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Abstract. The rapid development of quantum computing has led to increasing interest in quantum algo-
rithms for a variety of different applications. Quantum walks have also experienced a surge in interest due
to their potential use in quantum algorithms. Using the qiskit software package, we test how accurately the
current generation of quantum computers provided by IBM can simulate a cycle discrete-time quantum
walk. Implementing an 8-node, 8-step walk and a simpler 4-node, 4-step discrete-time quantum walk on an
IBM quantum device known as ibmq_quito, the results for each step of the respective walks are presented.
A custom noise model is developed in order to estimate that noise levels in the ibmq_santiago quantum
device would need to be reduced by at least 94% in order to execute a 16-node, 16-step cycle discrete-time
quantum walk to a reasonable level of fidelity.

1 Introduction

In recent years, quantum computing [1,2] has come
to the forefront of developments in physics, with the
promise of eventually being able to perform certain
computations more efficiently than on a classical com-
puter [3–5]. This has motivated the creation of a num-
ber of well-known quantum algorithms over the years
in order to utilise this computational speed up, such as
Shor’s algorithm [6] and Grover’s algorithm [7].

Along with the development of quantum computing,
quantum walks [8,9] have also gained increasing inter-
est. In large part, this is due to their application to
quantum algorithms [10–13]. Quantum walks come in
two main types, continuous-time and discrete-time. In
this work, we focus on discrete-time quantum walks
(DTQW), in particular a DTQW on a cycle graph
[14], because it has a convenient encoding when exe-
cuted on a digital quantum computer. However, current
hardware has significant imperfections. Our aim in this
work is to determine how much IBM processors need to
improve to run DTQWs on cycle graphs.

This paper is structured as follows. In Sect. 2, an
implementation of a cycle discrete-time quantum walk
is presented using a binary encoding. In Sect. 3, we
present the results of executing this algorithm for eight
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steps of an 8-node quantum walk, and then for four
steps of a 4-node quantum walk, on an IBM quan-
tum device known as ibmq_quito, as well as on a local,
noiseless simulation using a quantum device known as
qasm_simulator. The results for both devices are com-
pared using a fidelity measure for probability distribu-
tions. In Sect. 4, the same algorithm is extended to 16
steps of a 16-node DTQW and run on ibmq_santiago,
whilst also being run on a noisy version of the sim-
ulator, for varying noise levels, with the fidelity being
calculated for every step of the walk. Results comparing
the fidelity of the ibmq_santiago device with simulated
noisy walks are presented. We conclude in Sect. 5.

2 Background

2.1 Quantum gates

In analogy with classical logic gates, quantum compu-
tations can be constructed from quantum logic gates.
In this work, we use the following quantum gates: X
gate acts in the same way a classical logical NOT gate
does, |0〉 → |1〉 and |1〉 → |0〉. The Hadamard (H) gate
creates a superposition state, |0〉 → 1√

2
(|0〉 + |1〉) and

|1〉 → 1√
2

(|0〉 − |1〉). A CNOT (Controlled-Not) gate
flips the state of the target qubit if the state of the
control qubit is |1〉. Similarly, a Toffoli (C3-X ) gate
flips the state of the target qubit if both of the con-
trol qubits are in the state |1〉. C4-NOT (C4-X ) and
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C5-NOT (C5-X ) gates flip the state of the target qubit
if all 3 or 4 of the respective control qubits are in the
state |1〉. An SX (

√
X) gate acts |0〉 → 1√

2
(|0〉 − i|1〉)

and |1〉 → 1√
2

(|0〉 + i|1〉), where i is the imaginary unit
(i2 = −1). The identity gate (ID) leaves any state it
acts on unchanged. RZ performs a rotation of the qubit
state around the z-axis by a given angle.

For all DTQW quantum circuits used, the H gate
acts as the Hadamard coin operator. X, C-NOT, Tof-
foli, C4-NOT and C5-NOT gates all act to change
the value of the binary string (quantum register) that
denotes the position of the walker.

2.2 Quantum walk on a graph

A graph g(v, e) is defined as a set of nodes v and edges
e that connect pairs of nodes. Of particular interest for
this work are cycle graphs, denoted by Cn where n is
the number of nodes. For example, Fig. 1 is a C8 graph
with the nodes labelled as used in the quantum walk
algorithms.

