
ar
X

iv
:2

11
0.

05
40

5v
2 

 [
m

at
h.

C
O

] 
 1

6 
Ju

n 
20

23

Human-verifiable proofs in the theory of

word-representable graphs

Sergey Kitaev∗ and Haoran Sun†

June 19, 2023

Abstract

A graph is word-representable if it can be represented in a certain
way using alternation of letters in words. Word-representable graphs
generalise several important and well-studied classes of graphs, and they
can be characterised by semi-transitive orientations. Recognising word-
representability is an NP-complete problem, and the bottleneck of the
theory of word-representable graphs is convincing someone that a graph
is non-word-representable, keeping in mind that references to (even pub-
licly available and user-friendly) software are not always welcome. (Word-
representability can be justified by providing a semi-transitive orientation
as a certificate that can be checked in polynomial time.)

In the literature, a variety of (usually ad hoc) proofs of non-word-
representability for particular graphs, or families of graphs, appear, but

for a randomly selected graph, one should expect looking at O(2#edges)
orientations and justifying that none of them is semi-transitive. Even if
computer would print out all these orientations and would point out what
is wrong with each of the orientations, such a proof would be essentially
non-checkable by a human.

In this paper, we develop methods for an automatic search of human-
verifiable proofs of graph non-word-representability. As a proof-of-concept,
we provide “short” proofs of non-word-representability, generated auto-
matically by our publicly available user-friendly software, of the Shrikhande
graph on 16 vertices and 48 edges (6 “lines” of proof) and the Clebsch
graph on 16 vertices and 40 edges (10 “lines” of proof). Producing such
short proofs for relatively large graphs would not be possible without the
instrumental tool we introduce (allowing to assume orientations of several
edges in a graph, not just one edge as it was previously used) that is a
game changer in the area. As a bi-product of our studies, we correct two
mistakes published multiple times (two graphs out of the 25 non-word-
representable graphs on 7 vertices were actually word-representable, while

∗Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street,

Glasgow G1, 1XH, United Kingdom. Email: sergey.kitaev@strath.ac.uk.
†College of Science, Donghua University, Shanghai, 201620, P.R. China. Email: sunhao-

ran2012@outlook.com

1

http://arxiv.org/abs/2110.05405v2


two non-word-representable graphs on 7 vertices were missing).

Keywords: word-representable graph, semi-transitive orientation, auto-
mated proof, non-word-representability, Clebsch graph, Shrikhande graph

2010 Mathematics Subject Classification: 05C62

1 Introduction

There is a long line of research papers in the literature dedicated to the the-
ory of word-representable graphs (e.g. see [5, 6] and references therein). The
motivation to study these graphs is their relevance to algebra, graph theory,
computer science, combinatorics on words, and scheduling [6]. In particular,
word-representable graphs generalize several fundamental classes of graphs (e.g.
circle graphs, 3-colorable graphs and comparability graphs).

Two letters x and y alternate in a word w if after deleting in w all letters
but the copies of x and y we either obtain a word xyxy · · · (of even or odd
length) or a word yxyx · · · (of even or odd length). A graph G = (V,E) is
word-representable if and only if there exists a word w over the alphabet V such
that letters x and y, x 6= y, alternate in w if and only if xy ∈ E. We say
that w represents G. A graph is word-representable if and only if each of its
connected components is word-representable [6]. Hence, WLOG we can assume
that graphs under our consideration are always connected.

The minimum (by the number of vertices) non-word-representable graph is
on 6 vertices, and the only such graph is the wheel graph W5 (that is obtained
from Graph 1 in Figure 3 after removing vertex 7), while there are 25 non-word-
representable graphs on 7 vertices [6]. A word is uniform if each letter occurs
in it the same number of times. We will need the following two results.

Theorem 1 ([7]). If a graph G is word-representable then there exists a uniform
word representing it.

Theorem 2 ([7]). Let w = w1w2 be a uniform word representing a graph G,
where w1 and w2 are words. Then the word w2w1 also represents G.

