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Abstract: Model testing is an inevitable means to verify design optimization because it is 
more economical than prototype testing and more reliable than numerical simulation. However, 
in the floating wind turbine experiment, the hydrodynamic Froude number and the 
aerodynamic Reynolds number cannot satisfy similar rules simultaneously, making the scale 
effect problem a major difficulty in the experiment. Therefore, this paper innovatively 
introduces AI-prediction-in-the-loop experimental technologies. The Froude similarity 
criterion is applied to model production and physical set-up. A Froude-similar wind turbine 
model (except for the blades) is placed in the wave flume and the floating platform moves. The 
response measurement data is input into the AI prediction module to perform real-time 
prediction of aerodynamic loads such as rotor thrust, output the calculation results and control 
the simulated load of the actuator, thereby realizing aerodynamic-hydrodynamic-structural 
coupling experiments under Froude's rules. Characterization benchmark and tank tests are 
carried out to validate the AI-in-the-loop testing methodology, and the results show good 
agreement between measured and predicted rotor thrust values across both high and low 
frequencies. Moreover, the time delay and systematic uncertainty of the proposed testing 
platform are identified for the first time. 
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1 Introduction 
Offshore wind power has emerged as a highly promising renewable energy sector in the 

last decade. Its 24/7 availability and minimal environmental impact have made it an attractive 
option. With over 80% of wind resources located at sea in the EU [1], the offshore wind sector 
holds massive development potential, especially in deep-sea areas. Several initiatives aligned 
with the EU Green Deal have been launched to promote offshore wind power. For instance, 
the “RePowerEU” plan [2], released by the European Commission in March 2022, aims to 
achieve a cumulative installed wind power capacity of 480GW by 2030. Similarly, the UK’s 
“energy security strategy” [3] targets an increase in offshore wind power capacity from 40GW 
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to 50GW by 2030. Additionally, a joint endeavour by Germany, Denmark, Belgium, and the 
Netherlands known as the “Esbjerg Declaration” [4] aims to develop the North Sea into a major 
offshore wind hub in Europe, setting a target of 65GW of installed capacity in the region by 
2030. To commercialize offshore wind power, cost reduction and efficiency improvement are 
crucial. Model tests of Offshore Floating Wind Turbines (OFWTs) provide a cost-effective 
approach to optimize design schemes and explore equipment performance [5]. These tests 
generate more reliable results than numerical simulations while requiring less funding than 
full-scale sea prototypes[6]. As research on floating wind turbines is still relatively new, 
experimental methods are continuously being explored. 

Model testing in the field of marine engineering involves simulating both gravity and 
inertial forces, making Froude number similarity crucial. However, the blades of a wind turbine 
are influenced by aerodynamic forces, which are closely related to viscosity and require 
Reynolds number similarity [7]. Balancing these requirements has proven challenging[8-10]. 
The difference in mechanical properties between the model and prototype due to Reynolds 
number disparities is known as the “scale effect” [11-13]. This scale effect becomes a 
significant challenge in model experiments for floating wind turbine systems, impacting the 
optimization of their design [14, 15]. Overcoming this scale effect is a critical issue in the 
development of efficient floating wind power systems. To address this challenge, researchers 
have proposed hybrid model testing methodologies as a solution[16-18]. A notable example is 
the real-time hybrid model experiment called ReaTHM conducted at the Norwegian University 
of Science and Technology[19-21]. In hybrid model experiments, actuating mechanisms are 
commonly used to simulate different wind load effects. For instance, a ducted fan can simulate 
rotor thrust, while a rotating disk with the same thrust coefficient has been used to simulate 
gyroscope effects. These methods have been applied in model tests of semi-submersible 
floating wind turbines, such as the WindFloat, at the University of California, Berkeley[22].  

The authors are among the first to look at the application of machine learning technology 
in simulating floating wind turbine loads through an innovative interdisciplinary approach. Xue 
J introduced the use of deep learning methods to train neural networks using substantial 
simulation data from full-scale floating wind turbines[23, 24]. This resulted in the development 
of an intelligent machine [25, 26]capable of real-time air load prediction in fully coupled wind 
turbine systems. By utilizing motion response monitoring data and environmental parameters 
from physical models of floating platforms, the applicant successfully predicted rotor thrust. 
Additionally, in this paper, a prototype experimental rig with AI-prediction-in-the-loop testing 
methodology is constructed. Hereafter, the denomination AIReaTHM testing (AI-based Real-
Time Hybrid Model testing) is used to indicate the real-time hybrid testing approach with the 
AI prediction machine. Moreover, a benchmark testing platform is developed to study the 
characteristics of the AIReaTHM testing platform. Results from the benchmark tests utilising 
a manoeuvrable motion simulator are used to justify its feasibility. To further investigate the 
performance of the newly born AI-prediction-in-the-loop testing methodology, model testing 
campaigns concerned with a spar-type OFWT are also carried out. 