A discrete-time quantum walk on a cycle graph
requires a quantum walker that moves on the nodes
of a graph, accompanied by a coin that is “flipped”
to determine the direction to move in [14,15]. The full
quantum system (of the walk) is a combination of the
position state and the coin state, and the basis states
are written |x, c〉 where x labels the node and c ∈ {0, 1}
the coin state. The general state of a DTQW at a time
t is

|ψ(t)〉 =
∑

x,c

αx,c(t)|x, c〉, (1)

where αx,c(t) ∈ C and normalised as
∑

x,c |αx,c(t)|2 =
1. Conventionally, the walker is initialised at the origin,
i.e. x = 0 at t = 0, and the coin is in some chosen
initial state. The coin is “flipped” by applying a unitary
operator, known as a coin operator. For this work, we
use

Ĉ =
1√
2

(
1 1
1 −1

)
, (2)

which is also known as a Hadamard coin, since the
matrix is the same as a Hadamard quantum gate.
A conditional shift operator then acts to move the
quantum walker to adjacent nodes of the graph. This
requires a mapping between coin states and the nodes
at the ends of the edges to be specified [16]

ζ : Z|v| ×Zd → Z|v| ×Zd : (x, c) �→ ζ(x, c) = (y, k). (3)

Zn is the additive group of integers {0, . . . , n−1} mod-
ulo n, d is the degree of the node (the number of edges
connecting to it), x and y label each end of edge (x, y)
and k is the updated coin state. The shift then acts

Ŝ|x, c〉 = |y, k〉. (4)

In other words, moving the walker and coin along the
edge (x, y), with x being the starting node, y being the

Fig. 1 8-node cycle graph. The binary string (i.e. the state
of the quantum register) gives the site number shown in
decimal (bold)

end node and updating the coin state, according to the
mapping in equation (3). The application of the coin
operator followed by the shift operator, at each unit
time step, is sometimes denoted by the unitary operator
T̂, i.e.

T̂ = ŜĈ. (5)

Therefore, a DTQW of t time steps is achieved by
applying T̂, t times,

|ψ(t)〉 = T̂t|ψ(0)〉. (6)

For this work, the quantum register is always initialised
in the all zero state. That is |0000〉, |000〉 and |00000〉 for
the 8-node, 4-node and 16-node DTQWs, respectively.

2.3 Algorithm

Using the work of Kemp et al. [17], who in turn build
on the work of Douglas and Wang [18], it is possible
to build a quantum circuit that performs a quantum
walk on a cycle graph. For our purposes, we consider
the example presented in [17], namely, that of a 4-qubit
circuit that corresponds to an 8-node cycle graph. The
cycle graph is depicted in Fig. 1. The nodes of the graph
correspond to the possible positions of the walker.

The circuit for this 8-node walk is shown in Fig. 2.
The quantum register consists of four qubits, three of
which are used to represent the position of the walker
as a binary label, whilst the final qubit is used as
the coin state. Essentially, the circuit is built of two
large sets of gates, an INCREMENT step gate and a
DECREMENT step gate, acting as the shift operator,
which themselves consist of CNOT and X gates. These
INCREMENT and DECREMENT gates are repeated
depending on the number of steps required. The coin
operator used is a Hadamard gate applied before each
INCREMENT step. One step involves H, INCRE-
MENT, DECREMENT; two steps involve H, INCRE-
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Fig. 2 Quantum circuit of [17]. Figure depicts one step of
the walk. H, INCREMENT and DECREMENT gate sets
are repeated for the desired number of steps. Quantum gates
as they appear (from left to right) are: Hadamard, C4-X,
Toffoli, CNOT, X, etc., ending with measurement. Bottom
most qubit (as pictured in the diagram) acts as the coin, the
rest of the qubits are used to determine the position label
(see Fig. 1)

MENT, DECREMENT, H, INCREMENT, DECRE-
MENT, and so forth.

2.4 Fidelity

In order to make a quantitative comparison between
results from two different processors, such as ibmq_quito
and the qasm_simulator, we now introduce the mea-
sure of fidelity to be used. The Hellinger fidelity [19] is
defined as

FH = (1 − H2)
2

(7)

where H is the Hellinger distance.