An orientation of a graph is semi-transitive if it is acyclic, and for any di-
rected path v0 → v1 → · · · → vk either there is no edge between v0 and vk,
or vi → vj is an edge for all 0 ≤ i < j ≤ k. An induced subgraph on vertices
{v0, v1, . . . , vk} of an oriented graph is a shortcut if its orientation is acyclic
(contains no directed cycles) and non-transitive, and there is the directed path
v0 → v1 → · · · → vk and the edge v0 → vk called the shortcutting edge. A semi-
transitive orientation can then be alternatively defined as an acyclic shortcut-
free orientation. A fundamental result in the area is the following theorem.

Theorem 3 ([4]). A graph is word-representable if and only if it admits a semi-
transitive orientation.

2



Remark 4. An efficient way to obtain a semi-transitive orientation of a graph
G from a word w representing it, which is used in the proof of Theorem 3, is as
follows: orient an edge xy in G as x → y if the leftmost occurrence of x in w is
to the left of the leftmost occurrence of y in w. Note that the leftmost letter in
w will be a source in G, that is a vertex having edges incident with it oriented
away from it.

Recognizing word-representability of a graph is an NP-complete problem
[6], and the bottleneck of the theory of word-representable graphs is in ways to
convince someone that a graph is non-word-representable keeping in mind that
references to (even publicly available and user-friendly) software, such as [2],
are not always welcome. (Word-representability can be justified by providing
a semi-transitive orientation as a certificate that can be checked in polynomial
time [6].)

1.1 Approaches to deal with non-word-representability

It is known [7] that the neighbourhood of each node in a word-representable
graph is a comparability graph, and recognition of a comparability graph is a
polynomially solvable problem [3]. Hence, we have a polynomial test for non-
word-representability of a graph G: for each vertex, check whether its neigh-
bourhood is a comparability graph; if a “non-comparability neighbourhood” is
found, G is not word-representable. However, if all neighbourhoods are compa-
rability graphs, then the test gives no information, namely, the graph may or
may not be word-representable [6].

Thus, if the test above does not work and a known non-word-representable
induced subgraph is not found, basically we are left with three options to recog-
nise and then justify non-word-representability: either

(a) to come up with some sort of an ad hoc smart argument, usually using
properties and/or symmetries of the graph in question, or its induced
subgraph, or

(b) to go through O(2#edges) orientations justifying that none of them is
semi-transitive (symmetries can be used here sometimes to reduce the
search space, in particular, any given edge can be assumed to be oriented
in any way), or

(c) to go through all O(#vertices2) words containing each of the vertex labels
equal number of times and to justify that none of them has the right
alternation properties (if a graph with n vertices is word-representable
then there is a word of length at most n2 representing it [4]).

Approach (a) above is preferable, but usually is hard to implement. Ap-
proach (c) requires going through O(n2n) words, however, constraint program-
ming can be used here to speed up the process [13]. In either case, how do we
convince someone that the graph is non-word-representable without a reference

3



to software? A variation of approach (b) is used in some existing pieces of soft-
ware [2, 10]. It works as follows: orient an edge e1 in a given graph G, then
consider a still undirected edge e2 in G and branch on it, namely, create two
copies of the partially oriented graph by orienting e2 differently; then branch
on e3, etc. At each step, make sure that no directed cycles or shortcuts are
created (if they are, the respective branch is not to be considered). In any case,
even if computer would print out all these orientations (or the entire branch-
ing process) and would point at a directed cycle or a shortcut in each of the
orientations, such a proof would be essentially non-checkable by a human, as it
would typically be a way too long.

1.2 A game changer approach

In this paper we consider producing “short” proofs of non-word-representability
dropping the number of cases to be considered from exponential to polyno-
mial, and thus enabling human to verify such proofs. The basic idea is in
modifying the branching process by avoiding unnecessary branching via certain
pre-processing. The following lemma is the key to our approach.

Lemma 5 ([8]). Suppose that an undirected graph G has a cycle C = x1x2 · · ·xmx1,
where m ≥ 4 and the vertices in {x1, x2, . . . , xm} do not induce a clique in G.
If G is oriented semi-transitively, and m−2 edges of C are oriented in the same
direction (i.e. from xi to xi+1 or vice versa, where the index m + 1 := 1) then
the remaining two edges of C are oriented in the opposite direction.

