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Liouville-space neural network representation of density matrices
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Neural network quantum states such as ansatz wave functions have shown a great deal of promise for finding
the ground state of spin models. Recently, work has focused on extending this idea to mixed states for simulating
the dynamics of open systems. Most approaches so far have used a purification ansatz where a copy of the
system Hilbert space is added, which when traced out gives the correct density matrix. Here we instead present
an extension of the restricted Boltzmann machine which directly represents the density matrix in Liouville space.
This allows the compact representation of states which appear in mean-field theory. We benchmark our approach
on two different versions of the dissipative transverse-field Ising model, which show our ansatz is able to compete
with other state-of-the-art approaches.
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I. INTRODUCTION

Developing techniques to study the many-body physics
of open quantum systems presents the possibility to access
behavior beyond that possible in equilibrium. This is relevant
for understanding the dynamics of a variety of experimen-
tal platforms, but it also allows us to address fundamental
questions about what kinds of physics is realizable in situa-
tions where incoherent driving and dissipation compete with
coherent Hamiltonian dynamics. For example, in arrays of
superconducting qubits, coherent hopping of excitations can
compete with on-site losses [1] or in semiconductor micro-
cavities nonlinearities in the Hamiltonian can compete with
photon losses [2].

Performing accurate simulations of the models describing
this kind of physics can be very challenging. Even in the
simplest case, where the dynamics of the system is well cap-
tured by a Markovian master equation [3], the effective size
of the space required grows exponentially with the number of
degrees of freedom included. This makes it difficult to make
concrete statements about what phases are stable for large
system sizes, in the thermodynamic limit. Thus, developing
new techniques that are able to capture all of the required
physical processes is a key challenge to be overcome.

For closed systems a variety of techniques are available,
allowing calculation of both ground states and dynamics in
a variety of situations. These range from density-functional
theory, which relies on approximations of the electronic den-
sity [4], to Monte Carlo methods [5–9], which draw a small
number of samples from the Hilbert space approximating
the correct distribution, and tensor network methods [10–12],
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which rely on compression of the full many-body wave func-
tion.

Recently, there has been much progress in using neural
networks to accurately represent wave functions of many-
body systems [13–15]. These neural network quantum states
(NNQSs) rely on the ability of neural networks to learn and
represent any sufficiently smooth function [16–18], allowing
an efficient description without requiring an exponential num-
ber of parameters. The simplest architecture used for NNQSs
is the restricted Boltzmann machine (RBM). They consist of
two fully connected layers, one visible and one hidden. This
simple structure of the architecture translates to a function
which can be easily implemented numerically, allowing for
an efficient Markov sampling of the relevant probability dis-
tribution [19,20] and efficient optimization. By increasing the
hidden unit density, the expressibility of the ansatz increases,
allowing it to represent any state in the limit of infinite pa-
rameters. This has already shown to be competitive with other
state-of-the-art approaches for finding ground [13] and excited
[21] states of one-dimensional (1D) and 2D spin systems.
This ansatz has been applied to a wide range of problems in
this area, from simulating topologically complex states [22]
to investigating how the eigenvalue spectrum of the quantum
Fisher matrix gives information about how networks learn
ground states [23]. Restricted Boltzmann machines are able
to represent some states with a volume-law entropy scaling
[24].

Architectures beyond the RBM have also been used to
study related problems. These range from recurrent neural
networks [25,26] to convolutional neural networks [27–29]
and deep autoregressive models, which forgo the need for
Monte Carlo sampling altogether [30].

These approaches have also begun to be applied to the
dynamics and steady states of open quantum systems. Neural
density machines (NDMs) [31–34] use a pair of copies of a
pure-state NNQS coupled together by an extra layer of hidden
neurons. The density matrix of interest is then obtained by
tracing out the degrees of freedom associated with one of
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the copies. Such purification schemes have been used also
in tensor network approaches [11,35,36]. Other developments
use a positive-operator-valued-measure representation of the
density matrix, achieving accurate results [37–39] as well
as autoregressive Gram-Hadamard density operators which
extend the NDM by adding additional layers which allows
the capture of more complex correlations [40]. Another ansatz
was introduced by Yoshioka and Hamazaki [41] which uses a
binary encoding to vectorize their density matrix. So far, the
literature has focused mostly on purifying the density matrix
in Hilbert space, with the exception of Ref. [41]. Here we
propose a different approach, which writes the density matrix
directly in Liouville space. The Liouville density machine
ansatz which we propose does not require additional visible
units and maintains a correspondence of the visible layer
and the concrete physical system. We show that this is able
to efficiently represent a larger range of physically relevant
states than the NDM, improving learning and accuracy while
retaining the simplicity of RBMs.

This paper is organized as follows. In Sec. II we give a
brief description of the Lindblad master equation which de-
scribes Markovian open-system dynamics. Section III details
how finding the steady state of this equation can be recast
in terms minimization of a cost function and how it can be
estimated using Monte Carlo sampling. In Sec. IV we give
a brief introduction to NNQSs, using the original ansatz of
Ref. [13], going on to show how this can be generalized
to open systems. Section V gives a detailed comparison of
the different approaches to solve this problem, using two
versions of the dissipative transverse-field Ising model as a
benchmark. We gain insights into which kinds of states are
easy and difficult to represent efficiently with the architectures
described. In Sec. VI we give our conclusions and discuss
possible ways to build upon these results. The Appendixes
contain a detailed derivation of the stochastic reconfiguration
algorithm and an explanation of how we produce the Markov
chains for estimating the required expectation values from the
neural network.

