
Formulating and Solving Broadband Multichannel Problems

Using Matrices of Functions

Stephan Weiss

Centre for Signal & Image Processing
Department of Electronic & Electrical Engineering

University of Strathclyde, Glasgow, Scotland

EURASIP Webinar, November 22, 2023

This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) Grant numbers
EP/K014307/1, EP/K014307/2, EP/S000631/1 and the MOD University Defence Research Collaboration in
Signal Processing. I also gratefully acknowledge funding by and collaboration with MathWorks.

1/73



Thanks to Co-Enthusiasts!
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2.1 Transfer Function of a MIMO System

◮ A multiple-input multiple-output (MIMO)
system comprises of individual transfer
functions between source/sensor pairs:

◮ written as a matrix:

H(z) =

[
H11(z) H12(z)

H21(z) H22(z)

]

; H21(z)

H22(z)

H12(z)

H11(z) +

+

◮ the terms Hmn(z) can be general functions: (infinite) Laurent or power series, or
(finite) Laurent polynomials or polynomials;

◮ Laurent series of polynomials are non-causal; power series or polynomials are strictly
causal or anti-causal;

◮ analytic functions: series coefficients of Hmn(z) decay at least exponentially.
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Transfer Function Example
◮ Example for 2× 2 MIMO system H[n] of finite impulse responses:

0 1 2 3 4

−0.5

0

0.5

1

h
11
[n
]

0 1 2 3 4

−0.5

0

0.5

1

h
12
[n
]

0 1 2 3 4

−0.5

0

0.5

1

h
21
[n
]

discrete time index n
0 1 2 3 4

−0.5

0

0.5

1

h
22
[n
]

discrete time index n

◮ the system

H(z) =
∞∑

n=−∞

H[n]z−1 or H(z) •—◦ H[n] (1)

is a polynomial matrix [45, 61, 66, 83].
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2.2 Analysis Filter Bank

◮ Critically decimated
K-channel analysis filter
bank [88, 89, 41]:

H1(z)

H2(z)

HK(z)

↓K

↓K

...

↓K

◮ equivalent polyphase representation:

z
−1

z
−1

↓K

↓K

↓K











H1,1(z) . . . H1,K(z)
H2,1(z) . . . H2,K(z)

...
...

HK,1(z) . . . HK,K(z)











H(z) =
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Synthesis Filter Bank

◮ Polyphase representation of a critically decimated K-channel synthesis filter
bank [36, 41, 89]:











G1,1(z) . . . G1,K(z)
G2,1(z) . . . G2,K(z)

...
...

GK,1(z) . . . GK,K(z)











G(z) =

...

+

+

z−1

z−1

↑K

↑K

↑K

◮ operating analysis and synthesis back-to-back, perfect reconstruction is achieved if

G(z)H(z) = I ; (2)

◮ for perfect reconstruction, we would like to find G(z) = H−1(z).
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2.3 Space-Time Covariance Matrix

x1[n]

x2[n]

xM [n]

u[n]

◮ Measurement vector obtained from M sensors:

xT[n] = [x1[n] x2[n] . . . xM [n]] ;

◮ with the expectation operator E{·}, the spatial
correlation is captured by R = E

{
x[n]xH[n]

}
;

◮ for spatial and temporal correlation, we require a
space-time covariance
matrix [64, 70, 89, 101,102,107,104]:

R[τ ] = E
{
x[n]xH[n− τ ]

}
; (3)

◮ the space-time covariance contains auto- and cross-correlation terms; e.g. for M = 2

R[τ ] =

[
E{x1[n]x∗1[n− τ ]} E{x1[n]x∗2[n− τ ]}
E{x2[n]x∗1[n− τ ]} E{x2[n]x∗2[n− τ ]}

]

. (4)
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Cross-Spectral Density Matrix
◮ example for a space-time covariance matrix R[τ ] ∈ R

2×2:
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◮ the cross-spectral density (CSD) matrix contains Laurent series or polynomials:

