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Stabilised bias field: segmentation
with intensity inhomogeneity

Jack Spencer and Ke Chen

Abstract

Automatic segmentation in the variational framework is a challenging task within the field of imaging sciences.

Achieving robustness is a major problem, particularly for images with high levels of intensity inhomogeneity.

The two-phase piecewise-constant case of the Mumford-Shah formulation is most suitable for images with simple

and homogeneous features where the intensity variation is limited. However, it has been applied to many different

types of synthetic and real images after some adjustments to the formulation. Recent work has incorporated bias

field estimation to allow for intensity inhomogeneity, with great success in terms of segmentation quality. However,

the framework and assumptions involved lead to inconsistencies in the method that can adversely affect results.

In this paper we address the task of generalising the piecewise-constant formulation, to approximate minimisers of

the original Mumford-Shah formulation. We first review existing methods for treating inhomogeneity, and demonstrate

the inconsistencies with the bias field estimation framework. We propose a modified variational model to account for

these problems by introducing an additional constraint, and detail how the exact minimiser can be approximated in the

context of this new formulation. We extend this concept to selective segmentation with the introduction of a distance

selection term. These models are minimised with convex relaxation methods, where the global minimiser can be found

for a fixed fitting term. Finally, we present numerical results that demonstrate an improvement to existing methods in

terms of reliability and parameter dependence, and results for selective segmentation in the case of intensity

inhomogeneity.

Keywords

Image processing, variational segmentation, convex functional, dual formulation, bias field estimation

Date received: 30 October 2015; accepted: 15 March 2016

Introduction

The task of partitioning an image into multiple regions
each sharing certain characteristics – such as texture,
intensity, shape or colour – is called segmentation,
and is an important aspect of image processing.
Given an image z(x) in a bounded domain � � R

2,
we look for an edge � that partitions � into regions
f�i, i ¼ 1, 2, . . . ,Ng in � n �. The particular case of
selecting objects in an image based on intensity
has been widely studied over the last 20 years,1–3 and
is particularly challenging in cases of intensity
inhomogeneity.

We consider the variational approach to this prob-
lem, and in particular region-based active contour
models (ACMs). These are based on the introduction

of the minimisation of the Mumford-Shah functional,3

given by

EMSð�,wÞ ¼ j�j þ l
Z

�

ðz� wÞ2dxþ �

Z
�n�

jrwjdx,

ð1Þ

where �, l4 0 are weighting parameters and j�j
denotes the length of the edge curve �, the boundary
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between regions �i. Mumford and Shah3 demonstrated
that, theoretically, the existence and regularity of min-
imisers of this functional can be achieved, and Tsai
et al.4 and Vese and Chan5 used the variational level
set method of Osher et al.6 and Zhao et al.7 to minimise
(equation (1)). Chan and Vese2 introduced a functional
that was a particular case of equation (1), the two-
phase piecewise-constant example, i.e. jrwj ¼ 0 and
N¼ 2 in equation (1).

ECVð�, c1, c2Þ ¼ j�j þ l
Z

�1

ðz� c1Þ
2dx

�

þ

Z
�2

ðz� c2Þ
2dx

� ð2Þ

The Chan-Vese model (CV) has been widely used in
segmentation applications since its introduction in 2001.
Its framework has been generalised by the introduction
of new fitting terms to incorporate extensive intensity
inhomogeneity, such as Li et al.8,9 who introduced a
region scalable fitting energy and local cluster method.
Jung et al.10,11 introduced a nonlocal ACM utilising dis-
tance functions. Brox and Cremers12 and Lanktona and
Tannenbaum13 introduced new local models, incorpor-
ating Gaussian kernel functions. Recent work related to
this area includes the work of Ali et al.,14 who form
fitting terms using multiplicative and difference image
data, and L0 regularisation for simultaneous bias correc-
tion and segmentation by Duan et al.15

A drawback of the CV approach is a lack of convex-
ity in the level-set-based minimisation. The method is
based on using the Heaviside function to represent the
two regions �1 and �2 with respect to a level set func-
tion, �, and computing the Euler-Lagrange equation.
The solution of the corresponding partial differential
equation is often a local minimum, which reduces the
reliability of the results. The introduction of the idea of
convex relaxation by Chan et al.1 demonstrated that a
global minimum of equation (2) with respect to �, and
consequently the regions �1 and �2, can be found. The
idea is to represent the two regions by an indicator
function, and relax the constraint such that both the
functional and the constraint sets are convex. Further
work has been done by Bresson et al.16 and Chambolle
et al.17 and extended to the multiphase framework, i.e.
N> 2, by Lellmann et al.,18 Bae et al.19 and Gu et al.20