Overall, this paper is arranged in the following structure. Section 1 gives the literature 
review on the state-of-the-art development of the hybrid model tests of OFWTs. Section 2 
introduces the novel solution of using artificial intelligence (AI) by giving a brief review of the 
hybrid testing methodology as well as the research objectives of this paper. Details on 
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constructing the AIReaTHM testing rig together with component calibrations are provided in 
Section 3. In Section 4, the benchmark testing method as well as the testing arrangement are 
demonstrated. Section 5 presents the results of the benchmark tests. In section 6, A validation 
of the AIReaTHM testing rig is presented by comparing the prediction values with the real-
time measurement and AI prediction of the rotor thrust. Furthermore, insights into the influence 
of surge frequency, wind speed, turbulence, and wave spectrum on the rotor thrust are 
emphasised. Finally, we draw conclusions in Section 7. 

2 AI-prediction-in-the-loop testing methodology 

Fig. 1 Diagram of the AI-in-the-loop testing methodology 

The simulation of wind loading for tank testing of OFWTs still presents a variety of severe 
challenges. Therefore, AI-prediction-in-the-loop hybrid approaches stand out because it allows 
exploring the effects of different wind environments, rotor configurations and control strategies, 
without complex rotor models and without generating wind field. As shown in Fig 1, Froude 
similarity criteria are applied in model creation and physical experiments. A Froude-similar 
wind turbine model (excluding blades) is placed in a wave-generating water flume. The motion 
response measurement data of the floating platform is input to the AI prediction module 
(including its acquisition and application) to predict real-time aerodynamic loads such as rotor 
thrust. The calculated results are outputted to control the execution mechanism to simulate the 
loads, thus achieving a coupled model experiment of aerodynamics, hydrodynamics, and 
structural dynamics under the Froude similarity rule. 

To achieve the above testing methodology, a well-trained prediction model obtained by 
deep learning the Recurrent Neural Network (RNN) is provided, and it is designed to be 
deployed on a portable controller. As shown in Fig 2, the inputs to the prediction model are 
designed to be “surge position, surge velocity, pitch position, pitch velocity and wind velocity”, 
the output is rotor thrust.  
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Fig. 2 Structure of the prediction model 

The main purpose of using RNN in the prediction model is to obtain the potential 
relationship between input data and output data in the dataset. As shown in Fig 2, in addition 
to receiving input x (t) for each step, it will connect to the feedback information of the previous 
step -- the hidden state h (t-1), that is, the hidden state h (t) at the current moment is determined 
by the input x (t) at the current moment and the hidden state h (t-1) at the upper level. In addition, 
the RNN neurons share the weight parameter matrix at each time step. 

Fig. 3 Workflow of the RNN structure 

As shown in Fig 3, when the neural network receives the measured value of interest xt at 
time t, the value of the hidden layer is obtained by multiplying Xt with the default weight U, 
the value of the hidden layer is St, the Ot of the output value, and the key point is that the value 
of St depends not only on Xt but also on St-1. Four inputs of the AI machine -instantaneous 
surge displacement, velocity, pitch displacement, velocity - are provided by the physical model 
in the basin. These four parameters are initially model-scale but are simultaneously converted 
to full-scale by the Froude Scaling Law in the controller. The time history of the wind velocity 
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is pre-stored in the controller as the fifth input of the prediction module. The output is rotor 
thrust (which is the most significant aerodynamic impact for experimental research of OFWTs). 