R(z) =
∑

τ

R[τ ]z−τ or short R(z) •—◦ R[τ ] . (5)
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3.1 Parahermitian Operator

◮ A parahermitian operation is indicated by {·}P, and compared to the
Hermitian transposition of a matrix additionally performs a time-reversal;

◮ example:

A(z) =
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◮ parahermitian AP(z) = {A(1/z∗)}H:

AP(z) =
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3.2 Parahermitian Property

◮ A polynomial matrix R(z) is parahermitian if RP(z) = RH(1/z∗) = R(z);

◮ this is an extension of the symmetric (if R ∈ R) or or Hermitian (if R ∈ C)
property to the polynomial case:
transposition, complex conjugation and time reversal (in any order) do not alter a
parahermitian R(z);

◮ any CSD matrix is parahermitian;

◮ example:

R(z) =
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= RP(z) .
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Paraunitary Matrices

◮ Recall that A ∈ C (or A ∈ R) is a unitary (or orthonormal) matrix if
AAH = AHA = I;

◮ in the polynomial case, A(z) is paraunitary if

A(z)AP(z) = AP(z)A(z) = I ; (6)

◮ therefore, if A(z) is paraunitary, then the polynomial matrix inverse is simple:

A−1(z) = AP(z) ; (7)

◮ example: polyphase analysis or synthesis matrices of perfectly reconstructing (or
lossless) filter banks are usually paraunitary.
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3.3 Analytic Functions — Laurent Series

◮ A Laurent series a[n] is potentially infinite, but can include non-negative
terms for both n ≥ 0 and n < 0;

◮ for a(z) •—◦ a[n] to exist, a[n] needs to decay at least exponentially in both positive
and negative time direction [1];

a[n]

n

0
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5
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( 4
5
)n

( 1
2
)|n|

◮ if it possesses finite support, a(z) is a Laurent polynomial.
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Analyticity and Polynomial Approximation

◮ Absolute convergence of a[n] implies analyticity of a(z) •—◦ a[n];
◮ the best approximation of an infinite order, analytic a(z) in the least squares

sense is by truncation (power series −→ polynomial) [23, 24, 104];

◮ likewise, a Laurent series can be approximated by a polynomial through truncation
(−→ Laurent polynomial) and an appropriate delay (−→ polymomial) [107];

â[n− 1]

n

0 1

2

3

4

5-1-2-3-4

6

◮ hence polynomials can typically approximate any general analytic function well, and
arbitrarily closely.
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4.1 MIMO System Decoupling
◮ Aim: spatially decouple a channel by appropriate precoding and equalisation;

s1[n]

sN [n]

r1[n]

rM [n]H(z)

V (z) U
P(z)

RXchannelTX

◮ narrowband case — SVD [46]:

H = UΣVH ;

◮ spatial decoupling leads to optimality in
various senses [91];

◮ broadband case [12, 106]:

H(z) = U(z)Σ(z)V P(z) ;

◮ diagonalisation for all values of z (or all
values on the unit circle) [64, 67, 83, 82].

18/73



4.2 Broadband Steering Vector

◮ Assume an array of M sensors, and
a single source u[n]:

x[n] =






a1[n]
...

aM [n]




 ∗ u[n] ;

◮ a[n] •—◦ a(z) is a broadband steering vector;

◮ it can contain fractional delay filters [60] or general
transfer functions;

u[n] x1[n]

x2[n]

xM [n]

a1[n]

a2[n]

aM [n]

◮ set of filters operating on the array signals:

wP(z) = [w1(z), w2(z), . . . wM (z)] . (8)
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Simplistic Beamforming
◮ Filtering to coherently combine u[n] and to suppress v[n]:

x1[n]

x2[n]

xM [n]

w1[n]

w2[n]

wM [n]

+ y[n]

v[n]

a[n]
u[n]

b[n]

◮ we want wP(z)a(z) = 1 and wP(z)b(z) = 0;
◮ narrowband case:

w =

[
aH

bH

]† [
1
0

]

