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ABSTRACT
We develop a nonparametric quantile panel regression model. Within each quantile, the quantile function is
a combination of linear and nonlinear parts, which we approximate using Bayesian Additive Regression Trees
(BART). Cross-sectional information is captured through a conditionally heteroscedastic latent factor. The
nonparametric feature enhances flexibility, while the panel feature increases the number of observations
in the tails. We develop Bayesian methods for inference and apply several versions of the model to study
growth-at-risk dynamics in a panel of 11 advanced economies. Our framework usually improves upon single-
country quantile models in recursive growth forecast comparisons.
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1. Introduction

Empirical macroeconomics has seen an upsurge of interest
in modeling the tails of predictive distributions. A recent
influential paper is Adrian, Boyarchenko, and Giannone (ABG,
2019), which investigated the impact of financial conditions
on the conditional distribution of GDP growth and found it to
be important in the lower quantiles. Before and after ABG, a
large literature has used quantile regression methods to forecast
tail risks to economic growth (see, among many others, Giglio,
Kelly, and Pruitt 2016; De Nicolò and Lucchetta 2017; Cook
and Doh 2019; González-Rivera, Maldonado, and Ruiz 2019;
Delle Monache, De Polis, and Petrella 2020; Figueres and
Jarociński 2020; Plagborg-Møller et al. 2020; Reichlin, Ricco,
and Hasenzagl 2020; Adrian et al. 2022; Ferrara, Mogliani,
and Sahuc 2022; Mitchell, Poon, and Mazzi 2022). Other
studies consider tail risks to other macroeconomic variables
such as unemployment or inflation (e.g., Gaglianone and Lima
2012; Manzan and Zerom 2013; Manzan 2015; Korobilis 2017;
Ghysels, Iania, and Striaukas 2018; Galbraith and van Norden
2019; Korobilis et al. 2021; Kiley 2022; Pfarrhofer 2022).

The existing literature, with few exceptions, uses quantile
models for a single variable of interest. These models assume a
linear relationship between the predictors and the quantile func-
tion of some outcome variable.1 For macroeconomic data this
assumption might be warranted in normal times but in turbulent
times it could be that relationships change or turn nonlinear.
Moreover, often several variables rather than a single one are

CONTACT Michael Pfarrhofer michael.pfarrhofer@wu.ac.at Department of Economics, Vienna University of Economics and Business, Welthandelsplatz 1, D4,
A-1020 Vienna, Austria.
1Examples of exceptions include Korobilis et al. (2021) and Pfarrhofer (2022), which assume time variation in the quantile regression coefficients. However,

even these papers are single-equation and assume particular parametric forms for the time variation. A multiple-equation exception is Adrian et al. (2022),
which exploits information in the term structure for an empirical application involving linear panel quantile regression. Another one is the multivariate
quantile regression developed in Iacopini, Ravazzolo, and Rossini (2022).
Supplementary materials for this article are available. Please go to www.tandfonline.com/uspp.

of interest, so that a joint model would be preferable. These
observations motivate the model we develop in this article.

In contrast to much of the existing literature we propose a
nonparametric model which involves multiple equations and
allows for the assessment of whether the quantile function is
linear or unknown and possibly highly nonlinear. In particular,
the model we propose is a multicountry, nonparametric quantile
regression, which we then use to investigate growth-at-risk in a
panel of 11 advanced economies.

The justification for adopting nonparametric methods is pro-
vided by Clark et al. (2023) and Huber et al. (2023), which
find Bayesian nonparametric vector autoregressions (VARs) to
be able to successfully model the tails of predictive densities
of macroeconomic variables in a flexible and accurate manner.
These papers found that Bayesian Additive Regression Trees
(BART) are an effective nonparametric method that is particu-
larly useful in crisis times (e.g., the Financial Crisis of 2008/2009
or the Covid pandemic) when growth-at-risk issues are of par-
ticular importance. However, in normal periods, the predictive
gains from using BART are more muted (and sometimes neg-
ative). In this article we extend the BART regression methods
used in these papers to the quantile BART case. Since the pre-
dictive gains of BART vary over the business cycle, we assume
that within each quantile, the quantile function is the sum of
a linear model and some unknown nonlinear function, which
we approximate using BART. Studies such as Taddy and Kottas
(2010) have developed other Bayesian approaches to nonpara-
metric model-based quantile regression.
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The justification for use of a multicountry model is that a
panel dimension can often improve forecasts with respect to
single-country models; see, among many others, Bai et al. (2022)
and Feldkircher et al. (2022). Moreover, and specifically for the
quantile case, macroeconomic datasets are short, leading to a
small number of observations in the tails of the distribution.
We develop a model for the pth quantile that includes a factor
that summarizes the available cross-country information at that
quantile. In addition, as indicated below, our Bayesian model
specification has features that allow information from other
countries to inform estimates for a given country. Exploiting this
cross-country information through a pooling prior may improve
predictive accuracy by parsimoniously including international
information to inform coefficients associated with domestic
quantities.

In terms of empirical results, our proposed models com-
monly improve on the benchmark single-country parametric
quantile model in recursive growth forecast comparisons,
more so in the tails than near the center of the distribution.
Importantly, we find that combining BART with quantile
regressions pays off in terms of predictive accuracy, especially in
the right tail. Moreover, some form of international information
(either by directly including non-domestic series or through the
introduction of the static heteroscedastic factor) leads to accu-
racy gains. Zooming into U.S.-specific results reveals nonlinear
effects of financial conditions on growth-at-risk whereas the
effects are closer to a linear specification when moving toward
the center of the distribution. This is corroborated by a higher
relevance (in terms of variation explained) of the BART piece.

Focusing on full sample results suggests that the common
factor is important. It explains a large fraction of the forecast
error variance in most countries and during most time periods
(with particularly high shares during recessionary episodes).

The remainder of the article is structured as follows. Section 2
defines and motivates our QF-BART model, including the rele-
vant priors, and provides additional details on how we compute
predictions. Section 3 contains the forecast evaluation. Section 4
considers international growth-at-risk dynamics. Section 5 sum-
marizes and concludes.

2. A Multicountry Nonparametric Quantile Factor
Model

We model the joint distribution of (for simplicity, de-meaned)
output growth for a panel of N countries. These are stored in
an N-dimensional vector yt = (y1,t , . . . , yN,t)′ with yi,t denoting
time t output growth in country i. Domestic real activity might
depend on the lags of yt as well as lags of other exogenous
factors, both of which are included in a K-dimensional vector
xi,t . We adopt a notational convention where xi,t is structured
such that J domestic quantities for country i are always ordered
first, followed by all K − J non-domestic variables if applicable
(i.e., lagged output growth rates of the other countries). We
assume that yi,t (i = 1, . . . , N) follows a quantile regression
model which, for the pth quantile, is given by:

yi,t = ωggip(xi,t)+ ωββ ′
ipxi,t + λipfp,t + εip,t , εip,t ∼ ALp(σip),

(1)
with gip : R

K → R denoting unknown country-specific
functions and β ip a K × 1-dimensional vector of regression

coefficients; ωg and ωβ are deterministic binary parameters that
we use to select the parametric or nonparametric part, or both
parts of our model, respectively. The case ωg = 1 and ωβ = 0
would correspond to a fully nonlinear model (labeled BART),
whereas ωg = 0 and ωβ = 1 would be a (conditionally) linear
quantile regression (QR). Setting ωg = ωβ = 1 yields a model
which estimates both linear and nonparametric parts, which we
refer to as mixBART (see also Clark et al. 2023).