Hence, if we try to find a semi-transitive orientation by exhaustively going
through all possibilities to orient one edge at a time, and we see a cycle, that
does not induce a clique, with all but two edges oriented in the same direction,
we do not need to branch on the remaining two edges as they must be oriented
in the opposite direction by Lemma 5. Similarly, if we see a non-clique cycle
with all but two edges oriented in the same direction and an edge e in the cycle
oriented in the opposite direction, then we known that the remaining edge is
oriented in the same direction as e.

The following theorem allows us to reduce further dramatically the length
of a proof of non-word-representability for a graph.

Theorem 6. Suppose that a graph G is word-representable, and v is a vertex
in G. Then, there exists a semi-transitive orientation of G where v is a source
(or a sink so that all edges incident with v are oriented towards it).

Proof. Let w be a word representing G. By Theorem 1, we can assume that w
is uniform, and by Theorem 2 that w begins with v. Then we can use Remark 4
to obtain a semi-transitive orientation of G in which v is a source. Reversing
the orientations of all edges in G, one obtains a semi-transitive orientation in
which v is a sink.

To demonstrate the power of Theorem 6, just applying Lemma 5 in the
branching process for the wheel graph W5, one needs to branch 6 times. How-
ever, assuming WLOG by Theorem 6 that the all-adjacent vertex in W5 is a

4



5 6

2

3

4

7

1

Graph 12′
5 6

2

3

4

7

1

Graph 17′

Figure 1: The undirected versions of Graphs 12′ and 17′ were assumed to be non-
word-representable several times in the literature, for example in [6], although
they are actually word-representable as is witnessed by the semi-transitive ori-
entations given in the figure. Graph 12′ misses the edge (1,3). Graph 17′ should
not have the edge (1,7).

source, one needs to branch just once. In fact, using the symmetry of W5,
this only branching is not necessary, so non-word-representability of W5 can
be proved by Lemma 5 and Theorem 6 and observing the symmetry without
branching. Usually, picking a vertex of the highest degree in a given non-word-
representable graph and assuming it to be a source would result in a shortest
proof. However, there are cases when assuming a vertex of a smaller degree to
be a source results in a shorter proof. Also, note that assuming a particular
vertex to be a source may result in a longer proof than making no assumption
at all.

In Section 2, we introduce three algorithms getting use of Lemma 5 to gen-
erate shorter proofs for non-word-representable graphs. The primarily criteria
of the efficiency of an algorithm is the number of “lines” (in the sense speci-
fied below) in the proof it produces; the secondary criteria is the running time
of the algorithm, whose discussion is omitted from this paper as less relevant
(the problem is NP-complete, so the running time is exponential, and further
details are not so important for us). We test and rank our algorithms on the
25 non-word-representable graphs on 7 vertices correcting, as a by-product, two
mistakes published multiple times, e.g. in [6]. Indeed, two graphs out of the 25
graphs were produced incorrectly. These incorrect graphs are the undirected
versions of the semi-transitively oriented graphs in Figure 1. We leave it to
the Reader as a straightforward exercise to prove that the orientations in Fig-
ure 1 are indeed semi-transitive. A correct list of the 25 non-word-representable
graphs can be found in Figure 3. We note that in our test we choose not to
use Theorem 6; using this theorem and going through all possible assumptions
about a source may give a different outcome for comparison of the algorithms.

We would like to emphasise that the approach involving Lemma 5 is not
novel: several papers, including [8], use it or its simpler version (considering
cycles of length 3 and 4 only) to justify non-word-representability. However, our
paper is the first one to discuss an automated search of human-verifiable proofs

5



of graph non-word-representability that allowed us to create publicly available
user-friendly software [10]. Moreover, our Theorem 6 enlarges significantly the
class of graphs for which “reasonably short” proofs of non-word-representability
can be produced. As a proof-of-concept, we use the software [10] to find “short”
proofs of non-word-representability, generated automatically, of the Shrikhande
graph on 16 vertices and 48 edges (6 “lines” of proof; see Section 3) and the
Clebsch graph on 16 vertices and 40 edges (10 “lines” of proof; see Section 4).
Proving in a verifiable way (without referring to computer software) that the
Clebsch graph and the Shrikhande graph are non-word-representable would be
extremely challenging without the tools we introduce.

