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Abstract
This paper presents a semi-analytical methodology to estimate the probability of capture into different

ground-track resonances of a low-thrust spacecraft around an asteroid. The system dynamics are described by
a Hamiltonian model that considers the perturbations from the irregular gravitational field up to the second
order and degree, and the continuous low thrust that remains constant in magnitude and is always in the
direction opposite to the spacecraft’s velocity. The model focuses on the equatorial case of the 1:1 and 2:3
ground-track resonances. Due to the chaotic layer around each resonance region, which influences the orbit
evolution, estimating the probability of capture into resonance is necessary. A fourth-order polynomial is used
to numerically approximate the separatrices of the resonance region, while the change of the system’s energy
balance when the trajectory crosses the separatrices is determined with a global adaptive quadrature method.
Subsequently, the probability of capture into resonance is estimated from the energy change as the trajectory
crosses the separatrices, and the accuracy of the results is verified by comparing them to numerical simulations
based on the perturbed Hamilton’s equations of motion. This research makes a significant contribution to the
field of astrodynamics by systematically and efficiently analyzing the probability of low-thrust spacecraft capture
into different ground-track resonance around asteroids.

Keywords: Semi-analytical methods, Resonance capture, Astrodynamics, Vesta, Gravitational perturbations,
Low-thrust propulsion

cused on satellites orbiting irregularly shaped asteroids,
particularly investigating periodic orbits around the ellip-
soids mimicking asteroids Vesta and Eros. Subsequent
extensions of this work explored the asteroid Toutatis [10]
and the moons Europa [11] [12] [13] and Enceladus [14]
[15].

This paper focuses on the Dawn mission around the as-
teroid Vesta. In 2011, the Dawn spacecraft successfully
arrived at the asteroid Vesta. During the approach phase,
the spacecraft descended from a high-altitude mission
orbit (HAMO) to a low-altitude mission orbit (LAMO)
utilizing low-thrust propulsion. The orbital radii of the
HAMO and LAMO are 1000 km and 460 km, respectively
[3]. However, the use of low-thrust propulsion during the
descent phase posed a risk of capturing the spacecraft into
GTR around Vesta, caused by the chaotic layer surround-
ing the resonance region [8]. This mission demonstrated
the possibility of relying on low-thrust propulsion for the

1 Introduction

Resonance is a pervasive phenomenon in dynamical sys-
tems, arising when a system is excited at its natural fre-
quency, thereby causing pronounced oscillations. This 
concept manifests across diverse disciplines, including 
plasma physics [1], celestial mechanics [2], and astrody-
namics [3]. Within the realms of celestial mechanics and 
astrodynamics, various forms of orbital resonances are ev-
ident. These range from mean motion resonances, where 
the orbital periods of two celestial bodies are in simple 
integer ratios [4], to more complex forms like secular [5], 
secondary [6], spin-orbit [7], and ground-track resonances 
(GTRs) [3]. Notably, for GTRs to manifest, the period of 
a spacecraft’s revolution must be commensurable with the 
rotation period of the central body, as exemplified in 1:1 
GTRs with Earth’s geostationary satellites [8]. Previous 
studies have delved into the impact of irregular gravita-
tional fields on resonant satellite orbits. Scheeres [9] fo-
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ical estimations and the comparison with numerical esti-
mations are discussed in Section 4, where the errors are
also characterized. Finally, Section 5 lists the advantages
and contribution of this work and Section 6 summarizes
the paper and presents the conclusions.

2 Dynamic model

This section presents the Hamiltonian that describes the
motion of a spacecraft around an asteroid with an irreg-
ular gravitational field. Specifically, the Hamiltonian is
focused on the 1:1 and 2:3 GTRs in the equatorial case
and the resulting equations of motion are derived. The
impact of non-conservative forces, such as the low-thrust,
is also accounted for. To simplify the model, each Hamil-
tonian is expanded around the location of the respective
GTR, resulting in a pendulum-like expression.

2.1 Hamiltonian model

The gravitational potential of a central body can be rep-
resented using spherical harmonics [20], where the shape
and density variations of an asteroid are expressed using
the Stokes coefficients. The potential, denoted as V , is
expressed as a series expansion of spherical harmonics up
to degree n and order m as

V =
µ

r
+

∞∑
n=2

n∑
m=0

n∑
p=0

∞∑
q=−∞

µRn
e

an+1
Fnmp(i)

Gnpq(e)Snmpq(ω,M,Ω, θ) (1)

where µ = 17.5 km2/s3 is the gravitational constant,
Re = 300 km is the reference radius, Fnmp(i) and
Gnpq(e) are functions of the inclination i and eccentricity
e, respectively, a is the semi-major axis, ω is the argument
of periapsis, M is the mean anomaly, Ω is the longitude
of the ascending node, θ is the sidereal time and n, m, p,
q are all integers and

