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Abstract 
Understanding and quantify human performance is an essential component to guarantee 

and control the safety of critical installations where human intervention can represent the 
ultimate safety defence. Human reliability analysis is a time consuming and tedious task usually 
performed by a human factor expert and therefore subjected to error and variability. In 
addition, within human reliability analysis there are numerous opportunities to learn from data. 
However, how data are gathered, presented, shared, and used is an area of continuous 
development and discussion.  

In this work, we present a collection of artificial intelligence (AI) tools and methodologies 
developed to tackle different challenges within the field of human reliability. The aim is to 
automatise the process, learn from data and support the task of human reliability experts. The 
collection of tools includes: a tool to automatically classify human errors from accident reports 
and construct a Bayesian/Credal Networks. The developed works are freely available as part 
of the open source COSSAN software.  

Keywords: Human Reliability Analysis, Human Error, Machine Learning, Natural Language 
Processing, Bayesian Networks, Software 

1. INTRODUCTION
Human reliability analysis is a field that is concerned primarily with the human contribution

to risk and the factors that influence human performance, known as performance shaping factors 
(PSFs) [1].  Understanding the contribution and interactions of PSFs on human reliability 
allows to aid design processes, prevent accidents, and improve overall safety. How PSFs affect 
human reliability can be learn from observations from real data of accident reports, near missing 
or from lab experiments and simulators [2]. 

For instance, databases such as the Multi-Attribute Technological Accidents Dataset 
(MATA-D) can be used to support the opportunity for learning from past accidents [3]. MATA-
D is a collection of major accident reports, classified with a framework focused on the 
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relationship between human error and PSFs. However, manually read all reports, extract 
relevant information, and create a model for human error is a challenging and complex task.  

This work introduces a collection of data-driven tools and methodologies that have been 
developed to address various challenges in human reliability analysis. These tools tackle data-
gathering, quality-of-life, time-consuming tasks, and data driven modelling challenges across 
the field. The toolkit includes a virtual human factor classificator named “Virtual Raphael” that 
allows the expansion of the MATA-D without the direct need of a human factor expert. This 
tool is trained on accident reports previously labelled by human experts and allows an 
automated classification of human errors and the corresponding PSFs involved, and details of 
the methodology presented in [1], [4]. The original classificator based on bag-of-words 
approach [5]has been improved using a popular transformer-based machine learning, known as 
BERT (Bidirectional Encoder Representations from Transformers) [6]. An example of one of 
the ways to make use of the available data is then presented, with the discussion of a tool 
developed to elicit causal links between the performance shaping factors. 

The use of probabilistic tools, such as Bayesian/Credal Networks has become a popular 
choice for modelling human error [7]. However, data has only been used to estimate the 
conditional probability tables [8]. Therefore, a tool that combines elements of information 
theory and structure learning algorithms for Bayesian Networks has been developed, to produce 
a network structure that can be tailored to the user's requirements based on the initial inputs [9]. 

The above-mentioned techniques for human reliability analysis have been implemented as a 
standard-alone tools and available as part of the COSSAN software [10]- [11] and freely 
available.  

2. HUMAN RELIABILITY ANALYSIS

Human Reliability Analysis is a systematic approach used to evaluate and improve the
reliability and safety of systems by assessing the potential contribution of human error.  The 
process usually involves identifying potential human errors, analysing the causes of those 
errors, factors that influence these, and determining the likelihood and consequences of those 
errors. This analysis can then be used to identify opportunities to improve system design, 
training, procedures, or other factors that could reduce the likelihood of human error. Human 
error probability is measure of the likelihood of a human error occurring in a particular task or 
activity, this can be defined as the ratio between the number of performed errors and the number 
of given opportunities for error to occur [12]. However, it is also important to consider the 
influence of performance shaping factors on this risk. 