Fig. 4 The process of achieving the prediction module 

As learnt from Fig. 4, 7 datasets are compared to secure the best model to be used in the 
AIReaTHM application. For example, when five simulated inputs are given to Model E, the 
predicted thrusts are gained and used to compare with the rotor thrust from FAST computation 
of the same inputs. Furthermore, seven trained models are compared in terms of final prediction 
error (FPE), and mean-square error (MSE), respectively. It is obvious that model D or model 
E should be used in the prediction module because they give the best prediction accuracy, while 
least prediction errors. The simulated output-rotor thrust obtained from prediction model E are 
comparatively given in Fig. 5. When selecting the datasets, four frequencies are considered, 
which are the frequency of the wind data(f1), the frequency of FAST calculation(f2), and the 
subsampling frequency of the data from the FAST calculation(f3), the frequency of training 
the prediction module(f4). The dataset is then named in ‘‘f1_f2_f3_f4’’. For each dataset, five 
vectors represent five individual parameters, which are pitch, pitch velocity, surge, surge 
velocity, and wind velocity, respectively.  
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Fig. 5 The output of the prediction modules compared with the measured 

Table 1 Optimization of the prediction model by using different datasets 

Case No. 
Database Name 
f1_f2_f3_f4

Database 
Size 

Prediction 
model 

Accuracy FPE MSE 

1 20Hz_80Hz_20Hz_20Hz(+) 720005 A 94.29% 65.38 65.32 

2 20Hz_80Hz_20Hz_80Hz 360005 B 94.4% 66.78 66.68 

3 20Hz_80Hz_20Hz_20Hz 360005 C 94.4% 66.78 66.68 

4 80Hz_80Hz_80Hz_80Hz 1440005 D 96.41% 26.94 26.93 

5 80Hz_80Hz_80Hz_20Hz 1440005 E 96.41% 26.94 26.93 

6 80Hz_80Hz_20Hz_80Hz 360005 F 92.04% 132.6 132.6 

7 80Hz_80Hz_20Hz_20Hz 360005 G 92.04% 132.6 132.6 

Regarding the database’s data size, initial trials were conducted by extending the 
simulation time, resulting in an increased data size. Typically, as the simulation time increases, 
so does the prediction accuracy. However, there is a point at which further increasing the 
simulation time does not enhance the prediction accuracy, as observed in the comparison 
between case 1 and case 3. Therefore, the time boundary for running simulations was 
determined to be 2000s for case 2 to case 7, providing crucial insights for optimization analysis. 

Table 1 demonstrates that the frequency of FAST computations (f3) significantly impacts 
the dataset size. Increasing f3 leads to a substantial growth in data size. As a result, Model D 
and Model E are trained using four times the data volume compared to Model B and Model C. 
It is evident that Model D and Model E exhibit superior prediction accuracy with fewer errors. 
The prediction accuracy of the targeted model is influenced not only by f3 but also by f1, as 
observed in the comparison between cases 2 & 3 and cases 6 & 7, in conjunction with case 2 
and case 4, which helps draw conclusions. Additionally, it is clear that higher accuracy 
consistently corresponds to lower final prediction errors. 
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3 Construction of the AI-prediction-in-the-loop testing platform 

Fig. 6 Construction of the AIReaTHM testing platform 

In the experimental loop of the AIReaTHM testing rig, as shown in Figure 6, the following 
key steps are involved: 1) An optical motion capture system measures surge and pitch motion 
parameters, including displacements and velocities, from the physical model placed in the 
water tank. 2)These motion parameters, along with pre-stored wind data in the computer 
random access memory (RAM), are transmitted to the prediction module via the data 
acquisition system (DAQ) system. 3)The prediction module generates the rotor thrust 
command, which drives the rotation of the fan and influences the motion response of the 
physical model.  

Fig. 7 The fan thrust of the calibration tests at different operating frequencies 
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Figure 7 displays the results of the calibration tests conducted on the fan, which involved 
controlling it at different operating frequencies. Prior to each benchmark test, the fan underwent 
calibration using a pulse width modulation (PWM) DC generator for speed control, ensuring 
precise measurements and reliable execution. The calibration test explored three frequencies 
(50Hz, 100Hz, and 150Hz) in order to identify the optimal operating frequency. However, as 
depicted in Fig. 7, the targeted rotor thrust was found to be largely unaffected by the operating 
frequency. Consequently, a frequency of 100Hz was chosen for the benchmark testing sessions. 
Furthermore, the calibration results indicated a strict and consistent linear correlation between 
the commanded thrust and the measured thrust of the fan. This linear relationship was 
subsequently employed to control the fan and attain the desired rotor thrust. Similarly, the load 
cell used in the experiment was also calibrated. By analyzing the sample points, a clear link 
between the thrust reading and voltage change of the load cell was discovered. To ensure 
accurate readings from the load cell, a regression analysis was conducted, resulting in the 
derivation of a regression equation, as illustrated in Figure 8. 