II. OPEN-SYSTEM DYNAMICS

The presence of an external environment fundamentally
changes the nature of the dynamics of a quantum system.
The state is no longer captured by a wave function and the
nonunitary dynamics cannot be described by the Schrödinger
equation. Instead, the natural description is in terms of a
reduced density operator for the system, ρ, and a master
equation which defines its time evolution. This then allows
for energy dissipation, decoherence, and, most importantly for
the present paper, the relaxation into a nonequilibrium steady
state in the long-time limit.

If the coupling to the environment is weak and structure-
less, one can assume that system-induced correlations within
the bath decay faster than the effects of the bath on the system.
This leads to the particularly simple Lindblad master equa-
tion [3], which takes the form

dρ

dt
= Lρ = −i[H, ρ] +

∑
i

γiD[Ai]ρ. (1)

Here the sum runs over the dissipation channels i, which are
defined by the jump operators Ai and rates γi. The dissipation
superoperators are given by the Lindblad form

D[A]ρ = AρA† − 1
2 (A†Aρ + ρA†A). (2)

We only consider time-independent master equations.
The time evolution of the density operator is then governed

by the formal expression

ρ(t ) = eLtρ(0) (3)

such that in the long-time limit the stationary state satisfies

lim
t→∞Lρ(t ) = 0. (4)

To simplify what follows both mathematically and numeri-
cally we recast Eq. (1) in Liouville space (sometimes also
referred to as Choi’s space). In this space the density matrix is
reshaped into a vector,

ρ =
∑

m

∑
n

ρm,n |m〉 〈n| → |ρ〉〉 =
∑
m,n

ρm,n |m, n〉〉. (5)

Here the density matrix is expanded in the basis {|m〉} with
expansion coefficients ρm,n. The double-ket notation |·〉〉 used
above denotes a vectorized operator which exists in a Hilbert
space consisting of two copies of the original, |ρ〉〉 ∈ H ⊗ H.
Then superoperators which act on these operator kets are ele-
ments of Liouville space L ∈ (H ⊗ H)∗ ⊗ (H ⊗ H) [41,42].
Here we often abbreviate the double index (m, n) with a single
index s which runs over the ket and bra indices of the density
matrix

∑
m,n ρm,n |m, n〉〉 ≡ ∑

s ρ(s) |s〉〉. With this Eq. (1) now
reads

d

dt
|ρ〉〉 = L |ρ〉〉, (6)

where

L = − i(H ⊗ 1 − 1 ⊗ HT )

+
∑

k

{
Ak ⊗ A∗

k − 1

2
[1 ⊗ (A†

kAk )T + (A†
kAk ) ⊗ 1]

}

is the matrix form of the superoperator L that acts from the
left on a density ket |ρ〉〉.

We can then use standard linear algebra results to find the
eigenvalues and eigenkets of the matrix L such that

L |ρi〉〉 = λi |ρi〉〉. (7)

A stationary state has λi = 0, while all other states have
Reλi < 0.

As we have seen above, the size of the required Liouville
space scales much more quickly than the already exponen-
tially growing Hilbert space. For example, for spin-1/2 lattice
problems, the state vector of a closed system grows as O(2N ),
with the system size N . The density matrix, on the other hand,
grows as O(4N ) and hence the Liouvillian has up to O(16N )
elements which limits the size of accessible systems even
further. In the following sections we will detail our approach
to tackling this problem.
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III. FINDING THE STEADY STATE

Many routes to accessing larger system sizes with numeri-
cal simulations are variational methods [43,44]. For example,
tensor network methods [45] can be seen as variationally
finding the steady state by optimizing over the set of states
captured by a given tensor network architecture, while the
corner space renormalization-group method [46] optimizes a
particular (small) set of basis states which can be used to build
up to larger system sizes. As we will see later, neural network
techniques make use of the same underlying mathematical
structures. Crucial to these methods is the use of an ansatz
function which specifies the full state with a finite number
of parameters, which we denote by α. We may then write
ρ(s; t ) → ρα (s; t ) and optimize over α to find the closest
representation of the steady state within this class. For this
approach to be an efficient solution, the number of parameters
must grow at most polynomially with the system size.

To find the steady state limt→∞ ρ(t ) ≡ ρSS, we require a
cost function which measures how close the ansatz is to the
true stationary density operator. To do this we make use of the
fact that L |ρSS〉〉 = 0 and that for all other states this quantity
is finite. This gives us a cost function to optimize as well as a
metric for how well the variational state parametrizes the true
steady state. The cost function we wish to optimize is given
by the quantity

|Cα|2 =
∣∣∣∣ 〈〈ρα|L|ρα〉〉

〈〈ρα|ρα〉〉
∣∣∣∣
2

, (8)

which uniquely vanishes in the steady state. Note that the
vectors appearing above are in Liouville space; hence the
denominator involves the sum over all elements of the density
matrix 〈〈ρα|ρα〉〉 = ∑

s |ρα (s)|2. Expanding this cost function
yields a form that can be easily evaluated via the Markov chain
Monte Carlo

Cα = 〈〈ρα|L|ρα〉〉
〈〈ρα|ρα〉〉

= 1∑
s′ |ρα (s′)|2

∑
s,s′

ρ∗
α (s)ρα (s′)〈〈s|L|s′〉〉

= 1∑
s′ |ρα (s′)|2

∑
s,s′

|ρα (s)|2ρα (s′)
ρα (s)