To carry out quantitative human reliability analysis and calculate human error probability 
data from a range of sources is often considered, including expert judgements, data from 
simulators, from real operation, near misses and accidents. Data collected from real operations 
(i.e., incidents, near-misses, and accidents) is considered the most credible data for estimating 
human error probabilities, above simulators and expert judgment [13]. Data collected from 
simulators is often restricted to human-machine interfaces in control rooms. Often collected 
data needs to be calibrated by expert judgment adopting well known approaches. This approach 
is strong on detecting human errors, but weak on detecting all the performance shaping factors. 
This is due to the decontextualization of the studied tasks [14]; for instance, operators know 
that their actions will not have any consequence and often know that their actions are being 
observed [13]. Expert elicitation can be considered the least credible source of data. Their 
judgements can be oriented by different sources of bias [15], and be systematically 
overconfident about the accuracy of their judgments [16]. However. all approaches to human 
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reliability analysis rely on expert judgment to some extent, as all methods start with a qualitative 
analysis of possible scenarios [17].  

Data from major accident reports have the potential to better capture the interaction between 
human, machine, and organizational systems, providing additional contexts and scenarios not 
fully achieved by simulators and expert elicitation [3]. This is because detailed analysis of the 
causes that led to the accidents are required and performed [18]. Despite this the strategy of 
using major accident data to estimate performance shaping factors and human error 
probabilities had not been significantly explored, this led to the construction of the dataset used 
in this work, known as the Multi-Attribute Technological Accidents Dataset (MATA-D). 

2.1 Multi-Attribute Technological Accidents Dataset 
The Multi-Attribute Technological Accidents Dataset (MATA-D) [3] is a collection of 238 

major accidents from a range of different industries considered to be of similar complexity, 
including aviation, chemical, oil & gas, nuclear, waste treatment etc., allowing the conceptual 
advantage of cross-learning from different industrial sectors. The accident reports for these 
incidents were then analysed by an expert focused on the contributing human factors, classified 
using the CREAM (Cognitive Reliability and Error Analysis Method) framework [19]. The 
CREAM taxonomy is comprised of human errors and performance shaping factors including 
organizational, technological, and individual factors [19]. 

This accident dataset provides researchers and practitioners with a simple interface and 
straighforward access to human factors data from accidents from a range of industrial sectors. 
The binary classification for the evaluated factors (presence or absence) allows data 
interpretation using uncomplicated statistical methods or sophisticated mathematical models, 
depending on the user’s requirements. The MATA-D has been coded in Excel, and can be 
accessed and downloaded at https://datacat.liverpool.ac.uk/1018/ [3]. Each present factor also 
comes with a brief description, explaining the expert's decision to select these factors, as seen 
in Figure 1. As well as the CREAM classification and description, details regarding the location, 
industry and year of the accident are stored within the MATA-D. 
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Figure 1 Screenshot of the MATA-D showing the factors responsible for the accident and detail justification. 

3. VIRTUAL RAPHAEL: A VIRTUAL HUMAN FACTORS CLASSIFIER
The collection of empirical data is a time-consuming and expensive, especially in the field

of human reliability, where data collection and classification are usually done by experts in their 
fields. For example, the MATA-D database was constructed through the extensive reading and 
manual classifying of 238 accident investigation reports, a task that took approximately one 
year to be completed. Alongside the time-consuming nature of this task, a specialised 
knowledge is required, as the assessors had to be minimally trained on the taxonomy used to 
pursue the classification. The expansion of the dataset is necessary not only to reduce epistemic 
uncertainty, by collecting and classifying more accident reports to increase the chance of 
describing more human-machine-organization interactions, but also to account for changes in 
human behaviour and technological advancements over time. 

3.1. SVM Approach 
The presented work shares the development of an automated approach to analyse new 

accident reports and identify the present human factors, trained using the classified reports that 
make up the MATA-D. The proposed methodologies have been applied to analyse the 
preliminary accident report of the 2018 Lion Air accident showing the feasibility of the 
machine-learning proposed approach [4].  

