

4DVANCED MATERIALS

Grain Engineering of Sb₂S₃ Thin Films to Enable Efficient Planar Solar Cells with High Open-Circuit Voltage

Xinnian Liu, Zhiyuan Cai, Lei Wan, Peng Xiao, Bo Che, Junjie Yang, Haihong Niu, Huan Wang, Jun Zhu, Yi-Teng Huang, Huimin Zhu, Szymon J. Zelewski, Tao Chen,* Robert L. Z. Hoye,* and Ru Zhou*

 Sb_2S_3 is a promising environmentally friendly semiconductor for high performance solar cells. But, like many other polycrystalline materials, Sb₂S₃ is limited by nonradiative recombination and carrier scattering by grain boundaries (GBs). This work shows how the GB density in Sb₂S₃ films can be significantly reduced from 1068 \pm 40 to 327 \pm 23 nm μ m⁻² by incorporating an appropriate amount of Ce^{3+} into the precursor solution for Sb_2S_3 deposition. Through extensive characterization of structural, morphological, and optoelectronic properties, complemented with computations, it is revealed that a critical factor is the formation of an ultrathin Ce₂S₃ layer at the CdS/Sb₂S₃ interface, which can reduce the interfacial energy and increase the adhesion work between Sb₂S₃ and the substrate to encourage heterogeneous nucleation of Sb₂S₃, as well as promote lateral grain growth. Through reductions in nonradiative recombination at GBs and/or the CdS/Sb₂S₃ heterointerface, as well as improved charge-carrier transport properties at the heterojunction, this work achieves high performance Sb₂S₃ solar cells with a power conversion efficiency reaching 7.66%. An impressive open-circuit voltage (V_{OC}) of 796 mV is achieved, which is the highest reported thus far for Sb₂S₃ solar cells. This work provides a strategy to simultaneously regulate the nucleation and growth of Sb₂S₃ absorber films for enhanced device performance.

1. Introduction

Antimony chalcogenides have emerged as promising light-harvesting materials for next-generation photovoltaic devices in recent years.^[1] This V-VI system, mainly including Sb₂S₃, Sb₂Se₃, and Sb₂(S,Se)₃, has drawn increasing attention owing to its highly desirable features and properties, such as its composition of earthabundant and environmentally benign elements, high thermal and environmental stability, simple binary composition, high visible light absorption coefficients (104-10⁵ cm⁻¹), and tunable bandgaps ranging from 1.10 to 1.70 eV.[1b,c,2] Following many efforts by a growing community of researchers working on these systems, the record power conversion efficiencies (PCEs) of Sb₂S₃, Sb₂Se₃, and Sb₂(S,Se)₃ solar cells have reached 8.00%, 10.57%, and 10.75%, respectively.^[1a,d,3] Particularly, Sb_2S_3 has a bandgap of ≈ 1.70 eV, which is the optimal value for top-cells in monolithic tandem photovoltaics with silicon

X. Liu, L. Wan, H. Niu, H. Wang, R. Zhou School of Electrical Engineering and Automation Hefei University of Technology Hefei 230009, P. R. China E-mail: zhouru@hfut.edu.cn Z. Cai, P. Xiao, B. Che, J. Yang, T. Chen Hefei National Research Center for Physical Sciences at the Microscale School of Chemistry and Materials Science University of Science and Technology of China Hefei 230026, Anhui, P. R. China E-mail: tchenmse@ustc.edu.cn

D The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/adma.202305841

© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

DOI: 10.1002/adma.202305841

J. Zhu

Academy of OptoElectric Technology Hefei University of Technology Hefei 230009, P. R. China Y.-T. Huang, H. Zhu, R. L. Z. Hoye, R. Zhou Inorganic Chemistry Laboratory Department of Chemistry University of Oxford South Parks Road, Oxford OX1 3QR, UK E-mail: rlzh2@cam.ac.uk H. Zhu Gallium Oxide Optoelectronic Devices Department of Physics University of Strathclyde Glasgow G40NG, UK S. J. Zelewski **Cavendish Laboratory** University of Cambridge JJ Thomson Ave, Cambridge CB3 0HE, UK

bottom cells, as well as for indoor photovoltaics.^[4] The low melting points (\approx 500 °C) and high vapor pressures enable the lowtemperature fabrication of flexible and lightweight devices for powering Internet of Things devices.^[4b,5] According to the detailed balance limit for single p-n junctions, the maximum photovoltaic performance parameters of absorbers with a 1.70 eV bandgap are an open-circuit voltage (V_{OC}) of 1.402 V, a shortcircuit current density (J_{SC}) of 22.46 mA cm⁻², a fill factor (FF) of 91%, and a PCE of 28.64%, under 1-sun AM 1.5G illumination.^[5] However, although great performance improvements have been achieved recently, the record PCE of 8.00% for Sb₂S₃ solar cells still lags far behind its radiative efficiency limit.^[1a] The primary reason behind the poor efficiency is the low $V_{\rm OC}$, which has stagnated to around 550-750 mV over the past decade. This represents a $V_{\rm OC}$ deficit (defined as $E_{\rm g}/q - V_{\rm OC}$, $E_{\rm g}$, and q are the bandgap and the elementary charge, respectively) of >0.9 V, which exceeds those found in other solar absorbers with similar bandgaps, such as CH₃NH₃PbI₃, GaAs, CdTe, etc.^[5,6] Therefore, it is imperative to realize effective strategies to overcome the $V_{\rm OC}$ bottleneck of Sb_2S_3 solar cells.

The large V_{OC} deficit in Sb₂S₃ solar cells is generally attributed to the traps states in devices, which can occur at surfaces, in the bulk or at interfaces.^[6b] First-principles calculations and experimental results have demonstrated that although Sb₂S₃ is only a binary compound, the absorber film suffers from a complex defect chemistry, mainly from sulfur vacancies (V_s), antimony vacancies (V_{Sb}), Sb antisites (Sb_S), and S antisites (S_{Sb}).^[7] These point defects, especially those with deep levels, could act as recombination centers, which would lower the quasi-Fermi level splitting and further decrease the $V_{\rm OC}$. Another plausible explanation for the high $V_{\rm OC}$ deficit, proposed by Yang et al., is that it is due to the self-trapping of photoexcited charge-carriers, setting an upper limit in the maximum $V_{\rm OC}$ (to approximately 0.80 V) and PCE (to approximately 16.00%) for Sb₂S₃ solar cells.^[8] However, by investigating the electron-lattice interaction and theoretical limits of carrier mobility using first-principles and Boltzmann transport calculations, Wang et al. demonstrated band-like transport in Sb₂S₃ and concluded that the key limiting factor is defecttrapping rather than self-trapping.^[9] This suggests that the low photovoltage of Sb₂S₃ solar cells could be surmountable with improved processing conditions to engineer the defect and interfacial properties of devices. This calls for further experimental efforts to mitigate the deleterious role of defects in Sb₂S₃.

For polycrystalline thin film-based optoelectronic devices, grain boundaries (GBs) significantly influence the optoelectronic properties of the semiconductor, and ultimately the device performance.^[10] This is because GBs, where dangling or wrong bonds proliferate, would impede charge-carrier transport and increase the rate of nonradiative recombination. It has been widely suggested that Sb₂S₃ has a quasi-1D crystal structure with [Sb₄S₆]_n units bonded covalently together in the *c*-axis direction to form [Sb₄S₆]_n ribbons.^[11] Although this quasi-1D structure is suggested to enable nearly benign GBs in [001]-oriented grains, the Sb₂S₃-based devices would also inevitably involve the negative effects of GBs at the terminals of ribbons in polycrystalline films.^[5] It is therefore critical to minimize the GB density in Sb₂S₃ thin films to reduce nonradiative recombination losses.^[12] Large, compact crystalline grains are also desirable to promote charge-carrier transport by minimizing their scattering at GBs. However, grain growth is often quite difficult to control and poorly understood in Sb₂S₃ absorbers. Conventional solution and evaporation processes and post-annealing approaches usually do not lead to large-grained compact thin films.^[1a,2b,7b] To date, the great efforts to boost the performance of Sb₂S₃ solar cells mainly focus on device structure optimization, orientation regulation, interface engineering, band tailoring, charge transport layer modification, etc.^[6a,13] There are few works aiming to regulate the microstructure of Sb₂S₃ films to increase the grain size. Since the microstructure of thin films greatly depends on the initial nucleation and growth, it is important to be able to rationally design and control the nucleation and growth processes of Sb₂S₃.^[14] However, because of the complexity of the reactions involved in solution- and vapor-based systems, mechanisms of nucleation and growth remain obscure right now.[11,15] For example, for solution-based deposition, the adsorption and reaction of ions at the solid-liquid interface involve random processes, causing great difficulty in controlling the nucleation and growth of films.^[16] Engineering the grains and the GB network to fabricate large-grained Sb₂S₃ absorber films remains challenging.

The nucleation and growth of thin films are closely associated with the in situ chemical environment of precursors for deposition. Lanthanide ions have been successfully used to regulate the crystallization process and materials properties of semiconductors, such as CsPbBr₃ films and nanocrystals.^[12a,17] Inspired by this fact, in this work, we investigated the incorporation of a variety of lanthanides (Ce³⁺, La³⁺, Gd³⁺, Yb³⁺, Er³⁺, and Tm³⁺) into the precursor solution for the hydrothermal deposition of Sb₂S₃ films, and found that the addition of Ce3+ allows effective grain engineering, which successfully resulted in large-grain Sb₂S₃ absorber films with ultralow-density GB networks. Systematic characterization was performed to clarify the role of Ce³⁺, from which we propose that the formation of Ce₂S₃ at the CdS/Sb₂S₃ interface mediates nucleation and growth, leading to large-grained Sb_2S_3 films at the solid-liquid interface. As expected, this near-ideal microstructure of large-grain Sb₂S₃ films affords superior optoelectronic properties and significantly enhanced performance in planar heterojunction Sb₂S₃ solar cells. A competitive PCE of 7.66% was achieved, coupled with a record $V_{\rm OC}$ value of 796 mV for the Sb₂S₃ system. We performed a series of advanced measurements to understand in detail the effects of Ce3+ addition on nonradiative recombination in the Sb₂S₃ photovoltaic devices to rationalize the reasons behind the improvement in performance. This study therefore develops a novel method for tuning the grain size of Sb₂S₃ thin films to realize high-performance photovoltaic devices.