The recent work of Chen et al.,23 combines the idea
of convex relaxation and segmentation with intensity
inhomogneity, and our work focuses on aiming to
improve their formulation. The ‘true’ image data are
formulated22,23 as

T ¼
X
i

ci�i, i ¼ 1, 2, . . . ,N, ð3Þ

where ci are intensity constants, and �i are characteris-
tic functions of the regions �i. It is based on the idea
that the image can be modelled as

zðxÞ ¼ BðxÞTþ �, x 2 �i, i ¼ 1, 2, . . . ,N, ð4Þ

where � is additive noise. Here, as with CV, we
consider the two-phase case, i.e. N¼ 2. Chen et al.21

aim to estimate the bias field B and recover the ‘true’
image T. However, a lack of convergence of the
bias field and the intensity constants means that
recovering an accurate T is not possible. We propose
introducing a constraint on these variables to correct
this inconsistency.

The paper is organised as follows. In ‘‘VMS model’’
we detail the Variant Mumford-Shah (VMS) model,21

briefly introduced above, and discuss the problems with
recovering the ‘true’ image, in particular the lack of
convergence of c1 and c2 due to the formulation. In
‘‘Stabilised bias field’’ we detail the introduction of a
constraint to the work of Chen et al.21 in order to auto-
matically establish feasible intensity constants and
ensure the convergence of all variables being mini-
mised. We discuss how this alters the minimisation of
the bias field, how the functional is iteratively mini-
mised, and details of the numerical implementation.
We also highlight the link the proposed method pro-
vides between Mumford-Shah3 and Chan-Vese.2

In ‘‘Results’’ we include experimental results that meas-
ure the accuracy of the proposed method compared to
VMS by using the Tanimoto Coefficient,24 and demon-
strate the convergence of the intensity constants for
examples used in Chen et al.21 We extend this idea
to selective segmentation in ‘‘Selective segmentation
with SBF’’. We consider incorporating a distance selec-
tion term from a recent selection model,25 and include
experimental results for one challenging case. We dis-
cuss the benefits of the proposed method in
‘‘Conclusions’’.

VMS model

The VMS model by Chen et al.21 is formulated as
follows

EVMSð�, c1, c2,BÞ ¼ j�j þ l
Z

�

ðz� Bc1Þ
2�1

�

þ ðz� Bc2Þ
2�2

�
dxþ �

Z
�

jrBj2dx,

ð5Þ

where l and � are weighting parameters. The idea
is that the intensity constants represent the ‘true’
image, and the bias field B varies such that their com-
bination gives a piecewise-smooth approximation of z
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(with respect to the Mumford-Shah3 formulation
(equation (1.1))), given by

wVMS ¼ Bc1�1 þ Bc2�2: ð6Þ

The functional equation (5) is minimised iteratively
by the following steps. Step (1): For fixed characteristic
functions �1 and �2, and intensity constants c1 and c2,
minimise equation (5) with respect to bias field estima-
tor B. Based on the work of Nielsen et al.26 and Brox
and Cremers,12 the exact minimiser can be well
approximated. Step (2): For fixed characteristic func-
tions �1 and �2, and bias field estimator B, minimise
equation (5) with respect to intensity constants c1 and
c2. These can be computed precisely. Step (3): For fixed
intensity constants c1 and c2, and bias field estimator B,
minimise equation (5) with respect to �1,�2. Based
on the work of Chan et al.,1 minimising two character-
istic functions can be achieved by using an indicator
function, u(x), which is allowed to take intermediate
values.

Convergence behaviour of VMS

In Figure 1, we demonstrate a result for VMS that is
also used in Chen et al.,21 and is of comparable quality.
However, the question remains: based on the image

model described above (equation (3)), what is the ‘true’
image? Whilst the joint minimisation of equation (5)
with respect to c1, c2, B and � is nonconvex, and there-
fore we cannot determine the correct c1 and c2 precisely,
there is a problem with the current framework, which
we will now discuss. In Figure 1 (after 1000 iterations),
we show that the values of the intensity constants
continually rise, such that c1 ¼ 9:1� 104 and c2 ¼
6:4� 104. The convergence of wVMS (equation (6))
comes from the reduction in scale of B. To demonstrate
this, after the same number of iterations jjBjjF ¼
4:7� 10�4 (where jj � jjF is the Frobenius norm). This
motivates our proposal for modifying VMS, in the
form of an additional constraint, which can automatic-
ally control the scale of c1, c2 and B.