Shown in Figure 2 is a simplified workflow of the machine learning based classification 
approach while details of the algorithm and its performance are available in Ref. [1]. In the first 
module, the accident investigation reports are processed to check if the text in the files is 
recognized by the machine and, if not, an optical character recognition software (OCR) is used 
to convert them to text files. After this pre-treatment, the text is pre-processed to clean 
punctuation, stop words, and reducing words to their stem (e.g., ‘testing’ is reduced to ‘test’). 
The tool takes each accident report’s file name and finds the corresponding entry in the MATA-
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D. This gives the machine-learning component the desired input for each accident report, a 
combination of the accident report text and their known human factors features. Then, the 
selected text is converted into bag-of-words objects, that is the vocabulary of words and their 
frequency of occurrence from the text, forming the input for the model together with the features 
extracted from the MATA-D which serves as the output of the model.  The third module of the 
approach is based on Support Vector Machine (SVM) [20]. The SVM is trained and tested using 
data processed by the previous two modules, and calculate the performance metrics such as 
accuracy, precision, recall and F1.  

The fourth and final module of the tool is concerned with the application of the model learnt 
through the previous modules. Users are able to add a new report that is not yet part of the 
MATA-D. This report then goes through a similar series of steps as set out before and tested 
using the learnt SVM model. Finally, a list of the human reliability features identified by the 
tool (an array of the predicted positive factors), a small table with all positives and negatives 
predictions (the 53 features of the chosen taxonomy), and a word cloud of the most relevant 
words in the report, is produced. 

 The classifier has been coded in Matlab and supported by the text analytics toolbox, which 
uses the bag-of-words model to extract text strings from files and prepare data for the machine-
learning algorithm. The MATLAB statistics and the machine-learning toolbox is used to 
transform text inputs into binary classification adopting the Support Vector Machine [1]. The 
Virtual Raphael classificator runs the entire process in approximately one minute on a standard 
laptop computer, (which may be further reduced by saving and storing the SVM model, rather 
than retraining it each time a new report is tested), compared with the approximately three days 
it takes to manually read and classify one 200-page accident report. 
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Figure 2 Workflow of the “Virtual Raphael” Human Factors Virtual Classifier. 

Error! Reference source not found. shows the average performance metrics for the virtual 
classifier based on SVM approach on a 10% test set of the available reports excluded from the 
training set. The results obtained are similar to other studies and demonstrate there is value in 
this approach for aiding experts in the evaluation of accident reports.  

Metric 
Accuracy 86% 
Precision 60% 
Recall 46% 
F1 score 52% 

Table 1 Performance Metrics Human Factors Virtual Classifier SVM Approach, adapted from [1]. 

3.2 BERT Approach 
Although the developed tool based on SVM (see Section 3.1) performs sufficiently well and 

it is quite robust, an improved version has been proposed for making use of more recent 
progression in the field of Natural Language Processing (NLP). The tool has the same aim and 
applicability of the original Virtual Human Factors Classifier but with an improvement in the 
performance metrics. 
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This proposed approach makes use of BERT (Bidirectional Encoder Representations from 
Transformers), which is a pre-trained language model that is designed to understand natural 
human written or spoken language [6]. BERT has proven to be highly effective when used for 
text classification tasks. BERT makes use of a Transformer, an attention mechanism, that learns 
contextual relations between words in a text. Transformers include two separate mechanisms, an 
encoder that reads the text input and a decoder that produces a prediction for the task [6]. As 
opposed to directional models, which read the text input sequentially (left-to-right or right-to-
left), the transformer encoder reads the entire sequence of words at once. Therefore, it is 
considered bidirectional, this allows the model to learn the context of a word based on all of its 
surroundings. By better considering the context of a word than other approaches, BERT can 
lead to a more accurate classification of the text. Alongside this, BERT is pre-trained on a large 
corpus of text data, that allows the model to better learn general structures of language. This 
transfer learning approach can therefore reduce the amount of pre-labelled data required for 
training a model, which is one of the major advantages for this proposed approach due to the 
limited availability of pre-labelled accident reports in the MATA-D and in other databases 
relevant for human reliability analysis. 