2 Three algorithms to search for short proofs of

non-word-representability

In this section, we consider three algorithms to find shorter proofs of non-word-
representability of graphs. All three algorithms use the observation that the
branching process should not involve any edges that do not belong to a cycle, as
such edges can be oriented arbitrarily (they will never be involved in a directed
cycle of a shortcut). Further, all three algorithms use the assumption that to
produce a shorter proof, branching should be made on edges belonging to many
cycles (which should increase the number of applications of Lemma 5).

2.1 The format of a proof

By a “line” of a proof we mean a sequence of instructions that directs us in ori-
enting a partially oriented graph and necessarily ends with detecting a shortcut
or another contradiction showing that this particular orientation branch will not
produce a semi-transitive orientation. The idea is that if no branch produces
a semi-transitive orientation then the graph is non-semi-transitively orientable
(and hence non-word-representable by Theorem 3).

Each proof begins with A → B showing the orientation of an edge AB,
the first edge we orient, that is selected by an algorithm in a certain way.
Because reversing all orientations in a semi-transitively oriented graph produces
a semi-transitively oriented graph, WLOG we can omit considering (partially)
oriented graphs having B → A, which significantly reduces the number of cases
to consider. Further, there are four types of instructions:

• “MC” followed by a number X means “Move to Copy X”, where Copy X

of the graph in question is a partially oriented version of the graph that
was created at some point in the branching process. This instruction is
always followed by an oriented edge A → B reminding on the directed
edge obtained after application of the branching process; see description
of “B” to be discussed next.

• “B” followed by “X → Y (Copy Z)” means “Branch on edge XY , orient
the edge asX → Y , create a copy of the current version of the graph except

6



1. 12→15 B14→15 (Copy 2) B12→14 (Copy 3) O7→15 O12→7 (C7-15-14-12) [other
instructions] S:7-4-8-16

2. MC4 16→7 O16→15 (C7-16-15) [other instructions] S:4-11-3-7

Figure 2: Parts of the first two lines in the proof of non-word-representability
of the Shrikhande graph in Figure 4

orient the edge XY there as Y → X , and call the new copy Z; leave Copy
Z aside and continue to follow the instructions”. The instruction B occurs
when the software detects that no application of Lemma 5 is possible in
the partially oriented graph.

• One “O” followed by “X → Y ”, in turn followed by, in brackets, “C”
followed by a cycle “X-Y -Z”. This instruction tells us to orient the edge
XY as X → Y because otherwise, in the triangle XY Z, we would get a
directed cycle. If instead of a triangle we see a longer cycle, then we deal
with an application of Lemma 5 to a cycle where all but two edges are
oriented in one direction, and one of the remaining two edges is oriented
in the opposite direction.

• Two “O”s followed by “X → Y ”, in turn followed by, in brackets, “C”
followed by a cycle “X-Y -Z-· · · ”. This instruction tells us to which cycle
Lemma 5 can be applied and which edges will become oriented.

Each line ends with either “S : X−Y −· · ·−Z” or with “E : X−Y −· · ·−Z”.
In the former case, a shortcut with the shortcutting edge X → Z is obtained,
while in the latter case, all but one edges in the non-clique cycle X−Y −· · ·−Z

are oriented in the same direction, while the remaining edge e is not oriented,
which is a contradiction since there is no way to orient e without creating a
shortcut or a directed cycle (“E” stands for “Error”). In the proofs in this
paper, the symbol “E” does not appear, but it appears occasionally when the
software [10] is used.

Next, we will explain parts of the first two lines, given in Figure 2, in the
proof of non-word-representability of the Shrikhande graph in Figure 4 that
does not used Theorem 6 (and hence is different from the proof in Section 3).

To begin checking the proof, one should arrange 9 undirected copies of the
Shrikhande graph, possibly printed on a single page. Begin with orienting edge
12→15 in the first copy of the graph. Branching is necessary at this stage, we
orient edge 14→15 in Copy 1 and create partially oriented Copy 2 currently
having edges 12→15 and 15→14. We continue with considering Copy 1. An-
other branching is required, and we orient the edge 12→14 and create partially
oriented Copy 3 currently having edges 12→15, 14→15 and 14→12. Looking
at the cycle 7-15-14-12 in Copy 1, we can see that Lemma 5 can be applied
and we can orient edges 7→15 and 12→7. Continuing following the instruc-
tions, we see that the shortcut 7-4-8-16 will eventually be obtained in Copy 1

7



showing that Copy 1 can now be disregarded as any way to complete its orien-
tation will result in a shortcut being present (so that the orientation would be
non-semi-transitive).