Shocks to domestic economic conditions often feature cross-
sectional dependence. Kose, Otrok, and Whiteman (2003) show
that business cycles in a large panel of economies feature a
factor structure and tend to co-move. Similarly, Stock and Wat-
son (2005) find that a significant portion of the widespread
reduction in the volatility of G7 economic activity is associated
with a reduction in the magnitude of the common international
shocks. In our model, we introduce a common shock term to
capture contemporaneous relations across the elements in yt .
This leads to a static factor model with λip denoting the country-
specific factor loading and fp,t the corresponding international
factor. Both the factors and factor loadings are quantile-specific.
We assume that the latent factor is conditionally independent
over time and arises from a Gaussian distribution, fp,t|hp,t ∼
N

(
0, exp(hp,t)

)
, with hp,t being a (logarithmic) variance that

evolves according to an AR(1) process:

hp,t = μp + ρp(hp,t−1 − μp) + ςpup,t , up,t ∼ N (0, 1).

Here we let μp denote the unconditional mean, ρp the autore-
gressive parameter, and ς2

p the error variance of the log-volatility
process. This log-volatility process introduces dependence over
time.

The presence of the factor implies that the equations across
countries but within a given quantile are correlated. Using
the jargon from the panel VAR literature (see Canova and
Ciccarelli 2013), the factor establishes static interdependencies
across countries. An economic interpretation of the factor,
related to the findings in Stock and Watson (2005), is that
it reflects a common international business cycle shock that
affects the pth quantile function of each country. The Online
Appendix provides additional details on the interpretation and
implications of the factor structure.

Finally, εip,t follows an asymmetric Laplace (AL) distribution
scaled by a parameter σip with its pth quantile being equal to
zero. The AL distribution is chosen purely as a technical device
to target the pth quantile of the dependent variable in order to
estimate the underlying quantile function.2

2.1. Discussion of Model Features

The model proposed in the previous section possesses several
features which should not only improve its predictive capabili-
ties but also allow for additional inferential opportunities. Here,
we briefly summarize these features.

2The density of ALp(σp) is given by p(1 − p)/σp exp(−ρp(εt)/σp), where
ρp(x) = x(p − I(x < 0)) is the check loss function and I(•) the usual
indicator function. This does not imply that we assume the actual data to
follow an AL distribution. For details on the correspondence between the
Bayesian and classical approaches to inference in quantile regression, see
Yu and Moyeed (2001).
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First, the flexible combination of linear and nonparametric
components allows for capturing different degrees of nonlinear-
ities across quantiles. The recent literature finds that macroe-
conomic relations differ in the lower tails of the distribution of
output growth compared to the middle of the distribution and
upper tails, as well as that, in the the lower tails, macroeconomic
relations might be subject to substantial nonlinearities. The
former observation on relationships changing in the lower tails
relates to the fact that coefficients of a regression model can
change during extreme periods and can be well captured with
a linear QR (see, e.g., ABG). The latter observation concerns
additional nonlinearities in the effects of selected covariates on
output growth that may occur in a given quantile. These non-
linearities could change across quantiles, perhaps being more
important in the extremes of a distribution and relatively unim-
portant in tranquil periods of the business cycle (e.g., in the
center of the distribution). BART provides enough flexibility to
capture these nonlinearities that may exist across and within
quantiles of the data generating process (DGP).

Second, our model allows for lagged and contemporaneous
relations across countries. The key point to notice is that these
interdependencies can differ across quantiles. For instance, it
could be that in the presence of a global adverse economic
shock, cross-country dependencies are more important than
during tranquil times. This behavior is effectively captured by
estimating separate loadings, factors, functions gip, and regres-
sion parameters β ip. For instance, in normal periods it could
be that short-run fluctuations in GDP growth depart from each
other. In such a situation, the corresponding factor loadings
λp = (λ1p, . . . , λNp)′ should be close to zero for p close to the
median.

Third, since the factor is conditionally heteroscedastic, it can
also control for sudden common shifts in the conditional vari-
ance of the dependent variables. Inclusion of this factor allows
us to control for shocks common to all countries in our panel,
a feature which might be extremely important during periods
such as the recent Covid pandemic (see, e.g., the discussion in
Carriero et al. (in-press)). In addition, the fact that the volatility
process evolves according to an AR(1) process implies that the
factor displays no time dependence conditional on hp,t but might
be persistent after integrating out hp,t .

2.2. Approximating the Unknown Functions Using BART

We treat the function gip as unknown and approximate it using
BART (Chipman, George, and McCulloch 2010). Though other
alternatives are possible, BART has been successfully employed
in economics for forecasting financial time series in Huber
and Rossini (2022), nowcasting GDP in selected European
economies in Huber et al. (2023), and tail forecasting of output,
inflation, and unemployment in Clark et al. (2023). BART is
a sum-of-trees model that approximates gip by summing over
many individual trees that all take a simple form and act as
“weak learners.”

The BART approximation for gip is given by:

gip ≈ ĝip =
S∑

s=1
v(xi,t|T s

ip, μs
ip),

with v denoting a tree function that is determined by a tree
structure T s

ip and a vector of terminal node parameters μs
ip.

This terminal node parameter vector has dimension bs
ip and is

country (i), quantile (p) and tree (s) specific.
The tree structure consists of multiple binary decision rules

that ask whether a covariate exceeds a threshold and, according
to them, produces (disjoint) partitions of the input space. These
take the form xij,t > c or xij,t ≤ c, with xij,t denoting the jth
element of xi,t and c being a splitting/threshold value. Sequences
of these decision rules lead to a terminal node coupled with a
corresponding terminal node parameter in μs

ip. The parameters
in μs

ip thus act as the “leaves” of the tree. That is, they are fitted
values assigned to the observations which are allocated to a
specific terminal node based on the splits determined by the
configuration in xi,t .

BART is capable of handling arbitrary forms of nonlinear-
ities. For instance, it flexibly handles higher order interaction
effects between the covariates and the responses, picks up time
variation and, if necessary, also allows for linear relations.