H =
[∫ (√

p(z) −
√

q(z)
)2

dz

] 1
2

(8)

where p(z) and q(z) are two probability distributions
[20]. Essentially, the Hellinger fidelity is a means of com-
paring how similar two classical probability distribu-
tions are. The probability distributions we compare are
the results of the executed circuit which are expressed
as counts, calculated from the number of times each
position is measured as the outcome in a set of repeated
runs of the circuit. The fidelity takes values in the range
0 to 1, with a value of 1 indicating a perfect correla-
tion between distributions, and a value of 0 indicating a
perfect anti-correlation between distributions. A value
of 0.5 indicates no correlation, the distributions have
a random overlap. This means we expect a fidelity of
around 0.5 when we compare completely noisy states
to the perfect outcome of a noise-free simulation. Noisy
states tend to a value of 0.5 because this indicates max-
imum randomness in the results. A fidelity of less than
0.5 indicates the results of the computation are incor-
rect and, on average, anti-correlated. A fidelity of 0.8 or
higher shows a clear correlation between the distribu-
tions and therefore indicates the results of the computa-
tion are more often correct than incorrect over repeated
runs.

Table 1 Qiskit module versions

Module Version

qiskit-terra 0.16.4

qiskit-aer 0.7.6

qiskit-ignis 0.5.2

qiskit-ibmq-provider 0.12.1

qiskit-aqua 0.8.2

2.5 Backends and transpilation

A backend refers to either a simulation of a quantum
device or a real quantum device provided by IBM.
There are three backends used in this work. The first is
qasm_simulator, a local, noiseless, error-less, classical
simulation of an arbitrary 5-qubit quantum device. The
second is ibmq_quito, a real 5-qubit quantum device,
and the third is ibmq_santiago, also a real 5-qubit
quantum device. Quantum circuits are executed by first
being programmed using the qiskit software package,
and then being submitted online (for the case of real
quantum devices) to join a queue of all jobs to be exe-
cuted on that particular backend. Once execution is
completed, results are displayed through the qiskit soft-
ware frontend.
Transpilation [21] is the process of converting quan-

tum circuits, consisting of a range of standard gates into
the native gates used by IBM quantum devices. There
are only certain gates that can be executed on IBM
quantum hardware. The gates are: {CNOT, ID, RZ,
SX, X}. These form a universal set of gates, so all oper-
ations can be implemented using only these gates. The
transpilation process occurs automatically when the
user submits the circuit to be executed to the backend.
Transpilation does not occur in the qasm_simulator as
it is not a real quantum device, and can simulate all
gates directly.

2.6 Software versions used

Design and execution of circuits was done using
qiskit_v0.24.0 running on Python 3.8.5. Spyder
4.1.5 is used as the IDE to write code along with
IPython 7.19.0. Table 1 shows the version for each
qiskit module.

3 Runs and simulations

The rest of this paper examines DTQWs in the fol-
lowing order of dimensionality. Beginning with 8-node,
followed by 4-node, and finally in Sect. 4 a 16-node.
The reason for this ordering is to determine the impact
of noise on the fidelity of results from both smaller
and larger systems, as compared to the 8-node system
already established in literature.
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Fig. 3 Discrete-time quantum walk for an 8-node graph. Panels a–i show steps 0 to 8 of the walk, respectively. Bars
represent the probability of finding the walker at a particular site. The blue bars represent the result of the simulator i.e.
the expected result and red bars the real device. Panel j shows the Hellinger fidelity (7) between the real device and the
simulator for each step of the walk (dotted line is to guide the eye). Error bars on panel j represent standard error
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3.1 Eight node quantum walk

Using the algorithm and circuit presented in Sect.
2.3 and Fig. 2, respectively, an eight-step DTQW on
a cycle graph consisting of eight nodes is executed
on ibmq_quito and the qasm_simulator, with the
counts for each measured location of the quantum walk
recorded for each step of the walk. To do this, the walk
needs to be repeated for each number of steps, i.e. the
walk is executed for a specific number of steps and the
register is measured. Then the walk is restarted, the
desired number of steps are executed, and the register
is again measured. This process is repeated to obtain
results for a all the diferent steps in a walk. To com-
pare the performance of the ibmq_quito versus the
qasm_simulator, the fidelity defined in Sect. 2.4 is cal-
culated from the probability distributions derived from
the repeated runs. Since the simulator is regarded as
providing the ideal (expected) result, free of the effect
of any noise or errors, the fidelity quantifies the per-
formance of the real ibmq_quito hardware. The results
are presented in Fig. 3.