We can now consider any of the three partially oriented copies of the graph
(Copies 2, 3, 4). Our algorithm suggests considering the latest created copy
(Copy 4) that has the most number of oriented edges. MC4 instructs us to do
so, and 16→7 reminds us on the correct orientation of the edge (7,16) obtained
as the result of the branching process (when Copy 4 was created). Next, we
look at the triangle 7-16-15 where we must orient edge 16→15 or else we obtain
a directed cycle of length 3. Continuing following the instructions, we see that
the shortcut 4-11-3-7 will eventually be obtained in Copy 4 showing that Copy
4 can now be disregarded, and another copy should be considered.

2.2 Algorithm 1

Algorithm 1 sorts edges according to the number of cycles they are in, then
branches on an edge belonging to the most number of cycles (whenever branch-
ing is required). If there are two or more such edges, the choice on branching is
done lexicographically.

2.3 Algorithm 2

Algorithm 2 selects a cycle C with the smallest number of non-oriented edges.
The non-oriented edges in C are sorted, similarly to Algorithm 1, based on the
number of cycles they are in and branching is done on an edge belonging to
the most number of cycles. If there are two or more such edges, the choice on
branching is done lexicographically.

2.4 Algorithm 3

Algorithm 3 is similar to Algorithm 2, but it selects a cycle hat has the biggest
number N of edges oriented in the same direction. Among the cycles with the
same N , Algorithm 3 selects a cycle C that has smallest number of non-oriented
edges. Then, similarly to Algorithm 2, the non-oriented edges in C are sorted
based on the number of cycles they are in and branching is done on an edge
belonging to the most number of cycles. If there are two or more such edges,
the choice on branching is done lexicographically.

2.5 Ranking of algorithms

Note that Algorithm 1 is static while Algorithms 2 and 3 are dynamic meaning
that they require resorting edges whenever an orientation is added to an edge.

To make general statements on the efficiency of algorithms in the sense of
the number of lines they produce, or about the time complexity, does not seem
to be feasible. However, an indication of the efficiency of the algorithms can
be obtained by looking at their performance on small non-word-representable

8



5 6

2

3

4

7

1

Graph 1
5 6

2

3

4

7

1

Graph 2
5 6

2

3

4

7

1

Graph 3
5 6

2

3

4

7

1

Graph 4
5 6

2

3

4

7

1

Graph 5

5 6

2

3

4

7

1

Graph 6
5 6

2

3

4

7

1

Graph 7
5 6

2

3

4

7

1

Graph 8
5 6

2

3

4

7

1

Graph 9
5 6

2

3

4

7

1

Graph 10

5 6

2

3

4

7

1

Graph 11
5 6

2

3

4

7

1

Graph 12
5 6

2

3

4

7

1

Graph 13
5 6

2

3

4

7

1

Graph 14
5 6

2

3

4

7

1

Graph 15

5 6

2

3

4

7

1

Graph 16
5 6

2

3

4

7

1

Graph 17
5 6

2

3

4

7

1

Graph 18
5 6

2

3

4

7

1

Graph 19
5 6

2

3

4

7

1

Graph 20

1 2

4 3

6

5

7

Graph 21
6

5

7

1

3 2

4

Graph 22
6

5

7

1

3 2

4

Graph 23
6

5

7

1

3 2

4

Graph 24

6

5

7

1
3 2

4

Graph 25

Figure 3: All non-word-representable graphs on 7 vertices

9



graphs. For example, on the wheel graph W5 (on 6 vertices), Algorithm 1 pro-
duces 10 lines of proof, while Algorithms 2 and 3 produce 7 lines of proof. As
the next step, we test the algorithms on all 25 non-word-representable graphs
in Figure 3, and the results of the test are presented in Table 1. Recall that in
our tests we do not use Theorem 6. It turns out that Algorithm 2 is (much)
better/not worse in 24 out of 25 cases, and what is somewhat surprising, Al-
gorithm 1 being clearly the worst one, has actually the best performance on
Graph 11. On average, Algorithms 2 and 3 are essentially the same. In any
case, Algorithm 2 is used in the software [10].

