with MREs of 0.01 and 0.24 under both RWL
and FWL conditions, respectively. However, for ANN, respectively, they produced
R2 values of 0.99(99) and 0.99(98), with MRE values of 0.02 and 0.21, indicating that
ANN-based models performed slightly better during FWL, with higher R2 values
and reduced prediction errors (MRE). Coupled analysis with RSM and ANN models



Appl. Sci. 2024, 14, 3402 16 of 18

improved accuracy, efficiency, iteration needs, trial durations, and cost-effectiveness
for both experimental and numerical processes.
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