As can be seen in Fig. 3, the ibmq_quito device per-
forms poorly. A basic expectation would be that the
real device follows the first few steps of the walk with
a reasonable level of fidelity. However, panel j of Fig.
3 shows that the performance of the device does not
achieve this, with an average fidelity of 0.45 from step
one onwards. Furthermore, a fidelity below 0.5 indicates
an anti-correlation between the expected results and
the real device. This could be due to bit flip error(s)
occurring early in the computation, causing the value
of the quantum register to become anti-correlated com-
pared to the expected value. However, as the number
of steps increases, the fidelity tends to 0.5, indicating
the dominance of noise for longer computations.

3.2 Four-node quantum walk

Let us now consider a simpler version of the algorithm
presented in Sect. 2.3, one that consists of only four
nodes instead of eight, as shown in Fig. 4.

The circuit now needs just three qubits in total,
qubits one and two are used to record the position and
qubit three is used for the coin. This quantum walk
simulation circuit is shown in Fig. 5. Specifically, the
pattern the circuit follows is: H acting on coin, STEP,
H acting on coin, STEP and so on for further steps of
the quantum walk. The circuit only consists of one large
gate, a STEP gate that incorporates the functionality
of the INCREMENT and DECREMENT gates of [17].

This algorithm was executed on ibmq_quito for four
steps of the walk, with the counts measured at each step
and the fidelity with the qasm_simulator calculated.
The results are presented in Fig. 6.

As can be seen in Fig. 6, ibm_quito performs the
4-node quantum walk with far higher fidelity than the
8-node. Although the fidelity of the results do decrease
slightly during the initial steps, all steps are maintained
at a fidelity of higher than 0.8, showing a good corre-

Fig. 4 4-node quantum walk graph. As in Fig. 1 nodes
represent the possible positions of the walker and the binary
string corresponds to the label number in decimal (bold)

Fig. 5 Circuit for 4-node quantum walk. Decomposition of
STEP gates are enclosed by the dashed lines. Coin operation
is given by a single Hadamard gate acting on qubit three.
Two complete steps of the quantum walk are shown, these
gates are repeated for the desired number of steps

lation between simulator and the real device. In other
words, the correct computations are being performed,
on average. This is in clear contrast to the results pre-
sented in Fig. 3.

3.3 Analysis of 8- and 4- node walks

Let us now consider these results, and why the 4-
node quantum walk performs similarly to the simulator
whilst the 8-node counterpart does not. On inspection
of their respective quantum circuits (shown in Figs. 5,
2, respectively), both appear to be relatively simple.
However, focusing on the INCREMENT and DECRE-
MENT gates of the 8-node circuit, they contain Toffoli
and C4-NOT (C4-X ) gates. Implementation of these
gates proves to be a non-trivial task. The qiskit soft-
ware has a method of implementing Toffoli gates by
reducing them into a set of other gates. In total, this
decomposition consists of 18 gates: six CNOT gates,
10 RZ gates and 2 SX gates for each Toffoli. This is
already a large increase in the total number of gates
required to perform a single Toffoli operation. For the
case of a C4-NOT or generally any Cn-NOT gate of
higher order (e.g. C5-X, C6-X, etc.), there currently
exists no optimised way of implementing these gates
in qiskit. A C4-NOT is transpiled into a 34-gate cir-
cuit: 14 CNOT gates, 18 RZ and two SX. A single
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Fig. 6 DTQW for a 4-node graph. Panels a–e show steps 0
to 4 of the walk, respectively. Bars represent the probability
of finding the walker at a certain site denoted by a bit string.
The blue bars represent the result of the simulator and red
bars the result of the real device. Panel f shows the fidelity,
comparing the two probability distributions, of the walk for
each step between the real device and simulator. Error bars
represent standard error