2. Results and Discussion

2.1. Preparation of Large-Grained Sb₂S₃ Thin Films

We employed the hydrothermal method to deposit Sb_2S_3 absorber films on FTO/SnO₂/CdS substrates, in which $C_4H_4KO_7Sb\cdot 0.5H_2O$ and $Na_2S_2O_3\cdot 5H_2O$ were used as Sb and S sources, respectively. An extra amount of extrinsic Ce-based salts were intentionally incorporated into the precursor solution. **Figure 1**a shows top-down scanning electron microscopy (SEM) images of Sb_2S_3 thin films after 180 min of growth, prepared www.advancedsciencenews.com

CIENCE NEWS

Figure 1. a) Top-view scanning electron microscopy (SEM) images of Sb_2S_3 thin films prepared without (i.e., control) and with the addition of $Ce(CH_3COO)_3$ salt, with molar ratios of $Ce^{3+}/Sb^{3+} = 0.5\%$, 1%, 2%, and 3%. The hydrothermal deposition time was 180 min in all cases. The grain boundaries (GBs) are highlighted to show more clearly the changes in the GB density. b,c) Cross-sectional SEM images of the control Sb_2S_3 and 1%Ce- Sb_2S_3 films. d) The dependence of the GB density on the Ce^{3+} concentration in the precursor solution. Three samples were measured to determine the mean GB density values shown, and the error bars represent the standard deviation. e) X-ray diffraction (XRD) patterns of the control Sb_2S_3 film and Ce- Sb_2S_3 films prepared with different Ce^{3+} concentrations. f) Texture coefficients of the (120), (130), (211), and (221) peaks, which dominate the diffraction patterns of the Sb_2S_3 films.

without (i.e., control) and with the addition of different amounts of Ce(CH₃COO)₃·xH₂O. The molar ratio of Ce³⁺/Sb³⁺ prepared in the precursor solution were 0.5%, 1%, 2% and 3%, and we hereinafter refer to the films prepared based on the ratios used in the precursor solution. As shown, the control Sb₂S₃ film has a grain size of 2.5-5.0 µm based on the characteristic diameters of grains, which is close to those reported in the literature.^[11,15] The addition of Ce³⁺ into the precursor solution significantly increases the Sb_2S_3 grain size. When the Ce^{3+} concentration reaches 1%-3%, a large number of grains exceed 10 µm in size, with some grains even exceeding 15 µm. The cross-sectional SEM images of control Sb₂S₃ and 1%Ce-Sb₂S₃, as given in Figure 1b,c, reveal that as-obtained Sb₂S₃ grains span across the thickness of \approx 280 nm absorber layers, which would facilitate efficient carrier transport between the charge transport layers.^[10b] The addition of Ce³⁺ has negligible influence on the thickness of Sb₂S₃ layers; however, the control Sb₂S₃ film suffers from some vertical GBs while the 1%Ce-Sb₂S₃ sample affords monolithic grains. To further quantify the GB density, we defined it as the length of GBs per unit area, and calculated

the density of the GB network by first highlighting the GB grooves in top-down SEM images of Sb₂S₃ films. As shown in Figure 1d, the GB density on the Sb₂S₃ film surface is reduced from 1068 ± 40 nm μ m⁻² for the control sample to 702 ± 37, 511 ± 33, 327 ± 23, 427 ± 11 nm μ m⁻² for the 0.5%, 1%, 2%, and 3%Ce-Sb₂S₃ film samples, respectively. That is, the addition of Ce³⁺ into the precursor solution enables the well-controlled evolution of large grains with ultra-low GB density.

X-ray diffraction (XRD) patterns of Sb₂S₃ films without and with the addition of Ce³⁺ (Figure 1e) show the films prepared to be phase-pure, apart from peaks from the FTO substrate the films were deposited onto. The peaks from the absorber could all be indexed to orthorhombic Sb₂S₃ with a space group of *Pbnm* (JCPDS #42-1393).^[1a,5] The dominant peaks are (120), (220), (130), (211) and (211). By calculating the texture coefficients of these peaks, we found that the addition of Ce³⁺ does not cause significant changes to the degree of preferred orientation (Figure 1f). In addition, the diffraction peaks show no evident shift with the addition of Ce³⁺, which suggests that Ce³⁺ is not incorporated into lattice or interstitial sites. SCIENCE NEWS _____ www.advancedsciencenews.com

а

h

Figure 2. a,b) Scanning electron microscopy (SEM) images of the 1%Ce-Sb₂S₃ film used for making samples for transmission electron microscopy (TEM) characterization, and corresponding process of obtaining the lamella using a focused ion beam. c) Cross-sectional TEM image of 1%Ce-Sb₂S₃ sample deposited on FTO/SnO₂/CdS substrate. d) Selected area electron diffraction (SAED) pattern from Sb₂S₃ crystals, with diffraction spots indexed. e) Illustration of the crystal structure of Sb₂S₃, viewed from the [001] direction. f–h) High-resolution (HR) TEM measurements performed at points A1, A2, and A3 (see part c), and the corresponding lattice fringes.

By definition, a grain is the smallest microstructural unit that is a true single crystal and is bounded on all sides by GBs, interfaces, or surfaces.^[14b] Since the microfeatures found from SEM images are not necessarily individual grains, we here further quantified this from transmission electron microscopy (TEM) measurements. Figure 2a,b shows SEM images of the 1%Ce-Sb₂S₃ film used for making samples for TEM characterization and corresponding process of obtaining the lamella using a focused ion beam (FIB) system, respectively. The cross-sectional TEM image (Figure 2c) reveals that the Sb_2S_3 film is compact and composed of large Sb₂S₃ grains spanning the thickness of the film. To verify whether the Sb₂S₃ grains are single crystalline, high-resolution TEM was used to analyze three arbitrarily selected points A1, A2, and A3 as labeled in Figure 2c, with the corresponding lattice fringes given in Figure 2f-h. As shown, lattice fringes with interplanar spacings of 1.132, 1.125, and 0.795 nm were identified, which corresponds to the (010), (100), and (110) planes in orthorhombic Sb₂S₃, respectively.^[5] Points A1, A2, and A3 have identical crystallographic orientations, reflecting that the crystal planes extend from the top to the bottom of the Sb_2S_3 film. This confirms that the large grain is indeed single crystalline. The selected-area electron diffraction (SAED) pattern (Figure 2d), which is observed from the [001] zone axis as illustrated by the atomic configuration of ribbon direction [001] orientation in the Sb_2S_3 crystal structure (Figure 2e), further confirms the single-crystalline nature of the Sb_2S_3 grains.

Atomic force microscopy (AFM) measurements (Figure S1, Supporting Information) further reveal that the 1%Ce-Sb₂S₃ sample displays much larger microfeatures than the control Sb_2S_3 sample. Moreover, the addition of Ce^{3+} results in a reduction in the average roughness of the absorber films from 13.1 nm (control) to 9.2 nm (1%Ce-Sb₂S₃). Flatter and more compact absorber films would enable the formation of highquality P-N junctions. The conductive-atomic force microscopy (c-AFM) images and corresponding height profile and current analysis of the control Sb₂S₃ and 1%Ce-Sb₂S₃ films are provided in Figure S2a-d (Supporting Information). The intensity profiling of the surface current along the solid white line marked in Figure S2a-b (Supporting Information) reveals that the films suffer from evident current fluctuations at the GBs. The 1%Ce-Sb₂S₃ films have more homogeneous and slightly increased electrical conductivity across the 5 µm scale compared to the control film. The reduced fluctuation in the current intensity for 1%Ce-Sb₂S₃ films favors local photocurrent generation and collection,

SCIENCE NEWS ______ www.advancedsciencenews.com

effectively suppressing carrier recombination at the GBs.^[18] The Fermi level, valence band (VB) and conduction band (CB) of the control Sb₂S₃ and 1%Ce-Sb₂S₃ films can be derived from ultraviolet photoelectron spectroscopy (UPS) measurements (Figure S3a, Supporting Information; see details in Note S2, Supporting Information). A schematic diagram of the band positions of the functional layers in Sb₂S₃ solar cells is illustrated in Figure S3b (Supporting Information).^[19] As shown, the Fermi level of the 1%Ce-Sb₂S₃ film is shifted up towards the CB compared to that of the control Sb₂S₃ film. The lower work function (WF) implies an increased electron carrier concentration, and therefore more n-type Sb₂S₃. We further performed Kelvin probe force microscopy (KPFM) measurements to map the surface potential of Sb₂S₃ films, as shown in Figure S2e–h (Supporting Information), which reveal a higher surface potential for the 1%Ce-Sb₂S₃ film in contrast to the control Sb₂S₃. An increased surface potential indicates a lower WF.^[18,20] Therefore, the WF value of the 1%Ce-Sb₂S₃ sample would be lower than that of the control sample, implying the upshift of the Fermi levels as a result of increased background electron concentration.^[21] To evaluate the conductivity of the absorber films, we measured the I-V curves in the dark based on a simple device configuration of FTO/Sb₂S₃/Au for the control Sb₂S₃ and 1%Ce-Sb₂S₃ film samples (Figure S4, Supporting Information). The 1%Ce-Sb₂S₃ film delivers an enhanced conductivity of 7.50×10^{-5} S cm⁻¹, higher than that of 4.32×10^{-5} S cm⁻¹ for the control film, and this is consistent with the c-AFM results. Since the conductivity measurement here is out-of-plane and most of the GBs in Sb₂S₃ films are approximately vertical, the increase in conductivity σ reflects the increase of electron density according to the equation $\sigma = ne\mu_{e}$, where *n* is the electron concentration, e is the elementary charge, and μ_e is the electron mobility.

Finally, in addition to Ce^{3+} , we also investigated other lanthanide additives (La³⁺, Gd³⁺, Yb³⁺, Er³⁺, and Tm³⁺). However, the addition of these ions into the precursor solution did not lead to the changes in microstructure obtained with Ce^{3+} , as shown by the SEM images and corresponding photovoltaic device performances given in Figure S5 and Table S1 (Supporting Information).

2.2. Growth Mechanism of Large-Grained Sb₂S₃ Films

To elucidate the underlying mechanism for the increase in Sb₂S₃ grain size, we performed control experiments as follows. Apart from using $Ce(CH_3COO)_3$ as the additive into the precursor solution, we investigated the use of Ce-based salts of CeCl₃ and $Ce(NO_3)_3 \cdot 6H_2O$, which were also found to be effective in promoting the grain size of Sb₂S₃ film, as reflected in the SEM images shown in Figure S6a,b (Supporting Information). In addition, we found that adding 1% molar ratio Ce(CH₃COO)₃ to the precursor solution for hydrothermal deposition would slightly increase the pH from 4.38 to 4.73. In order to exclude the influence of pH, we further used ammonia solution to adjust the pH of the precursor solution without the additive of Ce³⁺ to a similar level of 1% Ce(CH₃COO)₃ containing precursor, as summarized in Table S2 (Supporting Information). After examining the grain size of as-prepared Sb₂S₃ films with the addition of ammonia solution (Figure S6c, Supporting Information), we found that changing pH has negligible influence on the grain size of Sb₂S₃. These results confirm that the increase in Sb₂S₃ grain size should be closely associated with the presence of Ce³⁺ in the precursor solution. In this work, we employed Ce(CH₃COO)₃ as the Ce-salt additive incorporated into the precursor solutions, unless otherwise stated.