〈〈s|L|s′〉〉

=
∑

s

p(s; α)Cloc(s; α),

where

p(s; α) = |ρα (s)|2∑
s′ |ρα (s′)|2 (9)

defines a probability distribution over the entire density matrix
which we can draw samples from. The local cost associated
with each element of this distribution is then

Cloc(s; α) =
∑

s′
〈〈s|L|s′〉〉ρα (s′)

ρα (s)
. (10)

All parts of this local cost can be efficiently calculated. The
states s′ which connect, via the matrix element of the Li-
ouvillian, to the original state s are generated during the

Metropolis-Hastings step and can be accessed at any later
stage of the process (see Appendix B for details on the al-
gorithm used). Since, for a local Liouvillian, the number of
nonzero elements grows only linearly in system size, the eval-
uation of the matrix elements of L can also be done efficiently.
The samples we draw follow the distribution p(s; α) and so the
cost can be calculated as a simple mean over the local costs
[20]

Cα ≈ 1

Ns

∑
s

Cloc(s; α), (11)

where Ns is the number of samples and the sum runs over the
Monte Carlo samples.

Along with an estimate for the cost function we also need
a way of updating the parameter α such that the state we find
is optimized. The simplest way to do this is via stochastic
gradient ascent (SGA), where the gradients of Cα are also
estimated with the Monte Carlo samples and at each step in
the simulation the parameters are updated as

α → α′ = α + η∇αCα, (12)

with the learning rate η. There are several problems with this
approach, e.g., it has been shown [23] that SGA has severe
problems with steep energy surfaces. The main problem for
the present case is that L also has a left eigenstate with eigen-
value 0,

〈〈T| L = 0. (13)

This is the trace state, which is defined as

〈〈T|ρ〉〉 = Tr(ρ), (14)

and since the dynamics of any physical master equation is
necessarily trace preserving we find the result above. This
means that there is another state which optimizes the cost
function. A solution to both of these problems is to instead
use stochastic reconfiguration (SR) [20,23,47,48] to update
the parameters. Stochastic reconfiguration can be derived by
asking which parameter update γ ,

α → α′ = α + ηγ , (15)

best approximates a step in real time (see Appendix A for
a derivation). Since the trace state cannot be found by a
real-time evolution generated by L, this guarantees that we
will find the correct steady state when optimizing the cost
[Eq. (8)]. Furthermore, SR takes into account the curvature
of the energy landscape, speeding up the optimization on flat
areas and slowing down in the presence of strong curvature.
The result is that the updates are calculated as

γ = S−1 f , (16)

where Si, j = 〈O∗
i O j〉 − 〈O∗

i 〉〈O j〉 is the quantum Fisher ma-
trix and fi = 〈O∗

i L〉 − 〈O∗
i 〉〈L〉 is the gradient of the cost

function in Eq. (8). The angular brackets denote the expec-
tation value over the Monte Carlo samples and the operator
Oi(s) is the logarithmic derivative of ρα (s) with respect to the
ith parameter

Oi(s) = 1

ρα (s)

∂

∂αi
ρα (s). (17)
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FIG. 1. Schematic representation of an RBM, showing the vis-
ible units (lower row, green) connected to the hidden units (upper
row, blue) via the weight matrix (double-headed arrows). The single-
headed arrows labeled by ai and bi show the biases applied to the
neurons.

The matrix S is defined to be positive; however, when esti-
mating it via Monte Carlo sampling it can happen that some
eigenvalues vanish and S becomes singular. One can work
around this problem by either calculating the pseudoinverse
or adding a small regularization λ ≈ 10−3 to the diagonal. We
employ the latter method here.

We next need to specify the form of our ansatz function
for the density operator ρα . To do this we first give a brief
overview of how neural networks can be used to represent
many-body wave functions.

IV. NEURAL NETWORK QUANTUM STATES

Neural network quantum states are a variational ansatz
whose parameters and functional form are defined by an un-
derlying neural network architecture. This approach has been
recently developed to describe the many-body wave function
of interacting spin systems and was introduced in Ref. [13].
The key insight here is that the heart of the many-body prob-
lem is to find the relevant parts of Hilbert space in which,
e.g., the ground state of a system exists. This is essentially
a problem of dimensionality reduction and feature extraction,
which are the two strongest points of neural networks.

Neural network quantum states use this ability of neu-
ral networks to efficiently represent any continuous function
[16–18], e.g., a wave function [13,21,22] or density matrix
[32–34], by learning the most important features which define
that function. The simplest NNQS architecture is the RBM.
These are bilayer neural networks with one visible and one
hidden layer of neurons. The network is parametrized by a
bias attached to each neuron and a set of weights which
connects the two layers. This setup is shown schematically
in Fig. 1. In the same spirit as the discussion in the preceding
section, it is possible to then write a variational ansatz for a
wave function for a spin-1/2 lattice model. This takes the form

�α (s) =
∑
{hi}

exp

⎛
⎝∑

j

a js j +
∑

i

bihi +
∑

i j

Wi jhis j

⎞
⎠ (18)

= exp

⎛
⎝∑

j

a js j

⎞
⎠ M∏

i=1

2 cosh

⎛
⎝bi +

N∑
j

Wi js j

⎞
⎠, (19)

where in Eq. (19) we use the fact that the sum over configura-
tions can be analytically calculated. Here ai (b j) denotes the
visible (hidden) bias of the ith site ( jth hidden unit) and Wi j

the weights connecting the jth visible unit to the ith hidden
unit. In addition, M (N) denotes the number of hidden (visi-
ble) units. The ratio between hidden and visible units is β =
M/N . For β = 0 the only states which can be described are
those that would arise in a mean-field description, i.e., those
which are a product of single-site wave functions. Increasing
the value of β allows a systematic increase in the amount of
entanglement which can be described [13]. A further strength
of the RBM wave function is the simplicity of its derivatives
with respect to the parameters. This allows for efficient evalu-
ation of all of the derivatives required to update the state.