When S is large, the BART approximation is prone to overfit-
ting if no further regularization is introduced. Chipman, George,
and McCulloch (2010) use regularization priors to force the
trees to be simple. We achieve this through shrinkage priors on
the tree structure and the terminal node parameters. Following
Chipman, George, and McCulloch (1998), the prior on T s

ip is
obtained by constructing a tree-generating stochastic process.
The prior p(T s

ip) has three key aspects. First, tree complexity
ultimately depends on the depth of the tree. Since the tree-
generating process grows trees sequentially, we let d denote the
current depth of the tree. Hence, if d is large, the tree is complex
and thus might overfit the data. To force the individual trees to
be simple, we assume that a given node at depth d is nonterminal
with probability proportional to α (1+d)−ζ , where α is between
0 and 1 and ζ > 0. Notice that this probability decreases in
d which implies that growing more complicated trees becomes
unlikely if d is large. The amount of shrinkage is controlled by
α and ζ . These hyperparameters are often set to α = 0.95 and
ζ = 2, implying that trees with two or three terminal nodes
receive over 80% of total prior probability. Chipman, George,
and McCulloch (2010) found that, for over 40 datasets, this
choice performs well, and extensive cross-validation for α and ζ

only improves predictive accuracy by small margins. The second
and third aspects of the prior are concerned with how decision
rules are constructed. To this end, we use discrete uniformly dis-
tributed priors to select the variables showing up in the decision
rule as well as a uniform prior over the splitting/threshold values.

The second source of shrinkage is a Gaussian shrinkage
prior on μs

ij,p, the jth element of μs
ip. Chipman, George, and

McCulloch (2010) recommend scaling the prior using the range
of the data. More specifically, let yi,min and yi,max denote the
minimum and maximum of the observed data in country i. The
corresponding Gaussian prior is then μs

ij,p ∼ N
(

0, v2
ip

)
, setting

vip = (yi,max − yi,min)/(2γ
√

S) with γ > 0 being a prior scaling
parameter, typically set equal to 2. The prior implies that if the
number of trees S is large, the prior variance decreases and the
amount explained by a single tree is decreased; in line with the
related literature, we set S = 250. This is consistent with each
tree explaining only a small share of variation in the response
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variable, but the ensemble model provides sufficient flexibility to
capture even complicated conditional mean relations. Another
feature, noted by Huber et al. (2023), is that the prior variance
increases in the range of the data. Hence, if outliers arise, the
prior becomes increasingly loose and allows for more flexibility
in terms of prior probability about capturing observations out-
side the range of past data.

The priors on the tree structures and the terminal node
parameters constitute the main ingredients of BART. Since our
model also features a linear part, we also need to specify priors
on β ip, which are discussed in the next section.

2.3. Priors on the Remaining Coefficients of the Model

On the coefficients β ip we use a variant of the horseshoe prior:
βij,p ∼ N

(
β jp, ϕ2ψ2

ij,p

)
with scaling parameters ϕ ∼ C+(0, 1)

and ψij,p ∼ C+(0, 1); C+ denotes a half-Cauchy distribution,
ψij,p is a coefficient and quantile-specific scaling parameter,
and ϕ is a global shrinkage parameter that is common to all
coefficients. Notice that the presence of ϕ introduces dependen-
cies across coefficients (including across countries) and across
quantiles. The key advantage is that the presence of the local
shrinkage parameters ψij,p allows the detection of signals (i.e.,
nonzero or heterogeneous βij,p over the cross section) even if ϕ

is close to zero.
The prior mean β jp pools information over the cross section.

In our hierarchical specification, it is estimated from the data
using a Gaussian prior for the domestic variables, and determin-
istically set to zero for non-domestic quantities: β jp ∼ N (0, ϕ̃j)

for j = 1, . . . , J, with β jp = 0 for j = J+1, . . . , K. The parameter
ϕ̃j is the prior variance of the common mean, which we set to a
weakly informative value of 10 for the empirical application. We
refer to this prior as the pooled horseshoe (HSP).3

For the factor loadings λip, we use a set of independent
Gaussian priors for all i, p: λip ∼ N (0, 1). Note that λip is
a scalar and, hence, we use this relatively weakly informative
prior rather than a prior such as the HS which is used to avoid
over-parameterization as might occur with high dimensional
parameters.

The remaining coefficients of the model relate to the error
term. Kozumi and Kobayashi (2011) write the AL using a scale-
location mixture of Gaussians:

εip,t = θpνip,t + τp
√

σipνip,teip,t , (2)

with θp = 1−2p
p(1−p)

, τ 2
p = 2

p(1−p)
, νip,t = σipzip,t , eip,t ∼

N (0, 1), and zip,t ∼ Exp(1).4 On the scale parameter σip we

3Setting the full common mean to a zero vector of size K yields the conven-
tional horseshoe (HS). The Online Appendix includes some comparisons
of the HSP and HS priors. HSP typically has a small advantage over the HS
version.

4The density of the AL is provided in footnote 2, with E(εip,t) = [1 −
2p]/[p(1 − p)] and Var(εip,t) = [1 − 2p + 2p2]/[p2(1 − p)2]. Note that
p determines the skewness of the distribution, and that its pth quantile
is equal to zero. For our specific choices of θp and τ2

p , with independent
standard normal variables eip,t ∼ N (0, 1) and exponentially distributed
zip,t ∼ E(1), it can be shown that the left- and right-hand side of (2) are
equal in distribution; see chap. 3 in Kotz, Kozubowski, and Podgórski (2001)
for a proof and additional details.

use an inverse Gamma prior, σip ∼ G−1 (aσ /2, bσ /2) , with the
relatively weakly informative choices of aσ = 1 and bσ = 1. This
completes the prior setup. Details of the Markov chain Monte
Carlo (MCMC) algorithm used to carry out posterior inference
are provided in the Online Appendix.

2.4. Remarks on Computing Predictive Distributions

Our focus is on predicting international GDP growth up to
h-steps-ahead where h ≥ 1. In Section A.2 of the Online
Appendix we provide a detailed account on how to compute
these predictive densities. Here, we give a brief summary and
focus on the difficulties in computing predictive densities in
nonparametric quantile regressions. As detailed in (A.1) of the
Online Appendix, the predictive distribution for the pth quantile
of h-step-ahead GDP growth in country i,

p(Qp(yi,T+h)|y1:T , x1:T , xi,T+h)

=
∫

�p
p(Qp(yi,T+h)|�p, xi,T+h)p(�p|y1:T , x1:T)d�p,

(3)

is obtained through Monte Carlo integration by sampling from
the posterior of the parameters and the latent states, stored
in �p, and then computing the forecast of the pth quantile
Qp(yi,T+h). The first term on the right-hand side of (3) is the
conditional predictive distribution that is Gaussian and depends
on xi,T+h which includes only information that is available up
to time T. Depending on the specification, xi,T+h includes GDP
growth for all countries measured in time T and the CISS in time
T. The second term is the posterior distribution with y1:T and
x1:T denoting full data matrices that have typical rows y′

t and
(x′

1,t , . . . , x′
N,t).