C4-NOT gate thus needs a large number of gates that
form a fairly large circuit by themselves, and the imple-
mentation from [17] contains two Toffolis and two C4-
NOT gates for a single step of the quantum walk. This
explains why the quantum walk on ibm_quito appears
as just noise. The number of gates being implemented,
even for a single step, has enough noise associated with
each gate to degrade the results to the point where it is
unrecognisable. In comparison, the 4-node circuit does
not contain any Toffoli or C4-NOT gates, so the only
gates to transpile are H and X, which explains why the
results achieve a higher fidelity. This circuit, when tran-
spiled is much closer to Fig. 5, and contains a modest
number of gates, so noise degradation does not ruin the
result. It is worth mentioning that the transpiling pro-
cess does not solely consist of transforming the circuit
into gates, but also decides which qubits to use in the
device, determined by the hardware’s topology, among
other processes [21]. Factors such as the aforementioned
topology constraints can have a negative impact on the
fidelity of a computation by, for example, increasing the
total number of gates in a circuit, leading to more noise.

4 Custom noise models

A feature of the qiskit software package is the abil-
ity to create and use noise models. IBM offers a noise

model of each available backend that, in principle, mod-
els the noise levels of that device, on that day, as accu-
rately as qiskit will allow. However, it is also possible
for the user to create their own custom noise mod-
els by varying, and including/not including, param-
eters associated with noise in superconducting quan-
tum computers. Noise models are created using the
qasm_simulator as a base template, noise parameters
are then introduced on top of this template. The main
parameter in the custom noise models comes from the
depolarising error channel, and is modelled by [22]

E(ρ) = (1 − λ)ρ + λTr[ρ]
1

2n
(9)

with 0 ≤ λ ≤ 4n/(4n − 1), where λ is the depolarising
error parameter, n is the number of qubits, 1 is the
identity matrix (normalised by dividing by 2n) and ρ is
the density matrix of the state.

For depolarising noise, the quantum correlations are
removed over time, and this will turn a quantum walk
into a classical random walk. The limiting distribution
for a classical random walk on any regular graph (such
as the cycle) is a uniform distribution, independent of
the initial state. However, we are simulating noise on
the quantum computer, which is not the same as a
model of a noisy quantum walk. Nonetheless, remov-
ing quantum correlations will still have the effect over
long times of making the output of the computation a
random distribution over the possible outcomes, inde-
pendent of the initial state.

We can use the customised noise model to estimate
how much noise levels in the IBM quantum device
ibmq_santiago would need to be reduced in order to
achieve a consistent, high-fidelity result for a discrete-
time quantum walk. To investigate this, consider the
DTQW on a cycle graph, using the same paradigm as
the walks in the previous section. However, now the
quantum register is extended to a total of five qubits,
this being the maximum number available to us. Four
qubits are used for the binary encoding of the position
of the walker and the fifth qubit stores the coin state.
Accordingly, the number of sites on the graph, for this
quantum walk, can now increase to a total of 16, as
shown in Fig. 7. The corresponding quantum circuit
for this walk is shown in Fig. 8.

The parameters that make-up a noise model are:
single-qubit gate errors, two-qubit gate errors, three-
qubit gate errors, and multiple (i.e. four and five for
this algorithm) qubit gate errors. The single-qubit gate
errors correspond to the single qubit unitary operators
in the circuit. In the case of the 16-node DTQW that
we use, this includes H and X gates. The two, three
and multiple qubit errors correspond to CNOT, Toffoli
and C4-X /C5-X gates, respectively. In practice, these
errors represent depolarising error rates associated with
each of the gates, and are numbers specified by the user.

In order to create a custom noise model that is able
to accurately model a real device, we begin by an ini-
tial guess of the error rates associated with each of the
aforementioned gate types, single-qubit, two-qubit, etc.
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Fig. 7 Diagram of the 16-node cycle graph used in the
DTQW. Nodes represent the possible positions of the walker
and the binary string corresponds to the node label in dec-
imal (bold)

We then examine the outputted results of the 16-node,
16-step cycle DTQW, run on this custom noise model,
and compare it to the results outputted by the real
device. By examining how close the Hellinger fidelity
of the two distributions (from the custom noise model
and real device) are, the values for the gate errors can
be refined. By refining the gate errors until a Hellinger
fidelity of 1.0, or as close to that value as possible, is
achieved, a custom noise model of a real device is able
to be constructed. The final values for the gate errors,
which are the probability of error per gate, are shown
in Table 2 below.

The values shown in Table 2 are referred to in this
text as full noise strength, as they refer to the maximum
amount of noise modelled, i.e. the amount of noise that
most closely resembles the real device.