Next, we clarified the specific effects of Ce³⁺ on the growth of Sb₂S₃ films and corresponding device performance. Generally, extrinsic Ce³⁺ ions could be incorporated into the crystal lattice of Sb₂S₃ (i.e., doping) or concentrate at GBs or interfaces. Aiming to determine the exact location of Ce3+, we performed secondary ion mass spectrometry (SIMS) measurements to analyze the vertical distribution of various elements across the 1%Ce-Sb₂S₃ film. The SIMS intensity profiles of C, Au, Sb, Sn, S, Cd, and Ce in FTO/SnO₂/CdS/Sb₂S₃/Spiro-OMeTAD/Au are shown in Figure 3a. Herein, we used ¹¹⁰Cd and ¹⁴²Ce isotopes to avoid interference from other ions on identifying these elements. It is revealed that Sb and S distribute uniformly across the absorber layer (t = 205-385 s). At the CdS/Sb₂S₃ heterojunction interface (t = 385 s), an abrupt increase in the Ce profile peak was clearly observed, suggesting the accumulation of Ce-based compounds at the CdS/Sb₂S₃ interface. We speculate that the Ce³⁺ incorporated probably reacted with S-species in the precursor solution to generate Ce₂S₃ compounds on top of the pristine CdS layer. Moreover, the symmetric distribution of the Ce peak also excludes the possible gradient doping of Ce³⁺ into Sb₂S₃. The 3D-SIMS mapping images of Sb, Cd, Ce, and S elements (Figure S7, Supporting Information) further reflect that the location of Ce element at the CdS/Sb₂S₃ interface.

Figure 3b presents the HRTEM image at the CdS/Sb₂S₃ interface of the 180 min-deposited 1%Ce-Sb₂S₃ thin film, which reveals there to be an ultrathin interlayer. This interlayer has lattice fringes with the interplanar spacing of ≈ 0.204 nm, corresponding to the (002) plane of orthorhombic Ce₂S₃ (space group Pnam). X-ray photoelectron spectroscopy (XPS) was also performed to confirm the formation of Ce₂S₃ at the CdS/Sb₂S₃ interface. Here, in order to successfully characterize the CdS/Sb₂S₃ interface, we fabricated ultrathin 1%Ce-Sb₂S₃ film samples prepared with 15 min- and 30 min of hydrothermal deposition. These film samples were not etched by Ar⁺ sputtering because of the limited amount of cerium compounds on the film surface. As shown in Figure 3c, the binding energies (BEs) of 538.5 and 529.2 eV are assigned to the Sb $3d_{3/2}$ and Sb $3d_{5/2}$ core levels of Sb₂S₃, respectively, while the peaks centered at 539.7 and 530.4 eV are ascribed to Sb_2O_3 , probably arising from the partial post-oxidation of the film surface in air.^[22] The BEs of S 2p_{1/2} and S 2p_{3/2} for both film samples are 162.6 and 161.4 eV, respectively (Figure 3d).^[23] Figure 3e shows characteristic peaks of highresolution Ce 3d, which presents two pairs of spin-orbit signals. The peaks located at 904.2 and 885.5 eV can be attributed to Ce $3d_{3/2}$ and Ce $3d_{5/2}$ for the Ce³⁺ state in Ce₂S₃, respectively. The other pair of peaks at 900.5 and 882.4 eV is assigned to the satellite peak of Ce³⁺. The results are consistent with those reported in the literature for Ce₂S₃, indicating the existence of Ce³⁺.^[24] Moreover, the reduced Ce peak intensity for the 30 min-deposited film compared to the 15 min-deposited film as well as the quantitative analysis of atomic ratios further implies the preferential formation of Ce₂S₃ prior to the deposition of Sb₂S₃ (Table S3, Supporting Information). High resolution XPS spectra and spectral **ADVANCED** SCIENCE NEWS __

www.advancedsciencenews.com

Figure 3. a) Secondary ion mass spectrometry (SIMS) depth profiles of the 180 min-deposited 1%Ce-Sb₂S₃ thin film. b) HRTEM image at the CdS/Sb₂S₃ interface of the 180 min-deposited 1%Ce-Sb₂S₃ thin film. c–e) High resolution X-ray photoelectron spectroscopy (XPS) spectra of Sb 3d, S 2p, and Ce 3d core levels, along with peaks fitted to these spectra, for the 15 min- and 30 min-deposited 1%Ce-Sb₂S₃ film samples.

deconvolution analysis of Sb 3d, S 2p, and Ce 3d for 180 mindeposited control Sb₂S₃ and 1%Ce-Sb₂S₃ film samples are given in Figure S8 (Supporting Information). The failure to detect the Ce 3d peak implies the absence of Ce elements at the surface of Sb₂S₃ and excludes the uniform doping or distribution of Ce in the bulk Sb₂S₃ film.

To gain more insights into the evolution of the morphology with Ce3+ incorporation, we performed SEM measurements at different time intervals during film growth. Figure S9 (Supporting Information) shows top-down and cross-sectional view SEM images of the control Sb₂S₃ and 1%Ce-Sb₂S₃ film samples prepared with different deposition durations (15, 30, 60, 120, and 180 min) by hydrothermal growth. A comparison of the morphology of the control and 1%Ce-Sb₂S₃ films prepared with identical deposition times reveals that the addition of Ce³⁺ results in an increase in the grain size of Sb₂S₃ over the course of the entire deposition process sampled. Moreover, it seems to be difficult to deposit Sb₂S₃ onto pristine CdS at the initial stage of hydrothermal deposition (0-30 min). In contrast, when Ce³⁺ was incorporated, an evident film morphology change occurs for the 30 min-deposited sample, probably resulting from the preferential deposition of Ce₂S₃. Another interesting phenomenon is that the addition of Ce³⁺ also reduces the amount of white precipitate particles on the surface of Sb₂S₃ films, which may be due to suppressed homogeneous nucleation that occurs in hydrothermal solutions.^[16c] In addition to measuring the morphology by topdown SEM, we also measured the cross-section of these samples, and found that there was no distinct difference in the thickness of the Sb_2S_3 absorbers without or with the addition of Ce^{3+} (Figure S9c,d, Supporting Information).

Taken together, the TEM, XRD, SIMS, and XPS results exclude the possibility of substitutional or interstitial doping of Ce^{3+} in the Sb₂S₃ host. Aiming to determine the complicated film growth route of hydrothermal deposition, it is worth noting that the overall reaction is a joint result of kinetic and thermodynamic processes. Although the Sb³⁺, Ce³⁺, and S²⁻ sources were simultaneously dissolved into the precursor solution, different ions have quite different release rates. S2- ions are easily released from sodium thiosulphate (Na₂S₂O₃) upon hydrolytic decomposition. In contrast, considering the strong complexation effect of $[Sb_2(C_4H_2O_6)_2]^{2-}$, Sb^{3+} ions in the precursor solution involve quite slow ion release rates, especially at the very beginning of the reaction period. Generally, the deposition of Sb₂S₃ occurs when the ionic product (IP = $[Sb^{3+}]^2[S^{2-}]^3$) exceeds the solubility product of Sb₂S₃ ($K_{sp} = 10^{-92.77}$).^[25] Different from the complexation of $[Sb_2(C_4H_2O_6)_2]^{2-}$, the incorporated Ce-based salts can completely dissociate into free Ce³⁺ ions in the growth medium. That is, Ce³⁺ would be the dominating free cations available that could react with S²⁻ during the initial reaction stage, enabling the higher nucleation and deposition rate for Ce₂S₃. Meanwhile, Ce³⁺ is more active compared to Sb³⁺ reacting with S²⁻, and thus the formation of Ce₂S₃ dominates the initial reactions during the

Figure 4. a) Illustration of the contact angle (θ) for heterogeneous nucleation, and the water contact angles of pristine CdS film, as well as CdS films that have undergone 15 min- and 30 min-hydrothermal deposition in Sb₂S₃ precursor solutions (both without and with 1% Ce). b) Histogram of the calculated interfacial adhesion work and interfacial energy for the heterointerfaces of CdS/Sb₂S₃ and Ce₂S₃/Sb₂S₃. c) Schematic illustrating conventional growth and Ce₂S₃-mediated growth of Sb₂S₃ thin films.

hydrothermal process. This can also be validated by the much lower formation energy of Ce_2S_3 (-1.99 eV atom⁻¹) compared to that of Sb_2S_3 (-0.27 eV atom⁻¹), as summarized in Table S4 (Supporting Information). Moreover, the limited supply of incorporated Ce3+ ions would only result in the formation of an ultrathin layer of Ce₂S₃ on top of the CdS layer, followed by a slow deposition of the Sb₂S₃ absorber layer. From the perspective of crystal growth, the deposition of Sb₂S₃ on the substrate is greatly influenced by the substrate characteristics, including chemical bonding environment and exposed crystal facets. We speculate that the pre-deposited Ce₂S₃ seeds succeed in modifying the initial nucleation environment of Sb₂S₃. Herein we can apply materials science principles of nucleation and growth to understand the microstructural evolution of Sb₂S₃ films and then propose a plausible mechanism.^[14,26] The corresponding detailed descriptions of nucleation and growth are given in Note S1 (Supporting Information).

First, we measured the contact angle of water on the substrates used for Sb₂S₃ deposition to understand the specific role of the Ce₂S₃ interlayer on the nucleation behavior of Sb₂S₃. The interfacial energy diagram for two solids and a liquid in contact with each other is shown in **Figure 4**a, as well as the contact angle results of the pristine CdS film and the Sb₂S₃ films after 15 min- and 30 min- hydrothermal deposition with and without Ce³⁺. Here γ_{CL} , γ_{SL} , and γ_{CS} denote the interfacial energies between the crystalline phase and the liquid, the substrate and the liquid, and the crystalline phase and the solid surface, respectively. As shown, the water contact angle of the pristine CdS film is as high as 70.4°, which is slightly lowered to 65.7° and 64.3° for the films processed by 15 min- and 30 mindeposition without the use of Ce³⁺, respectively. On the other hand, adding Ce3+ into the precursor solution dramatically reduces the water contact angle to 56° and 54.5° for 15 min- and 30 min-deposited samples, respectively. Since we have concluded that Ce₂S₃ seeds would be preferentially deposited via 15 minand 30 min-hydrothermal deposition, it is evident that the substrate becomes more hydrophilic with the presence of an ultrathin Ce₂S₃ interlayer. Therefore, according to Equations (S1–S4) and Figure S10 (Supporting Information), during the nucleation stage, we suggest that the Ce₂S₃ interlayer promotes the heterogeneous nucleation of Sb₂S₃, while suppressing its homogeneous nucleation. This is because smaller contact angle results in a reduced energy barrier for heterogeneous nucleation. This scenario is similar to the case for perovskite films, which generally require a high density of heterogeneous nuclei on the substrate to afford uniform, full-coverage thin films.^[27]