Graph Algorithm 2 Algorithm 3 Algorithm 1

1 7 lines 7 lines 10 lines
2 7 lines 7 lines 13 lines
3 10 lines 10 lines 17 lines
4 7 lines 7 lines 13 lines
5 7 lines 7 lines 10 lines
6 7 lines 7 lines 10 lines
7 11 lines 11 lines 11 lines
8 16 lines 20 lines 18 lines
9 9 lines 11 lines 15 lines
10 9 lines 11 lines 15 lines
11 21 lines 21 lines 15 lines
12 8 lines 8 lines 12 lines
13 9 lines 9 lines 17 lines
14 9 lines 9 lines 14 lines
15 9 lines 9 lines 13 lines
16 11 lines 12 lines 14 lines
17 9 lines 9 lines 12 lines
18 7 lines 7 lines 13 lines
19 7 lines 7 lines 16 lines
20 9 lines 11 lines 11 lines
21 10 lines 10 lines 10 lines
22 6 lines 6 lines 19 lines
23 9 lines 11 lines 14 lines
24 7 lines 7 lines 15 lines
25 9 lines 12 lines 11 lines

Average 9.2 lines 9.8 lines 13.5 lines

Table 1: Ranking of the algorithms

10



1 2

34

5

6

7

8

9

10

11

12

13 14

1516

Shrikhande graph
4

68

11

12

13 14

1516

Subgraph S
2

63

1

7

4 5

98

Subgraph S

Figure 4: The Shrikhande graph and its minimal non-word-representable sub-
graph S (with the original labelling and the labelling used in our proof)

3 The Shrikhande graph

The Shrikhande graph is the graph on 16 vertices and 48 edges in Figure 4.
Among numerous properties of this graph [12], it is known for being the small-
est distance-regular graph that is not distance-transitive [1, p. 136]. In Figure 4,
we also present Shrikhande graph’s minimal non-word-representable subgraph
S labelled in the original way, and in the way used in the proof below (re-
moving any vertex in S results in a word-representable graph). We next give a
proof for non-word-representability of S that will give non-word-representability
of the Shrikhande graph taking into account the hereditary nature of word-
representability. Referring to the rightmost graph in Figure 4, our proof goes
as follows. By Theorem 6 we can assume that vertex 1 is a source and the rest
is given by the following 6-lines proof:

1. B5→6 (Copy 2) O5→4 (C1-6-5-4) O3→4 (C1-5-4-3) O3→2 (C1-4-3-2) B5→7 (Copy
3) O2→7 (C1-5-7-2) B3→8 (Copy 4) O4→8 (C1-4-8-3) O9→8 O5→9 (C4-8-9-5) O6→9
(C1-6-9-5) O7→9 (C5-7-9-6) S:3-2-7-9-8
2. MC4 8→3 O8→4 (C3-8-4) O9→7 O8→9 (C2-7-9-8-3) O5→9 (C4-8-9-5) O6→9
(C1-6-9-5) S:5-6-9-7
3. MC3 7→5 O7→2 (C1-5-7-2) O7→9 O9→6 (C5-7-9-6) O9→5 (C1-6-9-5) O8→4
O9→8 (C4-8-9-5) O8→3 (C1-4-8-3) S:7-9-8-3-2
4. MC2 6→5 O4→5 (C1-6-5-4) O4→3 (C1-5-4-3) O2→3 (C1-4-3-2) B5→7 (Copy 5)
O2→7 (C1-5-7-2) O9→7 O6→9 (C5-7-9-6) O5→9 (C1-6-9-5) O4→8 O8→9 (C4-8-9-5)
O3→8 (C1-4-8-3) S:2-3-8-9-7
5. MC5 7→5 O7→2 (C1-5-7-2) B3→8 (Copy 6) O4→8 (C3-8-4) O7→9 O9→8 (C2-7-
9-8-3) O9→5 (C4-8-9-5) O9→6 (C1-6-9-5) S:7-9-6-5
6. MC6 8→3 O8→4 (C1-4-8-3) O8→9 O9→5 (C4-8-9-5) O9→6 (C1-6-9-5) O9→7
(C5-7-9-6) S:8-9-7-2-3