In its simplest form the RBM ansatz described above is
only able to discriminate between two different visible states
s = [−1, 1], which allows at most for the representation of
pure states of spin-1/2 systems. However, this is not suffi-
cient to describe a vectorized density operator in Liouville
space which, even for a spin-1/2 system, has four elements.
To overcome this issue we use an approach based on that
introduced in Ref. [19] for the study of pure states of spin-
1 lattices. This is achieved by adding an additional set of
biases and weights which allows discrimination between the
s = [−1, 0, 1] states.

We can adapt this idea to provide a basis for a NNQS ansatz
for density kets |ρ〉〉. Such an ansatz needs to be able to dis-
criminate between the four states of the local density operator
while maintaining a one-to-one correspondence between the
visible layer and the physical system. To label the density
matrix elements on each site we choose to use the mapping

s =

⎧⎪⎪⎨
⎪⎪⎩

2 → |↑↑〉〉
1 → |↑↓〉〉

−1 → |↓↑〉〉
−2 → |↓↓〉〉,

(20)

where s = ±2 denote the diagonal density matrix elements,
while s = ±1 are the off-diagonal elements. These values are
chosen as they give a simple mapping from integers to density
matrix elements and allow our neural network ansatz to easily
distinguish between all of the states. To discriminate these
four different local states, we add one more set of visible
biases and weights, allowing us to represent a density ket.
Furthermore, we do not require any additional visible nodes
to achieve this, as in Ref. [41]. The total ansatz function now
reads

ρα (s) = exp

⎛
⎝ N∑

j

a(1)
j s j + a(2)

j s2
j + a(3)

j s3
j

⎞
⎠

×
M∏

i=1

2 cosh

⎛
⎝bi +

N∑
j

Ui, j s j + Vi, j s
2
j + Wi, j s

3
j

⎞
⎠,

(21)
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FIG. 2. Schematic representation of an LDM. Similar to the
RBM, it has visible (lower row, green) and hidden (upper row, blue)
units. The LDM, however has three visible biases a{1,2,3}

i as well as
three weight matrices U , V , and W (double arrows). The weight
matrices couple to different powers of the configuration vector s and
encode correlations between different local states.

where N and M are the numbers of visible and hidden nodes,
respectively. We have introduced a set of complex biases a(n)

to the visible units, which allow us to distinguish different
visible biases; b again gives the bias on each hidden neu-
ron and U , V , and W are the complex weight matrices that
connect the two layers. Theses biases and connections are
shown schematically in Fig. 2. Similar to the pure-state case
of Eq. (18), this ansatz has labeling freedom and very simple
derivatives which can be found analytically and efficiently
implemented. Calculating the derivatives of a complex-valued
and complex parametrized function is done using Wirtinger
calculus [49].

If the hidden unit density β = 0, this ansatz is able to ex-
actly capture those states described by mean-field theory, i.e.,
where the full density matrix can be factorized onto individ-
ual sites. This then allows the parameter β to systematically
increase the number of correlations which can be represented
in a similar way to the bond dimension of a matrix product
state (MPS).

This ansatz, which we refer to as a Liouville density ma-
chine (LDM), bears some similarities to that proposed in
Ref. [41]. In both cases the problem is transformed into Li-
ouville space, but in Ref. [41] this is achieved by adding an
additional visible unit on each site, allowing them to represent
the four required states. A detailed comparison between the
expressibility of these approaches is left as an open ques-
tion. The LDM ansatz should be seen in contrast to those in
Refs. [31–34]. In these papers a purification ansatz is used
and an extra layer of hidden units is added to represent the
state of an auxiliary system which, when traced over, leaves
the appropriate density matrix for the original system. Similar
techniques have been applied to MPS simulations [35,36]. In
what follows we refer to this purification ansatz as a neural
density machine (NDM).

Compared to the purification approaches of Refs. [31–34],
the LDM is not guaranteed by construction to be either Her-
mitian or positive definite. However, we find that this is not
a significant issue in our simulations because of our choice
of SR as the descent algorithm. Note that any matrix can be

represented in the eigenbasis of the Liouvillian [42] as

|A〉〉 = c0 |ρ0〉〉 +
∑
i �=0

ci |ρi〉〉, (22)

where ci are expansion coefficients and |ρi〉〉 are the vectorized
eigenmatrices of L. Under real-time evolution, all eigenvalues
of eigenstates except for the steady state |ρ0〉〉 have a real
part Re(λi �=0) < 0 and hence exponentially decay over time.
Hence, any initial matrix, independent of its physicality, must
necessarily converge to the steady state of the Liouvillian. We
stress now that, up to first order, the optimization algorithm we
employ was derived as an approximation to real-time evolu-
tion under a Liouvillian and hence gives a good approximation
to this kind of behavior.

V. RESULTS

To benchmark and understand the strengths and limitations
of the LDM ansatz, we study the stationary state of the 1D
dissipative transverse-field Ising (TFI) model [34,39,41,50–
52]. The system consists of a chain of spin-1/2 particles. The
Hamiltonian part of the evolution is governed by

H = J

4

N−1∑
i

σ z
i σ z

i+1 + h

2

N∑
i

σ x
i . (23)

Here N is the number of sites, σ are the usual Pauli ma-
trices, J is the interaction strength, and h is the strength of
the transverse field. The dissipation is governed by excitation
loss on each site, so the jump operators which appear in the
Liouvillian are Ai = √

γ σ−
i . We choose the units of the inter-

action and field such that the dissipation strength is γ = 1. In
all calculations that follow we set the interaction strength to
J/γ = 2.