To explain this phenomenon let us examine the VMS
functional equation (5). The smoothness penalty
included, which we denote EB, is similar to the penalty
enforced in the Mumford-Shah functional (equation
(1)), except that it applies throughout the domain. We
denote the fitting energy EF, and it is again similar to
the Mumford-Shah fitting energy

EB ¼

Z
�

jrBj2dx,

EF ¼

Z
�

ðz� Bc1Þ
2�1 þ ðz� Bc2Þ

2�2
� �

dx:

ð7Þ

Figure 1. Convergence behaviour. The first row, from left to right, shows the lack of convergence for the intensity constants, giving

c1 ¼ 9:1� 104 and c2 ¼ 6:4� 104, and the scale of the bias field B(x). The bottom row, from left to right, shows the image z(x), and

the computed contour ��, and the progression of the energies EB and EF (equation (7)). (a) c1 Progression, (b) c2 Progression,

(c) Bias Field, B(x), (d) z(x)2 [0; 1]; �*, (e) EB and (f ) Ef.
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However, crucially, the Mumford-Shah fitting term
only involves one variable, w. The VMS fitting term
involves the products Bc1 and Bc2. This means that a
change in one variable does not necessarily alter the
energy, as long as the other variable changes accord-
ingly. In practice that means that the minimum of the
VMS functional is attained when EB! 0, despite the
convergence of EF. This is due to the lack of conver-
gence of the intensity constants c1 and c2, but this
contradicts the assumptions of recovering the ‘true’
image (equation (3)) discussed in ‘‘Introduction’’. This
is demonstrated in Figure 1.

Stabilised bias field

VMS produces a piecewise-smooth approximation of
the image (in the Mumford-Shah sense3), given by
wVMS (equation (6)). However, it does not give values
for c1 and c2 that are consistent with the observed
image. It is possible to manually rescale these without
changing wVMS, but this is not a sensible approach as
these values are unknown by definition. The immediate
question is: is it possible to incorporate constraints into
the formulation in a reliable way, i.e. can we use infor-
mation in the image to automatically restrict the scale
of B,c1 and c2? There are two obvious approaches. The
first is to constrain the values of c1 or c2. The situation
when the optimal intensity constants are not known a
priori has been studied by Brown et al.27 in the piece-
wise-constant case, but not in cases of intensity
inhomogeneity. It is worth considering how this
method could be incorporated in the presence of a
bias field function; however, we do not discuss this
here. The second is to control the scale of the bias
field, B. We therefore consider how to introduce a con-
straint in such a way that it provides a link between the
piecewise-constant and piecewsie-smooth approxima-
tions of z that are consistent with the image, which
we will return to later.

With VMS, B is encouraged to be close to 0, which
leads to the lack of convergence for c1 and c2. To pre-
vent this we propose a new model we call stabilised bias
field (SBF), with the introduction of an additional con-
straint that encourages B to be close to a positive con-
stant. However, this alters the minimisation step for the
bias field from Chen et al.21 We now consider how to
obtain this with the addition of this constraint. To dis-
tinguish between the two methods we refer to the bias
field in SBF as ~B. The new formulation is given as
follows

ESBFð�, c1, c2, ~BÞ

¼ j�j þ l
Z

�

ðz� ~Bc1Þ
2�1 þ ðz� ~Bc2Þ

2�2
� �

dx

þ �

Z
�

jr ~Bj2dxþ �

Z
�

ð ~B� sÞ2dx, ð8Þ

where s, � are positive parameters. We intend to use the
framework of VMS to approximate the exact minimiser
of equation (8) for ~B. With this in mind, the previous
formulation is equivalent to

ESBFð�, c1, c2, ~BÞ ¼ l
Z

�

ðz� ~Bc1Þ
2
þ
�

l
ðB� sÞ2

h i
�1

�

þ ðz� ~Bc2Þ
2
þ
�

l
ð ~B� sÞ2

h i
�2

�
dx

j�j þ �

Z
�

jr ~Bj2 dx,

where the new constraint has been incorporated into
the fitting term. We can reformulate this as follows,
first looking at the �1 term