;

◮ broadband case:

w(z) =

[
aP(z)
bP(z)

]† [
1
0

]

.
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Linearly Constrained Minimum Variance Beamforming

◮ To address unknown interferers, we
want to minimize the output power
subject to constraints (e.g. in look
direction):

[
aP(z)
bP(z)

]

w(z) =

[
1
0

]

;

x1[n]

x2[n]

xM [n]

w1[n]

w2[n]

wM [n]

+ y[n]

◮ narrowband case [47]:

min
w

wHRw s.t. Cw = f ;

◮ broadband case [96]:

min
w(z)

∮

|z|=1
wP(z)R(z)w(z)

dz

z

s.t. C(z)w(z) = f(z) .
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LCMV Solution

◮ Narrowband formulation [47]:

min
w

wHRw s.t. Cw = f ;

◮ broadband formulation [96]:

min
w(z)

∮

|z|=1
wP(z)R(z)w(z)

dz

z

s.t. C(z)w(z) = f(z) .

◮ narrowband solution:
Capon beamformer [81]:

wopt = R−1CH{CR−1CH}−1f ;

◮ broadband solution:
Capon equivalent [96, 9]:

wopt(z) = R−1(z)CP(z)·
{C(z)R−1(z)CP(z)}−1f(z) .
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4.3 From Narrowband to Broadband Formulations
◮ “Polynomial matrices” is simplistic for what potentially are Laurent series;

absolute convergence implies analyticity, and arbitrarily close approximations
can be obtained by polynomials of sufficient order;

◮ operations and properties:
real-valued complex-valued function-valued

transposition AT AH = (AT)∗ AP(z) = {A(1/z∗)}H
energy orthonormal unitary para-unitary

preservation A−1 = AT A−1 = AH A−1(z) = AP(z)

structure symmetric Hermitian para-Hermitian

AT = A AH = A AP(z) = A(z)
◮ using polynomial notation, broadband formulations generally just extend from the

narrowband case;
◮ to access solutions to polynomial matrix formulations, the eigenvalue decomposition

of a parahermitian R(z) •—◦ R[τ ] will be key;
◮ such an EVD must provide a diagonalisation for every value of z or for every lag
τ [64, 78, 101,108,103].
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5.1 Existence of an Analytic EVD on a Real Interval

◮ A standard EVD can diagonalise R(z) •—◦ R[τ ] only for one specific value
of z or of τ , respectively;

◮ Franz Rellich (1939, [79]) for a
self-adjoint, analytic R(t) = RH(t),
t ∈ R:

R(t) = Q(t)Λ(t)QH(t) ;

◮ Q(t) and Λ(t) can be chosen analytic;

◮ similarly for an arbitrary (i.e. not
necessarily Hermitian or square) analytic
matrix, de Moor & Boyd (1989, [37]) and
Bunse-Gerstner (1991, [14]) established
an analytic SVD.
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Analytic EVD on the Unit Circle
◮ Analyticity of R(z) permits a restricted evaluation on the unit circle z = ejΩ;

◮ due to Rellich [79]:
R(ejΩ) = Q(Ω) Λ(Ω) QH(Ω) , (9)

◮ unfortunately, while analytic in Ω ∈ R, Λ(Ω) and Q(Ω) can be 2πL-periodic, with
some L ∈ Z [102, 12];

◮ example [28, 86, 102]:

R(z) =
1

2

[
2 1 + z−1

1 + z 2

]

,

→λ1,2(z) = 2± (z
1
2 + z−

1
2 ) ,

λ1,2(e
jΩ) = 2± cos(Ω/2) ;

◮ while cos(Ω/2) is analytic in Ω, a fractional delay z−
1
2 is not analytic: its time

domain equivalent decays too slowly [60].
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Multiplexing and Pseudo-Circulant Property

◮ The previous example of R(z) = [2 1 + z−1; 1 + z 2] arises from the
following arrangement with uncorrelated v[n] ∈ N (0, 1):

z−1

x1[n]

x2[n]