Subsequently, stable Sb₂S₃ nuclei will further grow to reduce the overall free energy of the system as long as the solute concentration is above the solubility limit. Typically, the growth of Sb₂S₃ films occurs by a process akin to the Volmer-Weber growth

model (island), where the interface energy is relatively large, and hence discrete nuclei form and grow before a layer is completed by infilling. Here the 3D nuclei (i.e., islands) first grow both vertically and laterally onto the CdS substrate, and then form a dense polycrystalline film.^[14] For the case where a Ce₂S₃ interlayer is present, the growth of Sb₂S₃ films more closely resembles the Stranski-Krastanov model (layer plus island), where the interface energy is comparable to the island interaction energy, and hence layer formation competes with nuclei formation. Here, high-density small nuclei formed on the CdS/Ce₂S₃ substrate would tend more to grow laterally, which contrast to growth on the CdS substrate, and thus further coalesce into a largegrained Sb₂S₃ film. This hypothesis is further supported by firstprinciples calculations, which reveals decreased interfacial energy (γ) and increased adhesion work (W_{ad}) for the Ce₂S₃/Sb₂S₃ heterointerface compared to the CdS/Sb₂S₃ heterointerface. Interfacial energy and adhesion work are two important parameters to evaluate the properties of the heterointerface. The interfacial energy can be regarded as the resistance to form an interface structure; heterointerfaces with smaller γ are easier to form. Adhesion work, which is defined as the work required to separate two phases from each other (herein the film and the substrate), can be used to evaluate the bond strength of interfaces. Generally, a larger W_{ad} implies a stronger heterointerface stability. Here we built CdS/Sb₂S₃ and Ce₂S₃/Sb₂S₃ heterojunction models by selecting CdS (100), Sb₂S₃ (120), and Ce₂S₃ (001) surfaces as exposed surfaces. Table S5 (Supporting Information) gives the calculated surface energies of various crystal surfaces, and the calculated interfacial energy and adhesion work of two heterointerface are shown in Figure 4b. We can see that the interfacial energy of the Ce_2S_3/Sb_2S_3 heterointerface is 0.3705 J m⁻², lower than that of 0.4709 J m⁻² for the CdS/Sb₂S₃ heterointerface. This suggests that the nucleation and growth of Sb₂S₃ on Ce₂S₃ is easier to occur. The reduced interfacial energy and enhanced bonding at the substrate/absorber interface might promote the transition of the growth mode of Sb₂S₃ from Volmer–Weber to Stranski– Krastanov, enabling the formation of large-grained Sb₂S₃ onto the substrate during the hydrothermal deposition process. The adhesion work of Ce_2S_3/Sb_2S_3 is 0.4616 J m⁻², larger than that of 0.2112 J m⁻² for CdS/Sb₂S₃, which implies that the bond between Ce_2S_3 and Sb_2S_3 is stronger, resulting in the formation of a high-quality heterointerface with much more intimate contact.

Furthermore, the amorphous films will be transformed into compact and crystalline Sb₂S₃ films after annealing at a high temperature of 370 °C in this work. The Sb₂S₃ films would experience grain-coarsening during the postannealing treatment. According to the classical grain-coarsening mechanism, there is a thermodynamic driving force for favorable-oriented and/or large grains in a dense, polycrystalline thin film to increase in size. Note that the term "coarsening" here is used to imply a secondary grain-growth of an already-formed microstructure, as distinct from more general nuclei growth. Grain-coarsening often occurs in anisotropic films, where favorably-oriented grains involve rapid growth, giving rise to textured and large-grained films.^[14a] In our case, all GBs in the Sb₂S₃ films intersect the top surface and the bottom interface with the substrate. The favorably-oriented grains refer to the ones whose low-energy crystal planes include the top surface and the interface with the substrate. The system tends to maximize the area of those surfaces and interfaces via the growth

of the favorably oriented grains at the expense of the less favorably oriented grains. The coarsening rate of those favorably oriented grains can be expressed by Equation (1):^[14a]

$$\frac{\mathrm{d}r_{\mathrm{S}}}{\mathrm{d}t} = M[\frac{(\gamma_{\mathrm{S}}^* + \gamma_{\mathrm{I}}^*) - (\gamma_{\mathrm{S}} + \gamma_{\mathrm{I}}) + \gamma_{\mathrm{GB}}}{d}] \tag{1}$$

where $r_{\rm S}$ is the radius of the secondary grain, *M* is the GB mobility; $\gamma_{\rm S}^*$ and $\gamma_{\rm I}^*$ are the average energies of the top surface of the film and the interface with the substrate, respectively, of all the normal grains; $\gamma_{\rm S}$ and $\gamma_{\rm I}$ are the surface and interface energies, respectively, of the favorably oriented grains; $\gamma_{\rm GB}$ is the GB energy; *d* is the film thickness. Equation (1) implies that, by minimizing the energy ($\gamma_{\rm I}$) of the interface between the favorably oriented grains and the substrate through reasonable design of substrates for better adhesion, one can achieve rapid coarsening rate for grain-growth. Therefore, we suggest that the presence of Ce₂S₃ interlayer contributes to the better adhesion between Sb₂S₃ and the substrate, thus resulting in accelerated coarsening of favorably oriented Sb₂S₃ grains. The likely scenario for the evolution at the growth stage of conventional Sb₂S₃ films and Ce₂S₃ mediated Sb₂S₃ films is illustrated schematically in Figure 4c.

Based on these discussions, it is concluded that the significantly increased Sb₂S₃ grain sizes can be attributed to the Ce₂S₃ interlayer influencing the nucleation and growth of Sb₂S₃ deposited on top. The presence of the Ce₂S₃ interlayer could result in improved heterojunction quality with more intimate binding between the Sb₂S₃ layer and the substrate.

2.3. Device Performance of Sb₂S₃ Planar Solar Cells

Figure 5a schematically illustrates the typical planar superstrate device configuration (n-i-p) of FTO/SnO2/CdS/ Sb2S3/Spiro-OMeTAD/Au, in which Sb₂S₃ is the absorber while SnO₂/CdS and Spiro-OMeTAD serve as the electron and hole transport layers, respectively. From the cross-sectional SEM images of the full device stack (Figure 5b), the Sb₂S₃ absorber layer is compact and uniform, with a thickness of 280 ± 10 nm. The photovoltaic parameters of such solar cells, each based on 20 devices, including V_{OC} , J_{SC} , FF, and PCE, obtained under AM 1.5G illumination (100 mW cm⁻²), are given in the box charts of Figure 5c. The corresponding device photovoltaic parameters are summarized in Table 1. As shown, these devices exhibit good reproducibility and performance. With the addition of Ce³⁺ into the precursor solution, the PCE of Sb₂S₃ solar cells increased at first, before decreasing with further increases in Ce³⁺ concentration. The control Sb_2S_3 solar cells have an average PCE of 6.02%, whereas the average PCE was increased to 7.10% for the 1%Ce-Sb₂S₃ device. The current density-voltage (J-V) curves of the champion control Sb₂S₃ and Ce-Sb₂S₃ solar cells, are shown in Figure 5d. The control Sb₂S₃ solar cell has a V_{OC} of 772 mV, J_{SC} of 15.13 mA cm⁻², FF of 54.94%, and PCE of 6.42%. The best-performing 1%Ce- Sb_2S_3 device exhibits a PCE of 7.66%, coupled with a V_{OC} of 796 mV, $J_{\rm SC}$ of 16.67 mA cm⁻², and FF of 57.72%. That is, the addition of 1%Ce³⁺ leads to a relative PCE enhancement of 20% compared to the control device (or 1.24% absolute PCE increase). Figure 5f shows the evolution of the record PCE of Sb₂S₃ solar cells over the past few years, which reflects that this work demonstrates a competitive device efficiency at a comparable level to the

ADVANCED SCIENCE NEWS

www.advancedsciencenews.com

www.advmat.de

Figure 5. a) Illustration and b) cross-sectional scanning electron microscopy (SEM) image of the device structure, which have the configuration: $FTO/SnO_2/CdS/Sb_2S_3/Spiro-OMeTAD/Au. c$) The statistics of the performance parameters of the control Sb_2S_3 device and $Ce-Sb_2S_3$ devices obtained with the addition of different concentrations of Ce^{3+} to the precursor solution. A total of 20 devices were measured for each condition, and the performance metrics of each device is shown as individual data points. d) *J*–V curves of the control Sb_2S_3 and $Ce-Sb_2S_3$ solar cells, measured under AM 1.5G (100 mW cm⁻²) illumination. e) External quantum efficiency (EQE) curves of best-performing 1%Ce-Sb_2S_3 solar cells. f) Evolution in the record efficiency of Sb_2S_3 solar cells. g) V_{OC} values of previous work on well-developed planar and sensitized Sb_2S_3 solar cells.

Devices	V _{OC} [mV]	$J_{\rm SC}$ [mA cm ⁻²]	FF [%]	PCE [%]
Control	768 ± 9 (783)	14.26 ± 0.71 (15.33)	55.11 ± 0.93 (56.58)	6.02 ± 0.30 (6.42)
0.5%Ce	780 ± 8 (787)	14.67 ± 0.63 (15.97)	55.40 ± 0.85 (56.55)	6.27 ± 0.26 (6.94)
1%Ce	788 ± 7 (796)	15.91 ± 0.78 (17.19)	57.06 ± 0.84 (58.28)	7.10 ± 0.33 (7.66)
2%Ce	776 ± 10 (797)	15.99 ± 0.88 (17.57)	55.59 ± 1.17 (58.16)	6.72 ± 0.31 (7.21)
3%Ce	778 ± 9 (796)	15.99 ± 0.46 (16.82)	55.13 ± 0.74 (56.23)	6.79 ± 0.24 (7.13)

Format: mean \pm standard deviation (best value).

ADVANCED SCIENCE NEWS _____ www.advancedsciencenews.com

recently-reported record efficiency of 8.00% for Sb₂S₃ solar cells. Figure 5e presents the external quantum efficiency (EQE) spectrum of the best-performing 1%Ce-Sb₂S₃ solar cells. The device shows a broad light response, ranging from 350 to 750 nm, with the peak EQE exceeding 85% in the visible wavelength range. The integrated J_{SC} from the EQE spectrum is 16.30 mA cm⁻², consistent with the J_{SC} measured from the J-V curve (within 5% deviation). The EQE spectra of the other devices are given in Figure S11 (Supporting Information). As shown, the J_{SC} enhancement for Ce-Sb₂S₃ solar cells mainly comes from the long-wavelength range of 510-710 nm, indicating that the Ce-Sb₂S₃ devices afford more efficient charge transport and collection. Considering that the control Sb₂S₃ and Ce-Sb₂S₃ films have the same thicknesses, the enhancement in efficiency is attributed to more effective transport of charge-carriers in Ce-Sb₂S₃ than a higher density of charge-carriers being generated. Moreover, the Ce-Sb₂S₃ solar cells deliver improvements also in $V_{\rm OC}$ and FF. In particular, to the best of our knowledge, the $V_{\rm OC}$ obtained close to 800 mV is the highest value reported thus far for Sb₂S₃ solar cells. Figure 5g gives the $V_{\rm OC}$ values of well-developed planar and sensitized Sb₂S₃ solar cells (detailed in Table S6, Supporting Information). As shown, the trend in $V_{\rm OC}$ over the course of the development of Sb₂S₃ photovoltaics has recently stagnated at around 550–750 mV. This work therefore sets a new record of $V_{\rm OC}$ for Sb₂S₃ solar cells.