Snmpq =

{
Cnm cosΨnmpq + Snm sinΨnmpq

−Snm cosΨnmpq + Cnm sinΨnmpq

(2)

where the first and the second equations are considered if
the value of n−m is even or odd respectively and Ψnmpq

is the Kaula’s phase angle, defined as

Ψnmpq = (n− 2p)ω+(n− 2p+ q)M +m(Ω− θ). (3)

When the rate of change of Kaula’s phase angle Ψ̇nmpq

is close to zero, the GTRs occur. Let L =
√
µa. The

majority of the mission duration [16] [17]. The use of 
low-thrust propulsion allows for more efficient use of fuel 
and longer mission duration but also poses some chal-
lenges in terms of trajectory design [18]. However, the 
motion around Vesta is more complex due to its irregular 
gravitational field. The spacecraft at each revolution en-
counters the same gravitational configuration, t he effect 
of which accumulates and significantly changes the orbit 
eccentricity and inclination [19]. The capture of a space-
craft into a GTR has the potential to significantly impact 
the success of a mission by preventing the reach of lower 
altitudes and the achievement of scientific objectives.

The primary aim of this paper is to use the Hamiltonian 
formalism to analyze the capture into GTR phenomenon 
and, specifically, estimate the probability of capture into 
1:1 and 2:3 GTRs through semi-analytical and analyti-
cal approaches. The methodologies presented in this pa-
per are based on analyzing the energy change that occurs 
when the spacecraft enters into resonance with Vesta’s ro-
tational motion. A two-degree-of-freedom Hamiltonian 
model associated with the 1:1 and 2:3 GTRs in the equa-
torial case is developed. This includes the perturbations 
from the irregularities of the gravitational field up to the 
second order, along with continuous low thrust that re-
mains constant in magnitude and is always in the direc-
tion opposite to the spacecraft’s velocity. Through this 
process, the equilibrium points, as well as the libration 
and circulation regions, are identified. A  global adaptive 
quadrature method is used to evaluate the system’s energy 
balance as the trajectory crosses the separatrix. Then, the 
probability of capture into GTR is estimated as a function 
of the energy balance, and the accuracy of the results is 
verified b y c omparing t hem w ith n umerical simulations 
based on the equations of motion derived from the Hamil-
tonian of each GTR. A significant advantage of a  semi-
analytical investigation is the ease with which the results 
can be obtained when the data changes. Our approach 
is highly adaptable to similar missions, as the numerical 
values of parameters such as the shape and mass of the as-
teroid or spacecraft orbit may vary, but the methodology 
remains the same, and the results can be readily adapted 
accordingly.

The paper is organized as follows: Section 2 provides a 
description of the dynamic model for the motion of Dawn 
around Vesta and derives the equations of motion. The 
semi-analytical methodology used to estimate the prob-
ability of capture into 1:1 and 2:3 GTRs is presented in 
Section 3. The results of the semi-analytical and analyt-
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Hamiltonian describing the spacecraft’s motion around an
asteroid with an irregular gravitational field is defined as

H = − µ2

2L2
+

∞∑
n=2

n∑
m=0

n∑
p=0

∞∑
q=−∞

Rn
e

µn+2

L2n+2

Fnmp(i)Gnpq(e)Snmpq(ω,M,Ω, θ) + θ̇Λ (4)

where θ̇ = 3.2671×10−4 rad/s is Vesta’s angular velocity,
Λ is the conjugate momentum to the sidereal time θ and
the term θ̇Λ accounts for the asteroid’s rotation.

2.1.1 1:1 GTR

The gravitational term of second degree and order primar-
ily affects the dynamics of the system close to the 1:1
GTR [21]. Therefore, the Hamiltonian used in the anal-
ysis considers only this harmonic. The Hamiltonian that
describes the 1:1 GTR dynamics around the asteroid is
expressed as

H1:1 = − µ2

2L2
+R2

e

µ4

L6
F220(i)

G200(e)S2200(ω,M,Ω, θ) + θ̇Λ. (5)

For an equatorial orbit (i = 0◦), the Hamiltonian is

H1:1 = − µ2

2L2
− 15

2
R2

e

µ4

L6

(
−3

5
+

G2

L2

)
C22 cos(2(M + ω − θ)) + θ̇Λ, (6)

where C22 = 3.079667257459264 × 10−3 is the sec-
ond degree and order Stokes coefficient, L and G =