Fig. 8 Calibration of the executing fan 

Fig 9 Calibration of the load cell 
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During the entire process, the controller effectively manages the scale interface 
considerations in the following way: 

a) The inputs gathered at the model scale are converted to the full scale using the Froude
Scaling Law within the controller. This conversion takes place before transferring the inputs to 
the prediction module. 

b) As part of its output, the controller generates a command for the full-scale rotor thruster.
In summary, the controller handles scale interface issues by utilizing the Froude Scaling Law 
to convert inputs from the model scale to the full scale. The controller then generates a 
command for the full-scale rotor thruster. 

4 Benchmark testing arrangements 

Benchmark tests are necessary to objectively evaluate the performance of the AI 
prediction, the ensure the feasibility of the AI-in-the-loop hybrid testing methodology, 
compare the testing effects with existing choices, and future-proof systems or components. 
They are vital tools for making informed decisions and optimizing technology for optimal 
performance and efficiency. 
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Fig. 10 Experimental set-up for benchmark testing 

In order to assess the efficacy of the proposed AIReaTHM testing methodology, a 
benchmark testing platform (depicted in Fig.10) has been developed to investigate the accuracy 
of predicting and executing targeted real-time rotor thrust in an experimental setting. To 
simulate the surge input, a Scotch Yoke mechanism is employed, and the rotor thrust signal is 
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monitored by the DAQ system. While the surface waves and ocean currents are physically 
modelled in the tank using wake makers, the turbulent wind is generated numerically and pre-
stored in the controller as oncoming wind input for the prediction module. The thrust 
calculation is carried out in full scale in the prediction module, and the red lines in Fig. 10 
indicate the numerical and software parts of the hybrid testing approach, while the blue lines 
represent the physical substructures. The hardware used to execute the thrust command is 
illustrated by grey cubes and circles. A controller is utilized to read the motion and velocity 
profiles of the motion simulator, and they are scaled up to full scale using the Froude scaling 
law before being entered into the prediction module in the controller, along with the full-scale 
wind field data produced via numerical simulation. Subsequently, the software in the controller 
computes the corresponding thrust. To accommodate model-scale experiments, the profile of 
the real-time thrust command is scaled down to model scale to drive the fan and generate fan 
thrust. A series of bench tests are carried out in this manner. In the benchmarking testing 
methodology, two measurements have been incorporated. Firstly, the Linear Variable 
Differential Transformer (LVDT) is utilized to accurately quantify the motion generated by the 
Scotch Yoke mechanism, enabling a comprehensive assessment of the motion capture quality 
of the Qualysis motion capture system. Additionally, a load cell is strategically positioned 
beneath the fan to precisely measure the total horizontal force exerted during its linear surge 
along the Scotch Yoke mechanism.  

For the AI predicting model, two modes are currently enabled: mode A and mode B. The 
prediction algorithm for mode A is specifically employed for regular wave conditions (with 
frequencies ranging from 0.1 rad/s to 3.0 rad/s) and steady wind conditions (with wind speeds 
ranging from 6 m/s to 18 m/s). On the other hand, the prediction algorithm for mode B is 
developed to forecast outcomes in five distinctive sea states, characterized by wave spectrum 
and the IECKAI turbulent wind model. To empirically validate the performance of both 
algorithms, a comprehensive set of benchmark tests has been meticulously designed and 
outlined in Table 2. 

Table 2 Testing arrangement 

Mode Quantity 
of tests 

Wind Wave condition surge 

A 5 8m/s 
Regular wave(f= 

0.1rad/s, 0.2 rad/s, 
…3.0rad/s) 

Surge at five 
frequency(v1,v2,v3,v4,v5) 

A 5 10m/s 
A 5 12m/s 
A 5 14m/s 
A 5 16m/s 

Mode 
Quantity of 

tests Sea State surge 

B 5 SS1 SS1+ 

Surge at five 
frequency(v1,v2,v3) 

B 5 SS2 SS2+ 
B 5 SS3 SS3+ 
B 5 SS4 SS4+ 
B 5 SS5 SS5+ 

v1…v5 is used to present the five surge frequencies to differ from f1…f4 in section 2.2 