ðz� ~Bc1Þ
2
þ
�2
l
ð ~B� sÞ2

h i

¼ ~B2 c21 þ ~�
� �

� 2 ~B c1zþ ~�sð Þ þ z2 þ ~�s2
� �

¼ c21 þ ~�
� �

~B�
c1zþ ~�s

c21 þ ~�

� 	2
þ f1ðz, c1, s, ~�Þ

¼
c1zþ ~�sffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ ~�

q � ~B
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ ~�

q2
64

3
75

2

þ f1ðz, c1, s, ~�Þ,

where ~� ¼ �
l and f1ðz, c1, s, ~�Þ ¼ z2þ ~�s2

c2
1
þ ~�

. In a similar way,
for the �2 term

ðz� ~Bc2Þ
2
þ
�2
l
ð ~B� sÞ2

h i
¼

c2zþ ~�sffiffiffiffiffiffiffiffiffiffiffiffiffi
c22 þ ~�

q � ~B
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c22 þ ~�

q2
64

3
75

2

þ f2ðz, c2, s, ~�Þ,

where f2ðz, c2, s, ~�Þ ¼ z2þ ~�s2

c2
2
þ ~�

. Therefore equation (8) is
equivalent to

ESBFð�, c1, c2, ~BÞ ¼ l
Z

�

c1zþ ~�sffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ ~�

q � ~B
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ ~�

q2
64

3
75

2

�1

0
B@

þ
c2zþ ~�sffiffiffiffiffiffiffiffiffiffiffiffiffi
c22 þ ~�

q � ~B
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c22 þ ~�

q2
64

3
75

2

�2

1
CAdx

þ

Z
�

f1ðz, c1, s, ~�Þ�1dx

þ

Z
�

f2ðz, c2, s, ~�Þ�2dxþ j�j
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þ �

Z
�

jr ~Bj2dx:

Minimising ESBFð�, c1, c2, ~BÞ with respect to ~B is
given by

min
~B

l
Z

�

z1 � ~B ~c1
� �2

�1 þ z2 � ~B ~c2
� �2

�2

� �
dx



þ�

Z
�

jr ~Bj2dx

�
ð9Þ

since f1ðz, c1, s, ~�Þ, f2ðz, c2, s, ~�Þ, and j�j are not depend-
ent on ~B. Here

z1 ¼
c1zþ ~�sffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ ~�

q , ~c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ ~�

q
, z2 ¼

c2zþ ~�sffiffiffiffiffiffiffiffiffiffiffiffiffi
c22 þ ~�

q ,

and ~c2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c22 þ ~�

q
:

In the same way as VMS,21 we can approximate the
exact minimiser of equation (9) with a Gaussian G

~B ¼
~c1z1�1 þ ~c2z2�2

~c21�1 þ ~c22�2
� G: ð10Þ

Relationship to Chan-Vese and Mumford-Shah

We now discuss how the proposed model relates to the
two important works discussed in the Introduction.
The SBF functional is given as

ESBFð�, c1, c2, ~BÞ

¼ j�j þ l
Z

�

ðz� ~Bc1Þ
2�1 þ ðz� ~Bc2Þ

2�2
� �

dx

þ �

Z
�

jr ~Bj2dxþ �

Z
�

ð ~B� sÞ2dx: ð11Þ

It relates to Mumford-Shah in the same sense that
VMS does. That is, we can compute a piecewise-smooth
approximation of the image

wSBF ¼ ~Bc1�1 þ ~Bc2�2, ð12Þ

except that the values computed correspond to the
observed image z 2 ½0, 1�, and the variables converge
reliably. However, it also relates to the Chan-Vese func-
tional. If s¼ 1 and � !1 we have the CV formulation
(equation (2))

ECVð�, c1, c2Þ ¼ j�j þ l
Z

�

ðz� c1Þ
2�1 þ ðz� c2Þ

2�2
� �

dx:

Iterative minimisation of SBF formulation

We now detail how to minimise the functional equation
(8), in line with the method of Chen et al.,21 in order to
effectively compare our proposed method against VMS.
The SBF model is given as follows

min
�, c1, c2, ~B


ESBFð�, c1, c2, ~BÞ

¼ j�j þ l
Z

�

ðz� ~Bc1Þ
2�1 þ ðz� ~Bc2Þ

2�2
� �

dx

þ �

Z
�

jr ~Bj2dxþ �

Z
�

ð ~B� sÞ2dx

�
:

This is minimised iteratively (e.g. the iterative pro-
cess method, Li et al.9) by the following steps:

1. For fixed characteristic functions �1 and �2, and
intensity constants c1 and c2, minimise equation (11)
with respect to bias field estimator ~B.

2. For fixed characteristic functions �1 and �2, and bias
field estimator ~B, minimise equation (11) with
respect to intensity constants c1 and c2.