L
√
1− e2 are the momenta conjugate respectively to M

and ω. A canonical transformation is performed with the
generating function F1 = (M+ω−θ)L′+(−ω)G′+θΛ′

which leads to the new set of canonical variables

σ = M + ω − ϑ , Q = −ω , L = L′ (7)

G = L′ −K , Λ = −L′ + Λ′. (8)

The new Hamiltonian H̃1:1 is

H̃1:1 = − µ2

2L2
− 15

2
R2

e

µ4

L6

(
−3

5
+

(L−K)2

L2

)
C22 cos(2σ)− θ̇L, (9)

H̃
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Figure 1: Phase space of the 1:1 GTR for e = 0.5. The
red lines represent the separatrix lines. The eccentricity
value is determined by fixing L = Lr and K = Ksep

related to the 1:1 GTR.

2.1.2 2:3 GTR

Similarly to the 1:1 GTR, the gravitational term of sec-
ond degree and order primarily affects the dynamics of
the system close to the 2:3 GTR. The Hamiltonian that
describes the 2:3 GTR dynamics around the asteroid for
an equatorial orbit is expressed as

H2:3 = − µ2

2L2
− 21

2

√
1−

(
G

L

)2

R2
e

µ4

L6

C22 cos[3(M + ω)− 2θ − ω] + θ̇Λ (10)

A canonical transformation is performed with the gener-
ating function F2 = [3(M +ω)− 2θ]L′ +(−ω)G′ + θΛ′

which leads to the new set of canonical variables

σ = 3M + 3ω − 2θ , g = −ω , L = 3L′

G = 3L′ −G′ , Λ = −2L′ + Λ′

The new Hamiltonian Ĥ2:3 is

Ĥ2:3 = − µ2

18L′2 − 21

2

√
1−

(
3L′ −G′

3L′

)2

R2
e

µ4

(3L′)6
C22 cos(σ + g)− 2θ̇L′ (11)

where the non-essential term θ̇Λ′ is dropped. A second
canonical transformation is performed with the generating
function F ′

2 = (σ+ g)L′′+ kK+ θΛ′′ which leads to the
new set of canonical variables

σ′ = σ + g , L′ = L′′ , G′ = L′′ +K

where the prime sign and the non-essential term θ̇Λ′ are 
dropped for brevity. Fig. 1 shows the phase portrait of 

1:1, where the upper separatrices are indicated with the 
red line l1 and the lower ones with l2.
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Figure 2: Phase space of the 2:3 GTR for e = 0.5. The
red lines represent the separatrix lines. The eccentricity
value is determined by fixing L = Lr and K = Ksep

related to the 2:3 GTR.

The new Hamiltonian H̃2:3 is

H̃2:3 = − µ2

18L2
− 21

2

√
1−

(
2L−K

3L

)2

R2
e

µ4

(3L)6
C22 cos(σ)− 2θ̇L (12)

where the prime and double prime signs have been
dropped. Fig. 2 shows the phase portrait of H̃2:3, where
the upper separatrix is indicated with the red line l1 and
the lower one with l2.

2.2 Pendulum approximation

In this section, an approximation of the complete Hamil-
tonian model of the 1:1 and 2:3 GTRs is presented.

2.2.1 1:1 GTR

Considering Eq. 9, the Hamiltonian is defined as

H̃1:1 = − µ2

2L2
−A(L,K) cos(2σ)− θ̇L (13)

The 1:1 GTR is located at L = Lr defined from

µ2

L3
r

= θ̇ (14)

Then, the Hamiltonian is expanded around the resonance
up to the second order leading to

Ĥ1:1 = −1

2
αp2 − Â(Lr,K) cos(2σ), (15)

where

Â(Lr,K) =
15

2
R2

e

µ4

L6
r

(
−3

5
+

(Lr −K)2

L2
r

)
C22 (16)

α =
3µ2

L4
r

(17)

and the constant term is discarded. The Hamiltonian
Ĥ1:1 resembles the structure of a pendulum’s Hamilto-
nian, composed of two main components: a quadratic
term that represents the system’s kinetic energy, and an-
other term that accounts for the system’s potential energy.

2.2.2 2:3 GTR

From Eq. 12, the Hamiltonian H̃2:3 is

H̃2:3 = − µ2

18L2
− 21

2

√
1−

(
2L−K

3L

)2

R2
e

µ4

(3L)6
C22 cos(σ)− 2θ̇L (18)

The 2:3 GTR is located at L = Lr defined from

µ2

18L3
r

= θ̇ (19)

The Hamiltonian H̃2:3 is expanded around the resonance
as

Ĥ2:3 = −1

2
αp2 − Â(Lr,K) cos(σ) (20)

where

Â(Lr,K) =
21

2

√
1−

(
2Lr −K

3Lr

)2

R2
e

µ4

(3Lr)6
C22

(21)

α =
µ2

3L4
r

(22)

and the constant term is discarded. As for the 1:1 GTR,
the Hamiltonian Ĥ2:3 resembles the structure of a pendu-
lum’s Hamiltonian.