5 Outcomes of the benchmark testing and necessary data process 
To accurately measure the rotor thrust generated by the fan, a load cell is integrated 

beneath the fan. It is worth mentioning that the load cell is securely attached to the Scotch Yoke 
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mechanism and moves in sync with the fan during operation. Consequently, the reading 
obtained from the load cell consists of two significant components: 1) the acceleration force, 
and 2) the rotor thrust on a model scale, which will be referred to as “thrust” for simplicity in 
this paper. Hence, it is crucial to eliminate the contribution of the acceleration force from the 
load cell’s reading. 

Determining the appropriate mass to eliminate the real-time acceleration force from the 
load cell’s measurement time histories is crucial. To achieve this, the referred mass is 
calculated, statistically analyzed, and cross-verified with the masses of both the physical fan 
and its holder. Once the acceleration force has been successfully eliminated from the load cell’s 
experimental readings, the measurement of the fan’s thrust can be obtained. To identify the 
referred mass, a series of experiments were conducted where only surge motions were allowed 
while the fan rotation was switched off. In this case, the load cell’s readings solely captured 
the acceleration force. Figure 11 illustrates the readings from a typical experiment, where 
velocity is derived by differentiating the LVDT (Note: LVDT refers to Linear Variable 
Differential Transformer, which is a type of sensor used for measuring displacement or position) 
reading, and acceleration( a ) is obtained by further differentiating the velocity. 

Fig. 11 A typical experiment without fan rotating 

The acceleration force can be described as Eq(2) by Newton’s Second Law 
referred referredF M a  (1) 

then, referredF  and acceleration a are following 

max 1sin( )referredF F wt   (2) 

max 2sin( )a a wt   (3) 
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where, w  is the angular frequency of the motion simulator (Scotch Yoke). If we ignore 
the phase difference, the mass causes the initial force can be described as, 

max maxreferredM F a  (4) 
then the distribution of the referred mass obtained by the above experiment varies as 

maxF  and maxa vary per cycle, which is demonstrated in in Fig. 12(a). In the same manner, 
the referred mass is calculated on a per-cycle basis, afterwards, the mean value as well as the 
variance are obtained for each test as shown in Fig. 12(b). Based on the statistical calculation 
of the experiment data, it is recommended that the range of the referred mass located between 
820-830g.

Fig. 12 Distribution of the initial mass in one typical experiment 

To eliminate the acceleration force from the load cell’s experimental readings, it is 
necessary to determine the appropriate referred mass. The referred mass should be a constant 
value that includes both the physical fan and load cell. However, since the load cell is only 
partly located above the surging piston, its 1/4 mass needs to be added to the mass of the fan 
for an accurate measurement. To determine the referred mass, the mass of the relevant parts 
was measured. According to Fig. 13, the mass of the fan was determined to be 718g, while the 
1/4 mass of the load cell was calculated as 102g. The total referred mass was calculated as 
820g, which is within the recommended range. This value was used to remove the acceleration 
force from the load cell’s readings. The remaining portion of the load cell’s readings provides 
a reference to analyze the fan’s ability to generate a commanded thrust, which is useful when 
validating the AIReaTHM testing methodology. This referred measurement is denoted as RM. 
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Fig. 13 Weight of the mass of the physical fan and load cell 

This measurement of fan thrust serves various purposes within the study. Firstly, it aims 
to validate the practicality of the AIReaTHM testing methodology. Secondly, it aims to explore 
the influence of surging motion on predicted rotor thrust. Thirdly, it aims to investigate the 
impact of turbulence and wave spectrum on rotor thrust. Lastly, it aims to identify the 
systematic uncertainties of the temporary testing rig used for validating the testing 
methodology. By doing so, it paves the way for further enhancement and refinement of the 
testing methodology. 