3. For fixed intensity constants c1 and c2, and bias field
estimator ~B, minimise equation (11) with respect to
characteristic functions �1 and �2.

We provide a summary of how each step is mini-
mised in the following:

Step (1): detailed in the previous section. It can be
approximated, according to the work of Nielsen
et al.26 and Brox and Cremers12 and as discussed
by Chen et al.,21 by

~B ¼
~c1z1�1 þ ~c2z2�2

~c21�1 þ ~c22�2
� G:

Step (2): minimising with respect to c1 and c2 gives

c1 ¼

R
�
zðxÞBðxÞ�1dxR
� B2ðxÞ�1dx

, c2 ¼

R
�
zðxÞBðxÞ�2dxR
� B2ðxÞ�2dx

: ð13Þ

Step (3): achieved by the following minimisation

min
�1,�2

j�j þ l
Z

�

ðz� ~Bc1Þ
2�1 þ ðz� ~Bc2Þ

2�2
� �

dx

 �

ð14Þ

Minimising two characteristic functions can be
achieved by using an indicator function, u(x), which is
allowed to take intermediate values. This is based on
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the work of Chan et al.1

min
0�u�1

Z
�

jruðxÞjdxþ l


�

Z
�

ðz� ~Bc1Þ
2
� ðz� ~Bc2Þ

2
� �

uðxÞdx

�
,

ð15Þ

where the length term j�j in equation (14) has been
replaced by the total variation (TV) of u. The dual
formulation method of Chambolle28 consists of
introducing a new variable v and alternating between
minimising u and v. Alternative minimisation methods
for this type of problem include Goldstein et al.29 and
an improved additive operator splitting method25 that
is applicable to problems of this type. By splitting in
this way, the minimisation of u concentrates on the TV
term and the minimisation of v satisfies the fitting and
constraint requirements

min
u, v

Z
�

jruðxÞj dxþ
1

2�

Z
�

uðxÞ � vðxÞð Þ
2 dx



þ

Z
�

lrðxÞvðxÞ þ � ðvÞ dx
�
,

ð16Þ

where rðxÞ ¼ ðz� ~Bc1Þ
2
� ðz� ~Bc2Þ

2, and  ðvÞ ¼ max
f0, 2jv� 1

2 j � 1g. Two parameters are introduced here:
� > 0 is a small parameter and �4 l

2 jjrðxÞjjL1ð�Þ ensures
the constraints on the indicator function u(x) in equa-
tion (15) are met. The minimisation of u and v, with
fixed c1, c2, ~B, can be achieved iteratively by the follow-
ing steps:

Step (3a): With fixed v

min
u

Z
�

jruðxÞj dxþ
1

2�

Z
�

uðxÞ � vðxÞð Þ
2 dx

 �

which can be solved by28

uðxÞ ¼ vðxÞ � �r � 	ðxÞ, ð17Þ

where 	 ¼ ð	1, 	2Þ is the solution of

rð�r � 	� vÞ � jrð�r � 	� vÞj	 ¼ 0, ð18Þ

which can be solved by a fixed point method 	0¼ 0 and

	nþ1 ¼
	n þ 
rðr � 	n � v=�Þ

1þ 
jr	n � v=�j
: ð19Þ

Step (3b): With fixed u

min
v

1

2�

Z
�

uðxÞ � vðxÞð Þ
2 dxþ

Z
�

lrðxÞvðxÞ þ � ðvÞ dx
 �

,

given, based on the work of Bresson et al.,16 by

vðxÞ ¼ minfmaxfuðxÞ � �lrðxÞ, 0g, 1g: ð20Þ

Numerical implementation

We now provide details of implementing the three steps
above. We follow the work of Chen at al.,21 who use
slight variations on the formulation, in order to be con-
sistent and ensure a fair comparison between VMS and
SBF. The intensity constants are computed using
smooth region descriptors Hð1Þ& and Hð2Þ& ¼ 1�Hð1Þ&
instead of characteristic functions �1 and �2, respect-
ively. This descriptor is defined as follows

Hð1Þ& ð’ðxÞÞ ¼
1

2
1þ

2

�
arctanð’ � G&Þ

� �
, x 2 �:

The variable ’ðxÞ is given by

’ðxÞ ¼
c, for x 2 � : uðxÞ4 �,

�c, for x 2 � : uðxÞ � �,



where � 2 ½0, 1�, c ¼ 2 and & ¼ 1. This adjusts the com-
putation of the intensity constants (equation (13)) to

c1 ¼

R
� zðxÞ ~BðxÞHð1Þ& dxR

�
~B2ðxÞH

ð1Þ
& dx

, c2 ¼

R
� zðxÞ ~BðxÞHð2Þ& dxR

�
~B2ðxÞH

ð2Þ
& dx

:

ð21Þ

The Gaussian kernel, G, is truncated as a %� %
mask, where % is the smallest odd number greater
than 4 þ 1 ( is the standard deviation of the
Gaussian kernel9). Other parameters mentioned in
‘‘Iterative minimisation of SBF formulation’’ are set
as follows 
 ¼ 1=8, � ¼ 1=3, � ¼ 1=2.

The primary motivation of this model is to have
convergence of the intensity constants c1 and c2. The
value of s determines the size of these values; as
s! 0, c1, c2!1, as discussed in ‘‘Convergence beha-
viour of VMS’’. For consistency, it is desirable that
c1, c2 2 ½0, 1� given z 2 ½0, 1�. With that in mind, a nat-
ural selection is s ¼ 1 given that the intensity constants
are then related to the average value of z(x) inside and
outside the contour. Additionally, SBF is then clearly
related to Chan-Vese2 as detailed in ‘‘Relationship to
Chan-Vese and Mumford-Shah’’. The choice of  is
related to each example as with VMS. The choice of l
is also related to each example in the same way as other
segmentation problems of a similar type.1,2

Algorithm 1 Stabilised Bias Field: ��1  SBF ðz,maxit,
�, l, , s, �Þ.

1: Initialise uð0Þ, estimate c
ð1Þ
1 , c

ð1Þ
2 , ~Bð1Þ.
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2: for ‘ 1 : maxit do

3: if mod ð‘, 2Þ ¼ 0 then

4: Calculate ~Bð‘ Þ using equation (10).

5: Calculate c
ð‘ Þ
1 , c

ð‘ Þ
2 using equation (21).

6: ~Bð‘þ1Þ ¼ ~Bð‘ Þ, c
ð‘þ1Þ
1 ¼ c

ð‘ Þ
1 , c

ð‘þ1Þ
2 ¼ c

ð‘ Þ
2 .

7: end if

8: while maxfjjuð‘ Þ � uð‘�1Þjj, jjvð‘ Þ � vð‘�1Þjjg4 � do
9: Find 	ð‘ Þ, solution of equation (18), using equa-

tion (19).

10: Get uð‘ Þ using equation (17), and vð‘ Þ using equa-
tion (20).

11: end while

12: end for

13: ~B� ¼ ~Bð‘ Þ, c�1 ¼ c
ð‘ Þ
1 , c�2 ¼ c

ð‘ Þ
2 ,��1 ¼ uð‘ Þ4 �,�� ¼ @��1.

Results

This section is in two parts. First we will test SBF using
images from the VMS tests in Chen et al.,21 intending
to show that the proposed method retains the segmen-
tation quality of VMS, whilst demonstrating the con-
vergence of the intensity constants. Another aspect of
the success of SBF is what c�1 and c�2 are; we can
check whether the computed values are feasible, i.e.
c1, c2 2 ½0, 1�, whilst maintaining the quality of the seg-
mentation. Secondly, we investigate other advantages
of SBF over VMS. In particular, we look at the seg-
mentation accuracy depending on the fitting parameter
l, and how the piecewise-smooth approximations wSBF

and wVMS compare for a model example.

Set 1: Convergence behaviour. We test four examples
(Images 1–4) in Figure 2, all used in Chen et al.21 In
Figure 3, we present the results for each case. We set
s ¼ 1, and vary the constraint parameter for each case.
Given this value, for an 128� 128 image, we expect
jj ~BjjF 	 128 with the addition of the constraint. It is
worth noting that in some sense the value of s is arbi-
trary as the constraint is also dependent on �.
Experimentally, similar results as presented below can
be attained for different values of s, if � is adjusted

accordingly. However, setting s ¼ 1 and varying � is
the most intuitive approach to take.