Similarly, to the original Virtual Human Factors Classifier, the accident investigation reports 
are processed to check if the text in the files is recognised by the machine and, if not, an optical 
character recognition software (OCR) is used to convert them to text files. To prepare the text 
data to be used by the model, it must first be tokenized using the same scheme used to pretrain 
the BERT model, which is called WordPiece tokenization [21]. This works by splitting words 
either into the full forms (e.g., one word becomes one token) or into word pieces — where one 
word can be broken into multiple tokens. Using word pieces allows BERT to easily identify 
related words as they will usually share some of the same input tokens, which are then fed into 
the first layers of BERT. This step is completed using the pre-trained BERT tokenizer from 
Hugging Face Transformers library on Python. The text data is then combined with the labels 
from MATA-D [21]. This is used to train the classification layer added on top of the pre-trained 
BERT model imported from the same library. Which is then optimized using stochastic gradient 
descent, with binary cross-entropy loss function, where the hyperparameters were fine-tuned 
based on performance on the validation set. The model is then saved, so that new accident 
reports, which must first be processed through the same tokenizer, can be classified, with the 
final tool outputting the identified factors, and a binary array corresponding to all 53 factors 
that can be used to add the incident to the MATA-D. 

Significant improvements in the performance metrics have been obtained and reported in 
Table 2 that shows the average of the performance metrics based on a 10% test set of the 
available reports excluded from the training set. However, the increased performance come at 
the prize of a greater complexity that reduces usability of this tool when compared with the 
original based on SVM. This tool will allow the expansion of the MATA-D at a faster rate 
(approximately one minute per report) whilst maintaining a performance and accuracy, that can 
be considered more in line with the performance (in terms of classification) from a human 
expert. 

Metric 
Accuracy 91% 
Precision 88% 
Recall 77% 
F1 score 82% 

Table 2  Performance Metrics Virtual Human Factors Classifier BERT Approach. 
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3.3 Validation 
In order to demonstrate and test the application of the above tools, a new accident report (not 

yet part of MATA-D) from an incident in the oil & gas industry was selected to be analysed 
and classified by the same experts that classified the accident reports for MATA-D assuring 
consistency in the classification (avoiding the natural and unavoidable variability across 
experts).  The results of the automated classification were not shown to the human expert before 
the task, to avoid biased [1]. 

The case study selected is the explosion onboard of floating production, storage and 
offloading unit (FPSO) Cidade de São Mateus in Brazil occurred in February 2015. The FPSO 
was operated by BW Offshore in gas fields under concession to Petróleo Brasileiro S.A 
(Petrobras) in Brazilian waters [57]. The accident killed nine workers and injured 26, as well 
as caused damage to the installation, and the production was halted at two gas production fields 
up to 2020. The Brazilian Oil & Gas regulator (ANP) has included in their investigation report 
root causes from the design phase to the emergency response.  

Table 3 shows the classification of human factors obtained by the human experts and by the 
“Virtual Raphael” tool with the SVM and BERT version, respectively. Based on the BERT 
classification tool, the following features are observed in the oil & gas installation incident of 
the FPSO Cidade de Sao Mateus: human errors of execution of wrong place, of interpretation 
with faulty diagnosis and wrong reasoning, and permanent person related functions due to 
cognitive bias; the technological factors of  incomplete information (related to temporary 
interfaces); the organisational factors of communication failure, missing information, 
maintenance failure, inadequate quality control, design failure, inadequate task allocation, 
insufficient skills and knowledge, and excessive demand related to working conditions. As well 
as two human errors due to Temporary Person Related Functions, memory failure and 
inattention, not identified by the expert. 