6 Validation of the AIReaTHM testing platform 

6.1 The comparative analysis between the measured and AI-predicted rotor thrust 

Fig. 14 Measurement from one typical bench test 

Figure 14 displays data from a typical experiment where wind speed is 12 m/s, and the 
motion simulator surges at v2. The data between 60 and 130 seconds is selected for analysis to 
eliminate transient reactions. Initially, the load cell reading is adjusted by removing the 
acceleration force to obtain RF. Subsequently, the remaining data is scaled by the Froude 
scaling law. In Figure 15, a comparison is presented between the AI command and the scaled-
up values of the generated fan thrust, when wind speed is set to 8 m/s, 10 m/s, 12 m/s, 14 m/s, 
and 16 m/s. The measurements agree well with the AI prediction output when the wind speed 
is 8 m/s, 12 m/s, and 16 m/s. However, for a wind speed of 10 m/s and 14 m/s, there are some 
amplitude errors, which can be attributed to the randomness of the real-time fan thrust 
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measurement. As the fan rotates, various random factors may affect the thrust measurement, 
such as ground vibrations from pedestrians, air flows caused by opening or closing doors, and 
environmental noise resulting from the operation of other testing equipment in the lab. Thus, it 
can be concluded that the fan can function adequately as per the AI signal commands. Also, 
both the AI values and the scaled-up FM values concur with the conclusions presented in [4], 
namely, that the average rotor thrust corresponds to the low-frequency component of the rotor 
thrust, which is primarily driven by wind speed. On the other hand, the oscillating component 
of the rotor thrust corresponds to its high-frequency component, which is mainly driven by 
wave conditions. 

Fig. 15 RM compared with AI rotor thrust, surge at v1, various wind speeds 

6.2 The effect of surge frequency and wind speed on the rotor thrust 
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Fig. 16 Same surge frequency under different wind speeds 

To gain more comprehensive insights into the performance of the prediction module, we 
conducted a case study on surging at v2. As shown in Figure 16, we compared the thrusts 
obtained under various wind speeds, which revealed differences in their average values. 
However, the oscillating component of the thrusts exhibited similar responses, which is 
reasonable since the surge inputs remained the same. Moreover, our bench test results suggest 
that the surge input did not impact the average value of the thrusts. In Figure 17, we examined 
the thrusts produced under the same wind speed, but with the motion simulator surging at 
different frequencies. Our findings showed that increasing the frequency of the surge input led 
to a corresponding increase in the frequency of the oscillating component of the thrust. 
Furthermore, the amplitude of the oscillating component increased slightly as the frequency 
rose. 
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Fig. 17 Same wind speed under different surge frequencies 

Our analysis revealed a minor frequency difference between the AI command and the 
measured rotor thrust (RM), as illustrated in Fig. 17. At the highest surging speed, 
corresponding to a frequency of 0.557Hz, this frequency difference became more noticeable. 
We also found that the frequency of the oscillating component of the thrust increased as the 
frequency of the surge input rose. Additionally, the amplitude of the oscillating component 
slightly increased with frequency. This is likely caused by the simplifying assumption we made 
when abstracting the measurement of rotor thrust from the load cell reading. The calculation 
of the acceleration force is sensitive to acceleration, which is derived from the surge motion. 
Moreover, the RM is an external reference rather than an absolute standard and is not part of 
the testing methodology. Therefore, the RM values do not affect the performance of the AI 
prediction module. To exercise caution in our experimental research, any frequency/time 
difference issues were studied further on a case-by-case basis in “Development and 
characterisation of an AI-in-the-loop testing platform for floating wind turbines part II: 
benchmark tests, uncertainty discussion, and comparative studies”. 

6.3 The effect of turbulence and wave spectrum on the rotor thrust 
Table 3 provides a breakdown of the wave and wind conditions for each sea state. The 

JONSWAP spectrum with varying parameters is employed to represent the wave conditions. 
In terms of wind conditions, we utilize five IECKAI models with turbulence for SS1-SS2 
(referred to as ‘SSi’ together as needed thereafter) and SS1+ to SS5+ (together referred to as 
‘SSi+’ as needed thereafter) to compare against the corresponding steady wind of each SSi. 
The parameters of JONSWAP spectrum in Table 3 are defined according to Eq. (7). 
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p  ; 2 /p pT  . sH is the significant wave frequency, pT is the peak wave period,  is 
the peak enhance coefficient. 