For Image 1 � ¼ 0:1, and the intensity constants
converge to c�1 ¼ 0:352, c�2 ¼ 0:240. The bias field, ~B,
also converges and we compute jj ~BjjF ¼ 129:8. This
result is of a similar quality to VMS, shown in Figure 1
of Chen et al.21 For Image 2 � ¼ 0:2, and the intensity
constants converge to c�1 ¼ 0:807, c�2 ¼ 0:660. The bias
field, ~B, also converges and we compute jj ~BjjF ¼ 67:0.
However, row 2 of Figure 3 demonstrates that the con-
vergence of c1 and c2 is quite slow, taking over 500
iterations which is much more than for the convergence
of wVMS in VMS. Image 3 is an ultrasound image, con-
taining intensity variation in the background. For this
example � ¼ 0:1, and the intensity constants converge
to c�1 ¼ 0:446, c�2 ¼ 0:383. The bias field, ~B, also con-
verges and we compute jj ~BjjF ¼ 120:9. Image 4 is
another example of vessel segmentation, where inten-
sity varies smoothly throughout the vessel. For this
example � ¼ 0:1, and the intensity constants converge
to c�1 ¼ 0:352, c�2 ¼ 0:239. The bias field, B, also con-
verges and we compute jj ~BjjF ¼ 122:2. We see results
of comparable quality to rows 3 and 4 in Figure 3, in
Figures 9 and 4 of Chen et al.,21 respectively, except
that there is no convergence for c1 and c2. This demon-
strates a clear improvement for these examples. Despite
the slow convergence of SBF in the case of Image 2, we
have fast convergence in the other examples, meaning
the additional constraint generally does not slow down
the computation of a solution. Also, the results are not
sensitive to the constraint parameter, �. For Image 2, it
was adjusted to 0.2, but for all other cases it was set at
0.1, and for all examples, c�1, c

�
2 2 ½0, 1�, showing that

the method produces results consistent with the image.

Set 2: Comparison to VMS. With Result Set 1, we have
successfully demonstrated that SBF achieves the
intended goal: the convergence of the intensity con-
stants within a feasible range, and the computation of
a stabilised bias field. However, we now intend to
examine the success of the proposed method in another
way: how does the method affect the accuracy of
the final segmentation. With this in mind, we can

Figure 2. Images tested with SBF and compared to results of Chen et al.21
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quantifiably measure the solution of each model
(VMS and SBF) against this using the Tanimoto
Coefficient24

TC ¼
NðGT \��1Þ

NðGT [��1Þ
, ð22Þ

where Nð�Þ is the number of pixels in the enclosed
region, GT is the ground truth, and ��1 is the result

computed with VMS or SBF. However, without the
ground truth data for Images 1–4 (Figure 2) we
cannot measure this for the examples used by Chen
et al.21 Instead, we test one model example shown in
Figure 4 where the ground truth is known precisely. We
observe two things with this example. Firstly, how
wVMS and wSBF compare visually with each other. In
Figure 4 we can see that around �� there are signifi-
cant differences between the two approximations.

Figure 3. Set 1 Results. SBF convergence behaviour Rows 1–4 are for Images 1–4, respectively. From left to right: z(x) and ��

computed with SBF, bias field ~BðxÞ, and the progression of c1 values (vertical axis) against iterations (horizontal axis.) Similar behaviour

for c2 values is also observed.
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SBF appears to produce a sharper approximation of
the image, dealing with the discontinuity in the intensity
more effectively. Secondly, we have tested each model
with a large range of the fitting parameter l. Our results
are promising in the sense that an optimal result can be
computed for a wider range of l with SBF over VMS. It
is worth noting that we have not observed such pro-
nounced results with Images 1–4, although an advan-
tage is still present.

Selective segmentation with SBF

Selective segmentation is the task of extracting one
particular object of interest, from a foreground with
similar characteristics. We now consider the problem
of selecting objects in images that contain significant
intensity inhomogeneity, which is beyond recent
work on selective segmentation.30,31 By incorporating
the proposed SBF idea into a current selective

Figure 4. Set 2 Results. SBF compared to VMS (a) Successful segmentation of the image, z(x), given by contour ��. (b) Computed

stabilised bias field, ~BðxÞ. (c) Convergence of c1 values (50 iterations). Similar behaviour for c2 values is also observed. (d) Piecewise-

smooth approximation of z(x) with SBF. (e) Piecewise-smooth approximation of z(x) with VMS. (f ) Difference between SBF and VMS

approximations, demonstrating significant differences around ��. (g) The TC measure for VMS (dotted red) and SBF (blue),

demonstrating the segmentation quality falls away for VMS with large values of �. (h) The TC measure for � 2 ½5,100� shows that an

optimal �� can be computed for a larger range of with SBF than VMS.
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segmentation model we aim to demonstrate the flexibil-
ity of SBF as a fitting term. We recently proposed a
selection method in a piecewise-constant framework
using a polygon formed by user input, called convex
distance selective segmentation (CDSS),25 which we
now introduce briefly. The formulation is given as
follows