The steady state of this model then has simple solutions in
two limiting cases. When h → 0 the dissipation dominates the
dynamics and the stationary state is a pure product state with
all the spins pointing down

lim
h→0

ρSS =
N⊗

|↓〉 〈↓| . (24)

In the opposite limit where h → ∞ there is only competition
between the local on-site field and the dissipation and so the
steady state ends up again as a product state, but this time the
state on each site is mixed

lim
h→∞

ρSS =
N⊗ 1

2
(|↑〉 〈↑| + |↓〉 〈↓|). (25)

At intermediate values of h the steady state interpolates be-
tween these two, building up complex long-range classical
and quantum correlations.

We will compare the results of the LDM ansatz to those
obtained using the NDM approach as implemented in the
NETKET library [53]. For small system sizes we will also be
able to compare to results obtained from exact diagonaliza-
tion, which are calculated using QUTIP [54].

As the first example we look at the case of a small system
with N = 6. Our findings are summarized in Fig. 3. In each
case we randomly initialize the parameter values and at each
step we take Monte Carlo samples to approximate the cost
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(a)

(b)

(c)

(d)

FIG. 3. Comparison of the steady state of Eq. (23) using both the
NDM and LDM approaches. The system size N = 6 is small enough
that exact diagonalization is possible. (a) Expectation value of σ x

i

as a function of h. (b) Expectation value of the σ z
i σ z

i+1 correlation
function. In both cases the expectation value is taken on the central
site(s). The black solid lines show the exact result, the NDM with
β = 1 is shown by the green dashed lines, and the LDM with β =
1 is shown by the orange dotted lines and with β = 2 by the red
dot-dashed lines. (c) Absolute value squared of the cost function in
Eq. (8) for the two LDM results. (d) Expectation value 〈L†L〉 used as
a cost function for the NDM ansatz employed by NETKET. For both
cases with β = 1 we used 4500 samples and optimized for 1000 steps
with a learning rate of η = 10−2 and a regularization of λ = 10−2; for
the expectation values we used 500 diagonal samples. In the β = 2
case we used 6000 samples, 2000 steps, and 800 diagonal samples.
The other meta parameters were the same in both cases.

function and the best updates to the parameters. At the end of
each run we produce a new Markov chain, but this time sample
from a probability distribution which follows the diagonal of
the density matrix. This allows us to estimate the expectation
value of observables of interest. Since there are fewer diagonal
states than entries in the full density matrix, we usually only
need about 500–800 diagonal samples.

In Figs. 3(a) and 3(b) we show the expectation value of
σ x

i on the central site and the σ z
i σ z

i+1 correlation function on
the central pair of sites, respectively, as a function of the field
strength h. This gives a good indication of how well the var-
ious approaches are able to produce single-site observables.
We see that, in general, there is good agreement between the
exact results and those obtained using both the LDM and
NDM approaches. In all cases the agreement is worst in the
central region where 1 � h/γ � 2.5, which is in agreement
with the results of Ref. [34]. For the LDM a hidden unit
density of β = 1 corresponds to 132 parameters; for the NDM
this is 174 parameters. We see that even with only 3/4 of
the parameters the LDM generally gives results as good as
or better than the NDM. By increasing the number of hidden
units in the LDM we also increase the number of parameters
so that, at β = 2, there are 246 parameters. We see that for
the LDM ansatz, increasing the value of β and hence the
number of parameters used is able to significantly decrease the
deviation from the exact result; thus we may use the hidden
unit density as a way of checking for convergence when exact
results are no longer possible. We can also see this effect
more clearly in Figs. 3(c) and 3(d), where we show the Monte

(a)

(b)

FIG. 4. Convergence of the LDM ansatz for two different hidden
unit densities β = 1 (thin blue line) and β = 2 (thick orange line):
(a) running estimate for the cost function and (b) variance in the same
quantity. Increasing the hidden unit density improves the accuracy of
the results. Both calculations were done at h/γ = 1 using the same
parameters as in Fig. 3.

Carlo estimated cost function for each ansatz. The value of
the cost function is significantly decreased at all values of h
when β is increased. We also see that for the LDM ansatz
the cost function is at a maximum in the regions where the
convergence to the steady state is worst, which allows us to
use this estimate to again judge the accuracy of our results
for system sizes where exact methods are unavailable. This
is not true of the NDM approach, where the cost function
reaches a maximum at intermediate values of h and does not
significantly decrease as h increases further. This is because
the mixed product state, described in Eq. (25), is not so easy
to represent in a purification ansatz; this mixed state requires a
large amount of entanglement between the real and auxiliary
spins. This is not the case for the LDM approach, which can
represent this state exactly without using hidden units.

A further comparison is shown in Fig. 4. This figure shows
how the cost function of the LDM evolves for two different
values of β over 6000 steps at one of the most difficult points
h = γ . By increasing the number of variational parameters
from 132 to 246 we were able to reduce the cost function by
an order of magnitude. We also see that simply checking the
value of the cost function does not give an accurate stopping
condition for the algorithm. After around 1400 steps the cost
function for β = 2 is very small but the variance is quite large.
This means that the LDM has not found an eigenstate of the
Liouvillian but is still giving a small value for the cost func-
tion. We propose that a condition based on a combination of
both of these quantities can give a good way to automatically
stop the learning process when a good approximation to the
steady state has been reached.