In addition to these improvements in the initial device efficiency, we found that Ce-Sb₂S₃ photovoltaics exhibited improved stability as well. We stored unencapsulated control Sb₂S₃ and 1%Ce-Sb₂S₃ devices in a cabinet with 15% relative humidity, and monitored the performance over time (Figure S12a, Supporting Information). The 1%Ce-Sb₂S₃ solar cell retained 97.1% of its initial efficiency after 30 days of storage, more stable in contrast to the control device that had 93.2% of the initial efficiency. Moreover, the unencapsulated devices also showed good stability under harsher damp-heat conditions (60% relative humidity, 50 °C). The control Sb₂S₃ and 1%Ce-Sb₂S₃ solar cells could retain 94.6% and 96.7% of their initial efficiencies, respectively, after 1-week of storage under these conditions (Figure S12b, Supporting Information).

It is worth noting that, increasing the Ce³⁺ concentration up to 5% and beyond resulted a sharp reduction in PCE (Figure S13a, Supporting Information). This phenomenon might be explained by the evolution in the morphology of Sb₂S₃ films. The Sb₂S₃ films appear to crack and peel off from the substrates, as reflected by SEM images of 5%Ce-Sb₂S₃ and 10%Ce-Sb₂S₃ films (Figure S13b,c, Supporting Information). This might have been caused by increased stress during the high-temperature annealing stage, causing cracking, delamination, and high roughness, similar to that reported for perovskite films.^[28] Moreover, when Ce(NO₃)₃ and CeCl₃ were used to replace Ce(CH₃COO)₃ as the Ce³⁺ sources incorporated into the precursor solutions, the corresponding solar cells also delivered significantly enhanced performance (Figure S14, Supporting Information).

2.4. Defect Physics and Charge-Carrier Transport Properties

It is important to elucidate the defect characteristics of Sb_2S_3 films and further establish the relationship between defects and

ADVANCED MATERIALS www.advmat.de

device performance. Deep-level transient spectroscopy (DLTS) was performed to explore the depth and quantity of defects in Sb_2S_3 films. As shown in Figure 6a, both the control Sb_2S_3 device and 1%Ce-Sb₂S₃ device present two negative DLTS signal peaks in the high temperature region due to the effect of multiple minority-carrier traps, i.e., hole defects in n-type Sb₂S₃ films.^[1c] Each DLTS signal was fitted by using deep-level transient Fourier spectroscopy (DLTFS) and decomposed into two hole defects of different depths denoted as H1 and H2. The defect characteristics, including activation energy (E_a) and capture cross section (σ), and trap concentration ($N_{\rm T}$) can be extracted from the linear fittings of the Arrhenius plots as given in Figure 6b, and the results are summarized in Table 2. The corresponding theory is given in Note S3 (Supporting Information). The E_2 values of H1 and H2 are 0.45 and 0.77 eV, respectively. It is known that Sb₂S₃ consists of $[Sb_4S_6]_n$ chains which have five nonequivalent atomic sites, i.e., Sb1, Sb2, S1, S2, and S3. The quasi-1D crystal structure involves the presence of multiple defects in Sb₂S₃, including five vacancies (V_{Sb1} , V_{Sb2} , V_{S1} , V_{S2} , and V_{S3}), five anti-sites (S_{Sb1} , S_{Sb2} , Sb_{S1}, Sb_{S2}, and Sb_{S3}), and two interstitials (Sb_i and S_i), as predicted by previous theoretical calculations.^[7a,b] By comparing the depth of defects obtained from measurements with the transition levels obtained from calculations, the H1 and H2 traps are consistent with two anti-site defects, S_{Sb1} and S_{Sb2} . It is revealed that both devices share identical types of deep-level defects; however, the concentrations of the H1 and H2 defects differ. Moreover, our hydrothermally deposited Sb₂S₃ films exhibit much lower defect density than Sb₂S₃ prepared by thermal evaporation.^[29] The trapping capability of defects can be quantified by using the thermal trapping rate (C_{trap}), which is expressed by the equation $C_{\text{trap}} = 1/\tau_{\text{trap}} = v\sigma N_{\text{T}}$, where τ_{trap} is the carrier lifetime associated with the trap-assisted Shockley-Read-Hall (SRH) recombination and v is the thermal velocity of charge related to the intrinsic charge transport feature of semiconductors. Therefore, minimizing defect density, particularly those with large capture cross sections, would increase minority carrier lifetimes and hence enhance $V_{\rm OC}$. Here the impact of deep-level defects on the trapping of carriers of the control Sb_2S_3 device and 1%Ce-Sb₂S₃ device can be simply compared by the value of $\sigma N_{\rm T}$, as given by the statistical histogram of calculated $\sigma N_{\rm T}$ for different hole traps (Figure 6c). It is revealed that H2 dominates charge trapping in absorber films in view of its larger $\sigma N_{\rm T}$ value and greater energy depth. In contrast, the H1 defect would have limited carrier trapping capability because of its low capture cross section on the order of 10^{-18} cm², three orders of magnitude lower the 10^{-15} cm² value for the H2 defect. Hence, we assign H2 as the trap that is mainly responsible for the $V_{\rm OC}$ loss in the space charge region (SCR) of the solar cells. Compared to the control Sb_2S_3 device, the σN_T for the H2 defect in 1%Ce-Sb₂S₃ is decreased owing to a reduction in defect density. The band edge position and defect levels are illustrated in Figure 6d,e. Figure 6f gives the illustration of the defects of S_{Sh1} and S_{Sb2} in a $[Sb_4S_6]_n$ unit of Sb_2S_3 crystal structure. Since the depth of defects reflects the difficulty of charge emission from the traps, the H1 and H2 defects located at more than $0.3\ \text{eV}$ above the VB would trap carriers without re-emission, thus acting as recombination centers and resulting in reductions in $V_{\rm OC}$. These results suggest that the Ce-Sb₂S₃ films could decrease the defect density in absorber films and suppress charge-carrier recombination in solar cells.

www.advancedsciencenews.com

SCIENCE NEWS

Figure 6. a) Deep-level transient spectroscopy (DLTS) signals from the control Sb_2S_3 and $1\%Ce-Sb_2S_3$ devices. b) Arrhenius plots derived from DLTS signals. The data points were obtained by calculating internal transients included in DLTS signals with the discrete Laplace transform, and the solid lines are corresponding linear fits. H1 and H2 correspond to S_{Sb1} and S_{Sb2} anti-site defects, respectively. c) The statistical histogram of calculated σN_T for different hole traps in the control Sb_2S_3 and $1\%Ce-Sb_2S_3$ devices. d,e) Schematic of band edge positions and defect levels of the control Sb_2S_3 and $1\%Ce-Sb_2S_3$, respectively, including CB (E_C) and VB (E_V) edges, Fermi level (E_F), and defect energy levels (H1, H2), relative to the vacuum level. f) Illustration of S_{Sb1} and S_{Sb2} defects in a [Sb4S6]_n unit of Sb2S_3 crystal structure. g) Space-charge limit current density (SCLC) measurements of the control Sb_2S_3 and $1\%Ce-Sb_2S_3$ based on the electron-only structure device of FTO/CdS/Sb2S_3/PCBM/Au. h,i) The dependence of V_{OC} and J_{SC} on the light intensity for the control Sb_2S_3 and $1\%Ce-Sb_2S_3$ solar cells.

An increase in the band-tail states extending into the bandgap corresponds to an increase in the Urbach energy ($E_{\rm U}$), which is a characteristic measure of the level of disorder.^[30] As shown in the absorption spectra (Figure S15a, Supporting Information), the addition of Ce³⁺ decreases the band tailing of Sb₂S₃ films.

The bandgaps of control Sb_2S_3 and $1\%Ce-Sb_2S_3$ films were estimated to be 1.73 and 1.74 eV by using Tauc plots given in Figure S15b (Supporting Information). We used photothermal deflection spectroscopy (PDS), which is a highly sensitive technique to measure weak absorption at or below the bandgap, to

Table 2. Defect characteristics including the trap energy level (E_T), cross-section (σ), and trap concentration (N_T) in the control Sb₂S₃ and 1%Ce-Sb₂S₃ devices.

Devices	Trap	<i>E</i> _T [eV]	σ [cm ²]	N _T [cm ⁻³]	$\sigma N_{\rm T} [{\rm cm}^{-1}]$
control Sb ₂ S ₃	H1	$E_{\rm V} + 0.474$	$3.94 imes 10^{-18}$	1.33×10^{13}	5.24 × 10 ⁻⁵
	H2	$E_{\rm V}$ + 0.771	2.32×10^{-15}	4.52×10^{13}	1.05×10^{-1}
1%Ce-Sb ₂ S ₃	H1	$E_{\rm V}$ + 0.451	5.17×10^{-18}	1.22×10^{13}	6.30×10^{-5}
	H2	$E_{V} + 0.769$	6.85×10^{-15}	1.30×10^{13}	8.90 × 10 ⁻²

evaluate $E_{\rm U}$. The Urbach energies of Sb₂S₃ and 1%Ce-Sb₂S₃ film samples were fitted to be 176 and 169 meV, respectively (Figure S15c,d, Supporting information). Although the obtained absolute $E_{\rm U}$ values might be overestimated due to the influence of the FTO/CdS substrate on the infrared absorption, which requires further study, the slight decrease in Urbach energy for 1%Ce-Sb₂S₃ is consistent in a decrease in sub-bandgap state density.

Space charge limited current (SCLC) measurements were conducted to evaluate the overall trap-state density of absorber films based on the electron-only devices FTO/CdS/Sb₂S₃/PCBM/Au. As shown in Figure 6g, at low bias voltage, the linear *I*–*V* curve suggests a typical Ohmic response. As the bias voltage increases and reaches the trap-filled limiting voltage (V_{TFI}), the curve presents a nonlinear feature because of the filling of injected carriers into trap-states.^[23] The trap-state density can be estimated by using the equation $V_{\rm TFL} = q n_\tau L^2 / 2 \epsilon_r \epsilon_0$, where n_τ is the trapstate density, q is the elementary charge (1.60 \times 10⁻¹⁹ C), ϵ_0 is the vacuum permittivity (8.85 \times 10⁻¹² F m⁻¹), ϵ_r is the relative permittivity of Sb_2S_3 (6.67), and *L* is the thickness of Sb_2S_3 film (\approx 280 nm). The V_{TFI} values of the control Sb₂S₃ and 1%Ce-Sb₂S₃ devices are estimated to be 0.418 and 0.350 V, respectively. Hence the 1%Ce-Sb₂S₃ device involves reduced trap-state density $(3.29 \times 10^{15} \text{ cm}^{-3})$ compared to the control Sb₂S₃ device $(3.94 \times 10^{15} \text{ cm}^{-3})$. This reduction in the trap-state density is consistent with the result from DLTS characterization. The difference in the carrier concentrations obtained from DLTS and SCLC might be due to the fact that these two measurements were performed under different conditions. Firstly, I-V measurements from SCLC are steady state measurements, whereas DLTS involves transient measurements.^[31] Secondly, the SCLC measurement is performed at room temperature to observe the total trap density, while the DLTS measurement was conducted from 120 to 410 K in this work. Thirdly, the sensitivity of SCLC and DLTS toward defects of different types and depths are also different. These factors may explain the different trap state densities derived from both techniques.