Table 4 shows the performance of “Virtual Raphael” for the validation case. Both 
approaches demonstrate a high precision and good accuracy scores, however there is a 
significant improvement in recall and therefore F1 Score from the SVM to the BERT. Recall 
can be considered the most important performance metric for human reliability classifier. The 
cost of a human error or a performance shaping factor that goes undetected (and consequently 
with no resource allocated to its risk reduction) seems to be more severe than spotting errors 
that are non-existent. On the other hand, when considering resource allocation, precision is also 
of high importance, as this increases the chance that the factors predicted are mostly correct and 
thus investment is not wasted. F1 Score symmetrically represents both precision and recall in 
one metric given by the formula F1=2*Recall*Precision/Recall+Precision. The significant 
improvement in the F1 Score seen in the average performance metrics (Table 1, Table 2) and 
here in this validation task, justifies the development of the BERT method tool. 
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Expert SVM BERT 

HUMAN 

Action Execution
(Error Modes) 

Wrong Time 0 0 0 
Wrong Type 0 0 0 
Wrong Object 0 0 0 
Wrong Place 1 0 1 

Specific 
Cognitive 
Functions 

Observation 
Observation Missed 1 0 0 
False Observation 0 0 0 
Wrong Identification 0 0 0 

Interpretation 

Faulty diagnosis 1 0 1 
Wrong reasoning 1 0 1 
Decision error 0 0 0 
Delayed interpretation 0 0 0 
Incorrect prediction 0 0 0 

Planning Inadequate plan 1 0 0 
Priority error 0 0 0 

Temporary Person 
Related Functions 

Memory failure 0 0 1 
Fear 0 0 0 
Distraction 0 0 0 
Fatigue 0 0 0 
Performance Variability 0 0 0 
Inattention 0 0 1 
Physiological stress 0 0 0 
Psychological stress 0 0 0 

Permanent Person 
Related Functions 

Functional impairment 0 0 0 
Cognitive style 0 0 0 
Cognitive bias 1 0 1 

TECHNOLOGY 

Equipment Equipment failure 0 0 0 
Software fault 0 0 0 

Procedures Inadequate procedure 1 1 0 

Temporary Interface 
Access limitations 0 0 0 
Ambiguous information 0 0 0 
Incomplete information 1 0 1 

Permanent Interface Access problems 0 0 0 
Mislabelling 0 0 0 

ORGANISATION 

Communication Communication failure 1 0 1 
Missing information 1 0 1 

Organisation 

Maintenance failure 1 1 1 
Inadequate quality control 1 1 1 

Management problem 0 0 0 
Design failure 1 1 1 

Inadequate task allocation 1 1 1 
Social pressure 1 0 0 

Training Insufficient skills 1 0 1 
Insufficient knowledge 1 0 1 

Ambient Conditions 

Temperature 0 0 0 
Sound 0 0 0 
Humidity 0 0 0 
Illumination 0 0 0 
Other 0 0 0 
Adverse ambient conditions 0 0 0 

Working Conditions 

Excessive demand 1 0 1 
Inadequate workplace layout 0 0 0 
Inadequate team support 0 0 0 
Irregular working hours 0 0 0 

Table 3 Classification of accident report by human expert and Virtual Raphael. 
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Performance SVN BERT 

Sum of true negatives 35 33 
Sum of false positives 0 2 
Sum of false negatives 13 4 

Accuracy 75% 89% 
Precision 100% 88% 

Recall 28% 78% 
F1 Score 43% 83% 

Table 4 Performance of the Virtual Raphael for the validation case study. 

4. VIRTUAL RAPHAEL: IDENTIFYING CAUSAL LINKS - HUMAN ERRORS & PSFs
Various human reliability analysis methods have been developed to aid in the incorporation

of the human contribution to risk into overall system safety analysis. In particular, performance 
shaping factors are factors which may have positive or negative influence on human 
performance, and these include organizational, technological, and personal factors [1]. The 
identification and quantification of the effects of these factors is a key step in the process of 
various human reliability analysis approaches [22]. Such factors are interdependent, therefore 
there is also the need to consider the interrelationships among these factors [8]. A popular 
choice for producing these models has been with the use of Bayesian and Credal networks [7]. 
Their graphical structure allows the causal links between PSFs and events to be easily 
recognized by those not involved directly in the model building [7]. The level of influence that 
these factors have on each other can be stored within the conditional probability tables included 
in the model [23]. 