2.3 Dissipative Forces into Hamiltonian
Formalism

One approach to account for energy dissipation in Hamil-
tonian mechanics is to introduce a term in the perturbed
Hamilton’s equations of motion that accounts for the pres-
ence of dissipative forces [22].
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2.3.1 1:1 GTR

The change of L over time can be related to the change of
a as

dL

dt
=

µ

2L

da

dt
. (23)

From [23], the rate of change of the semi latus rectum
p = a(1− e2) due to tangential accelerations is

dp

dt
=

2

v
atp, (24)

where v is the spacecraft velocity and at is the magnitude
of the tangential acceleration from the low-thrust. So,

dL

dt
= TL = − T

m

L2

µ
. (25)

Since K = L−G, the rate of change of K over time is

dK

dt
=

dL

dt
− dG

dt
. (26)

The rate of change of G over time is related to the rate of
change of e as

dG

dt
= − T

m

LG

µ
− e

L2

G

de

dt
. (27)

From [23], the rate of change of e due to the low-thrust is

de

dt
=

1

v

(
−2

T

m
(e+ cos θ)

)
. (28)

To eliminate the dependency on the true anomaly, the ex-
pression is averaged over the mean anomaly. Considering
the second term of de/dt, the following integral is defined

I =
1

2π

∫ 2π

0

cos θdM. (29)

The integrand and the differential of the mean anomaly
are expressed as functions of the eccentric anomaly E as

cos θ =
cosE − e

1− e cosE
and dM = (1− e cosE)dE.

(30)
So the integral I becomes

I =
1

2π

∫ 2π

0

(cosE − e)dE = −e. (31)

Therefore, de/dt = 0. Finally, the rate of change of K is

dK

dt
= TK = − T

m

LK

µ
. (32)

Introducing the variable p = L−Lr, the perturbed Hamil-
ton’s equations of motion are

σ̇ = dH̃1:1

dp

ṗ = −dH̃1:1

dσ + TL

K̇ = TK

(33)

Fig. 3 shows the numerical verification of the resonance
capture phenomenon for e = 0.5, with a set of uniformly
distributed initial resonance angles between [0,2π] and
the initial altitude of 700 km.

The simulation results indicate that the spacecraft is
captured into resonance, as highlighted in red in Fig. 3.
Once captured, the momentum p exhibits libration around
the resonance location at p = 0, as shown in the upper left
plot of Fig. 3. The upper right plot in Fig. 3 shows the tra-
jectory of the system in phase space, where the trajectory
captured into resonance rotates around the stable equilib-
rium point (σ,p) = (π/2,0). During the system’s evolution,
the momentum K decreases, and e remains almost con-
stant until the separatrix crossing. After that, e starts to
oscillate, and the average value decreases over time.

2.3.2 2:3 GTR

From Eqs. 25 and 32 and applying the previous canonical
transformations, the effect of low-thrust on L and G is

TL = − T

m

L2

µ
(34)

TG = − T

m

L

µ
LG (35)

Since L′ = 1/3L and G′ = 3L′ −G, we have

TL′ =
1

3
TL = −1

3

T

m

L′2

µ
(36)

TG′ = TL − TG = − T

m

L′2 − L′G′

µ
(37)

Next, as L′′ = L′ and K = G′ − L′, we have

TL′′ = TL′ = −1

3

T

m

L′′2

µ
(38)

TK = TG′ − TL′ = −2

3

T

m

L′2

µ
+

T

m

L′G′

µ
(39)

Finally, substituting the expression of the new variables
into Eqs.38 and 39,the rate of change of the conjugate mo-
menta due to low-thrust is defined as

TL = −3
T

m

L2

µ
(40)

TK = −3
T

m

LK

µ
(41)

where the prime and double prime signs have been
dropped. So, the perturbed Hamilton’s equations of mo-
tion are 

σ̇ = dH̃2:3

dp

ṗ = −dH̃2:3

dσ + TL

K̇ = TK

(42)
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Figure 3: Trajectory evolution over time in the case of crossing the 1:1 GTR. The capture cases are highlighted in red.
The upper plots show the evolution of L over time and in phase space, respectively. The lower left and right plots
show the evolution of K and of the eccentricity over time, respectively.

where p = L − Lr, the resonance capture is numerically
verified for fixed values of e = 0.5 as shown in Fig. 4.
The simulations are performed considering a uniformly
distributed set of initial resonance angles, and the initial
altitude considered is 1000 km, as the location of the 2:3
resonance is at 720 km.