↓2

↓2

1 + z−1v[n]

◮ therefore we require oversampling by L = 2:

R(z2) =

[
1 1
z −z

] [
z + 2 + z−1

−z + 2− z−1

] [
1 z−1

1 −z−1

]

;

◮ if linked to block filtering, R(z) is pseudo-circulant [89], but this property may be
obscured by paraunitary operations [102].
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Analytic EVD of a Parahermitian Matrix

◮ For an analytic parahermitian matrix R(z), z ∈ C, that is connected to L-fold
multiplexing, we can find [101,102]

R(zL) = Q(z) Λ(z) QP(z) , (10)

with analytic factors;

◮ Q(z) = [q1(z), . . . , qM (z)] must be paraunitary [89, 90], such that

Q(z)QP(z) = QP(z)Q(z) = I ; (11)

◮ Λ(z) = diag{λ1(z), . . . , λM} must be diagonal and parahermitian;

◮ the parahermitian property implies that on the unit circle, λ(ejΩ) = λ(z)|z=ejΩ ∈ R.
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Uniqueness and Ambiguities

◮ For the analytic EVD [101,102,12]

R(z) = Q(z) ·Λ(z) ·QP(z) ; (12)

◮ the eigenvalues in Λ(z) are unique up to a permutation;

◮ if eigenvalues are distinct, then eigenvectors are unique up to an allpass filter ψℓ(z);

◮ with Ψ(z) = diag{ψ1(z), . . . , ψM (z)},

R(z) = Q(z)Ψ(z)Λ(z)ΨP(z)QP(z)

= Q(z)Λ(z)Ψ(z)ΨP(z)QP(z)

= Q(z)Λ(z)QP(z) ;

◮ an analytic allpass ψm(z) does not affect analyticity, but will affects the support of
Q[n] ◦—• Q(z).
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5.2 Polynomial EVD and Spectral Majorisation

◮ Polynomial EVD or McWhirter decomposition [64] of
the CSD matrix

R(z) ≈ U(z) Γ(z) UP(z) (13)

◮ with paraunitary, polynomial U(z),
s.t. U(z)UP(z) = I;

◮ diagonal Laurent polynomial matrix

Γ(z) = diag{γ1(z), . . . , γM (z)} , (14)

◮ approximation sign due to restriction to
polynomials [49];

◮ the eigenvalues are spectrally majorised [87], i.e. on the unit circle must satisfy

γm(ejΩ) ≥ γm+1(e
jΩ) , ∀Ω, m = 1, . . . (M − 1) . (15)
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Polynomial Eigenvalues and Spectral Majorisation

◮ Example for polynomial eigenvalues γm[τ ] ◦—• γm(ejΩ) of a 3× 3 matrix:
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Relation to Analytic EVD

◮ If the analytic eigenvalues do not intersect on the
unit circle, then analytic EVD and polynomial EVD
(with sufficiently high order) are ‘identical’;

◮ the polynomial EVD has a strict ordering of
eigenvalues;

◮ specific polynomial/analytic eigenvector solutions
may differ — recall the allpass ambiguity;

0 /2 3 /2 2
0

1

2

3

0 /2 3 /2 2
0

1

2

3

◮ if analytic eigenvalues intersect, then the solutions
of analytic EVD and polynomial EVD differ;

◮ we explore by way of an example . . .
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Numerical Example

◮ We pick our own eigenvalues (order 2) and eigenvectors (order 1):

Λ(z) =

[
z + 3 + z−1

−jz + 3 + jz−1

]

Q(z) = [q1(z), q2(z)] with q1,2(z) =
1√
2

[
1

±z−1

]

;

◮ parahermitian matrix R(z) = Q(z)Λ(z)QP(z):

R(z) =

[ 1−j
2 z + 3 + 1+j

2 z−1 1+j
2 z2 + 1−j

2
1+j
2 + 1−j

2 z−2 1−j
2 z + 3 + 1+j

2 z−1

]