To test that the state we obtain is physical, we construct
the full density matrix from the LDM. In Fig. 5(a) we show
how the real part of the smallest eigenvalue of this constructed
density matrix evolves. For a randomly initiated state the min-
imum eigenvalue is negative, which indicates a nonphysical
density matrix. However, as the optimization goes on the
minimum eigenvalues become closer to 0 or becomes positive,
indicating that the final density matrix is positive semidefi-
nite. Figure 5(b) shows that the imaginary parts of all of the
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FIG. 5. Properties of the state obtained by using SR at three
different values of h and all other parameters the same as the β = 1
results in Fig. 3. (a) Real part of the minimum eigenvalue of the
full density matrix obtained from the LDM. (b) Sum of the absolute
value of the imaginary parts of the eigenvalues of the density matrix.
(c) Fidelity of the ansatz with the exact density matrix.

eigenvalues are quickly suppressed, which indicates a Her-
mitian matrix, and hence we can produce a physical density
matrix. In Fig. 5(c) we show the fidelity of the state with one
obtained from the exact solution of the master equation. We
see that, as expected from the results of Fig. 3, the fidelity
is highest in the cases where the transverse-field strength is
either very large or very small and the fidelity is lowest where
the steady state has large entanglement around h = 1γ .

We now go on to examine how the accuracy of these ap-
proaches scales to larger system sizes. At N = 16 it becomes
difficult to use exact methods to compare against; however,
this model is straightforward to solve with MPS simulations,
which we found to be fully converged for a bond dimension of
χ = 7. Results of these calculations are shown in Fig. 6. The
number of parameters for the NDM is 1104, while the LDM
has 1126. For reference, a bond dimension of χ = 7 corre-
sponds to 1952 matrix elements in the MPS. We see behavior
very similar to that for the N = 6 case; both approaches are
more difficult to converge in the region of intermediate h/γ

and the cost function for the LDM has a peak in this region. In
Fig. 7 we show how the convergence can again be improved
by increasing the hidden unit density. Here we choose h = 2γ ,
as this is the point where the convergence is worst. We see
that as β is increased the cost function decreases towards zero
and the expectation value moves towards that found in the
MPS simulation. The expectation value here is a two-point
correlation function, which in general is harder to converge
than single-site operators.

A. TFI model with rotated Hamiltonian

By making a simple change to the model discussed above,
it is possible to make the convergence of both neural network
approaches considerably worse. To do this we change the
Hamiltonian to a rotated basis [50,52,55]

H = J

4

4∑
i=0

σ x
i σ x

i+1 + h

2

5∑
i=0

σ z
i (26)

h/

(a)

(b)

(c)

(d)

FIG. 6. Steady state of Eq. (23) as a function of field strength,
similar to Fig. 3, for a larger system size N = 16. Shown are the
expectation values of (a) σ x

i and (b) σ z
i σ z

i+1 on the central site(s)
and (c) and (d) the relevant cost functions. The LDM (orange dotted
lines) and NDM (green dashed lines) results are compared to those
obtained from MPS simulations (black solid lines). We used β = 1.4
in the case of the LDM and β = 1 for the NDM to ensure that both
approaches use a similar number of parameters. The NDM has 1104
parameters, while the LDM has 1126. In both cases we evolved for
7000 steps with a learning rate of η = 10−3, we took 9000 Monte
Carlo samples at each step and a regularization of λ = 3 × 10−3. We
used 800 diagonal samples to estimate the expectation values.

but keep the dissipation processes the same as for the previous
model. In this case the dissipation does not explicitly break the
Z2 symmetry of the model as the interaction term is perpen-
dicular to the dissipation. Therefore, the competition between
the coherent and dissipative dynamics gives rise to complex
correlations in the steady state. This leads to a very rich mean-
field phase diagram in high dimensions with possibilities for
both first- and second-order phase transitions between differ-
ent magnetic orderings [51,55,56]. In one dimension these
phase transitions turn into continuous crossovers, but complex
correlations still build up when h ∼ J ∼ γ . (For a detailed

(a)

(b)

FIG. 7. Improvement of convergence as a function of β for the
N = 16 TFI model at h = 2γ (orange dotted line) compared to
the results of an MPS calculation (blue solid line). (a) The σ x

i σ x
i+1

correlation function and (b) the estimate for the cost function. All
calculations ran for 7000 steps. To accommodate for higher parame-
ter counts we increased the number of samples with β from 9000 at
β = 1 to 17 000 at β = 2. The other parameters are the same as in
Fig. 6.
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(a)

(b)

(c)

(d)

FIG. 8. Optimizing the rotated TFI model as in Eq. (26) for
N = 6. The exact results are in blue, those obtained with the LDM
are orange, and those for the NDM are green. Different hidden unit
densities are shown by different line styles. In all cases the optimiza-
tion was run for 4000 steps, with a learning rate of η = 10−3 and
2000 diagonal samples to estimate the expectation values. For β = 1
we used 4500 samples and a regularization of λ = 10−3. For β = 2
the number of samples was increased to 18 000 and the regularization
was 10−2. Shown are (a) the steady-state expectation value of σ z

i ,
(b) the two-point correlation function 〈σ z

i σ z
i+1〉, and (c) and (d) the

relevant cost functions for each ansatz.

review of the behavior of this model in one dimension see
Ref. [52].)