3 Methodology

This section presents the semi-analytical methodology to
estimate the probability of capture into 1:1 GTR. The do-
main (σ,p) where the initial conditions are uniformly dis-
tributed is defined and denoted by U . A subset of initial
conditions, labeled as Ures, can be identified within this
domain, which corresponds to the capture of the system
into the resonance domain. Then, the probability of cap-
ture into resonance can be determined by

Pr =
mesUres

mesU
, (43)

ability. To obtain an analytical estimation, it is necessary
to express the probability in a different form using the
energy-related quantities of the system.

3.1 1:1 GTR

From [24], the probability of capture into 1:1 GTR is de-
fined as

Pr =

∫
l1∪l2

d
≈
H1:1/dt dτ∫

l1
d

≈
H1:1/dt dτ

, (44)

where
≈
H1:1 = H̃1:1 − H̃SP and H̃SP is the value of the

Hamiltonian H̃1:1 at the saddle point. The integral in the
numerator is computed along the upper separatrix l1 and
the lower separatrix l2, whereas the integral in the denom-
inator is calculated only along the upper separatrix. These
integrals are improper as the motion along a separatrix
takes an infinite amount of time. Thus, the normalization
of the Hamiltonian guarantees the convergence of the in-
tegrals [25].

where mesUres and mesU are the volumes of domains of 
Ures and U in phase space, respectively. This formula-
tion is suitable only for numerical evaluation of the prob-
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Figure 4: Trajectory evolution over time in the case of crossing the 2:3 GTR. The capture cases are highlighted in red.
The upper plots show the evolution of L over time and in phase space, respectively. The lower left and right plots
show the evolution of K and of the eccentricity over time, respectively.

3.1.1 Complete model

The probability estimation is based on the normalized
complete Hamiltonian model

≈
H1:1. The saddle points are

defined from

∂
≈
H1:1

∂p
= 0. (45)

Next, the values of the separatrices psep are determined
numerically using an N-th polynomial function. Specifi-
cally, this involves fixing the value of K = Ksep at the
point when the system crosses the separatrix

psep =

N∑
i=0

ciσ
i. (46)

It is found that the separatrices are approximated with
good accuracy with a 4th order polynomial. The lower
and upper separatrices are identified as plowsep and pupsep.
Firstly, the integral at the denominator of Eq. 44 is solved

as

∫
l1

d
≈
H1:1

dt
dτ =

∫
l1

∂
≈
H1:1

∂p
TLdτ +

∫
l1

∂
≈
H1:1

∂K
TKdτ =

(47)

=

∫ 0

π

TLdσ +

∫ 0

π

∂
≈
H1:1

∂K

1

∂
≈
H1:1/∂p

TKdσ.

(48)

The expression is evaluated at p = pupsep(σ) and nu-
merically integrated using the global adaptive quadrature
method [26]. The global adaptive quadrature divides the
integration domain into smaller subintervals and compute
the integral over each subinterval separately. The inte-
gral is then approximated as the sum of the integrals over
the subintervals. The subintervals are chosen in such a
way that the error in the approximation is minimized. In
a similar way, the numerator is developed as

∫
l1∪l2

dH1:1

dt
dτ =

∫
l1

dH1:1

dt
dτ +

∫
l2

dH1:1

dt
dτ (49)
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The first term is identical to the one already developed,
while the second term is developed in a similar way∫
l2

dH1:1

dt
dτ =

∫ π

0

TLdσ +

∫ π

0

∂H1:1

∂K

1

∂H1:1/∂p
TKdσ

(50)

but evaluated at p = plowsep (σ).

3.1.2 Pendulum approximation

As for the complete model, the value of the Hamiltonian
is normalized, so that ˆ̂H1:1 = Ĥ1:1 − Â. The new Hamil-
tonian ˆ̂H1:1 is

ˆ̂H1:1 = −1

2
αp2 + 2Â sin2 σ. (51)

The non-conservative contributions TL and TK from Eq.
25 and Eq. 32 are approximated as

TL = εL2 ∼ ε(L2
r + 2Lrp) (52)

TK = εLK = ε(LrK +Kp), (53)

in which the second-order term is neglected. Using the
chain rule and Hamilton’s equation, the rate of change of
ˆ̂H1:1 is defined as

d ˆ̂H1:1

dt
= −αpTL+4Â sinσ cosσ Tσ+2

dA

dK
sin2 σ TK .