Various models have been proposed where analysts have been able to combine information 
from several sources, including empirical data and expert opinion. However, there is a reliance 
on expert opinion to identify the causal links between the PSFs, and thus determine the structure 
of such models. Due to this there may be some potential links between factors not considered 
due to various types of bias [8]. Therefore, in this section a tool that can be used to elicit the 
causal links between PSFs from data is presented. The tool proposed allows the integration of 
expert opinion into the model through the use of structure learning algorithms for Bayesian 
networks. These causal links give the structure of Bayesian network for human reliability 
analysis. 

4.1. Implementation details 
The flowchart of the tool for identifying the structure of a Bayesian or Credal network is 

presented in Figure 3. The tool is based on 4 steps. In the first step, the user needs to select the 
most appropriate options for the models.  In particular, the user needs to determine whether to 
use the ungrouped or grouped PSFs, i.e. the 53 factors originally discussed in MATA-D, or a 
grouped version of these factors into 15 categories, respectively. For example, they may have 
identified a set of factors at play in the operation space and are now looking to evaluate how 
these factors impact human performance.  
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Figure 3 Human reliability analysis Structure Learning Tool Steps 

In step 2, the user is presented with the option of selecting the most appropriate methodology 
for learning the structure of a direct acyclic graph: these are the K2 algorithm and NPC 
algorithm [24]. K2 and NPC are popular example of structure learning algorithms for Bayesian 
Networks (score-based and constraint-based respectively). Depending on the selection some 
further inputs may be required, for example, max number of parents, confidence level, etc. 

In step 3 the aggregation approach is selected. This can be based on “Expert” or 
“Aggregated”. The Expert option is based upon a table presented in Hollnagel’s original work 
regarding the CREAM human reliability analysis method [19]. The “Aggregated” option 
combines the information learnt from the K2 and NPC structure learning approaches, where the 
arcs appearing in both learnt networks can be considered to be part of the core structure of the 
network [25]. The aggregation method triggers the use of both the learning algorithms. If the 
expert option is also than the network is expanded through the inclusion of the other arcs that 
are present in the expert’s table, and in one of the two learnt structures.  

Step 4 represents the output of the tool.  The output is presented in a table format where the 
presence of a one denotes a causal link between the corresponding factors. The tool also 
provides a visual representation of this table, as would be usually presented in a Bayesian 
Network model. 

The main application of this tool is to support users in their construction of causal models, 
by providing a suggested network structure that can be directly input into a Bayesian Network 
model and used to inform and provide evidence in the user's choices. A benefit of using this 
methodology, is that causal relationships between factors that experts have not previously 
considered may be identified by the structure learning algorithms. Such relationships may have 
been previously overlooked due to underlying bias or there may be situations that would benefit 
from further research and data gathering efforts. As well as aiding in the construction of causal 
models, the user can generate multiple different networks selecting different sets of PSFs. This 
could be used to highlight which parent factors need to be focused on to reduce specific risks 
or other factors that affect human performance.  This would allow management to make more 
informed decisions on where to invest resources to mitigate human risk [9]. 
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4.2 Algorithm Testing 
In order to validate the tool, the algorithms behind it were tested on various sized datasets. 

To achieve this, a random network as shown in Figure 4 was created. Then, datasets were 
generated using the process presented by Oehm in 2015 [26]. Three sample datasets were 
created with 50, 150 and 1500 entries, respectively. The proposed algorithm is then used to 
generate network using the NPC algorithm and K2 algorithms form the artificial dataset created. 

Figure 4 Test Network Structure 

 To evaluate the performance, the generated networks were then compared with the Test 
Network of Figure 4 used to generate the dataset.  If an arc exists between a parent and child 
node is a binary problem, where we have 1 if a node exists from parent node A to child node 
B, and 0 if ones does not. Therefore, using the following, 

• True positives (TP) occur when the true value is 1 and the model correctly predicts 1
• False negatives (FN) occur if the true value is 1 but the model wrongly predicts 0
• True negatives (TN) occur when true value is 0 and the model correctly predicts 0
• False positives (FP) occur when true value should be 0 but the model predicts 1.

The resulting metrics accuracy, precision, recall and F1 Score, are presented in Table 5. 