We again study the convergence of both the LDM and
NDM approaches for finding the steady state of this model
for a system size of N = 6. In Figs. 8(a) and 8(b) we show
how both a single-site and a two-site observable vary with the
applied field h. We see that, even when using a large number
of samples and parameters, the NDM ansatz is not able to find
a good approximation to the exact result, while the LDM is
able to get much closer to the expected result, especially at
small values of h. We see that for both approaches the cost
function estimate is much larger than it was for the simpler
model described by Eq. (23). This is because the steady state
in this case has many more complex correlations than in the
previous model; simple expressions like those in Eqs. (24) and
(25) are not available, except at very large h → ∞, where the
steady state is the same as given in Eq. (24). We next go on
to show how using measures of the entanglement found in the
steady state can give good intuition for when these kinds of
difficulties arise.

B. Entanglement properties

To further understand the convergence of these approaches
we investigate the entanglement present in the steady states
of both models over a range of parameters. Contrary to pure
states, quantifying the number of correlations that are present
in a mixed state is not as simple as just calculating the entan-
glement entropy between two halves of the system [57]. For
our purposes, we find that the negativity [58,59]

N = ‖ρTA‖ − 1

2
(27)

(a)

(b)

FIG. 9. (a) Steady-state entanglement negativity, defined in
Eq. (27), and (b) purity P = Tr(ρ2) for the σ xσ x model (upper, red
curves) and the σ zσ z model (lower, blue curves). Comparing with
the results of Figs. 3 and 8, we observe a correlation between a large
negativity and poor accuracy of the neural network.

provides a useful measure of the correlations which are dif-
ficult to represent using the LDM approach described above.
Here ‖ρTA‖ denotes the trace norm of the partially transposed
density matrix with the transpose taken over the degrees of
freedom labeled by A. This quantity gives a measure for
the separability of a state. If two subsystems are entangled,
the partial transpose can lead to negative eigenvalues, which
leads to a trace norm greater than one and hence a nonzero
negativity.

Figure 9(a) shows the negativity for both models consid-
ered in this paper for the three different possible bipartitions of
a four-site system. In the case of the simpler model in Eq. (23)
with the σ zσ z interaction, we see a clear peak in the negativity
at around h ∼ 0.9γ for all partitions and a fast decay to zero at
values of h above and below this point. This is because of the
two limiting cases described in Eqs. (24) and (25), which both
have zero negativity. The peak corresponds well to the range
of h values which were the most difficult to find convergence
with the neural networks.

In the case of the more difficult model described in Eq. (26)
with σ xσ x interactions we see a much higher negativity across
the whole range of values of h. This ties in well with our
experience that this model is much harder to represent using
both the LDM and NDM approaches across the board, with
generally slight improvements around h = 0 and h � 4γ . We
see that there is no region where the negativity reaches zero.
This model does not have a simple product-state steady state
anywhere in the observed parameter range.

VI. CONCLUSION

In summary, we have proposed a NNQS ansatz which
compactly represents density matrices in Liouville space, al-
lowing us to find the steady state of lattice models described
by a Markovian master equation. This LDM approach was
shown to be able to calculate the steady state of a 1D open
transverse-field Ising model with 6 and 16 sites. The results
were compared to the powerful NDM ansatz as implemented
in NETKET. We found that our approach is always able to
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reach a comparable accuracy and in many cases is better able
to find the steady state, especially when it contains many
correlations. We were able to show that the accuracy of this
approach is able to be systematically improved by increasing
the number of hidden units and hence free parameters in the
ansatz.

This permits a clear understanding of the class of states
accessible to the LDM ansatz. As we show in Figs. 3 and 6,
the most difficult regions to find convergence are very strongly
correlated with parameters where the true steady state has
high negativity. This is in contrast with the NDM approach,
where there is difficulty representing mixed states with no
correlations leading to a plateau in the cost function which do
not significantly decrease as the steady state becomes more
separable.

The results shown here are just a starting point for examin-
ing the usefulness of neural network approaches to finding the
steady state of open quantum systems. The RBM ansatz we
used is the simplest possible architecture and extending the
approach here to deep networks such as deep RBMs [60], re-
current neural networks [61], or transformers [62], which have
already proven successful in closed system, provides a route
to improving both the accuracy and numerical efficiency. The
models studied here are also very simple and are accessible
by other methods such as tensor-network-based techniques.
However, the lack of an underlying lattice geometry for these
neural networks can be exploited to study models with long-
range interactions and in higher dimensions which are much
more difficult to simulate using other approaches.

The research data supporting this publication can be ac-
cessed at Ref. [63].
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APPENDIX A: STOCHASTIC RECONFIGURATION

The stochastic reconfiguration update method was orig-
inally proposed in the context of attempting to develop
variational quantum Monte Carlo algorithms which avoid the
sign problem [47,48]. The derivation of the update in this
Appendix is based on the ones found in Refs. [20,22,23].
We recommend especially [20] for various additional ways
of deriving SR and Ref. [23] for an in-depth discussion of
the properties of the quantum Fisher matrix, which plays an
important role in SR.