As mentioned previously, IBM also provides a noise
model for each of their backends. This noise model has
the error rates pre-determined by automated analysis of
each of the devices every so often, e.g. every 24 h. Due
to the susceptibility of transmon qubits to environmen-
tal noise, these error rates vary over time. Hence, this
method of modelling noise is a means of keeping track of
that variation, and provides the most accurate error val-
ues. The other advantage is that the user does not need
to define each individual error rate to match the current
noise levels, this is done automatically. In addition to
depolarising errors, the IBM noise model also contains:
readout errors, errors associated with the measurement
of qubits, and a thermal relaxation error that essen-
tially consists of the T1 and T2 relaxation times [23]. It
is important to note that the depolarising and thermal
relaxation errors only apply to single- and two-qubit
gates, so the noise model needs to be applied to cir-
cuits with three-qubit and higher gates transpiled into
one- and two-qubit gates. In this paper, the noise model
provided by IBM is referred to as the IBM noise model.

In order to investigate how noise affects the perfor-
mance of this generation of IBM quantum computers,

Fig. 8 Quantum circuit for the 16-node DTQW using 5
qubits. Figure depicts one step of the walk. Bottom most
qubit (as pictured) acts as the coin and the rest of the qubits
are used to represent the position of the walker

Table 2 Error rate per gate used in the custom noise model
to emulate ibmq_santiago

Type of gate Error

Single-qubit 0.005
Two-qubit 0.02
Three-qubit 0.04
Multiple-qubit 0.6

Multiple-qubit refers to four or more qubit gates

the DTQW for 16 nodes is executed, first on the base
qasm_simulator with no noise, and second using the
custom noise model, for 16 steps of the walk in single
step increments. The noise level is then reduced in grad-
ual decrements, until there are no depolarising errors in
the custom noise model. The same DTQW is then exe-
cuted on the IBM noise model of ibmq_santiago and
the real ibmq_santiago. The fidelity for each step of the
quantum walk is recorded up to a maximum of 16 steps.
The fidelity for each backend: custom noise model, IBM
noise model and ibmq_santiago, is found by compar-
ing the probability distributions of each step of the walk
with the corresponding step from the qasm_simulator,
which can be thought of as the ideal or expected result,
as it contains no noise.

Figure 9 shows the fidelity for each step of the quan-
tum walk and for decreasing noise levels. In Fig. 9, 100%
refers to 100% of the full noise strength, i.e. the values
in Table 2; 90% refers to 90% of each error in Table 2,
etc. At 0% of full noise strength, the errors all take a
value of 0. However, it is important to note that this
is not exactly the same (although extremely close) as
the base qasm_simulator. The distinction is that at 0%
noise strength the noise model still takes into account
the small errors introduced by the transpilation process
(see Sect. 2.5 and [21] for explanation).

As can be seen from Fig. 9, for all noise strengths
except 0%, the performance is poor. Noise strengths
60–100% all begin with a fidelity below 0.5, in other
words they cannot even produce an accurate result for
one step of the quantum walk (recall that one step con-
sists of the sequence of single and multi-qubit gates
shown in Fig. 8). Similarly, noise strengths 30–50%
show some improvement but still not enough to be
considered accurate. Significant improvements in the
fidelity only begin to be seen when at 10% and 20% of
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Fig. 9 Fidelity at each step of a 16-node, 16-step DTQW,
for varying noise strengths of the custom noise model. Error
bars represent standard error

full noise strength. However, the fidelity soon declines
in the case of 20% noise strength, and after just 2 steps
the results of the walk are indiscernible from random
outputs. In the case of 10% of full noise strength, the
performance is markedly better, with the fidelity being
consistently higher than all other noise strengths for
every step of the walk. Here, approximately 13 steps
of the walk are achieved at a reasonable standard with
a final fidelity around 0.6, which is roughly the limit
before the results of the walk start to become indistin-
guishable from random outputs i.e. noise. The 0% noise
strength achieves a constant fidelity of almost exactly
1.0, with minor fluctuations occurring due to the tran-
spilation errors. This confirms that 0% noise strength
and the qasm_simulator are very similar. In all other
cases for the custom noise model, it can be seen that
the fidelity tends to an equilibrium value of approxi-
mately 0.5 as the number of steps tends to 16, showing
the effect of noise overcoming the results of the walk.
Figure 10 shows the fidelity for the same DTQW, for
selected noise strengths, and includes the noise model
of ibmq_santiago as well as ibmq_santiago itself.