11



1 2

3

4

5

6

7

8

910

11

12

13

14

15

16

Clebsch graph

1 2

3

4

5

6

8

910

11

12

Subgraph C

1 2

3

4

5

6

7

8

910

11

Subgraph C

Figure 5: The Clebsch graph and its minimal non-word-representable sub-
graph C (with the original labelling and labelling used in the proof)

4 The Clebsch graph

The Clebsch graph, also known as the Greenwood-Gleason graph [9, p. 284] and
shown in Figure 5, is a strongly regular quintic graph on 16 vertices and 40 edges
that enjoys many interesting properties [11]. Figure 5 also gives the subgraph
C of the Clebsch graph that is confirmed by software [2, 10] to be minimal non-
word-representable. We next give a 10-line proof of non-word-representability
of C that confirms non-word-representability of the Clebsch graph. Referring
to the rightmost graph in Figure 5, our proof goes as follows. By Theorem 6
we can assume that vertex 4 is a source and the rest is given by the following
proof:

1. B6→7 (Copy 2) O5→7 (C4-6-7-5) B3→6 (Copy 3) O3→2 (C2-4-6-3) O3→8 O8→7
(C3-8-7-6) B8→11 (Copy 4) O8→1 (C1-8-11-4) O10→1 O3→10 (C1-10-3-8) O10→5
(C1-10-5-4) O10→9 O9→7 (C5-10-9-7) O2→9 (C2-9-10-3) O11→9 (C2-9-11-4) S:8-11-
9-7
2. MC4 11→8 O1→8 (C1-8-11-4) O9→7 O11→9 (C7-9-11-8) O2→9 (C2-9-11-4)
O10→9 O3→10 (C2-9-10-3) O1→10 (C1-10-3-8) O5→10 (C1-10-5-4) S:5-10-9-7
3. MC3 6→3 O2→3 (C2-4-6-3) B2→9 (Copy 5) O11→9 (C2-9-11-4) B7→9 (Copy
6) O5→10 O10→9 (C5-10-9-7) O1→10 (C1-10-5-4) O10→3 (C2-9-10-3) O8→3 O1→8
(C1-10-3-8) O11→8 (C1-8-11-4) O8→7 (C3-8-7-6) S:11-8-7-9
4. MC6 9→7 O11→8 O8→7 (C7-9-11-8) O1→8 (C1-8-11-4) O8→3 (C3-8-7-6) O1→10
O10→3 (C1-10-3-8) O5→10 (C1-10-5-4) O10→9 (C2-9-10-3) S:5-10-9-7
5. MC5 9→2 O9→10 O10→3 (C2-9-10-3) O9→11 (C2-9-11-4) O5→10 O9→7 (C5-10-
9-7) O1→10 (C1-10-5-4) O8→3 O1→8 (C1-10-3-8) O11→8 (C1-8-11-4) O8→7 (C3-8-
7-6) S:9-11-8-7
6. MC2 7→6 O7→5 (C4-6-7-5) B3→6 (Copy 7) O3→2 (C2-4-6-3) B2→9 (Copy 8)
O10→9 O3→10 (C2-9-10-3) O11→9 (C2-9-11-4) O10→5 O7→9 (C5-10-9-7) O10→1
(C1-10-5-4) O3→8 O8→1 (C1-10-3-8) O8→11 (C1-8-11-4) O7→8 (C3-8-7-6) S:7-8-11-9