Light intensity-dependent J-V measurement is an effective strategy for assessing trap-assisted charge recombination loss mechanisms in solar cells. The dependences of $V_{\rm OC}$ and $J_{\rm SC}$ on the light intensity were conducted for the control Sb_2S_3 and 1%Ce-Sb₂S₃ solar cells. The corresponding semi-logarithmic plots, as shown in Figure 6h,i, can be achieved according to the relationship between V_{OC} (or J_{SC}) and light intensity as described by the relations $V_{OC} \propto (nK_BT/q) \ln (I)$ and $J_{SC} \propto I^{\alpha}$,^[32] where I is the light intensity, $K_{\rm B}$ is the Boltzmann constant, T represents the absolute temperature, *q* is the elementary charge, and the values of *n* and α reflect the level of charge recombination. A diode ideality factor of unity occurs when recombination is entirely radiative, and a larger value implies more severe defect-assisted SRH recombination.^[4a] The 1%Ce-Sb₂S₃ device delivers a smaller n of 1.38 than the control Sb₂S₃ device (n = 1.53), which is consistent with a reduction in nonradiative recombination. Moreover, as a result of the space charge effect, the value of α is often smaller than 1. Compared to the α value of 0.891 for the control device, the 1%Ce-Sb₂S₃ solar cell has a slightly larger α value of 0.912. However, these changes in α are too small to interpret. We further performed electrochemical impedance spectroscopy to investigate the charge transfer and recombination dynamics in solar cells.

Figure S16 (Supporting Information) shows the Nyquist plots of impedance spectra measured under dark, and corresponding fitting results based on the equivalent circuit model given in the inset are summarized in Table S7 (Supporting Information).^[33] Clearly, the 1%Ce-Sb₂S₃ device shows an increased recombination resistance at the CdS/Sb₂S₃ interface ($R_{rec} = 16.80 \text{ k}\Omega \text{ cm}^{-2}$) in contrast to the control device ($R_{rec} = 7.83 \text{ k}\Omega \text{ cm}^{-2}$). A large recombination resistance would result in suppressed charge recombination and improved charge collection in photovoltaic devices.

We also carefully analyzed J-V curves of the control Sb₂S₃ and 1%Ce-Sb₂S₃ solar cells measured in the dark (Figure S17, Supporting Information), from which the parameters of junction ideality factor (A), the reverse saturation current density (I_0) , the series resistance (R_s), and the shunt conductance (G, i.e., $1/R_{sh}$) can be extracted.^[2a] The detailed description is provided in Note S4 (Supporting Information), and the overall fitting parameters are summarized in Table S8 (Supporting Information). The ideality factor plays a critical role to evaluate the junction quality as it reveals the main recombination mechanism of a p-n heterojunction. The calculated ideality factor of 1%Ce-Sb₂S₃ device (A = 1.67) is smaller than that of the control Sb₂S₃ device (A =2.07), implying the effective suppression of charge-carrier recombination for the 1%Ce-Sb₂S₃ device. Moreover, the 1%Ce-Sb₂S₃ device obtains the lower J_0 (8.7 × 10⁻⁸ mA cm⁻²), the smaller $R_{\rm s}$ (4.93 Ω cm⁻²), and the smaller G (0.005 mS cm⁻²) compared to the control Sb₂S₃ device ($J_0 = 1.5 \times 10^{-6}$ mA cm⁻², $R_s =$ 13.42 Ω cm⁻², G = 0.023 mS cm⁻²), indicating the enhancement in charge extraction capability. These results demonstrated the improved heterojunction quality for 1%Ce-Sb₂S₃ devices as a result of reduced shunt-current leakage, contributing to the improvement of device performance.^[19]

Ultrafast transient absorption (TA) spectroscopy measurements were performed on the control Sb₂S₃ and 1%Ce-Sb₂S₃ films deposited onto FTO/SnO₂/CdS substrates without any hole extraction layer for this study to understand the charge-carrier kinetics further. As shown in Figure 7a,b, the TA spectra show pronounced ground state bleach (GSB) negative peaks and positive photoinduced absorption (PIA) peaks. Specifically, the GSB peaks at 460-510 and 610-680 nm can be assigned to the state filling of CdS films and the ground state absorption of Sb₂S₃ films, respectively; the typical PIA peak appearing at 520-620 nm can be attributed to the formation of sulfide radical (S⁻) due to photo excited holes localized on the S atom of Sb₂S₃ lattice.^[1c,4a,29,34] The transient dynamics are retrieved from the pseudocolor pictures (Figure S18a,b, Supporting Information). The transient kinetic decay (scatter) monitored at 560 nm for the control Sb₂S₃ and 1%Ce-Sb₂S₃ films are given in Figure 7c,d, which are well fitted by a phenomenological biexponential equation (Note S5, Supporting Information), and the corresponding results are listed in Table S9 (Supporting Information).^[2b] The PIA peak gradually decreases as a result of the decay of trapped holes, i.e., the S⁻ species, which we here attribute to nonradiative carrier recombination in Sb₂S₃ films.^[4a,35] As shown, the 1%Ce-Sb₂S₃ sample exhibits larger τ_{av} values (4.82 ns) that of the control Sb₂S₃ sample (4.02 ns). The prolonged lifetime in the 1%Ce-Sb₂S₃ sample suggests the suppression of the bulk and/or interfacial chargecarrier recombination, consistent with the results from DLTS characterizations. That is, the TA analysis reveals a slower charge

www.advancedsciencenews.com

CIENCE NEWS

Figure 7. a,b) Transient absorption (TA) spectra obtained at 1, 10, 100, 1000, and 5000 ps pump-probe delay for control Sb_2S_3 and $1\%Ce-Sb_2S_3$ film samples. Excitation was with a 400 nm wavelength pulsed laser at a fluence of $251 \,\mu$ J cm⁻² pulse⁻¹ and a repetition rate of 1000 Hz. c,d) Transient kinetic decay (scatter) and corresponding biexponential curve fittings (solid line) monitored at 560 nm of the control Sb_2S_3 and $1\%Ce-Sb_2S_3$ films. ΔA is defined as the change in the absorption of the sample before and after pumping. e,f) Diagram of the charge density difference analysis of the heterointerfaces of CdS/Sb_2S_3 and Ce_2S_3/Sb_2S_3 .

recombination rate in 1%Ce-Sb₂S₃ films with larger grains. The prolonged lifetime of photoexcited minority hole carriers would eventually result in the improvement of $V_{\rm OC}$.

Furthermore, we carried out charge density difference analysis to investigate the interaction at the heterointerfaces of CdS/Sb₂S₃ and Ce₂S₃/Sb₂S₃. As shown in Figure 7e,f, the yellow area means that there is charge accumulation there, while the blue area means that there is charge loss there. Due to the value of the isosurfaces in two models being identical, it is shown that, compared to the case of CdS/Sb₂S₃, the Ce₂S₃ surface has stronger charge transfer with the Sb₂S₃ surface. This calculation result corroborates the previous view that the bonding at Ce₂S₃/Sb₂S₃ heterointerface is stronger than that of the CdS/Sb₂S₃ heterointerface. That is, the presence of Ce₂S₃ contributes to the formation of a more ideal heterointerface, which would afford improved charge-carrier transport properties at the heterojunction in Sb₂S₃ solar cells.

3. Conclusion

In this work, we demonstrate a facile grain engineering strategy to deposit large-grained Sb₂S₃ films by adding Ce³⁺ into the precursor solution for hydrothermal deposition. Careful experimental characterization and first-principles calculations reveal that the incorporation of Ce³⁺ results in the generation of an ultrathin Ce₂S₃ interlayer at the CdS/Sb₂S₃ interface, which we propose promotes heterogeneous nucleation and horizontal growth of Sb₂S₃ grains due to a reduced free energy barrier for nucleation, as well as lower interfacial energy. The champion Sb₂S₃ solar cell delivers a considerable PCE of 7.66%, superior to the control (6.42% PCE). High $V_{\rm OC}$'s result, reaching values close to 800 mV, and is, to our knowledge at the time of publication, the new record for Sb₂S₃ solar cells. This enhanced performance might be attributed not only to suppressed charge-carrier recombination because of reduced detrimental defects at GBs and/or the CdS/Sb₂S₃ heterointerface, but also to improved charge-carrier transport across the heterojunction in Sb₂S₃ solar cells. Furthermore, although the large $V_{\rm OC}$ loss remains a bottleneck for the performance improvement of Sb₂S₃ solar cells, this work provides an important strategy that can be more broadly applied to increase the grain size and reduce the $V_{\rm OC}$ loss more generally in polycrystalline solar cells.

4. Experimental Section

Device Fabrication: Firstly, we fabricated SnO₂/CdS electron transport layers on fluorine-doped tin oxide (FTO, \approx 15 Ω sq⁻¹) conductive glass substrates, which were thoroughly cleaned in advance by using detergent, deionized (DI) water, acetone, ethanol, and isopropanol, each for 20 min with ultrasonication and in sequence, followed by drying with nitrogen (N₂) airflow. The ultrathin SnO₂ layer was deposited by spincoating commercial SnO₂ colloidal dispersion (15% in H₂O, Alfa Aesar) that was diluted seven times with DI water onto the conductive substrate at a speed of 3000 rpm for 30 s. Then as-prepared SnO₂ films were further annealed at 150 °C for 30 min. We used the CBD method to deposit CdS buffer layers. Typically, 30 mL of 15 × 10⁻³ m Cd(NO₃)₂·4H₂O (99%, Macklin) and 39 mL of ammonia solution in water (25%–28%, Sinopharm) were mixed together and stirred for 2 min. Then, 19.2 mL of 1.2 m thiourea (99.0%, Sinopharm) and 210 mL of DI water were further

ADVANCED SCIENCE NEWS _____ www.advancedsciencenews.com

added, followed by another 2 min stirring. FTO/SnO₂ substrates were vertically immersed into such precursor solutions and maintained at 65 °C for 14 min with continuous stirring. Here, the thicknesses of SnO2 and CdS layers in $\rm FTO/SnO_2/CdS$ substrates were about 10 and 60 nm, respectively, according to our previous work.^[32b] Afterwards, as-prepared CdS layers were treated with CdCl₂ by spin-coating 0.088 м CdCl₂·2.5H₂O (99.0%, Sinopharm) in methanol solution onto CdS layers, followed by further annealing in air at 400 °C for 10 min. Secondly, the Sb₂S₃ absorber films were deposited onto FTO/SnO₂/CdS substrates by hydrothermal deposition, in which C4H4KO7Sb 0.5H2O (99.0%, Sinopharm) and Na₂S₂O₃·5H₂O (99.5%, Aladdin) were employed as Sb and S sources, respectively. A mixture solution with 20×10^{-3} M C₄H₄KO₇Sb 0.5H₂O and 80×10^{-3} M Na₂S₂O₃·5H₂O diluted in 40 mL DI water was added into a 50 mL Teflon tank, and FTO/SnO2/CdS substrates were immersed into the mixture with the conducting side facing down inside the tank and tilted at an angle of \approx 75° with respect to the horizontal plane. For the addition of lanthanide ions, particular lanthanide salts were used in this work.The type and the amount of salts were stated in corresponding parts of main text and supporting information. The Teflon tank was then sealed and kept at 135 °C for 180 min. When the reaction ended and the tank cooled down, the substrates were taken out, followed by rinsing with DI water and drying with N₂ flow. Then, as-deposited films were annealed at 370 °C for 10 min in a N_2 filled glovebox. Thirdly, the hole transport layer was deposited onto absorber films by spin-coating the precursor at a speed of 3000 rpm for 30 s, followed by annealing under 100 °C for 10 min on a hot plate. Here the hole transport layer precursor was prepared by mixing 36.6 mg spiro-OMeTAD (99.8%, Xi'an Polymer Light Technology Corp.), 14.5 μ L tert-butylpyridine (TBP, 96%, Aladdin), and 9.5 μ L 0.52 g mL⁻¹ of lithium bis(trifluoromethylsyfonyl)imide salt (99.95%, Aladdin) dissolved in acetonitrile (99%, Aladdin) in 1 mL chlorobenzene (anhydrous, 99.8%, Sigma). Finally, superstrate Sb₂S₃ solar cells were completed by thermal evaporation of 80 nm Au as back electrodes.