.
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Numerical Example — Analytic Solution
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◮ Analytic (and therefore
infinitely differentiable)
eigenvalues λm(ejΩ);

◮ smooth Hermitian angles
cosϕm =
|qH1 (ej0) · qm(ejΩ)|.
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Numerical Example — Ideal Spectral Majorisation
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◮ Analytic eigenvalues are
permuted where they
intersect;

◮ resulting spectrally
majorised eigenvalues are
piecewise analytic but not
differentiable;

◮ corresponding
eigenvectors are piecewise
analytic but not
continuous.
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Numerical Example — PEVD Algorithmic Solution
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◮ Using the SBR2 algorithm
in [64] to approximate the
McWhirter factorisation;

◮ trimming is applied to
PEVD
factors [23, 44, 24, 85];

◮ spectrally majorised
eigenvalues Γ(z) of order
24;

◮ corresponding
eigenvectors in U(z) of
order 84.
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5.3 Iterative PEVD Approaches
◮ Second order sequential best rotation (SBR2, McWhirter 2007, [64, 76, 78, 93]);
◮ iterative approach based on an elementary paraunitary operation:

S(0)(z) = R(z)
...

S(i)(z) =
{

H(i)(z)
}P

S(i−1)(z)H(i)(z)

◮ H(i)(z) is an elementary paraunitary operation, which at the ith step eliminates the
largest off-diagonal element in S(i−1)(z) •—◦ S(i=1)[τ ];

◮ stop after I iterations:

Γ̂(z) = S(I)(z) , Û(z) =
I∏

i=1

H(i)(z)

◮ sequential matrix diagonalisation (SMD) [19,20, 17, 23, 22, 18, 30, 26, 25, 27, 77, 73]
follows a similar scheme, but performs a complete diagonalisation of S(i−1)[0].
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DFT Domain Algorithms

◮ Idea for DFT-based algorithms: calculate an EVD in every DFT bin;
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◮ spectral coherence must be
re-established across bins;

◮ we exploit that the solution
must be analytic,
i.e. infinitely differentiable;

◮ we first extract eigenvalues,
which are less volatile under
perturbation [51];

38/73



Analytic Eigenvalue Extraction Algorithm I
◮ Bin-wise EVD yields:

R(ejΩk) = QkΛkQ
H
k = QkΨkPk

︸ ︷︷ ︸

Q(ejΩk )

·PT
kΛkPk

︸ ︷︷ ︸

Λ(ejΩk )

·PT
kΨ

H
k Q

H
k

︸ ︷︷ ︸

QH(ejΩk )

◮ Pk is a permutation matrix, since in the analytic EVD,
eigenvalues can intersect and are not necessarily majorised;

◮ for distinct eigenvalues: Ψk is a diagonal matrix that
accounts for the phase ambiguity of eigenvectors;

◮ in case of a C-fold algebraic multiplicity: ΨK is block
diagonal, with a C × C unitary matrix accounting for
eigenvectors forming an arbitrary basis within a
C-dimensional subspace;

◮ a predecessor algorithm [86] can fail on this; 0 /2 3 /2 2
0
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(2)

(2)

(b)
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Comparison — SMD Algorithm Example

◮ R(z) : C → C
4×4 of

order 47;

◮ SMD algorithm [77]
yields approximate
spectral
majorisation [65];

◮ Hermitian angles of
eigenvectors to a
reference vector
indicate approximation
of piecewise analytic
functions.
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Analytic EVD Extraction Example

◮ same matrix, but
utilising analytic
eigen-value [107] and
-vector
extraction [104];

◮ extracted analytic EVD
factors are close to
ground truth;

◮ lower order compared
to SMD result.
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Comparison — Ensemble Results

◮ ensemble results over
matrices with different
ground truth, and for
various orders;

◮ above: application cost
— the order of the
extracted paraunitary
matrices, required
e.g. for a subspace
projection;