Two remarks are in order about (3). First, computing (3)
over a grid of quantiles p provides information that can be
used to back out the predictive distribution implied by the
different quantiles of our model. This, however, relies on
approximations to the true predictive density. For instance,
Adrian, Boyarchenko, and Giannone (2019) estimate the
predictive quantiles and then fit a skew-t distribution to
approximate the exact predictive density. In our framework,
we use the posterior median of the predictive quantiles to back
out the full predictive distribution nonparametrically using the
methods outlined in Mitchell, Poon, and Zhu (2023). This is
necessary if interest is on computing functions of forecasts
such as average forecasts over different horizons, probabilistic
forecasts or risk measures based on forecast distributions.

Second, for h > 1 we face the issue of whether we use direct or
iterative forecasts. Since xi,t includes exogenous quantities, com-
puting iterative forecasts requires making assumptions on how
the exogenous elements in xi,t evolve over the forecast horizon.
Moreover, as Marcellino, Stock, and Watson (2006) show, the
predictive accuracy of iterative forecasts might be more affected
by model mis-specification. This risk is lessened through the
use of direct forecasts, the approach we adopt. Direct forecasts
have the advantage that no assumptions on how the exogenous
elements in xi,t evolve over time are required. In addition, one
can compute them straightforwardly within our nonparametric
and quantile-specific model.
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One disadvantage, however, is that by computing direct fore-
casts we potentially neglect a nonlinear moving average struc-
ture in the shocks and this might impact predictive inference.5
To see this more clearly, let us consider a special case of our gen-
eral model in (1) that sets ωg = 1 and ωβ = 0 and xi,t = yi,t−1
(i.e., no exogenous quantities). The resulting one-step-ahead
predictive regression is then given by yi,t+1 = gip(yi,t) + ri,t+1,
where ri,t+h = λipfp,t+h + εip,t+h. The two-step-ahead iterative
forecasting equation is yi,t+2 = gip(gip(yi,t) + ri,t+1) + ri,t+2 and
thus depends on ri,t+1. In general, for h-steps-ahead the relevant
predictive equation reads:

yi,t+h = g̃(h)
ip (yi,t , ri,t+h−1, . . . , ri,t+1) + ri,t+h,

where g̃(h)
ip is a composite function defined recursively. Instead,

our direct forecasting approach implies the following approxi-
mation through a function ĝip:

g̃(h)
ip (yi,t , ri,t+h−1, . . . , ri,t+1) ≈ ĝ(h)

ip (yi,t),

where ĝ(h)
ip (yi,t) denotes the BART estimate from the model

yi,t+h = ĝ(h)
ip (yi,t) + ri,t+h. Hence, the composite function g̃(h)

might take an extremely complicated form and depends on the
forecasts errors up to horizon h − 1, and is approximated, again,
through BART. In contrast to linear models, we argue that the
BART approximation is more robust to mis-specification related
to (a neglect of) serial correlation in the factors and errors in the
direct forecasting setup.6

In Online Appendix A.3 we carry out two robustness exer-
cises to check whether the potential neglect of a moving aver-
age term is having an impact on our empirical findings. First,
we augment our model to include estimates of forecast errors
(see Lusompa 2023, for a discussion). Second, we use itera-
tive forecasting methods (under a random walk assumption
for the exogenous covariates in xi,t). Both these approaches
produce forecast scores which are almost identical to those
produced in the main body of the article. We view this as evi-
dence that our nonparametric model can flexibly adjust to mis-
specification caused by approximating the composite function
g̃(h)

ip (yi,t , ri,t+h−1, . . . , ri,t+1) through ĝ(h)
ip (yi,t) and by omitting

the forecast errors.

3. Forecast Evaluation

3.1. Data, Competitors and Forecasting Design

Our sample runs from 1975Q1 to 2021Q4. We use real GDP
data from the Main Economic Indicators (MEI) database, main-
tained by the OECD, and the composite indicator of systemic
stress (CISS) by the European Central Bank. For data availability
reasons we include Austria (AT), Denmark (DK), Finland (FI),
France (FR), Germany (DE), Italy (IT), Netherlands (NL), Spain

5Note that all the techniques (including the MCMC algorithm in the Online
Appendix) remain valid in this case. This is because in the Bayesian frame-
work we implicitly condition on our model being true when we derive the
full conditional posterior distributions.

6For some empirical evidence on this claim, see Clark et al. (2023) who show
that BART can produce accurate forecast distributions under homoscedas-
tic shocks even if the DGP is heteroscedastic.

Table 1. Model overview.

Data Weights Factor

Single-country (SC) ωg = 0, ωβ = 1 (QR) λp = 0 (—)
Cross-country (CC) ωg = 1, ωβ = 0 (BART) λp 	= 0 (FM)

ωg = ωβ = 1 (mixBART)

NOTE: “Data” refers to the information set for individual country models. “Weights”
refers to the specification of the conditional quantile function: parametric, non-
parametric, or both parts. “Factor” indicates whether an international factor mod-
eling the cross-sectional covariance structure within quantiles is present. We
consider all possible combinations of these specification choices.

(ES), Sweden (SE), United Kingdom (UK), and the United States
(US). This yields a cross-section of N = 11 countries. Charts of
our dataset are provided in the Online Appendix.

The models are estimated for p ∈ {0.05,0.1,0.16,0.25,0.4,0.5,
0.6,0.75,0.84,0.9,0.95} and we forecast for h = 1, . . . , 4. Our
focus is on modeling the annualized quarterly growth rate of real
GDP, measured as yi,t = 400 × log(Yi,t/Yi,t−1), with Yi,t denot-
ing real GDP in levels in time t. We denote the CISS for country
i as zi,t . For each model, we consider two different choices for
the covariates. The first includes the lag of GDP growth and the
CISS for country i in the equation for yi,t , implying that K = 2,
which we refer to as the single-country (SC) specification. The
second contains cross-country information in xi,t by including
the lag of GDP growth and the CISS of all countries jointly;
hence, K = 2N. This is referred to as CC to indicate that the
information set includes cross-country data. In terms of (3), this
specification implies that xi,T+h = (y1,T , z1,T , . . . , yN,T , zN,T)′
and yi,T+h = 400 × log(Yi,T+h/Yi,T+h−1). In terms of the prior,
we report results for our specification that allows for pooling
through the prior HSP, as it generally performs a little better
than the standard horseshoe prior that forces the coefficients to
zero (the Online Appendix includes some comparisons).

All specifications we consider can be viewed as simpler vari-
ants of our general model. These simplifications relate to the
dataset chosen (i.e., the SC or CC variant), whether the static fac-
tor is included, and whether we consider nonparametric quantile
functions.

Then, we consider models that allow for static relations across
countries within a given quantile. These models have a factor
structure produced by allowing λp 	= 0. If we use a factor we add
the labelFM. Finally, we investigate whether BART-based models
can improve tail forecasts by setting ωβ = 0, ωg = 1. This yields
the multicountry quantile BART model (labeled BART). The
linear (Bayesian) quantile regression is obtained by excluding
the nonparametric component by setting ωβ = 1, ωg = 0. This
model is labeled QR. Finally our most flexible model includes
both linear and nonparametric components, with ωβ = ωg = 1.
This specification is labeled as mixBART. An overview of all
models is provided in Table 1.