Table 3 Environmental conditions of sea states 
Sea State Wave Conditions(JONSWAP spectrum) Wind Conditions(IECKAI model) 

SS1 sH =4.55 m, pT =9.00s,  =2.45 u


=11.40, TI=20.45 

SS2 sH =1.5 m, pT =6.61s,  =1 u


=11.40, TI=20.45 

SS3 sH =1.25 m, pT =6.36s,  =1 u


=9.18, TI=22.98 

SS4 sH =1.75 m, pT =6.86s,  =1 u


=12.8, TI=19.31 

SS5 sH =2.75 m, pT =7.8s,  =1.41 u


=16.8, TI=17.09 

SS1+ sH =4.55 m, pT =9.00s,  =2.45 u


=11.40, TI=0 

SS2+ sH =1.5 m, pT =6.61s,  =1 u


=11.40, TI=0 

SS3+ sH =1.25 m, pT =6.36s,  =1 u


=9.18, TI=0 

SS4+ sH =1.75 m, pT =6.86s,  =1 u


=12.8, TI=0 

SS5+ sH =2.75 m, pT =7.8s,  =1.41 u


=16.8, TI=0 
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Fig. 18 Time histories of rotor thrusts under different sea states 

After conducting benchmark tests for the sea states outlined in Table 3, thrust samples 
were obtained during motion simulation at v2 for ten different sea states, as shown in Fig. 18. 
This figure provides valuable insights in several ways. Firstly, unlike other sea states with 
steady wind conditions such as SSi+, the thrust obtained for sea states with turbulent wind 
tends to be erratic and random, demonstrating the impact of turbulence on rotor thrust. Notably, 
the mean thrust of SS1 appears to decrease slightly compared to SS1+, with similar drops 
observed in SS2 to SS5, indicating that turbulence affects both instantaneous and mean thrust. 
While wind conditions are identical for SS1 and SS2, different wave parameters are used to 
generate waves in the basin, causing their split-second thrust to follow different trajectories. 
However, the mean thrust remains almost the same, suggesting the wave conditions have 
minimal influence on rotor thrust. The mean thrust initially increases as wind speed rises, but 
once it reaches its peak at 12m/s, it begins to decline slowly, reaffirming that wind speed 
remains the most significant factor affecting rotor thrust, though turbulence also plays a role. 
While the impact of the wave spectrum on rotor thrust is evident, it is minimal compared to the 
effect of wind conditions. 

Furthermore, in the experiments conducted on SS1 and SS2, the wind conditions were 
kept constant, but different wave parameters were used to generate waves in the testing basin. 
This resulted in different trajectories for the split-second thrust of SS1 and SS2, while the 
average thrust remained relatively stable. These findings suggest that wave conditions may 
have only a minor impact on rotor thrust. Notably, the average thrust initially increases with 
wind speed, reaching its peak at 12m/s before gradually declining. This indicates that wind 
speed remains the primary factor affecting rotor thrust, although turbulence also plays a role. 
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While the wave spectrum does contribute to rotor thrust, its effect is relatively insignificant 
compared to that of wind conditions. 

The originality of applying artificial intelligence techniques in the hybrid testing method 
for floating wind turbines can be summarized as follows: Firstly, this experimental method 
addresses the issue of the Froude-Reynold scaling conflict in hybrid model testing by enabling 
full-scale prediction calculations of aerodynamic loads. Secondly, it replaces numerical 
simulation with AI prediction to improve the calculation speed of rotor thrust and reduce the 
delay effect of hybrid model experiments. Lastly, the AI prediction machine used in this 
method does not rely on any third-party computing software. It can be continuously optimized 
and upgraded with the accumulation of experimental data and prototype operation data, 
significantly enhancing the accuracy of floating wind turbine model testing while reducing the 
cost of experimentation. 

7 Conclusions and future work 
We have proposed and constructed a novel AI-based hybrid testing rig, which has been 

subjected to benchmark tests using a manoeuvrable motion simulator. The study investigates 
the impact of surge inputs (generated via motion simulation), wind speeds, and turbulence wind 
on targeted thrust. The research has yielded several significant new contributions, including: 

 The benchmark testing results demonstrate that the AI-in-the-loop testing
methodology can overcome the Froude-Renald scaling conflict in the tank testing
of floating wind turbines.

 Turbulence wind significantly influences the amplitude of motions.
 Waves have less influence on the hydrodynamic response of the floating spar than

turbulence wind.
 The frequency of motions has a significant impact on the time delay between the

prediction and measurement of rotor thrust.
 Moreover, it should be noted that the AI machine relies on big data from the cloud to 

train its prediction algorithms. As more realistic data become available from pilot floating wind 
farms, the AI machine’s performance will improve. 
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