Metrics  50 
samples  

200 
samples 

2000 
samples 

NPC 
Algorithm  

Accuracy  73%  86%  91% 
Precision  7% 52% 55% 
Recall 14% 72% 77% 
F1 Score  9% 60% 64% 

K2 
Algorithm  

Accuracy  77%  83%  87% 
Precision  14%  52%  55% 
Recall 15% 72% 74% 
F1 Score  15%  60%  63% 

Table 5 K2 and NPC Performance Metrics for Test Network 
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The test network demonstrated the capacity of the algorithm to identify the most appropriate 
links in a network that explain the dataset. The quality of the network depends on the number 
of sample available but with good result also with a limited number of samples. The 200 
samples results are the most significant as this is approximately how many samples are in 
MATA-D currently being used by the tool. The algorithms performed better in the recall metric 
than precision, suggesting the algorithms are more likely to produce a false positive than a false 
negative, which could then be pruned out using expert judgement in practice. It is expected that 
with further expansion of the MATA-D, aided by the virtual human classifier, the increase in 
available data will improve the overall tools performance, as is suggested by these test results. 

4.3 Causal Links Tool Case Study 
To demonstrate an application of this tool, the tools is applied to identify the potential 

structure of a Bayesian network model able to explain the links between the human errors and 
PSFs for the FPSO Cidade de São Mateus accident analysed in Section 3.3.  

The analysis starts by selecting the tools options of the ungrouped set of factors (i.e. Wrong 
Place, Wrong reasoning, Memory failure, Inattention, Cognitive bias, Incomplete information, 
Communication failure, Missing information, Maintenance failure, Inadequate quality control, 
Design failure, Inadequate task allocation, Insufficient skills, Insufficient knowledge, Excessive 
demand). Then, the learning algorithm and aggregation technique are selected. In this example, 
the “Aggregated” option is selected together with a cap of four parent nodes for the K2 
algorithm, and a 5% significance level for the NPC algorithm. The produced network structure 
is shown in Figure 5. 

 
Figure 5 Causal Links obtained for the FPSO Cidade de São Mateus accident using the aggregation method. 
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This network structure suggests that there were several of the elicited factors that led to 
excessive demand on the operator, which in turn led to the human error action of ‘wrong place’. 
There is still some user interpretation when considering the produced network. For example, 
there is a suggested link from ‘Insufficient Skills’ to ‘Design Failure’ to ‘Excessive Demand’, 
that could cause some confusion. It is important to understand that ‘Design Failure’ is not an 
action in the incident, but instead an organizational factor. The operator's insufficient skill 
highlighted in this example that led to an ‘Excessive Demand’ is due to a organizational factor. 
This network structure could then be combined with conditional probability tables calculated 
from available data, whether this be from the MATA-D or other sources (other accident 
datasets, simulator data, expert judgement), to produce a complete Bayesian network, that can 
be used to calculate the HEP and quantify the influence between factors. 

6. CONCLUSIONS

This work demonstrates through the use of machine learning tools, an efficient process to
gather human reliability data from accident reports, and how to model the causal links between 
the identified performance shaping factors. The developed “Virtual Raphael” allows to 
automatise the expert dependent multiple day process of evaluating accident reports for human 
errors and PSFs, and complete the task within a few minutes, with good to great performance. 
These tools should therefore aid in increasing the rate of expansion of the MATA-D, by 
reducing the time taken and the need for a continuous supervision of the classification task by 
an experienced expert and allowing an increasing of the amount of highly valuable real 
operation data on human error and PSFs. This in turn feeds back into the causal links/structure 
learning tool, by providing more data, increasing the opportunities for learning for past 
accidents and the trust in the models produced. It is also addressing the fields desire to move 
more towards data driven/support models and choices. 

The current code/tools are available on https://github.com/cossan-working-group, and freely 
available as part of the COSSAN software [10], [11], [27]. Alongside this, a web interface to 
access MATA-D and the AI tools for human reliability analysis is current under development 
making these tools directly available to analysists and practicians.  
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