It is worth stressing that the different combinations above
can also be used to end up with the benchmark specification
proposed in ABG. This is achieved by including only the CISS
and lagged GDP growth as covariates and excluding the factor
and nonparametric components of the models. To ensure com-
parability to ABG, we estimate this benchmark using frequentist
methods. The Bayesian version of ABG is obtained by removing
the factor and setting ωβ = 1, ωg = 0.

In the tables and figures that follow, we will use acronyms
to indicate the different models. For doing so, we adopt the
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convention that we first indicate the model (i.e., whether we use
QR, BART or mixBART), then (if applicable) whether we use the
HSP prior, then whether cross-country information is included
and finally whether we use a factor model or not. For instance,
BART CC FM denotes the BART-based panel model with cross-
country information and the factor being present.

After describing the data and models, we now briefly discuss
the design of our forecasting exercise. We carry out recursive
forecasting that is based on an expanding window of obser-
vations. As stressed in Section 2.4 we compute h > 1-step-
ahead forecasts using the direct forecasting approach. The first
60 quarters of data are used as the initial estimation sample,
which implies our forecast evaluation period begins in 1990Q1
for h = 1 and 1990Q4 for h = 4. We use the posterior
median of the predictive quantiles.7 It is also worth noting
that, for h = 4, ABG target the average annual growth rate,
400 × log(Yi,T+h/Yi,T)/h, and we average our horizon-specific
quarterly growth rate forecasts for h = 1, 2, 3, 4 to be in line with
this target. To compute this average, we proceed as follows. We
estimate the predictive quantiles for the h-step-ahead forecast
and based on these infer the implied predictive distribution to
obtain a smooth version from which we can readily sample
future relations of yi,T+h. This is achieved using the techniques
outlined in Mitchell, Poon, and Zhu (2023) and yields horizon-
specific smooth predictive densities which we then use to com-
pute posterior distributions of average growth rate forecasts and
the corresponding quantiles.8 More details are provided in the
Online Appendix.9

After obtaining forecasts for the different quantiles, we evalu-
ate predictive accuracy using Quantile Scores (QS) and quantile-
weighted continuous ranked probability scores (qw-CRPS, see
Gneiting and Ranjan (2011) and the Online Appendix) with
three weighting schemes: no weighting, that is, conventional
CRPS, labeled “none”; left tail, “left;” and right tail, “right.”

3.2. Tail Forecasting with Nonparametric Quantile
Regressions

In this section we first discuss the overall forecasting perfor-
mance for the different models and loss functions. Then, we
focus on the best performing models and discuss differences
in predictive accuracy across countries. Finally, we consider
details about the forecasting properties of the model for US GDP
growth, which has been the focus of a large previous literature,

7Additional details on how we compute the posterior densities of the quantile
functions and other nonlinear functions of the parameters (such as impulse
responses) are provided in the Online Appendix.

8As opposed to directly modeling 400× log(Yi,T+h/Yi,T )/h, our approach has
the advantage that we estimate a set of horizon-specific forecasting models
and thus gain flexibility.

9A shortcoming of this approach is that we treat the horizon-specific pre-
dictive densities as being independent. This assumption might be at odds
with the data if the target series is persistent. To cope with this, Mogliani
and Odendahl (2023) propose using copulas to capture horizon-specific
correlations. In simulations, they show that the predictive gains from doing
so are small if the data feature little persistence. Given that our target series
is in growth rates we do not expect substantial improvements in predic-
tive accuracy and hence treat the horizon-specific predictive densities as
independent. This claim is also supported by our robustness checks in the
Online Appendix.

and for Italy and Sweden, as examples of countries for which
BART works relatively well in the right and left tails, respectively.

3.2.1. Overall Results
Our forecasting exercise gives rise to a great deal of information.
We consider a large number of models that differ along the
dimensions outlined in the previous sub-section, and we obtain
country-specific forecasting results. To first achieve an under-
standing about the predictive accuracy across countries, we
focus on boxplots, shown in Figure 1. Each of these boxplots rep-
resents the cross-country dispersion of the different qw-CRPSs
relative to the ABG benchmark of the various models. Blue lines
are the median over the cross section, red lines show the mean
and black points mark individual countries. The black vertical
line is centered on unity, implying that if the mean (median) is
located to the left of the vertical line, a given model outperforms
the ABG benchmark on average across the countries under
consideration (for at least 50% of the countries). These plots
provide a simple means of assessing the overall performance
of the models and whether forecast accuracy is heterogeneous
across countries.

Figure 1 indicates that the overall best model in terms of
average and median performance across countries, criteria and
horizons is BART CC FM. QR CC-HSP FM is comparable only
in the left tail for h = 1, and QR SC-HSP FM only in the right
tail for h = 1 and h = 4.

About the importance of the cross country information,
while results are mixed for QR and mixBART, for the best
performing BART specification CC is better than SC in all cases
and for both horizons. This finding is in line with the existence
of commonalities in business cycles among the advanced
economies.

It is also noticeable that FM seems to help all models, but
more in the right than in the left tail. A possible explanation is
the increased commonality (across countries) of the CISS during
recessions, which makes the common factor less relevant in the
left tail as compared to the right tail.

With respect to ABG, not only on average but for most
countries, BART CC FM is better for both horizons and all parts
of the distribution. Moreover, the Bayesian variant of the ABG-
style QR (that is, the SC-HS specification of QR) is slightly better
than the original ABG implementation, for virtually all countries
for h = 1 and most of them for h = 4.

3.2.2. Country-Specific Results
The previous discussion identified model features which help
for producing more accurate tail and overall forecasts. To
better understand cross-country similarities and differences,
we now zoom into country-specific findings. To reduce the
dimensionality of our results, we focus on BART CC FM, the
overall best performing model, and BART CC, which also
performs well on average across countries. Our findings are
summarized in Table 2, while the Online Appendix contains
additional empirical results. Each cell in the heatmap shows
the qw-CRPS relative to the ABG benchmark model. Numbers
smaller than 1 indicate outperformance vis-á-vis the ABG
model (blue colored) whereas numbers exceeding 1 suggest a
weaker performance than the benchmark (red colored). The
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Figure 1. Boxplots of relative quantile weighted continuous ranked probability scores (CRPS) for h ∈ {1, 4} benchmarked to the frequentist ABG model. Lower ratios
indicate better performance. Blue lines are the median over the cross section, and red lines show the mean. Points indicate individual countries.

Table 2. Relative quantile weighted continuous ranked probability scores (CRPS) at h ∈ {1, 4} for the best performing BARTs benchmarked to the frequentist ABG model.