ECDSSð�, c1, c2Þ ¼ j�j þ l
Z

�

ðz� c1Þ
2�1þ ðz� c2Þ

2�2
� �

dx

þ �

Z
�

PdðxÞ�1dx, ð23Þ

where Pd ðxÞ is the normalised Euclidean distance of
each point x 2 � from its nearest point in the user-
defined polygon. Further details are given in Spencer
and Chen.25 Whilst results demonstrate this approach is
robust, even in quite difficult cases, it is limited by the
piecewise-constant assumption it relies on. We there-
fore extend this idea to incorporate bias field estima-
tion, which we call selective SBF

ESSBFð�, c1, c2, ~BÞ

¼ j�j þ l
Z

�

ðz� ~Bc1Þ
2�1 þ ðz� ~Bc2Þ

2�2
� �

dx

Figure 5. Selective SBF Results (a) Successful selective segmentation of the image, z(x), given by contour ��. (b) Distance selection

function, Pd ðxÞ, with user markers. (c) Convergence of c1 values (200 iterations). (d) Convergence of c2 values (200 iterations). (e)

Computed stabilised bias field, ~BðxÞ. (f ) Computed indicator function, u(x).
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þ �

Z
�

jr ~Bj2dxþ �

Z
�

ð ~B� sÞ2dx

þ �

Z
�

PdðxÞ�1dx: ð24Þ

We minimise this functional equation (24) as out-
lined in ‘‘Iterative minimisation of SBF formulation’’
and ‘‘Numerical implementation’’ above, except that
for Step (3) we use an improved additive operator split-
ting method from CDSS.25

Results

For selective SBF we test one image that involves
significant intensity inhomogeneity in the foreground
and background, shown in Figure 5. The foreground
consists of a series of distinct objects that could con-
ceivably be of interest, and was chosen as it is clearly
beyond the scope of the piecewise-constant frame-
work used in CDSS.25 By using just four markers
to loosely define the shape of the target object, as
well as its location and size, we define a distance
selection term Pd that is capable of excluding
unwanted artefacts. We demonstrate that we get a
successful result for this example, both in terms of
the computed contour �� and the convergence of
the intensity constants c1 and c2. A particularly chal-
lenging aspect of this type of problem can be high-
lighted by noting that the intensity constants
computed are very close: c�1 ¼ 0:35 and c�2 ¼ 0:33.
The role of the stabilised bias field, ~B, is particularly
important here.

It is worth considering two alternatives for this
example, which we now briefly discuss. Firstly, what
would the performance of CDSS be like for the image
in Figure 5? For brevity, we do not include those results
here. As might be expected for a model that relies on a
piecewise-constant framework, the results for this
image are inadequate as the segmentation favours
exterior artefacts to the target object that are of a simi-
lar intensity value. Secondly, what does SBF contribute
here, i.e. what would Selective VMS (�¼ 0 in equation
(24)) results be like? Again, we do not include
results here, but Selective VMS is capable of achieving
a successful segmentation, although as expected c1
and c2 do not converge. However, we observe a
similar effect as observed in Results Set 2 given by
Figure 4. That is, with all other parameters fixed and
varying the selection parameter �, there is a successful
result for a wider range of values. We do not know the
ground truth for this case, which makes quantifying
differences between methods difficult, but we aim to
further investigate this phenomenon with different
examples.

Conclusions

We have proposed the introduction of a constraint to
the VMS model,21 although it applies to any model
using bias field correction in this way. It is a framework
that provides a link between the Mumford-Shah func-
tional3 and the piecewise-constant functional of
Chan and Vese.2 This constraint does not affect
the computation time as we have shown how the
exact minimiser can be well approximated in a similar
way to Chen et al.21 It is an improvement over current
methods in the sense that the intensity constants
reliably converge and are feasible in relation to the
image. This allows for a meaningful representation of
the data by the definition of the image model (equation
(3)). We also observe possible advantages with this
framework in terms of the quality of the piecewsie-
smooth approximation of the image, and a model less
reliant on the fitting parameter. We have successfully
extended the proposed method to a selective segmenta-
tion model,25 to allow for selection in the presence of
intensity inhomogeneity, and have again observed
an improvement in terms of parameter dependence.
This is a potentially important finding, as this
‘stabilisation’ of the bias field appears to allow for
more parameter variation thus improving the reliability
of the models. We will investigate this idea further in
the future, and attempt to accurately quantify an
improvement.
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