Characterization: XRD characterization was performed on an X'Pert PRO MPD diffractometer with the Bragg Brentano geometry, and a Cu K_{α} X-ray source ($\lambda = 1.5406$ Å) was used. SEM images of film samples were collected on a JEOL field emission scanning electron microscope (JSM-6700F) equipped with EDS. The GB densities were obtained by depicting the GB grooves in SEM images of films using Adobe Photoshop software. AFM images were collected on a Bruker atomic force microscope (Dimension Icon); SCM-PIT probes were used in both the KPFM and c-AFM measurements, and the scanning area was 5 \times 5 μ m. The lattice structure was studied by TEM (Talos F200S), and the specimens were made by using an FIB technique with a microsampling system (Thermo Scientific Helios 5 CX). The element distribution of thin films was obtained by using SIMS (TOF-SIMS 5, ION-TOF GmbH), in which the sputtering source is O_2^+ with the energy of 1 KeV and the area of $86 \times 86 \,\mu\text{m}$. Ultraviolet-visible absorption spectra were collected on a CARY 5000 Agilent spectrophotometer. The absorbance was obtained by using the equation $A = -\log_{10}(T)$, where A is the absorbance, and T is the transmittance. XPS was conducted on a Thermo Scientific K-Alpha spectrometer (Al K_{α} excitation, 1486.6 eV). UPS was performed on Thermo ESCALAB XI (He I excitation, 21.22 eV). J-V curves of solar cells were measured under the illumination of 1-sun (AM 1.5G, 100 mW cm⁻²) by using an Newport Oriel Sol 3A Solar Simulator, combined with a Keithley 2400 digital source meter. The active area of devices was defined by a 0.06 cm² mask. EQE measurements were conducted on a QTest Station 1000 ADI system (Crowntech. Inc) under the DC mode, and the excitation source was a 300 W xenon lamp (CT-XE-300) which was split into specific wavelengths via a M24-S 1/4m monochromator. Impedance spectra were collected on a Zahner workstation (Zennium Pro.) with an applied voltage of 0.6 V and a scanning range of 1 Hz to 1 MHz under dark, and the spectra were fitted by using Z-view software. The DLTS characterization was performed on a Phystech FT-1230 HERA DLTS system with a laser excitation at the wavelength of 405 nm and the power of 10 mW. The capacitances were recorded by a Boonton 7200 Phystech capacitance meter (high frequency, 1 MHz). The device samples were placed in the liquid helium cryostat with a temperature scan ranging from 120 to 410 K at an interval of 2 K. The reverse bias, optical pulse width, and period width were -0.4 V, 100 ms, and 200 ms, respectively. PDS was performed in a custom setup working in the transverse configuration. A tunable light source consisting of a grating monochromator coupled with a quartz-tungsten halogen lamp served as a pump, after modulating with a mechanical chopper inducing periodic temperature oscillations at the sample surface. A probe laser beam was passed parallel to the sample plane, with its path deviated by the temperature gradient in the heat-transfer liquid (3 M Fluorinert FC-72) surrounding the sample. The beam deflection amplitude was measured with a quadrant photodiode and demodulated with a lock-in amplifier (Stanford Research Systems SR830). The ultrafast TA properties of films were performed on a Helios Ultrafast pump-probe system, where a nondegenerate pump-probe configuration was used to probe the transient dynamics in the femtosecond to nanosecond time region (50 fs to 7 ns) under ambient conditions. The pump pulses of 400 nm was obtained by using a beta barium borate (BBO) crystal to double the 800 nm pulse generated on an optical parametric amplifier, and the white light continuum probe pulses was formed by 800 nm femtosecond with a 2 mm sapphire plate for the 400-800 nm wavelength range.

Calculations: All first-principles calculations were performed via density functional theory (DFT) by means of generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE), implemented by the Vienna Ab Initio Simulation Package (VASP).^[36] The projected augmented wave (PAW) pseudopotentials were adopted with a cutoff energy of 450 eV in the whole calculation process.^[37] The convergence criterion for the electronic self-consistent field loop was set to be 10⁻⁵ eV. The crystal structures, the surface structure, and the heterojunction structure were optimized until the residual force were below 0.03, 0.05, and 0.05 eV $Å^{-1}$, respectively. The Sb₂S₃ (120), CdS (100), and Ce₂S₃ (001) surfaces were used to simulate the exposed surfaces. The CdS (100) and Sb_2S_3 (120) surfaces were selected as exposed surfaces to form the CdS/Sb₂S₃ heterojunction based on XRD patterns, while Ce₂S₃ (001) was suggested to be the exposed surface to combine with Sb_2S_3 (120) by carefully examining the HRTEM image at the interface of CdS/Sb₂S₃. Moreover, the Ce₂S₃ (001) was a nonpolar surface similar to the exposed (100) surface of CdS, so that the quality of two heterojunctions could be compared more objectively. Furthermore, for the surface relaxation, a vacuum layer with a thickness of 15 Å was used and the bottom layers of atoms were bound to simulate the bulk phase. The Ce_2S_3/Sb_2S_3 heterointerface was generated with $1 \times 5 \times 1$ Sb₂S₃ surface and $3 \times 1 \times 1$ Ce₂S₃ surface supercells, with a vertical spacing about 2.4 Å and lattice parameters of a = 24.025 Å, b =15.386 Å, c = 23.000 Å. The CdS/Sb₂S₃ heterointerface was generated with $1 \times 2 \times 1$ Sb₂S₃ surface and $6 \times 1 \times 1$ CdS surface supercells, with a vertical spacing about 2.4 Å and lattice parameters of a = 25.492 Å, b = 7.281 Å, c =28.000 Å. The D3 Grimme dispersion correction was employed during the calculation of heterointerface formation energies.^[38] The corresponding k-point spacing of all models was less than 0.3 Å⁻¹. Specifically, the Brillouin zone of Ce₂S₃ surface, CdS surface, Sb₂S₃ surface, Ce₂S₃/Sb₂S₃ heterojunction, and CdS/Sb₂S₃ heterojunction were sampled by $(4 \times 2 \times 1)$, $(6 \times 4 \times 1)$, $(1 \times 9 \times 1)$, $(1 \times 2 \times 1)$, and $(1 \times 3 \times 1)$ k-points mesh with Gamma point centered, respectively. The calculating formula and detailed processes for formation energy, surface energy, interface adhesive work, interfacial energy, and charge density difference analysis can be found in Note S6 (Supporting Information).

Statistical Analysis: All statistical analyses were performed using Origin 2019 (OriginLab Corp). The data from SEM, AFM, TEM, SIMS, XPS, UPS, UV–Vis, PDS, contact angles, *J*–V, EQE, EIS, and TA spectra shown in the paper are the original data without normalization. The data from XRD and TA kinetic decays were normalized to 1. The PCE data points of 1-week device stability tests were normalized to the PCEs measured before aging. Linear fittings were applied to UPS, V_{OC} , and J_{SC} versus light intensity, SCLC, and PDS plots. The data points of Arrhenius plots derived from DLTS signals were achieved by calculating internal transients included in DLTS signals with the discrete Laplace transform, and further processed with a linear fitting. Biexponential decay function was applied to TA kinetic decays to analyze the carrier dynamics. Quantitative data were expressed as the mean \pm standard deviation. The statistical distribution for the PCE, V_{OC} , J_{SC} , and FF were obtained from 20 devices, and the lower whisker, lower box edge, middle line, upper box edge, and upper whisker

refer to minimum, 25th percentile, median, 75th percentile, and maximum of the dataset, respectively.

Supporting Information

SCIENCE NEWS _____

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

X.L. and Z.C. contributed equally to this work. The financial support by the Fundamental Research Funds for the Central Universities (no. PA2021KCPY0036), the National Natural Science Foundation of Anhui Province (no. 2108085ME147), and the National Natural Science Foundation of Hefei City (no. 2022024), and the National Natural Science Foundation of China (nos. 52371219, U19A2089, U19A2092, and 22275180) are greatly acknowledged. R.L.Z.H. acknowledges funding from the Royal Academy of Engineering through the Research Fellowships scheme (no. RF\201718\17101). Y.-T.H. and R.L.Z.H. thank the Engineering and Physical Sciences Research Council for funding (EPSRC, no. EP/V014498/2). H.Z. acknowledges the Iberdrola Foundation through the "Energy for Future (E4F) Postdoctoral Fellowship", under the Marie Sklodowska-Curie Grant Agreement No. 101034297. S.J.Z. acknowledges support from the Polish National Agency for Academic Exchange within the Bekker program (grant no. PPN/BEK/2020/1/00264/U/00001). R.Z. and X.L. conceived the idea, designed the experiments, and analyzed the data. X.L. carried out the experiments and device optimizations. Z.C. carried out the DFT calculations. P.X., B.C., J.Y., and Y.-T.H. helped with the TA and DLTS characterizations. L.W., J.Z., H.N., H.W., H.Z., S.J.Z., C.T., and R.L.Z.H. assisted in experiments and data analysis. R.Z., X.L., and R.L.Z.H. wrote the manuscript. All authors commented on the manuscript.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available from the Oxford University Research Archive, with the DOI: 10.5287/ora-gjqokbbde . http://dx.doi.org/10.5287/ora-gjqokbbde

Keywords

defects, grain engineering, nucleation and growth, open-circuit voltage, $\mathsf{Sb}_2\mathsf{S}_3,$ solar cells

Received: June 16, 2023

- Revised: October 21, 2023
- Published online: November 23, 2023
- a) S. Wang, Y. Zhao, B. Che, C. Li, X. Chen, R. Tang, J. Gong, X. Wang, G. Chen, T. Chen, J. Li, X. Xiao, *Adv. Mater.* **2022**, *34*, 2206242; b) Z. Duan, X. Liang, Y. Feng, H. Ma, B. Liang, Y. Wang, S. Luo, S. Wang, R. E. I. Schropp, Y. Mai, Z. Li, *Adv. Mater.* **2022**, *34*, 2202969; c) R. Tang, X. Wang, W. Lian, J. Huang, Q. Wei, M. Huang, Y. Yin, C. Jiang, S. Yang, G. Xing, S. Chen, C. Zhu, X. Hao, M. A. Green, T. Chen, *Nat. Energy* **2020**, *5*, 587; d) Y. Zhao, S. Wang, C. Li, B. Che, X. Chen, H. Chen, R. Tang, X. Wang, G. Chen, T. Wang, J. Gong, T. Chen, X. Xiao, J. Li, *Energy Environ. Sci.* **2022**, *15*, 5118.