NOTE: Lower ratios (in blue) indicate better performance (and vice versa, in red). Best specification in bold. Significance: {1, 5, 10}% with ∗ , ◦ and ′ .

best performing specification by predictive metric and country
is indicated in bold. Statistical significance based on Diebold and
Mariano (1995, testing for equal predictive accuracy relative
to the benchmark), at the {1, 5, 10}% level of significance is
indicated as ∗, ◦, and ′.

Focusing on one-step-ahead predictions for the “none”
weighting, BART CC FM produces the most accurate density
forecasts for all countries. The same holds in the right tail,
with particularly large gains for France and Italy (0.81 and 0.80,
respectively). In the left tail, BART CC FM improves on ABG for
all countries except the US, in which case the difference is small

(1.02) and not significant. At the longer horizon, similar results
hold, with BART CC FM being the best performing specification
for all countries according to CRPS and its right tail version, and
with BART CC FM better than ABG in the left tail for 8 of 11
countries. For the other countries (US, UK, and Denmark), the
largest left-tail score ratio is 1.08 for the UK, while the lowest
values in the right tail are 0.70 and 0.74 for, respectively, France
and Italy. Of course, the literature on tail risks to economic
activity has typically focused on using financial indicators to
improve left-tail forecasts and not found much gain for right-
tail forecasts. As we show below, the gains we find in right-tail
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Figure 2. Relationship between predictive metrics for BART CC FM relative to the frequentist ABG (h = 1) and unconditional empirical moments of the underlying time
series. Blue shaded areas refer to the 95% confidence interval.

forecasts are partly driven by the pandemic portion of the sample
(which is small). Some of the gains we find may also be attributed
to our flexible nonparametric models.10

This discussion confirms that our model has the potential
to improve upon simpler benchmarks by comparatively large
margins. These improvements, however, are sometimes differ-
ent across countries and one might ask what determines the
differences. In particular, for h = 1, BART CC FM works
particularly well for France and Italy in the right tail, while it
is a bit worse for the US in the left tail. Hence, we analyze the
cross-country relationship between unconditional features in
the data and the one-step-ahead qw-CRPSs (ratios relative to the
ABG benchmark).11 The features we consider are the variance,
skewness, and excess kurtosis.

Figure 2 shows these relationships in terms of cross-country
scatterplots and regression relations. The latter have to be viewed
with some caution given the small sample size involved. Nev-
ertheless, two features stand out from the figure. First, about
the left tail, the US seems a bit of an outlier, with the lowest
variance of all countries. The four countries with the best left
tail performance from BART CC FM (Sweden, Denmark, Fin-
land, and Netherlands) are instead all characterized by very low
excess kurtosis and tend to have low variance. Second, about the
right tail, France is the country with the largest skewness and
kurtosis, and Italy is also well above the average, in particular

10Clark, Carriero, and Marcellino (2022) also find that ABG can be beaten in
the right tail for the US.

11The results for the four-steps-ahead qw-CRPSs are included in the Online
Appendix.

for skewness. We view this evidence of the roles of kurtosis and
variance in driving tail forecast accuracy as a subject for future
research.

A final interesting issue is whether the model ranking we
have obtained is stable or not over time and, related, whether
there are periods where the nonparametric models performed
particularly well versus ABG, with the financial crisis and the
Covid pandemic as episodes of particular interest. We shed light
on this issue with Figure 3, which graphs the cumulative sum of
indicated CRPS-variant for h ∈ {1, 4} relative to the ABG model,
for QR CC and the overall best BART specifications.

Overall, up until the pandemic, the time paths of relative
performance accuracy are largely similar across the none, left,
and right weighting schemes. Before the pandemic, for most
countries, our proposed nonparametric forecasting approaches
improve on the ABG benchmark in both the left and right
tails.

The Covid period leads to some sizable shifts in relative
performance that seem to drive some of the patterns in the full-
sample results presented above. First, relative to ABG, our left
tail results are helped by the Covid observations (i.e., score ratios
are better in the full sample than in the sample ending in 2019).
Second, in the right tail, the superiority of BART CC FM over
BART CC seems to be driven by the Covid period. The better
performance of our BART-based approaches relative to the stan-
dard QR can be attributed to the fact that the underlying forecast
densities of the QR display a much larger predictive variance and
in general more variation than the predictive distributions of the
BART-based models (see the discussion in the next sub-section).
Moreover, in the pre-Covid sample, BART CC is as good as (or
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Figure 3. Relative cumulative sum of indicated CRPS-variant for h ∈ {1, 4} benchmarked to the frequentist ABG model, best overall BART specifications.

sometimes slightly better than) BART CC FM. Furthermore, in
several countries QR CC was rather good until the onset of the
Covid period, so the excellent right tail performance of BART
CC FM is at least in part driven by the pandemic. Specifically, in
the case of the US the good right-tail performance also depends

on the Covid period, typically not included in previous analysis
on growth-at-risk, but the secular decline in CRPS ratios already
started during/after the financial crisis. Finally, and related to
the previous point, the financial crisis seems to have improved
a bit the relative performance of the BART specifications, in
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Figure 4. Predictive distributions across CC FM model variants, HSP prior (when applicable). Blue shades cover the quantile pairs 5/95, 10/90, etc., alongside the median
(blue line). Dashed lines mark realizations. Dotted vertical lines indicate selected quarters for which the full quantile function estimate is provided below.

particular for h = 1, though in general not to the point of
changing the model rankings.

3.2.3. Properties of Growth Dynamics
Having shown that our set of nonparametric models yields
excellent tail forecasts across countries, we now illustrate certain
features of our model using estimates for the US, Italy, and
Sweden.

The first question that arises is whether the different models
we propose yield predictive densities which are similar. This
comparison is made in Figure 4, which shows the out-of-sample
predictive distribution by quantile (posterior median) across
QR, BART and mixBART, all for the CC FM model variant.
Consider first the pre-pandemic sample that ends with 2019.
One immediate observation is that, consistent with the liter-
ature, QR generates left-tail forecasts which are much more
volatile than right-tail predictions, and particularly so during the
great financial crisis. BART CC FM also yields more variability
in left tail forecasts than right tail, but the left tail forecast is
less variable for BART CC FM than QR. In left tail volatility,
mixBART is somewhere between QR and BART. These pat-
terns apply to all three countries. The pandemic portion of the
sample produces larger changes in predictive distributions and
much more variation across models. For all countries the QR
forecasts are more variable over time than the BART forecasts,
with mixBART’s forecasts generally somewhere in between. In

addition, over this period the predictive densities are much
wider with QR than BART, which turns out to contribute to
BART’s relatively stronger forecast accuracy in the pandemic
recovery. The stronger variation in the predictive density and the
elevated predictive variance explain the weaker tail forecasting
performance of linear QRs during the pandemic, highlighting
that standard QRs have difficulties dealing with the outliers
observed during the Covid period.