12



7. MC8 9→2 O9→11 (C2-9-11-4) B7→9 (Copy 9) O8→11 O7→8 (C7-9-11-8) O8→1
(C1-8-11-4) O3→8 (C3-8-7-6) O10→1 O3→10 (C1-10-3-8) O10→5 (C1-10-5-4) O9→10
(C2-9-10-3) S:7-9-10-5
8. MC9 9→7 O10→5 O9→10 (C5-10-9-7) O10→1 (C1-10-5-4) O3→10 (C2-9-10-3)
O3→8 O8→1 (C1-10-3-8) O8→11 (C1-8-11-4) O7→8 (C3-8-7-6) S:9-7-8-11
9. MC7 6→3 O2→3 (C2-4-6-3) O8→3 O7→8 (C3-8-7-6) B8→11 (Copy 10) O8→1
(C1-8-11-4) O7→9 O9→11 (C7-9-11-8) O9→2 (C2-9-11-4) O9→10 O10→3 (C2-9-10-
3) O10→1 (C1-10-3-8) O10→5 (C1-10-5-4) S:7-9-10-5
10. MC10 11→8 O1→8 (C1-8-11-4) O1→10 O10→3 (C1-10-3-8) O5→10 (C1-10-5-4)
O9→10 O7→9 (C5-10-9-7) O9→2 (C2-9-10-3) O9→11 (C2-9-11-4) S:7-9-11-8

5 Concluding remarks

In this paper, we introduce methods to generate automatically proofs of non-
word-representability of a graph that can be verified, in a robust way, by a
human. We do believe that our work and software [10] will have a dramatic
impact to the further development of the theory of word-representable graphs.
Indeed, now we can argue non-word-representability for many more (larger)
graphs without referring to software, which is a very welcoming news.

As for open problems, we see improving Algorithms 2 and 3 by modifying our
approach of selecting edges to branch: for example, we can look for branching
edges that increase the number/length of directed paths in the graph, which
should increase usability of Lemma 5.

Finally, understanding how to estimate, say, the average efficiency of our
algorithms, or relevant algorithms yet to be introduced, in terms of certain
parameters (number of cycles or alike) is a good theoretical question that seems
to be very challenging. The time complexity of our algorithms is also a very
interesting and challenging direction of research that was completely ignored by
us because our focus was in producing short proofs.

Acknowledgments

The first author is grateful to the London Mathematical Society for supporting
work on this project under “Computer Science Small Grants – Scheme 7”.

References

[1] A. E. Brouwer, A. M. Cohen, and A. Neumaier. Distance-Regular Graphs.
New York: Springer-Verlag, 1989.

[2] M. Glen. Software available at personal.strath.ac.uk/

sergey.kitaev/word-representable-graphs.html

[3] M. C. Golumbic. The complexity of Comparability Graph Recognition and
Coloring, Computing 18 (1977) 199–208.

13



[4] M. M. Halldórsson, S. Kitaev, A. Pyatkin. Semi-transitive orientations and
word-representable graphs, Discr. Appl. Math. 201 (2016) 164–171.

[5] S. Kitaev. A Comprehensive Introduction to the Theory of Word-
Representable Graphs. Lect. Notes in Comp. Sci. 10396 (2017) 36–67.

[6] S. Kitaev and V. Lozin. Words and Graphs, Springer, 2015.

[7] S. Kitaev, A. Pyatkin. On representable graphs. J. Autom., Lang. and
Combin. 13 (2008) 1, 45–54.

[8] S. Kitaev and A. Pyatkin. On semi-transitive orientability of triangle-free
graphs. Discussiones Mathematicae Graph Theory 43 (2023), ID: 4621,
page 533.

[9] R. C. Read and R. J. Wilson. An Atlas of Graphs. Oxford, England: Oxford
University Press, 1998.

[10] H. Sun. Software available at
personal.strath.ac.uk/sergey.kitaev/human-verifiable-proofs.html

[11] E. W. Weisstein. “Clebsch Graph.” From MathWorld–A Wolfram Web Re-
source. https://mathworld.wolfram.com/ClebschGraph.html

[12] E. W. Weisstein. “Shrikhande Graph.” From MathWorld–A Wolfram Web
Resource. https://mathworld.wolfram.com/ShrikhandeGraph.html

[13] H. Zantema. Software REPRNR to compute the rep-
resentation number of a graph, 2018. Available at
https://www.win.tue.nl/~hzantema/reprnr.html.

14


	Introduction
	Approaches to deal with non-word-representability
	A game changer approach

	Three algorithms to search for short proofs of non-word-representability
	The format of a proof
	Algorithm 1
	Algorithm 2
	Algorithm 3
	Ranking of algorithms

	The Shrikhande graph
	The Clebsch graph
	Concluding remarks