- [3] X. Chen, B. Che, Y. Zhao, S. Wang, H. Li, J. Gong, G. Chen, T. Chen, X. Xiao, J. Li, Adv. Energy Mater. 2023, 2, 2300391.
- [4] a) S. Chen, M. Li, Y. Zhu, X. Cai, F. Xiao, T. Ma, J. Yang, G. Shen, A. Ke, Y. Lu, W. Liang, H.-Y. Hsu, C. Chen, J. Tang, H. Song, *Adv. Energy Mater.* 2022, *12*, 2202897; b) V. Pecunia, L. G. Occhipinti, R. L. Z. Hoye, *Adv. Energy Mater.* 2021, *11*, 2170005; c) Y. Peng, T. N. Huq, J. Mei, L. Portilla, R. A. Jagt, L. G. Occhipinti, J. L. Macmanus-Driscoll, R. L. Z. Hoye, V. Pecunia, *Adv. Energy Mater.* 2020, *11*, 2002761.
- [5] R. Kondrotas, C. Chen, J. Tang, *Joule* **2018**, *2*, 857.
- [6] a) S. Hadke, M. Huang, C. Chen, Y. F. Tay, S. Chen, J. Tang, L. Wong, *Chem. Rev.* 2022, 122, 10170; b) C. Chen, J. Tang, ACS Energy Lett. 2020, 5, 2294.
- [7] a) Z. Cai, C.-M. Dai, S. Chen, *Sol. RRL* 2020, *4*, 1900503; b) L. Guo, B. Zhang, S. Li, Q. Zhang, M. Buettner, L. Li, X. Qian, F. Yan, *APL Mater.* 2019, *7*, 041105; c) S. Li, S. Lu, Y. Lu, J. Xue, K. Li, C. Chen, J. Tang, *J. Mater. Chem. A* 2022, *10*, 11625.
- [8] Z. Yang, X. Wang, Y. Chen, Z. Zheng, Z. Chen, W. Xu, W. Liu, Y. Yang, J. Zhao, T. Chen, H. Zhu, *Nat. Commun.* **2019**, *10*, 4540.
- [9] X. Wang, A. M. Ganose, S. R. Kavanagh, A. Walsh, ACS Energy Lett. 2022, 7, 2954.
- [10] a) R. Fukuda, T. Nishimura, A. Yamada, Prog. Photovoltaics 2023, 31, 678; b) M. Hao, T. Duan, Z. Ma, M.-G. Ju, J. A. Bennett, T. Liu, P. Guo, Y. Zhou, Adv. Mater. 2023, 35, 2211155; c) N. Nicoara, R. Manaligod, P. Jackson, D. Hariskos, W. Witte, G. Sozzi, R. Menozzi, S. Sadewasser, Nat. Commun. 2019, 10, 3980; d) C. Wang, Y. Zhao, T. Ma, Y. An, R. He, J. Zhu, C. Chen, S. Ren, F. Fu, D. Zhao, X. Li, Nat. Energy 2022, 7, 744; e) R. Zhou, J. Xu, P. Luo, L. Hu, X. Pan, J. Xu, Y. Jiang, L. Wang, Adv. Energy Mater. 2021, 11, 2011923.
- X. Jin, Y. Fang, T. Salim, M. Feng, S. Hadke, S. W. Leow, T. C. Sum, L. H. Wong, *Adv. Funct. Mater.* **2020**, *30*, 2002887.
- [12] a) J. Duan, Y. Zhao, X. Yang, Y. Wang, B. He, Q. Tang, *Adv. Energy Mater.* 2018, *8*, 1802346; b) R. Liu, C. Dong, L. Zhu, J. Chen, J. Huang, W. Cao, X. Zhang, C. Ge, S. Yang, T. Chen, M. Wang, *Appl. Mater. Today* 2022, *27*, 101487.
- [13] a) P. Myagmarsereejid, M. Ingram, M. Batmunkh, Y. L. Zhong, *Small* **2021**, *17*, 2100241; b) U. A. Shah, S. Chen, G. M. G. Khalaf, Z. Jin, H.
 Song, *Adv. Funct. Mater.* **2021**, *31*, 2100265.
- [14] a) W. A. Dunlap-Shohl, Y. Zhou, N. P. Padture, D. B. Mitzi, *Chem. Rev.* **2019**, *119*, 3193; b) M. Jung, S. G. Ji, G. Kim, S. I. Seok, *Chem. Soc. Rev.* **2011**, *2019*, 48.
- [15] H. Deng, Y. Zeng, M. Ishaq, S. Yuan, H. Zhang, X. Yang, M. Hou, U. Farooq, J. Huang, K. Sun, R. Webster, H. Wu, Z. Chen, F. Yi, H. Song, X. Hao, J. Tang, *Adv. Funct. Mater.* **2019**, *29*, 1901720.
- [16] a) J. Han, X. Pu, H. Zhou, Q. Cao, S. Wang, Z. He, B. Gao, T. Li, J. Zhao, X. Li, ACS Appl. Mater. Interfaces 2020, 12, 44297; b) R. Liu, Z. Shen, Z. Wan, L. Zhu, J. Chen, C. Dong, W. Chen, W. Cao, B. Chen, X. Yuan, B. Ding, S. Yang, T. Chen, X. Tian, C. Chen, M. Wang, Commun. Phys. 2021, 4, 177; c) J. Zheng, C. Liu, L. Zhang, Y. Chen, F. Bao, J. Liu, H. Zhu, K. Shen, Y. Mai, Chem. Eng. J. 2022, 446, 136474.
- [17] G. Pan, X. Bai, D. Yang, X. Chen, P. Jing, S. Qu, L. Zhang, D. Zhou, J. Zhu, W. Xu, B. Dong, H. Song, *Nano Lett.* **2017**, *17*, 8005.
- [18] S. Rijal, D.-B. Li, R. A. Awni, C. Xiao, S. S. Bista, M. K. Jamarkattel, M. J. Heben, C.-S. Jiang, M. Al-Jassim, Z. Song, Y. Yan, *Adv. Funct. Mater.* **2021**, *32*, 2110032.
- [19] X. Mao, M. Bian, C. Wang, R. Zhou, L. Wan, Z. Zhang, J. Zhu, W. Chen, C. Shi, B. Xu, ACS Appl. Energy Mater. 2022, 5, 3022.
- [20] X. Jiang, F. Wang, Q. Wei, H. Li, Y. Shang, W. Zhou, C. Wang, P. Cheng, Q. Chen, L. Chen, Z. Ning, *Nat. Commun.* **2020**, *11*, 1245.
- [21] X. Wang, R. Tang, C. Jiang, W. Lian, H. Ju, G. Jiang, Z. Li, C. Zhu, T. Chen, Adv. Energy Mater. 2020, 10, 2002341.

ADVANCED SCIENCE NEWS

www.advancedsciencenews.com

- [22] R. Tang, X. Wang, C. Jiang, S. Li, W. Liu, H. Ju, S. Yang, C. Zhu, T. Chen, ACS Appl. Mater. Interfaces 2018, 10, 30314.
- [23] H. Zhou, J. Han, X. Pu, X. Li, J. Materiomics 2021, 7, 1074.
- [24] a) K. Hui, J. Fu, J. Liu, Y. Chen, X. Gao, T. Gao, Q. Wei, C. Li, H. Zhang, M. Tang, *Carbon Energy* **2021**, *3*, 709; b) F. Xu, K. Meng, S. Cao, C. Jiang, T. Chen, J. Xu, J. Yu, ACS Catal. **2021**, *12*, 164.
- [25] H. Maghraoui-Meherzi, T. Ben Nasr, N. Kamoun, M. Dachraoui, *Phys. B* 2010, 405, 3101.
- [26] H. Si, Q. Liao, Z. Kang, Y. Ou, J. Meng, Y. Liu, Z. Zhang, Y. Zhang, Adv. Funct. Mater. 2017, 27, 1701804.
- [27] D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, M. Grätzel, *Nat. Energy* 2016, 1, 16142.
- [28] D. Liu, D. Luo, A. N. Iqbal, K. W. P. Orr, T. A. S. Doherty, Z.-H. Lu, S. D. Stranks, W. Zhang, *Nat. Mater.* **2021**, *20*, 1337.
- [29] W. Lian, C. Jiang, Y. Yin, R. Tang, G. Li, L. Zhang, B. Che, T. Chen, Nat. Commun. 2021, 12, 3260.
- [30] S. R. Rondiya, R. A. Jagt, J. L. Macmanus-Driscoll, A. Walsh, R. L. Z. Hoye, *Appl. Phys. Lett.* **2021**, *119*, 220501.

[31] A. Tsormpatzoglou, D. H. Tassis, C. A. Dimitriadis, L. Dózsa, N. G. Galkin, D. L. Goroshko, V. O. Polyarnyi, E. A. Chusovitin, J. Appl. Phys. 2006, 100, 074313.

- [32] a) J. Zhou, X. Wei, J. Zhu, X. Yang, H. Niu, L. Wan, P. Jiang, J. Xu, R. Zhou, G. Cao, *Sci. China Mater.* **2020**, *63*, 1151; b) J. Zhou, R. Zhou, J. Zhu, P. Jiang, L. Wan, H. Niu, L. Hu, X. Yang, J. Xu, B. Xu, *Sol. RRL* **2021**, *5*, 2100494.
- [33] a) P. P. Boix, G. Larramona, A. Jacob, B. Delatouche, I. Mora-Seró, J. Bisquert, J. Phys. Chem. C 2011, 116, 1579; b) A. Guerrero, J. Bisquert, G. Garcia-Belmonte, Chem. Rev. 2021, 121, 14430 c) J. Li, L. Xiong, X. Hu, J. Liang, C. Chen, F. Ye, J. Li, Y. Liu, W. Shao, T. Wang, C. Tao, G. Fang, J. Energy Chem. 2022, 66, 374.
- [34] a) J. A. Christians, D. T. Leighton, P. V. Kamat, *Energy Environ. Sci.* 2014, 7, 1148; b) X. Gong, Q. Sun, S. Liu, P. Liao, Y. Shen, C. Grätzel, S. M. Zakeeruddin, M. Grätzel, M. Wang, *Nano Lett* 2018, *18*, 3969.
- [35] R. Tang, S. Chen, Z.-H. Zheng, Z.-H. Su, J.-T. Luo, P. Fan, X.-H. Zhang, J. Tang, G.-X. Liang, *Adv. Mater.* **2022**, *34*, 2109078.
- [36] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
- [37] G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
- [38] S. Grimme, J. Comput. Chem. 2004, 25, 1463.