To hone in on the statistical differences between our model
specifications, we now consider several quarters (forecasts for
2006Q2, 2009Q1, 2012Q2, and 2020Q4) and plot the poste-
rior quantiles of the estimated quantile function across spec-
ifications. These (also out-of-sample estimates) are shown in
Figure 5. In rather quiet periods such as 2006Q2 and 2012Q2,
we hardly find any differences in predictive quantiles. Instead,
in the financial crisis (2009Q1), we find larger differences. These
are particularly pronounced in the left tail, but are present also
in other parts of the distribution, and for all the three countries.

Finally, we consider 2020Q4. In that period, QR heavily over-
predicts the right tail, but also the entire distribution seems
shifted to the right for all three countries. This is driven by
the fact that in the previous quarter, GDP growth strongly
rebounded after the sharp decline during the first half of 2020.
In the fourth quarter, however, GDP growth slowed, and the QR
fails to capture this in the predictive distribution. This might
be driven by the lack of flexibility when it comes to capturing
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Figure 5. Posterior moments of the predictive quantile function for selected countries and quarters. We show the 68% credible set surrounding the median estimate. QR
in gray, BART in blue, mixBART in red; CC FM and HSP prior (when applicable). Dashed lines mark realizations.

rapid changes in the underlying time series. By contrast, both
models that use BART appear to adjust quickly. In particular,
the BART model produces predictive quantiles where both tails
suggest more modest reactions of GDP growth, in line with the
actual outcomes.

In the final part of this section we consider whether the
different models give rise to different relations between the CISS
and the conditional distribution of GDP growth, focusing on the
US for the sake of space. Our framework allows us to analyze this
question and back out how the conditional quantile functions
vary with the CISS, keeping the other factors of the correspond-
ing model at their unconditional means. This is achieved as
follows. We vary the domestic CISS indicator (using a sequence
of values between the minimum and maximum values over the
full sample) and then assess how the implied quantile function
changes. In this assessment, we use full-sample estimates of the
models and the one-step-ahead forecast horizon.

Figure 6 shows the resulting estimates for the parametric
linear, nonparametric, and combined function estimates for QR,
BART, and mixBART. The first row shows β ′

ipxi,t for mixBART
and the QR, whereas the second row shows gip(xi,t) for BART
and mixBART. Finally, the third row shows the sum over the
linear and nonlinear part. The dashed lines are linear approx-
imations to the estimated quantile function.

The left panels of the figure display the functional relations
for single-country models. The findings indicate that the linear
piece of mixBART is either constant and barely significant or
centered on zero, implying no linear relationship between finan-
cial conditions and GDP growth. The QR essentially replicates
the findings of ABG. In the left tail, the effect of financial
conditions on growth is strong, whereas, in the middle of the
distribution, the effect becomes weaker. In the upper tail, the QR
implies the lack of a relationship.

When we consider the nonparametric piece and the com-
bined mean relations, we find substantial evidence for non-
linearities in the left tail. For p ∈ {0.05, 0.1}, the mean rela-
tionship (for both BART and mixBART models) suggests a
rather linear but negative effect of the CISS on the left tail of
GDP growth but if the CISS exceeds 1.5 the effect becomes
much stronger. Afterwards, for larger values of the CISS the
relationship becomes weaker until the regression relationship
flattens out. This indicates that both models unveil a threshold
effect in the left tail. The more we move into the center of the
distribution, the more linear the effect becomes. Visually, this
can be inspected by noting that the credible sets associated with
the nonlinear function fully cover the linear approximation. The
key difference to the standard QR is that we also detect negative
but linear effects in the right tail of the conditional distribution.
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Figure 6. Estimated functional relationship between the domestic CISS and GDP within each quantile in the United States. We show the 68% posterior credible set alongside
the median. The dashed lines provide a linear approximation to the nonparametric functions. HSP prior when applicable.

Turning to the models that leverage cross-country informa-
tion gives rise to a different picture. In that case, mixBART
generates a linear effect that is negative in the left tail up to the
median. For the right tail the effect remains sizable and negative.
Interestingly, the results for the standard QR change markedly as
well. Whereas we only find strong effects in the left tail for the
single-country model (which is similar to the ABG benchmark),
inclusion of cross-country information implies that the effects
become much stronger for small values of the CISS and slightly
weaker for larger values of the CISS. The key difference, however,
is that we also observe strong negative relations in the right tail.
By contrast, the nonparametric and combined effects become
more linear and the kink at a CISS value of around 1.5 remains
but is much less pronounced.

4. International Growth-at-Risk Dynamics

4.1. The Quantitative Importance of Nonparametric
Features

In the previous section we have shown that our proposed frame-
work yields forecast distributions which are often more accurate
than the ones obtained from the ABG benchmark and simpler
nested alternatives. One key advantage of the model is that it
allows for varying importance of the nonparametric aspects
across countries and quantiles and this improves forecasts in
many cases. Moreover, at least for the US, nonlinearities seem
to matter more in the tails than in the center of the distribution.
We now assess whether this also holds for other countries and
investigate in which parts of the distribution nonlinearities are
relevant.

For this purpose, we compute the share of variance that is
explained by BART relative to the combined linear and BART

part in each conditional quantile for the mixBART specification:
%BARTip = var(gip(Xi))/

(
var(gip(Xi)) + var(Xiβ ip)

)
, where

Xi = (xi,1, . . . , xi,t)′ is a T × K matrix. We compute these shares
for each draw from the MCMC algorithm and then average
them over time. The results over the full sample are depicted
in Figure 7. To gauge the statistical significance, we indicate the
68% posterior credible set alongside the median.

For h = 1, BART is relevant for all countries and per-
centiles, with values of the explained variance generally larger
than 50%. These values are particularly pronounced in the left
tail, approaching 100% for France, Italy, UK, US, Austria, Spain,
and Finland. Yet, there are exceptions, in particular Germany,
the Netherlands, and Sweden. For these countries, BART seems
to matter more in the center of the predictive distribution.
This heterogeneity provides further justification for our flexible
approach. It is worth reiterating that BART can also approxi-
mate linear functions; this may yield a high share of variance
for BART, even though the nonparametric function is approxi-
mately linear. For h = 4, the fraction of variance explained by
BART further increases for virtually all countries and percentiles
(with the exception of the left tail for the Netherlands), which
is in line with the previous findings that nonlinearities become
even more important at longer forecast horizons. In the Online
Appendix we also provide information on how the posterior
means of the shares change over the forecast evaluation sample.
The values are quite stable over time, just a bit smaller at the
beginning of the sample when the number of observations is
lower.

As a rough gauge of variable importance, we compute
selection frequencies of individual variables in the BART
splitting rules. These results are again shown in the Online
Appendix. Summarizing, for the domestic variants we find
that the CISS covariate usually is selected more frequently
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Figure 7. Decomposition of the explained variance for mixBART CC-HSP FM (end of sample), variance share explained by BART relative to the total explained variance. We
show the 68% posterior credible set alongside the median.

Table 3. Time averages of variance decompositions, BART CC FM.