◮ below: execution time
of the algorithms.
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6. Applications

1. Background and overview

2. Matrices of functions

3. Basic properties and operations

4. Formulation of broadband problems

5. Eigenvalue decomposition

6. Applications

6.1 linearly constrained minimum variance beamforming

6.2 polynomial MUSIC algorithm

6.3 signal compaction

7. Summary
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6.1 Linearly Constrained Minimum Variance Beamforming
◮ Recall narrowband case [47]:

min
w

wHRw s.t. Cw = f ;

◮ broadband case [96]:

min
w(z)

∮

|z|=1
wP(z)R(z)w(z)

dz

z

s.t. C(z)w(z) = f(z) .

x1[n]

x2[n]

xM [n]

w1[n]

w2[n]

wM [n]

+ y[n]

◮ standard processing with tap delay line of length L:

χH
n = [xH

1 , . . . ,x
H
M ] ∈ CML , vH = [wH

1 , . . . ,w
H
M ] ∈ C

ML . (16)

◮ the constraint equation C′v = f ′ can be bulky.
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LCMV — Generalised Sidelobe Canceller

◮ unconstrained optimisation problem via a
quiescent beamformer wq = C†f ∈ C

M ,
a blocking matrix B ∈ C

(M−1)×M , and
adaptive filter wa ∈ C

M−1 [47]

◮ equivalent polynomial GSC [96];

vq

B
′

va

+ y[n]
−

χ[n]x[n]

T
D
L

wq

B wa

x[n] + y[n]
−

wq(z)

B(z) wa(z)

◮ for the standard TDL approach:
quiescent beamformer vq ∈ C

ML,
blocking matrix B′ ∈ C

(M−1)L×ML,
and adaptive filter vector

v
(M−1)L
a [13].
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Broadband GSC — Computational Cost

◮ With M sensors and a TDL length of L, the standard TDL GSC is
determined by {M,L};

◮ polynomial GSC: the adaptive filter wa(z) has order (L− 1), but the orders (T − 1)
and (N − 1) of wq(z) : C → C

M and blocking matrix B(z) : C → C
(M−1)×M can be

selected to satisfy accuracy (although generally T ≈ N ≈ L);

◮ cost comparison in multiply-accumulate (MAC) operations:

GSC cost

component polynomial standard

quiescent beamformer MT ML

blocking matrix M(M−1)N M(M−1)L2

adaptive filter (NLMS) 2(M−1)L 2(M−1)L

◮ blocking matrix (particularly of standard GSC) dominates the cost.
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Directivity Pattern
◮ ULA with M = 8 sensors, L = 176, look direction 30◦, adapted GSC:
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Response in Look Direction

◮ Inspecting the directivity pattern for ϕ = 30◦ (excerpt):

TDL-based

PEVD-based

TDL constraints

◮ the standard TDL GSC requires J > L point constraints along the frequency axis;

◮ polynomial GSC uses a single constraint equation using fractional delay filters [60].
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6.2 Polynomial MUSIC Algorithm
◮ Multiple signal classification (MUSIC, [80]) can be used for narrowband

angle of arrival estimation;

◮ for broadband signals: subspace decomposition of the cross-spectral density matrix

R(z) = [Qs(z) Qn(z)]
︸ ︷︷ ︸

Q(z)

[
Λs(z) 0

0 Λn(z)

]

︸ ︷︷ ︸

Λ(z)

[
QP

s (z)

QP
n (z)

]

(17)

x1[n]

x2[n]

xM [n]

u[n]
◮ potential steering vectors for a known array

configuration are defined by (fractional) delay filters
aϕ(z);

◮ scan for ϕ which steering vectors least fit the
noise-only subspace:

ξ−1
P−MUSIC(ϕ, z) = aP

ϕ(z)Q
P
n (z)Qn(z)aϕ(z) . (18)
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Polynomial MUSIC Example

◮ ULA with M = 8 sensors, 3 sources, ξP−MUSIC(ϕ, z) evaluated on the
unit circle, z = ejΩ:

−80 −60 −40 −20 0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

0

20

40

Ω/π

ϕ/◦

ξ P
−
M

U
S
IC
(ϕ

,e
jΩ
)/
[d
B
]

(a)

◮ a number of variations and applications exist [6, 95, 35, 48, 6, 5, 8, 7, 4].
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6.3 Signal Compaction

◮ Recall subspace decomposition of R(z) •—◦ R[τ ] = E
{
x[n]xH[n− τ ]

}
:

R(z) = [Qs(z) Qn(z)]
︸ ︷︷ ︸

Q(z)

[
Λs(z) 0

0 Λn(z)

]

︸ ︷︷ ︸

Λ(z)

[
QP

s (z)

QP
n (z)

]

; (19)

◮ if we have N < M dominant eigenvalues, we can compact the signal components by
means of Qs[n] ◦—• Qs(z) into

y[n] =
∑

ν

QH
s [−ν]x[n− ν] ; (20)

◮ spectral majorisation and strong decorrelation ensure that the coding gain is
maximised [87];

◮ in the context of subband coding such compaction filters had not been possible
beyond M = 2 without the PEVD [76,78].
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Signal Compaction Example

◮ Example of an M = 25 element spherical array, single directional signal
with power σ2s in uncorrelated noise with variance σ2v ; for σ

2
s/σ

2
v = 100 [69]:
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7. Summary

◮ Matrices of analytic functions are useful to formulate broadband
multichannel signal processing challenges;

◮ solutions are often enabled by matrix factorisations — such as the analytic /
polynomial EVD;

◮ key applications show strengths of the approach:

◮ beamforming/angle of arrival estimation: simple generalisation of well-known
narrowband solutions, potential savings, and performance improvements;

◮ coding & compaction: approaches theoretical optimal data encoding system, and
works for more than two channels;

◮ speech enhancement: preservation of spectral coherence avoids audible artefacts
experienced with DFT domain algorithms.

◮ “Can I found out more? Can I try this myself?” — yes you can!
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Additional Information and Resources

◮ V. Neo et al., IEEE Signal Processing Magazine, 40(7):18–37, Nov. 2023.

◮ Vincent Neo’s audio demos and code:
https://vwn09.github.io/portfolio/

◮ Matlab PEVD toolbox: pevd-toolbox.eee.strath.ac.uk
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Some Further Material I

◮ Polynomial EVD algorithm variations; second order sequential best rotation (SBR2)
algorithm [63,64], with optimised coding gain [76, 78]; multiple shift SBR2 [93,92];
efficient implementation [50, 58]; sequential matrix diagonalisation (SMD)
algorithm [77], and various SMD family versions to undertake multiple
shifts [19, 17, 18], apply search space reduction [22, 19, 26, 27], numerical
efficiencies [16, 23, 24, 21, 30, 34, 25, 29, 31, 84]; a Householder approach to SMD [73];

◮ DFT domain algorithms to extract analytic solution — separate extraction of
eigenvalues [108,107] and eigenvectors [103,106] based on smoothness
criteria [99, 109,112]; a similar attempt had been undertaken. in [86] with analysis
in [28, 32, 33]; a principal eigenpair can be extracted via the power method [56]
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Some Further Material II

◮ Support estimation [53] and trimming of polynomial matrices [44, 85, 23, 24];

◮ estimation of the space-time covariance matrix [38, 39, 40, 55, 59];

◮ applications in coding [94, 110,76], angle of arrival estimation [6, 4, 48, 95],
beamforming [105,9, 10, 71, 96], subspace detection [74, 75, 97], speech
enhancement [72, 69], communications [66, 113,68, 84, 83, 100] and
others [114,98, 111];

◮ implementations [30, 26, 25, 29, 28, 31]

◮ extension to other decompositions, such as e.g. SVD [2,3, 42, 52, 62, 64, 106,11, 57],
QRD [30,42, 43, 54], etc. [15].
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