Consider an ansatz function |ρα〉 with variational param-
eters α. For the derivation, we assume that the ansatz is
normalized: ‖ρα‖2 = 〈ρα|ρα〉 = 1. We can use this to define a
semiorthogonal basis consisting of |ρi=0,α〉 = |ρα〉, the ansatz
function, as well as its derivatives

|ρi,α〉 = (Oi − 〈Oi〉) |ρ0,α〉 , (A1)

where 〈Oi〉 = 〈ρ0,α|Oi |ρ0,α〉 and Oi is the logarithmic deriva-
tive operator Oi(s) = 1

ρα (s)
∂

∂αi
ρα (s). A variation by a small

parameter shift γ then yields

|ρα+γ 〉 ≈
Np∑
i=0

γi |ρi,α〉 . (A2)

Let us now suppose we are given some Liouvillian L. Then
the real-time evolution over some small time step δt is given
by e−δtL |ρα〉. Expanding this around a small time step yields

e−δtL |ρ0,α〉 ≈ (1 − δtL) |ρ0,α〉 . (A3)

We now have

|ρα+γ 〉 ≈
Np∑
i=0

γi |ρi,α〉 ,

|ρ̃0,α〉 ≈ (1 − δtL) |ρ0,α〉 .

The idea is now to project both sides into the nonorthogonal
basis and ask under which conditions they become equal [22]:

〈ρi,α|ρ̃0,α〉 = 〈ρi,α|ρα+γ 〉

⇒ 〈ρi,α|(1 − δtL) |ρ0,α〉 = 〈ρi,α|
Np∑
j=0

γ j |ρ j,α〉

⇒ −δt〈ρi,α|L |ρ0,α〉 =
Np∑
j=1

γ j〈ρi,α|ρ j,α〉.

The left-hand side now reads

−δt〈ρ0,α|(O∗
i − 〈O∗

i 〉)L |ρ0,α〉 = −δt (〈O∗
i L〉 − 〈O∗

i 〉〈L〉),
(A4)

while the right-hand side reads

Np∑
j=1

γ j〈ρ0,α|(O∗
i − 〈O∗

i 〉)(O j − 〈O j〉)ρ0,α〉,

×
Np∑
j=1

γ j (〈O∗
i O j〉 − 〈O∗

i 〉〈O j〉).

Equating both sides yields

−δt (〈O∗
i L〉 − 〈O∗

i 〉〈L〉) =
Np∑
j=1

γ j (〈O∗
i O j〉 − 〈O∗

i 〉〈O j〉).

(A5)
Identifying the forces fi = 〈O∗

i L〉 − 〈O∗
i 〉〈L〉 and the quantum

Fisher matrix Si, j = 〈O∗
i O j〉 − 〈O∗

i 〉〈O j〉, we can write this
more succinctly

−δt f = Sγ . (A6)

The solution of this system of linear equations γ is the param-
eter updates which most closely resemble a step in real time
of size δt .

APPENDIX B: MARKOV CHAIN MONTE
CARLO SAMPLING

Since the size of the required Liouville space grows ex-
ponentially fast with the system size, it quickly becomes
impossible to calculate expectation values and gradients ex-
actly. This requires us to draw sample states from the total
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space in a way that follows the true probability distribution
parametrized by the variational ansatz.

The algorithm we employ to generate the samples is the
Metropolis-Hastings algorithm. It can be used to draw sam-
ples from an unknown distribution, as long as we have a
function which is at least proportional to that distribution. We
achieve this by realizing that the relative probability of two
samples σ , p(σ0 )

p(σ1 ) , is independent of the exact normalization of
the distribution.

Each sample is saved and generated iteratively in such a
way that the next sample depends only on the current sample.
In this way a Markov chain of samples is created that can be
used to estimate expectations and gradients.

The full algorithm is as follows. Let ρα (x) be a function
that is proportional to the desired distribution |ρ|2. Further,
let Q(x|y) = Q(y|x) be a symmetric, conditional probability
distribution that determines the jumps. Note that we never
explicitly calculate Q(x|y). In the case of flipping one random
spin, the probability to flip any spin is always 1/N , indepen-
dent of the current configuration. Hence, Q(x|y) = Q(y|x) is
trivially fulfilled.

(i) Choose a random spin configuration σ0.
(ii) Use Q(x|y) to suggest a new configuration σ1.
(iii) Calculate the relative probability p = | ρα (σ1 )

ρα (σ0 ) |2.
(iv) Generate a random number r between 0 and 1 and

compare with the relative probability. If r < p, accept the new
configuration and add it to the list. Otherwise add the old
sample to the list again.

(v) Repeat the process until a sufficient number of samples
has been generated.

(vi) Calculate the average of the operators and gradients
from this set as required.

There are a few pitfalls to look out for. First, since each
sample is generated as a small change from the previous
sample, neighboring samples are strongly correlated and the
full chain may not faithfully represent the true distribution.
Second, the first sample of a chain is randomly chosen from
all possible states with a uniform probability, while it might
have an infinitesimally small weight in the true distribution.
Hence, the first sample and a number of samples following it
can drastically skew the distribution represented by the chain.
Third, it is not at all obvious when enough samples have been
generated to represent the true distribution.

These problems have been known for a long time and have
been discussed in the literature [9,20,64]. The first problem is
best addressed by only keeping one in every n of the samples.
This ensures that each sample in the resulting chain is inde-
pendent of the previous one (see [9,20]). The second problem
can be addressed in a similar fashion. Instead of taking a
randomly selected sample, one generates an entire chain again
and uses the last entry as the starting point for the final Markov
chain. This ensures that the starting point of the simulation
lies in a corner of the state space with finite weight. The third
problem is addressed in, e.g., Refs. [64–66]. They proposed
to estimate the variance between several Markov chains and
within these chains, arguing that their ratio should approach
unity in the limit of perfect convergence or infinite samples.
This gives a good estimate of how close the samples are to
representing the true probability distribution. This measure is
known in the literature as the Gelman-Rubin R value.
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