(54)
Along the separatrix l1, the Hamiltonian ˆ̂H1:1 = 0, so

psep = ±2

√
A

α
sinσ. (55)

Combining Eq. 54 and Eq. 55, the probability of capture
into 1:1 GTR is

Pr =
16Lr

√
Â
α − 4 ∂Â

∂KLrK
1√
Âα

πL2
r + 8Lr

√
Â
α − 2LrK

∂Â
∂K

1√
Âα

− π
αK

∂Â
∂K

.

(56)
The probability formulation is independent of the space-
craft mass and the thrust magnitude, as can be observed
from the equation. By analyzing each term, the dominant
terms in the probability formulation are identified. For the
pendulum approximation, the probability of capture into
the 1:1 GTR in the equatorial case is simplified to

Pr =
2

π
8

3

√
µ

θ̇2C
3/2
22 R3

e

+ 1
. (57)

3.2 2:3 GTR

Differently, from the 1:1 GTR case, the numerical inte-
gration shall be performed in the interval [0, 2π]. So∫
l1

dH̃2:3

dt
dτ =

∫ 0

2π

TLdσ +

∫ 0

2π

∂H̃2:3

∂K

1

∂H̃2:3/∂p
TKdσ

(58)

Then, the methodology using the pendulum model ap-
proximation is adapted. Subtracting the value of the
Hamiltonian evaluated at the saddle point, the new Hamil-
tonian H̄2:3 is

H̄2:3 = −1

2
αp2 + 2Â sin2

σ

2
(59)

By performing the change of variable s = σ/2, The
Hamiltonian reduces to

H̄2:3 = −1

2
αp2 + 2Â sin2(s) (60)

and the formulation of the probability of capture in Eq.
56 is used.

4 Results

In the following section, the estimation methodologies are
referred to as follows: the numerical methodology uses
Eq. 43, the semi-analytical methodology uses Eq. 44, and
the analytical methodology uses Eq. 56.

4.1 Simulation setup

To estimate numerically the probability of capture, 1000
different trajectories are propagated inside the interval of
initial conditions defined in the tables at the beginning of
Sections 4.2 (Table 1) and 4.3 (Table 2). The initial condi-
tions are uniformly distributed: 100 different initial semi-
major axis values and 10 different resonance angle val-
ues. The equation of motion are propagated for 20 days
using the MATLAB built-in function ode113 which is
a variable-step, variable-order Adams-Bashforth-Moulton
solver of orders 1 to 13 [27], with a relative and absolute
tolerance set at 10−12.

The mean probability of capture values, later intro-
duced in Sections 4.2 and 4.3, are calculated taking the av-
erage of 1000 different thrust magnitude values for 1000
different initial conditions.
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4.2 1:1 GTR

This section presents the estimations obtained using the
semi-analytical and analytical methods and compares
them with the numerical estimations. The probability of
capture is estimated for three cases based on the thrust
magnitude intervals: high thrust magnitude cases with
T = [20, 90] mN, low thrust magnitude cases with T =

[0.2, 20] mN, and very low-thrust magnitude cases with
T = [0.02, 0.2] mN. If not specified, the initial conditions
for the simulations are listed in Table 1.

Table 1: Initial conditions.
Resonance angle [0, 2π]
Semi-major axis [690,700] km

eccentricity 0.5
0.05 0.1 0.15 0.2

T [mN]
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P
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[%
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Figure 5: Probability of capture into 1:1 GTR evolution
for e = 0.5 and for different thrust magnitude values esti-
mated with numerical (in black), semi-analytical (in red)
and analytical (in blue) methodologies. Very low-thrust,
low-thrust and high-thrust cases are shown in the upper,
middle and lower plots, respectively.

4.2.1 Sensitivity on the thrust magnitude

The probability estimations obtained using the three ap-
proaches are compared and presented in Fig. 5. The prob-
ability estimated numerically is represented with a black 
line in the three plots, while the semi-analytical and an-
alytical results are represented by red and blue lines, re-
spectively. The semi-analytical and analytical estimations 
of probability are found to be independent of the thrust 
magnitude. For the very low-thrust magnitude cases, the 
semi-analytical estimation is in good agreement with the 
average numerical estimation, while the analytical one 
overestimates the probability. As the thrust magnitude in-
creases, the probability of capture decreases on average 
and the semi-analytical and analytical methodologies do 
not follow this trend. For the high thrust magnitude case, 
the numerically estimated probability of capture shows 
an oscillatory behavior, and the analytical/semi-analytical 
estimation methodologies are not able to accurately esti-
mate the probability of capture. For this reason, in the last 
part of the paper, the thrust magnitude interval between 
0.02 mN and 0.2 mN is considered.