Quantile (p) AT DE DK ES FI FR IT NL SE UK US

0.05 0.85 0.84 0.79 0.83 0.77 0.86 0.84 0.84 0.86 0.87 0.82
0.10 0.77 0.72 0.63 0.77 0.61 0.80 0.76 0.73 0.76 0.77 0.75
0.25 0.63 0.59 0.42 0.61 0.38 0.56 0.61 0.56 0.53 0.61 0.58
0.50 0.83 0.68 0.30 0.95 0.21 0.98 0.90 0.56 0.40 0.89 0.71
0.75 0.79 0.76 0.50 0.77 0.48 0.80 0.81 0.69 0.59 0.78 0.69
0.90 0.83 0.85 0.68 0.81 0.65 0.85 0.84 0.79 0.75 0.82 0.77
0.95 0.91 0.91 0.82 0.90 0.82 0.92 0.91 0.89 0.87 0.92 0.87

than GDP growth. Differences between quantiles are negligible,
as are differences between BART and mixBART. For our
CC specifications, domestic economic conditions are chosen
as splitting variables slightly more often on average. It is
worth mentioning that all variables appear in the splitting
rules.

4.2. The Role of the Common Factor

In this sub-section, we investigate the common factor across
quantiles; for details about the implied covariance structure of
our model, see the Online Appendix. In a first step, we assess
the relevance of the common factor volatility specification by
considering time averages of variance decompositions. These are
obtained by leveraging the Gaussian representation of the AL
(the distribution of εip,t in (1)), as follows:

VDip,t = λ2
ip exp(hp,t)

λ2
ip exp(hp,t) + var(εip,t)

,

with var(εip,t) denoting the variance of εip,t . These shares are
computed by drawing from the posteriors of the loadings, the
log-volatilities and the augmentation parameters in (2). This
yields a posterior distribution over variance shares and we report
the posterior mean. This decomposition provides information
on the share of variation in the shocks (conditional on the
quantile) that is explained through the common factor (similar
to Stock and Watson 2005).

Table 3 reports time averages of variance decompositions
resulting from the BART CC FM model. Interestingly, for most
countries the commonality is larger and more substantial in

the tails than at the center of the distribution, and a bit larger
in the right than in the left tail. These larger contributions in
extreme periods can be traced back to the fact that several of the
recessions in our hold-out period can be viewed as shocks with
a pronounced global dimension (such as the global financial
crisis or the Covid pandemic) and the factor is picking this up.
Similarly, periods characterized by sharp expansions in business
cycles have also been pretty synchronized across the countries
we consider. The post-pandemic recovery, for instance, is a
period where GDP growth rates increased markedly at roughly
the same time across countries.

Across countries, we find a considerable degree of homogene-
ity within country groups. For instance, Finland, Denmark, and
Sweden feature commonalities that are very pronounced in the
tails but decline once we approach the center of the distribution
both from left and right. The US and the UK share a rather
similar pattern in terms of commonalities (high shares in the
tails and for the median, smaller shares for the quantiles in
between).

The heterogeneity across quantiles in the role of the common
factor is further supported by Figure 8, which reports estimates
of the factors (upper panels) and associated log-volatility per
quantile (lower panels). In the upper panel, we observe that espe-
cially in the tails the factor moves sharply during global events
such as the global financial crisis and the Covid pandemic.
To a somewhat smaller extent the results also suggest declines
in the beginning of the 1990s and the early 2000s. When we
focus attention on the 50% quantile we find strikingly different
results. In the center of the distribution, the factor is small and
very close to zero throughout the sample. During the pandemic
we find a strong pronounced decrease in 2020Q2, which was
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Figure 8. Estimates of factors and associated log-volatility per quantile, BART CC FM. We show the 68% and 90% posterior credible sets (shaded areas) alongside the median
(solid line).

triggered by an unprecedented downturn in real activity globally
but also a strong increase in 2020Q3 (which was accompanied
with sharply increasing GDP growth rates throughout all our
countries).

Turning to the evolution of the log-volatilities, the lower
panel generally yields insights consistent with the findings dis-
cussed for the level of the factor. The log-volatility spikes during
recessions (i.e., in the early 1990s, 2008/09, and 2020), and
for p = 0.5 the level of the log-volatility is much smaller
than for the other quantiles but then exceeds the increases in
volatility observed for the other quantiles of the distribution.
This finding also sheds light on why the amount of variation
explained through the factor for most countries is lowest but
still sizable in the 50% quantile. In most periods, the volatility
of the common shock factor is small (around −5 to −10 on the
log-scale) but then during the pandemic it rapidly increases and
reaches values of around 5 on the log-scale. This suggests that
in tranquil periods the factor only explains little variation in the
shocks but in recessions (or turbulent times) this share increases
appreciably and approaches 1.

To conclude, the Online Appendix considers how changes
to the factor, labeled factor shocks, impact GDP growth across
countries and quantiles (following Stock and Watson 2005). It
turns out that a factor shock has different effects in the left tail
than the right tail. In both tails, growth is negatively affected,
but in QR estimates, the size of the effect (and persistence of
the negative effect) is much larger in the left tail with respect to
the nonparametric models. The Online Appendix also studies
the international effects of a shock to US financial conditions,
finding asymmetry in the sense that a positive shock affects
the growth quantiles, whereas a negative shock’s effects are not
as sharp. The responses are instead much more proportional
and symmetric in the linear model, highlighting the importance
of allowing for nonlinearities in the specification of quantile
regressions.

5. Conclusions

In this article we propose a nonparametric quantile panel
regression model which assumes that the quantiles depend
on a set of predictors through nonlinear functions. We learn
the unknown functions using BART. This nonparametric
feature enhances model flexibility, especially in the tails.
Using cross-sectional information, in addition, enables us to
improve predictive accuracy. This is achieved by proposing
a pooling prior as well as introducing cross-country infor-
mation through latent heteroscedastic factors and lagged
cross-country covariates. To carry out estimation and infer-
ence we design a scalable MCMC algorithm and apply the
model to investigate growth-at-risk using a panel of 11
countries.

In terms of empirical results, our proposed models com-
monly improve on the benchmark ABG-style QR in recursive
growth forecast comparisons, more so in the tails than near the
center of the distribution. Moreover, some form of international
information definitely pays off (modest improvements via a
pooling prior, and more sizeable ones by outright including
non-domestic series). The effects of the common factor are also
relevant. In terms of predictions it often yields appreciable gains
in forecast accuracy and, in-sample, it explains a large fraction
of the forecast error variance in most countries, in particular in
the tails.

The Covid period affects some of the patterns in the empirical
results. In particular, relative to ABG, our left tail results are
helped by the Covid observations; score ratios are better in the
full sample than the in the sample ending in 2019. Moreover, in
the pre-Covid sample, the factor is less relevant. Furthermore,
in several countries QR with cross-sectional information was
good also in the right tail until the onset of the Covid period,
so the very good right tail performance of BART CC FM is at
least partly driven by the Covid period.
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Supplementary Materials

The online appendix includes additional details on the posterior simulation
algorithm, robustness checks and additional empirical results.
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