From Fig. 10 a direct comparison between the
noise models and ibmq_santiago can be made. Over-
all, the worst performing is the real device, starting
with a low fidelity that gradually increases but never
exceeds 0.5. This indicates a slight anti-correlation
with the expected results, particularly for the first few
steps. However, beyond roughly 6 steps these tend
to random outputs (noise). The performance of the
IBM noise model at 100% strength is very similar to
ibmq_santiago. For the IBM noise model, this would
be expected but the custom noise model also follows
the real device very closely, overlapping at 4, 9 and
10 steps. Although overall the performance of the IBM
noise model is slightly closer to the real device, it is
interesting to see this near correspondence. This indi-
cates that depolarising errors are the dominant contri-
bution to noise, since it is possible to so closely model
(as shown in Figs. 9, 10) the real device without the

Fig. 10 Fidelity at each step of a 16-node, 16-step DTQW,
for varying noise strengths of the custom noise model as
well as the IBM noise model and ibm_santiago. Error bars
represent standard error

addition of other errors. The addition of 2% and 6%
noise strength also shows the non-linear improvement
in performance once the level of noise is below 10% of
the initial parameters. For 6% noise strength, the entire
walk of 16 steps is achievable with a reasonable fidelity,
only dropping slightly towards 16 steps, even at this
point the results of the walk are distinguishable from
any random outputs (noise). The 2% noise strength
performs excellently, and by far has the highest overall
fidelity (aside from 0% of course), never dropping below
0.8 fidelity. All steps of the walk are considered accurate
and extrapolation of Fig. 10 would seem to suggest that
many more additional (probably around 8) steps could
be achieved with high or good fidelity results for 2%
noise strength. We therefore conclude that in order for
a DTQW on a 16-node cycle graph to be executed with
consistent, high-fidelity results, for each step, the noise
levels within ibmq_santiago would need to be reduced
by approximately 94%.

The explanation for the poor fidelity for the 8-node
cycle presented in in Sect. 3 is now clear. The poor
fidelity of ibmq_santiago, the IBM noise model and
most of the custom noise models, is due to the transpi-
lation process expanding the number of native gates,
and with it, the total noise.

5 Conclusion

We have carried out two different size cycle discrete-
time quantum walks on an IBM quantum computer,
ibmq_quito, showing that the device is unable to pro-
duce high-fidelity results for an 8-node, 8-step walk.
However, it is able to produce reasonably high-fidelity
results for a 4-node, 4-step walk. We have established
the reason for this discrepancy in results between the
two walks is due to the transpilation process. Specif-
ically, the 4-node walk uses fewer qubits and fewer
gates, as well as using only CNOT gates, whilst the
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8-node walk requires C3-X (Toffoli) and C4-X gates,
that are transpiled into many more native gates. There-
fore, less noise occurs in the execution of the 4-node
walk, and it is able to achieve a much higher fidelity.
Section 4 then established, using custom noise models,
a method of approximating by how much the noise in
ibmq_santiago would need to be reduced in order to
execute a 16-node, 16-step cycle discrete-time quan-
tum walk. Inspection of Figs. 9 and 10, revealed that a
decrease in noise levels of approximately 94% would be
sufficient to achieve this task.

Although our conclusions show that this generation
of IBM quantum computers have a long way to go in
terms of reduction of noise levels, for even a modest-
sized DTQW, it is encouraging that a smaller DTQW
is currently viable.

Quantum walks are by no means the only algorithm
that can be used to benchmark performance of quan-
tum computers. For example, randomised benchmark-
ing [24,25] has been used to characterise noise in IBM
quantum computers. Furthermore, combinatorial opti-
misation problems have also been used to measure
performance [26]. However, fundamentally, all quan-
tum algorithms implemented on IBM superconducting
quantum computers use quantum gates. Specifically, we
tested the gates in Sect. 2.5. Therefore, the conclusions
regarding transpilation and noise associated with each
gate, highlighting in particular Toffoli, C4-X and C5-X
gates, hold true for any algorithm that uses those gates,
implemented on these processors.
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