4.2.2 Sensitivity on the initial eccentricity

This section examines the sensitivity of the probability of 
capture to variations in initial eccentricity. In accordance 
with the setup delineated in Section 4, the probability of 
capture into a 1:1 GTR is estimated across a range of ec-
centricity values. Figure 6 illustrates the mean probability 
of capture for eccentricities ranging from 0 to 0.6. The an-
alytically estimated mean probability of capture remains 
constant across all values of eccentricity. For low eccen-
tricities, the probabilities estimated by the semi-analytical

Page 9 of 14

Semi-analytical estimation of the probability of capture into ground-track resonances of Dawn around Vesta

·v - ~ ·v v ~ 

~ 
•y y 



0 0.1 0.2 0.3 0.4 0.5 0.6

ecc []

12

13

14

15

16

M
e

a
n

 P
r 

[%
]

1:1 GTR

Numerical

Semi-analytical

Analytical

Figure 6: Mean probability of capture into 1:1 GTR evo-
lution for very low-thrust magnitude values and for dif-
ferent eccentricity values estimated with numerical (in
black), semi-analytical (in red) and analytical (in blue)
methodologies.

and analytical methods are in agreement. However, as
the eccentricity increases, the semi-analytical estimation
tends to converge with the numerical estimation.

In particular, for low values of eccentricity, the nu-
merical estimation remains relatively constant at approx-
imately 12.7%, whereas it rises to around 13.8% with
increasing eccentricity. The analytical estimation, rep-
resented by the blue line, consistently provides a value
close to 14.4%, thereby serving as an upper bound for the
mean probability of capture. For high-eccentricity sce-
narios e > 0.4, the semi-analytical estimation provides
an accurate measure of the probability of capture. Figure
7 displays the relative errors of the semi-analytical and
analytical methods in comparison to the numerical esti-
mation. The relative error Errrel between the analytical
and numerical estimates is calculated as

Errrel =

∣∣∣∣Pran − Prnum

Prnum

∣∣∣∣× 100 (61)
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Figure 7: Relative error between the estimations of the
probability of capture into 1:1 GTR for different eccen-
tricity values using the semi-analytical (in red) and ana-
lytical (in blue) methodologies with respect to the numer-
ical estimations.

tricity e = 0.6.

4.3 2:3 GTR

In this section, the probability of capture into 2:3 GTR es-
timations obtained through semi-analytical and analytical
methodologies are outlined and compared with numeri-
cal estimations. Focus is placed solely on cases involving
very low-thrust magnitudes, as done for the 1:1 GTR. Un-
less otherwise indicated, the initial conditions for these
simulations are provided in Table 2.

Table 2: Initial conditions.
Resonance angle [0, 2π]
Semi-major axis [990,1000] km

eccentricity [0 0.55]

4.3.1 Sensitivity on the initial eccentricity

This section investigates the sensitivity of the probability
of capture into 2:3 GTR with respect to variations in initial
eccentricity. Consistent with the framework outlined in
Section 4, probabilities of capture for a range of eccentric-
ity values are estimated. Figure 8 shows the mean prob-
ability of capture for eccentricities between 0 and 0.55.
This discussion begins by focusing on the numerical re-
sults. Unlike the 1:1 GTR case, the distribution of solu-
tions shows a different trend. For high-eccentricity cases,
the estimated probability of capture is around 16.6%. As

Here, P ran and P rnum represent the probabilities of 
capture estimated analytically and numerically, respec-
tively. In a similar way, the relative error between semi-
analytical and numerical is defined. In the semi-analytical 
case, the error reaches a peak value of approximately 12%
for e = 0 (representing the worst-case scenario), whereas 
the error does not exceed 1% for high-eccentricity cases. 
For the analytical method, the relative error reaches a 
maximum value of approximately 18.1%, converging to 
the numerical estimate only in the case of extreme eccen-
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Figure 9: Phase space of the 2:3 GTR evolution for differ-
ent eccentricity values. The red lines represent the sepa-
ratrix lines.

Figure 8: Mean probability of capture into 2:3 GTR evo-
lution for very low-thrust magnitude values and for dif-
ferent eccentricity values estimated with numerical (in 
black), semi-analytical (in red) and analytical (in blue) 
methodologies.

eccentricity decreases, the probability value increases ex-
ponentially, reaching a value of 100% when e = 0.13. 
For e < 0.13, the probability is estimated to be 100%. It 
is noteworthy that numerical estimations stop for e < 0.1 
due to the difficulty of defining the separatrices at  lower 
eccentricities as shown in Fig. 9. The resonance re-
gion continues to decrease in size, until it collapses for 
e = 0. This is also the case for the semi-analytical re-
sults. When the probability of capture is 100%, the phe-
nomenon of ”automatic entry into libration” occurs [28]. 
Neishtadt [25] discussed and motivated this mechanism 
for Saturn’s satellite system, identifying the cause in the 
Hamiltonian’s singularity (e = 0). The same singularity 
is present in this case which brings about the ”automatic 
entry into libration” phenomenon.

Overall, both semi-analytical and analytical method-
ologies align closely with the numerical results for high 
eccentricity cases. Figure 10 shows the relative errors, 
defined i n E q. 6 1, o f t hese t wo m ethodologies i n com-
parison to the numerical estimations. For e > 0.3, the 
relative errors of both methodologies remain below 5%. 
As eccentricity decreases, the relative errors for the two 
methodologies remain close, reaching values of 61% and 
55% for the analytical and semi-analytical approaches, re-
spectively. This shows that for low-eccentricity cases a 
different approach is needed.
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T = [0.02, 0.2] mN. This amounts to a total of 100,000
separate cases for each eccentricity value. The computa-
tional time required for each eccentricity value averaged
to approximately four days using numerical methods. The
new methodologies dramatically reduce this time require-
ment: the semi-analytical approach requires on the order
of minutes, while the analytical method necessitates only
seconds to estimate the probabilities across all eccentric-
ity values.

6 Conclusion

This study has focused on the development and valida-
tion of analytical and semi-analytical methodologies for
estimating the probability of capture into GTRs. The
mathematical models of each GTR are formulated and
the methodologies are developed from the energy bal-
ance of the system as it crosses the resonance region. A
comparative study was performed against traditional nu-
merical methods, and our models were validated using
a wide range of eccentricity and thrust magnitude val-
ues. The methodologies proved themselves to estimate
accurately the probability of capture into GTRs for high
eccentricity cases and for very low-thrust magnitudes.
The semi-analytical methodology was found to be char-
acterized by a smaller error compared to the analytical
methodology for both 1:1 and 2:3 GTR. Generally, the ad-
vantages of these methodologies over traditional numeri-
cal approaches are twofold. Firstly, they provide an in-
depth understanding of the dynamical systems involved
in GTRs. This enables better characterization of reso-
nance regions and introduces the phenomenon of ”auto-
matic entry into libration” into astrodynamics. Secondly,
the computational efficiency offered by these methodolo-
gies is noteworthy. With an average computational time
of just minutes for semi-analytical methods and seconds
for analytical ones, these methodologies stand as powerful
tools for real-time applications and for studies that require
extensive uncertainty quantification analysis.

While these methods prove to be effective and effi-
cient for the conditions tested, it is acknowledged that
they may not guarantee the correct estimation, especially
for low-eccentricity cases. Future work should focus on
extending these methodologies to this range of eccentric-
ity. This work distinguishes itself by venturing into pre-
viously unexplored areas of dynamical phenomena, most
notably the ”automatic entry into libration” phenomenon,
thereby contributing significantly to the field of astrody-

Figure 10: Relative error between the estimations of the 
probability of capture into 2:3 GTR for different eccen-
tricity values using the semi-analytical (in red) and ana-
lytical (in blue) methodologies with respect to the numer-
ical estimations.

5 Advantages of Analytical and
Semi-Analytical Methodologies

In this section, the unique advantages of employing ana-
lytical and semi-analytical methodologies over numerical 
methods are discussed.

5.1 In-depth Understanding of Dynamical
Systems

Utilizing semi-analytical and analytical approaches facili-
tates a comprehensive examination of the dynamical phe-
nomena involved in the estimation of the probability of 
capture into GTRs. Beyond characterizing resonance re-
gions, such as their location and width, these methodolo-
gies enable a deeper understanding of previously unex-
plored phenomena. Notably, the ”automatic entry into 
libration” phenomenon, discussed by Sinclair [28] and 
Neishtadt [25], is introduced into the field of astrodynam-
ics for the first time through these methods.

5.2 Computational Efficiency

The analytical and semi-analytical approaches offer re-
markable computational efficiency compared t o numeri-
cal methods. In the preceding section, the mean probabil-
ity of capture was estimated for each value of eccentricity 
using 1000 different initial conditions across 100 different 
thrust magnitudes, uniformly distributed in the interval

Page 12 of 14

Semi-analytical estimation of the probability of capture into ground-track resonances of Dawn around Vesta

----&-



namics. The contributions of this study lay the path for
future research aimed at increasing our understanding and
capabilities in astrodynamics.
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